File:  [Local Repository] / imach / src / imach.c
Revision 1.200: download - view: text, annotated - select for diffs
Wed Sep 9 16:53:55 2015 UTC (8 years, 9 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Summary: Big bug thanks to Flavia

Even model=1+age+V2. did not work anymore

    1: /* $Id: imach.c,v 1.200 2015/09/09 16:53:55 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.200  2015/09/09 16:53:55  brouard
    5:   Summary: Big bug thanks to Flavia
    6: 
    7:   Even model=1+age+V2. did not work anymore
    8: 
    9:   Revision 1.199  2015/09/07 14:09:23  brouard
   10:   Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   11: 
   12:   Revision 1.198  2015/09/03 07:14:39  brouard
   13:   Summary: 0.98q5 Flavia
   14: 
   15:   Revision 1.197  2015/09/01 18:24:39  brouard
   16:   *** empty log message ***
   17: 
   18:   Revision 1.196  2015/08/18 23:17:52  brouard
   19:   Summary: 0.98q5
   20: 
   21:   Revision 1.195  2015/08/18 16:28:39  brouard
   22:   Summary: Adding a hack for testing purpose
   23: 
   24:   After reading the title, ftol and model lines, if the comment line has
   25:   a q, starting with #q, the answer at the end of the run is quit. It
   26:   permits to run test files in batch with ctest. The former workaround was
   27:   $ echo q | imach foo.imach
   28: 
   29:   Revision 1.194  2015/08/18 13:32:00  brouard
   30:   Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   31: 
   32:   Revision 1.193  2015/08/04 07:17:42  brouard
   33:   Summary: 0.98q4
   34: 
   35:   Revision 1.192  2015/07/16 16:49:02  brouard
   36:   Summary: Fixing some outputs
   37: 
   38:   Revision 1.191  2015/07/14 10:00:33  brouard
   39:   Summary: Some fixes
   40: 
   41:   Revision 1.190  2015/05/05 08:51:13  brouard
   42:   Summary: Adding digits in output parameters (7 digits instead of 6)
   43: 
   44:   Fix 1+age+.
   45: 
   46:   Revision 1.189  2015/04/30 14:45:16  brouard
   47:   Summary: 0.98q2
   48: 
   49:   Revision 1.188  2015/04/30 08:27:53  brouard
   50:   *** empty log message ***
   51: 
   52:   Revision 1.187  2015/04/29 09:11:15  brouard
   53:   *** empty log message ***
   54: 
   55:   Revision 1.186  2015/04/23 12:01:52  brouard
   56:   Summary: V1*age is working now, version 0.98q1
   57: 
   58:   Some codes had been disabled in order to simplify and Vn*age was
   59:   working in the optimization phase, ie, giving correct MLE parameters,
   60:   but, as usual, outputs were not correct and program core dumped.
   61: 
   62:   Revision 1.185  2015/03/11 13:26:42  brouard
   63:   Summary: Inclusion of compile and links command line for Intel Compiler
   64: 
   65:   Revision 1.184  2015/03/11 11:52:39  brouard
   66:   Summary: Back from Windows 8. Intel Compiler
   67: 
   68:   Revision 1.183  2015/03/10 20:34:32  brouard
   69:   Summary: 0.98q0, trying with directest, mnbrak fixed
   70: 
   71:   We use directest instead of original Powell test; probably no
   72:   incidence on the results, but better justifications;
   73:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
   74:   wrong results.
   75: 
   76:   Revision 1.182  2015/02/12 08:19:57  brouard
   77:   Summary: Trying to keep directest which seems simpler and more general
   78:   Author: Nicolas Brouard
   79: 
   80:   Revision 1.181  2015/02/11 23:22:24  brouard
   81:   Summary: Comments on Powell added
   82: 
   83:   Author:
   84: 
   85:   Revision 1.180  2015/02/11 17:33:45  brouard
   86:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
   87: 
   88:   Revision 1.179  2015/01/04 09:57:06  brouard
   89:   Summary: back to OS/X
   90: 
   91:   Revision 1.178  2015/01/04 09:35:48  brouard
   92:   *** empty log message ***
   93: 
   94:   Revision 1.177  2015/01/03 18:40:56  brouard
   95:   Summary: Still testing ilc32 on OSX
   96: 
   97:   Revision 1.176  2015/01/03 16:45:04  brouard
   98:   *** empty log message ***
   99: 
  100:   Revision 1.175  2015/01/03 16:33:42  brouard
  101:   *** empty log message ***
  102: 
  103:   Revision 1.174  2015/01/03 16:15:49  brouard
  104:   Summary: Still in cross-compilation
  105: 
  106:   Revision 1.173  2015/01/03 12:06:26  brouard
  107:   Summary: trying to detect cross-compilation
  108: 
  109:   Revision 1.172  2014/12/27 12:07:47  brouard
  110:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
  111: 
  112:   Revision 1.171  2014/12/23 13:26:59  brouard
  113:   Summary: Back from Visual C
  114: 
  115:   Still problem with utsname.h on Windows
  116: 
  117:   Revision 1.170  2014/12/23 11:17:12  brouard
  118:   Summary: Cleaning some \%% back to %%
  119: 
  120:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
  121: 
  122:   Revision 1.169  2014/12/22 23:08:31  brouard
  123:   Summary: 0.98p
  124: 
  125:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
  126: 
  127:   Revision 1.168  2014/12/22 15:17:42  brouard
  128:   Summary: update
  129: 
  130:   Revision 1.167  2014/12/22 13:50:56  brouard
  131:   Summary: Testing uname and compiler version and if compiled 32 or 64
  132: 
  133:   Testing on Linux 64
  134: 
  135:   Revision 1.166  2014/12/22 11:40:47  brouard
  136:   *** empty log message ***
  137: 
  138:   Revision 1.165  2014/12/16 11:20:36  brouard
  139:   Summary: After compiling on Visual C
  140: 
  141:   * imach.c (Module): Merging 1.61 to 1.162
  142: 
  143:   Revision 1.164  2014/12/16 10:52:11  brouard
  144:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
  145: 
  146:   * imach.c (Module): Merging 1.61 to 1.162
  147: 
  148:   Revision 1.163  2014/12/16 10:30:11  brouard
  149:   * imach.c (Module): Merging 1.61 to 1.162
  150: 
  151:   Revision 1.162  2014/09/25 11:43:39  brouard
  152:   Summary: temporary backup 0.99!
  153: 
  154:   Revision 1.1  2014/09/16 11:06:58  brouard
  155:   Summary: With some code (wrong) for nlopt
  156: 
  157:   Author:
  158: 
  159:   Revision 1.161  2014/09/15 20:41:41  brouard
  160:   Summary: Problem with macro SQR on Intel compiler
  161: 
  162:   Revision 1.160  2014/09/02 09:24:05  brouard
  163:   *** empty log message ***
  164: 
  165:   Revision 1.159  2014/09/01 10:34:10  brouard
  166:   Summary: WIN32
  167:   Author: Brouard
  168: 
  169:   Revision 1.158  2014/08/27 17:11:51  brouard
  170:   *** empty log message ***
  171: 
  172:   Revision 1.157  2014/08/27 16:26:55  brouard
  173:   Summary: Preparing windows Visual studio version
  174:   Author: Brouard
  175: 
  176:   In order to compile on Visual studio, time.h is now correct and time_t
  177:   and tm struct should be used. difftime should be used but sometimes I
  178:   just make the differences in raw time format (time(&now).
  179:   Trying to suppress #ifdef LINUX
  180:   Add xdg-open for __linux in order to open default browser.
  181: 
  182:   Revision 1.156  2014/08/25 20:10:10  brouard
  183:   *** empty log message ***
  184: 
  185:   Revision 1.155  2014/08/25 18:32:34  brouard
  186:   Summary: New compile, minor changes
  187:   Author: Brouard
  188: 
  189:   Revision 1.154  2014/06/20 17:32:08  brouard
  190:   Summary: Outputs now all graphs of convergence to period prevalence
  191: 
  192:   Revision 1.153  2014/06/20 16:45:46  brouard
  193:   Summary: If 3 live state, convergence to period prevalence on same graph
  194:   Author: Brouard
  195: 
  196:   Revision 1.152  2014/06/18 17:54:09  brouard
  197:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
  198: 
  199:   Revision 1.151  2014/06/18 16:43:30  brouard
  200:   *** empty log message ***
  201: 
  202:   Revision 1.150  2014/06/18 16:42:35  brouard
  203:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
  204:   Author: brouard
  205: 
  206:   Revision 1.149  2014/06/18 15:51:14  brouard
  207:   Summary: Some fixes in parameter files errors
  208:   Author: Nicolas Brouard
  209: 
  210:   Revision 1.148  2014/06/17 17:38:48  brouard
  211:   Summary: Nothing new
  212:   Author: Brouard
  213: 
  214:   Just a new packaging for OS/X version 0.98nS
  215: 
  216:   Revision 1.147  2014/06/16 10:33:11  brouard
  217:   *** empty log message ***
  218: 
  219:   Revision 1.146  2014/06/16 10:20:28  brouard
  220:   Summary: Merge
  221:   Author: Brouard
  222: 
  223:   Merge, before building revised version.
  224: 
  225:   Revision 1.145  2014/06/10 21:23:15  brouard
  226:   Summary: Debugging with valgrind
  227:   Author: Nicolas Brouard
  228: 
  229:   Lot of changes in order to output the results with some covariates
  230:   After the Edimburgh REVES conference 2014, it seems mandatory to
  231:   improve the code.
  232:   No more memory valgrind error but a lot has to be done in order to
  233:   continue the work of splitting the code into subroutines.
  234:   Also, decodemodel has been improved. Tricode is still not
  235:   optimal. nbcode should be improved. Documentation has been added in
  236:   the source code.
  237: 
  238:   Revision 1.143  2014/01/26 09:45:38  brouard
  239:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
  240: 
  241:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  242:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
  243: 
  244:   Revision 1.142  2014/01/26 03:57:36  brouard
  245:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  246: 
  247:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  248: 
  249:   Revision 1.141  2014/01/26 02:42:01  brouard
  250:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  251: 
  252:   Revision 1.140  2011/09/02 10:37:54  brouard
  253:   Summary: times.h is ok with mingw32 now.
  254: 
  255:   Revision 1.139  2010/06/14 07:50:17  brouard
  256:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
  257:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  258: 
  259:   Revision 1.138  2010/04/30 18:19:40  brouard
  260:   *** empty log message ***
  261: 
  262:   Revision 1.137  2010/04/29 18:11:38  brouard
  263:   (Module): Checking covariates for more complex models
  264:   than V1+V2. A lot of change to be done. Unstable.
  265: 
  266:   Revision 1.136  2010/04/26 20:30:53  brouard
  267:   (Module): merging some libgsl code. Fixing computation
  268:   of likelione (using inter/intrapolation if mle = 0) in order to
  269:   get same likelihood as if mle=1.
  270:   Some cleaning of code and comments added.
  271: 
  272:   Revision 1.135  2009/10/29 15:33:14  brouard
  273:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  274: 
  275:   Revision 1.134  2009/10/29 13:18:53  brouard
  276:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
  277: 
  278:   Revision 1.133  2009/07/06 10:21:25  brouard
  279:   just nforces
  280: 
  281:   Revision 1.132  2009/07/06 08:22:05  brouard
  282:   Many tings
  283: 
  284:   Revision 1.131  2009/06/20 16:22:47  brouard
  285:   Some dimensions resccaled
  286: 
  287:   Revision 1.130  2009/05/26 06:44:34  brouard
  288:   (Module): Max Covariate is now set to 20 instead of 8. A
  289:   lot of cleaning with variables initialized to 0. Trying to make
  290:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  291: 
  292:   Revision 1.129  2007/08/31 13:49:27  lievre
  293:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  294: 
  295:   Revision 1.128  2006/06/30 13:02:05  brouard
  296:   (Module): Clarifications on computing e.j
  297: 
  298:   Revision 1.127  2006/04/28 18:11:50  brouard
  299:   (Module): Yes the sum of survivors was wrong since
  300:   imach-114 because nhstepm was no more computed in the age
  301:   loop. Now we define nhstepma in the age loop.
  302:   (Module): In order to speed up (in case of numerous covariates) we
  303:   compute health expectancies (without variances) in a first step
  304:   and then all the health expectancies with variances or standard
  305:   deviation (needs data from the Hessian matrices) which slows the
  306:   computation.
  307:   In the future we should be able to stop the program is only health
  308:   expectancies and graph are needed without standard deviations.
  309: 
  310:   Revision 1.126  2006/04/28 17:23:28  brouard
  311:   (Module): Yes the sum of survivors was wrong since
  312:   imach-114 because nhstepm was no more computed in the age
  313:   loop. Now we define nhstepma in the age loop.
  314:   Version 0.98h
  315: 
  316:   Revision 1.125  2006/04/04 15:20:31  lievre
  317:   Errors in calculation of health expectancies. Age was not initialized.
  318:   Forecasting file added.
  319: 
  320:   Revision 1.124  2006/03/22 17:13:53  lievre
  321:   Parameters are printed with %lf instead of %f (more numbers after the comma).
  322:   The log-likelihood is printed in the log file
  323: 
  324:   Revision 1.123  2006/03/20 10:52:43  brouard
  325:   * imach.c (Module): <title> changed, corresponds to .htm file
  326:   name. <head> headers where missing.
  327: 
  328:   * imach.c (Module): Weights can have a decimal point as for
  329:   English (a comma might work with a correct LC_NUMERIC environment,
  330:   otherwise the weight is truncated).
  331:   Modification of warning when the covariates values are not 0 or
  332:   1.
  333:   Version 0.98g
  334: 
  335:   Revision 1.122  2006/03/20 09:45:41  brouard
  336:   (Module): Weights can have a decimal point as for
  337:   English (a comma might work with a correct LC_NUMERIC environment,
  338:   otherwise the weight is truncated).
  339:   Modification of warning when the covariates values are not 0 or
  340:   1.
  341:   Version 0.98g
  342: 
  343:   Revision 1.121  2006/03/16 17:45:01  lievre
  344:   * imach.c (Module): Comments concerning covariates added
  345: 
  346:   * imach.c (Module): refinements in the computation of lli if
  347:   status=-2 in order to have more reliable computation if stepm is
  348:   not 1 month. Version 0.98f
  349: 
  350:   Revision 1.120  2006/03/16 15:10:38  lievre
  351:   (Module): refinements in the computation of lli if
  352:   status=-2 in order to have more reliable computation if stepm is
  353:   not 1 month. Version 0.98f
  354: 
  355:   Revision 1.119  2006/03/15 17:42:26  brouard
  356:   (Module): Bug if status = -2, the loglikelihood was
  357:   computed as likelihood omitting the logarithm. Version O.98e
  358: 
  359:   Revision 1.118  2006/03/14 18:20:07  brouard
  360:   (Module): varevsij Comments added explaining the second
  361:   table of variances if popbased=1 .
  362:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  363:   (Module): Function pstamp added
  364:   (Module): Version 0.98d
  365: 
  366:   Revision 1.117  2006/03/14 17:16:22  brouard
  367:   (Module): varevsij Comments added explaining the second
  368:   table of variances if popbased=1 .
  369:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  370:   (Module): Function pstamp added
  371:   (Module): Version 0.98d
  372: 
  373:   Revision 1.116  2006/03/06 10:29:27  brouard
  374:   (Module): Variance-covariance wrong links and
  375:   varian-covariance of ej. is needed (Saito).
  376: 
  377:   Revision 1.115  2006/02/27 12:17:45  brouard
  378:   (Module): One freematrix added in mlikeli! 0.98c
  379: 
  380:   Revision 1.114  2006/02/26 12:57:58  brouard
  381:   (Module): Some improvements in processing parameter
  382:   filename with strsep.
  383: 
  384:   Revision 1.113  2006/02/24 14:20:24  brouard
  385:   (Module): Memory leaks checks with valgrind and:
  386:   datafile was not closed, some imatrix were not freed and on matrix
  387:   allocation too.
  388: 
  389:   Revision 1.112  2006/01/30 09:55:26  brouard
  390:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
  391: 
  392:   Revision 1.111  2006/01/25 20:38:18  brouard
  393:   (Module): Lots of cleaning and bugs added (Gompertz)
  394:   (Module): Comments can be added in data file. Missing date values
  395:   can be a simple dot '.'.
  396: 
  397:   Revision 1.110  2006/01/25 00:51:50  brouard
  398:   (Module): Lots of cleaning and bugs added (Gompertz)
  399: 
  400:   Revision 1.109  2006/01/24 19:37:15  brouard
  401:   (Module): Comments (lines starting with a #) are allowed in data.
  402: 
  403:   Revision 1.108  2006/01/19 18:05:42  lievre
  404:   Gnuplot problem appeared...
  405:   To be fixed
  406: 
  407:   Revision 1.107  2006/01/19 16:20:37  brouard
  408:   Test existence of gnuplot in imach path
  409: 
  410:   Revision 1.106  2006/01/19 13:24:36  brouard
  411:   Some cleaning and links added in html output
  412: 
  413:   Revision 1.105  2006/01/05 20:23:19  lievre
  414:   *** empty log message ***
  415: 
  416:   Revision 1.104  2005/09/30 16:11:43  lievre
  417:   (Module): sump fixed, loop imx fixed, and simplifications.
  418:   (Module): If the status is missing at the last wave but we know
  419:   that the person is alive, then we can code his/her status as -2
  420:   (instead of missing=-1 in earlier versions) and his/her
  421:   contributions to the likelihood is 1 - Prob of dying from last
  422:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
  423:   the healthy state at last known wave). Version is 0.98
  424: 
  425:   Revision 1.103  2005/09/30 15:54:49  lievre
  426:   (Module): sump fixed, loop imx fixed, and simplifications.
  427: 
  428:   Revision 1.102  2004/09/15 17:31:30  brouard
  429:   Add the possibility to read data file including tab characters.
  430: 
  431:   Revision 1.101  2004/09/15 10:38:38  brouard
  432:   Fix on curr_time
  433: 
  434:   Revision 1.100  2004/07/12 18:29:06  brouard
  435:   Add version for Mac OS X. Just define UNIX in Makefile
  436: 
  437:   Revision 1.99  2004/06/05 08:57:40  brouard
  438:   *** empty log message ***
  439: 
  440:   Revision 1.98  2004/05/16 15:05:56  brouard
  441:   New version 0.97 . First attempt to estimate force of mortality
  442:   directly from the data i.e. without the need of knowing the health
  443:   state at each age, but using a Gompertz model: log u =a + b*age .
  444:   This is the basic analysis of mortality and should be done before any
  445:   other analysis, in order to test if the mortality estimated from the
  446:   cross-longitudinal survey is different from the mortality estimated
  447:   from other sources like vital statistic data.
  448: 
  449:   The same imach parameter file can be used but the option for mle should be -3.
  450: 
  451:   Agnès, who wrote this part of the code, tried to keep most of the
  452:   former routines in order to include the new code within the former code.
  453: 
  454:   The output is very simple: only an estimate of the intercept and of
  455:   the slope with 95% confident intervals.
  456: 
  457:   Current limitations:
  458:   A) Even if you enter covariates, i.e. with the
  459:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  460:   B) There is no computation of Life Expectancy nor Life Table.
  461: 
  462:   Revision 1.97  2004/02/20 13:25:42  lievre
  463:   Version 0.96d. Population forecasting command line is (temporarily)
  464:   suppressed.
  465: 
  466:   Revision 1.96  2003/07/15 15:38:55  brouard
  467:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
  468:   rewritten within the same printf. Workaround: many printfs.
  469: 
  470:   Revision 1.95  2003/07/08 07:54:34  brouard
  471:   * imach.c (Repository):
  472:   (Repository): Using imachwizard code to output a more meaningful covariance
  473:   matrix (cov(a12,c31) instead of numbers.
  474: 
  475:   Revision 1.94  2003/06/27 13:00:02  brouard
  476:   Just cleaning
  477: 
  478:   Revision 1.93  2003/06/25 16:33:55  brouard
  479:   (Module): On windows (cygwin) function asctime_r doesn't
  480:   exist so I changed back to asctime which exists.
  481:   (Module): Version 0.96b
  482: 
  483:   Revision 1.92  2003/06/25 16:30:45  brouard
  484:   (Module): On windows (cygwin) function asctime_r doesn't
  485:   exist so I changed back to asctime which exists.
  486: 
  487:   Revision 1.91  2003/06/25 15:30:29  brouard
  488:   * imach.c (Repository): Duplicated warning errors corrected.
  489:   (Repository): Elapsed time after each iteration is now output. It
  490:   helps to forecast when convergence will be reached. Elapsed time
  491:   is stamped in powell.  We created a new html file for the graphs
  492:   concerning matrix of covariance. It has extension -cov.htm.
  493: 
  494:   Revision 1.90  2003/06/24 12:34:15  brouard
  495:   (Module): Some bugs corrected for windows. Also, when
  496:   mle=-1 a template is output in file "or"mypar.txt with the design
  497:   of the covariance matrix to be input.
  498: 
  499:   Revision 1.89  2003/06/24 12:30:52  brouard
  500:   (Module): Some bugs corrected for windows. Also, when
  501:   mle=-1 a template is output in file "or"mypar.txt with the design
  502:   of the covariance matrix to be input.
  503: 
  504:   Revision 1.88  2003/06/23 17:54:56  brouard
  505:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
  506: 
  507:   Revision 1.87  2003/06/18 12:26:01  brouard
  508:   Version 0.96
  509: 
  510:   Revision 1.86  2003/06/17 20:04:08  brouard
  511:   (Module): Change position of html and gnuplot routines and added
  512:   routine fileappend.
  513: 
  514:   Revision 1.85  2003/06/17 13:12:43  brouard
  515:   * imach.c (Repository): Check when date of death was earlier that
  516:   current date of interview. It may happen when the death was just
  517:   prior to the death. In this case, dh was negative and likelihood
  518:   was wrong (infinity). We still send an "Error" but patch by
  519:   assuming that the date of death was just one stepm after the
  520:   interview.
  521:   (Repository): Because some people have very long ID (first column)
  522:   we changed int to long in num[] and we added a new lvector for
  523:   memory allocation. But we also truncated to 8 characters (left
  524:   truncation)
  525:   (Repository): No more line truncation errors.
  526: 
  527:   Revision 1.84  2003/06/13 21:44:43  brouard
  528:   * imach.c (Repository): Replace "freqsummary" at a correct
  529:   place. It differs from routine "prevalence" which may be called
  530:   many times. Probs is memory consuming and must be used with
  531:   parcimony.
  532:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
  533: 
  534:   Revision 1.83  2003/06/10 13:39:11  lievre
  535:   *** empty log message ***
  536: 
  537:   Revision 1.82  2003/06/05 15:57:20  brouard
  538:   Add log in  imach.c and  fullversion number is now printed.
  539: 
  540: */
  541: /*
  542:    Interpolated Markov Chain
  543: 
  544:   Short summary of the programme:
  545:   
  546:   This program computes Healthy Life Expectancies from
  547:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  548:   first survey ("cross") where individuals from different ages are
  549:   interviewed on their health status or degree of disability (in the
  550:   case of a health survey which is our main interest) -2- at least a
  551:   second wave of interviews ("longitudinal") which measure each change
  552:   (if any) in individual health status.  Health expectancies are
  553:   computed from the time spent in each health state according to a
  554:   model. More health states you consider, more time is necessary to reach the
  555:   Maximum Likelihood of the parameters involved in the model.  The
  556:   simplest model is the multinomial logistic model where pij is the
  557:   probability to be observed in state j at the second wave
  558:   conditional to be observed in state i at the first wave. Therefore
  559:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
  560:   'age' is age and 'sex' is a covariate. If you want to have a more
  561:   complex model than "constant and age", you should modify the program
  562:   where the markup *Covariates have to be included here again* invites
  563:   you to do it.  More covariates you add, slower the
  564:   convergence.
  565: 
  566:   The advantage of this computer programme, compared to a simple
  567:   multinomial logistic model, is clear when the delay between waves is not
  568:   identical for each individual. Also, if a individual missed an
  569:   intermediate interview, the information is lost, but taken into
  570:   account using an interpolation or extrapolation.  
  571: 
  572:   hPijx is the probability to be observed in state i at age x+h
  573:   conditional to the observed state i at age x. The delay 'h' can be
  574:   split into an exact number (nh*stepm) of unobserved intermediate
  575:   states. This elementary transition (by month, quarter,
  576:   semester or year) is modelled as a multinomial logistic.  The hPx
  577:   matrix is simply the matrix product of nh*stepm elementary matrices
  578:   and the contribution of each individual to the likelihood is simply
  579:   hPijx.
  580: 
  581:   Also this programme outputs the covariance matrix of the parameters but also
  582:   of the life expectancies. It also computes the period (stable) prevalence. 
  583:   
  584:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  585:            Institut national d'études démographiques, Paris.
  586:   This software have been partly granted by Euro-REVES, a concerted action
  587:   from the European Union.
  588:   It is copyrighted identically to a GNU software product, ie programme and
  589:   software can be distributed freely for non commercial use. Latest version
  590:   can be accessed at http://euroreves.ined.fr/imach .
  591: 
  592:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  593:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  594:   
  595:   **********************************************************************/
  596: /*
  597:   main
  598:   read parameterfile
  599:   read datafile
  600:   concatwav
  601:   freqsummary
  602:   if (mle >= 1)
  603:     mlikeli
  604:   print results files
  605:   if mle==1 
  606:      computes hessian
  607:   read end of parameter file: agemin, agemax, bage, fage, estepm
  608:       begin-prev-date,...
  609:   open gnuplot file
  610:   open html file
  611:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
  612:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
  613:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
  614:     freexexit2 possible for memory heap.
  615: 
  616:   h Pij x                         | pij_nom  ficrestpij
  617:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
  618:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
  619:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
  620: 
  621:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
  622:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
  623:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  624:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
  625:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
  626: 
  627:   forecasting if prevfcast==1 prevforecast call prevalence()
  628:   health expectancies
  629:   Variance-covariance of DFLE
  630:   prevalence()
  631:    movingaverage()
  632:   varevsij() 
  633:   if popbased==1 varevsij(,popbased)
  634:   total life expectancies
  635:   Variance of period (stable) prevalence
  636:  end
  637: */
  638: 
  639: /* #define DEBUG */
  640: /* #define DEBUGBRENT */
  641: #define POWELL /* Instead of NLOPT */
  642: #define POWELLF1F3 /* Skip test */
  643: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
  644: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
  645: 
  646: #include <math.h>
  647: #include <stdio.h>
  648: #include <stdlib.h>
  649: #include <string.h>
  650: 
  651: #ifdef _WIN32
  652: #include <io.h>
  653: #include <windows.h>
  654: #include <tchar.h>
  655: #else
  656: #include <unistd.h>
  657: #endif
  658: 
  659: #include <limits.h>
  660: #include <sys/types.h>
  661: 
  662: #if defined(__GNUC__)
  663: #include <sys/utsname.h> /* Doesn't work on Windows */
  664: #endif
  665: 
  666: #include <sys/stat.h>
  667: #include <errno.h>
  668: /* extern int errno; */
  669: 
  670: /* #ifdef LINUX */
  671: /* #include <time.h> */
  672: /* #include "timeval.h" */
  673: /* #else */
  674: /* #include <sys/time.h> */
  675: /* #endif */
  676: 
  677: #include <time.h>
  678: 
  679: #ifdef GSL
  680: #include <gsl/gsl_errno.h>
  681: #include <gsl/gsl_multimin.h>
  682: #endif
  683: 
  684: 
  685: #ifdef NLOPT
  686: #include <nlopt.h>
  687: typedef struct {
  688:   double (* function)(double [] );
  689: } myfunc_data ;
  690: #endif
  691: 
  692: /* #include <libintl.h> */
  693: /* #define _(String) gettext (String) */
  694: 
  695: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
  696: 
  697: #define GNUPLOTPROGRAM "gnuplot"
  698: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  699: #define FILENAMELENGTH 132
  700: 
  701: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  702: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  703: 
  704: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
  705: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  706: 
  707: #define NINTERVMAX 8
  708: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
  709: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
  710: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
  711: #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
  712: #define MAXN 20000
  713: #define YEARM 12. /**< Number of months per year */
  714: #define AGESUP 130
  715: #define AGEBASE 40
  716: #define AGEOVERFLOW 1.e20
  717: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
  718: #ifdef _WIN32
  719: #define DIRSEPARATOR '\\'
  720: #define CHARSEPARATOR "\\"
  721: #define ODIRSEPARATOR '/'
  722: #else
  723: #define DIRSEPARATOR '/'
  724: #define CHARSEPARATOR "/"
  725: #define ODIRSEPARATOR '\\'
  726: #endif
  727: 
  728: /* $Id: imach.c,v 1.200 2015/09/09 16:53:55 brouard Exp $ */
  729: /* $State: Exp $ */
  730: #include "version.h"
  731: char version[]=__IMACH_VERSION__;
  732: char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
  733: char fullversion[]="$Revision: 1.200 $ $Date: 2015/09/09 16:53:55 $"; 
  734: char strstart[80];
  735: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
  736: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  737: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
  738: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
  739: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
  740: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
  741: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
  742: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
  743: int cptcovprodnoage=0; /**< Number of covariate products without age */   
  744: int cptcoveff=0; /* Total number of covariates to vary for printing results */
  745: int cptcov=0; /* Working variable */
  746: int npar=NPARMAX;
  747: int nlstate=2; /* Number of live states */
  748: int ndeath=1; /* Number of dead states */
  749: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  750: int popbased=0;
  751: 
  752: int *wav; /* Number of waves for this individuual 0 is possible */
  753: int maxwav=0; /* Maxim number of waves */
  754: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
  755: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
  756: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
  757: 		   to the likelihood and the sum of weights (done by funcone)*/
  758: int mle=1, weightopt=0;
  759: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  760: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  761: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  762: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  763: int countcallfunc=0;  /* Count the number of calls to func */
  764: double jmean=1; /* Mean space between 2 waves */
  765: double **matprod2(); /* test */
  766: double **oldm, **newm, **savm; /* Working pointers to matrices */
  767: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  768: /*FILE *fic ; */ /* Used in readdata only */
  769: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  770: FILE *ficlog, *ficrespow;
  771: int globpr=0; /* Global variable for printing or not */
  772: double fretone; /* Only one call to likelihood */
  773: long ipmx=0; /* Number of contributions */
  774: double sw; /* Sum of weights */
  775: char filerespow[FILENAMELENGTH];
  776: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  777: FILE *ficresilk;
  778: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  779: FILE *ficresprobmorprev;
  780: FILE *fichtm, *fichtmcov; /* Html File */
  781: FILE *ficreseij;
  782: char filerese[FILENAMELENGTH];
  783: FILE *ficresstdeij;
  784: char fileresstde[FILENAMELENGTH];
  785: FILE *ficrescveij;
  786: char filerescve[FILENAMELENGTH];
  787: FILE  *ficresvij;
  788: char fileresv[FILENAMELENGTH];
  789: FILE  *ficresvpl;
  790: char fileresvpl[FILENAMELENGTH];
  791: char title[MAXLINE];
  792: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  793: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
  794: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
  795: char command[FILENAMELENGTH];
  796: int  outcmd=0;
  797: 
  798: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  799: 
  800: char filelog[FILENAMELENGTH]; /* Log file */
  801: char filerest[FILENAMELENGTH];
  802: char fileregp[FILENAMELENGTH];
  803: char popfile[FILENAMELENGTH];
  804: 
  805: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  806: 
  807: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
  808: /* struct timezone tzp; */
  809: /* extern int gettimeofday(); */
  810: struct tm tml, *gmtime(), *localtime();
  811: 
  812: extern time_t time();
  813: 
  814: struct tm start_time, end_time, curr_time, last_time, forecast_time;
  815: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
  816: struct tm tm;
  817: 
  818: char strcurr[80], strfor[80];
  819: 
  820: char *endptr;
  821: long lval;
  822: double dval;
  823: 
  824: #define NR_END 1
  825: #define FREE_ARG char*
  826: #define FTOL 1.0e-10
  827: 
  828: #define NRANSI 
  829: #define ITMAX 200 
  830: 
  831: #define TOL 2.0e-4 
  832: 
  833: #define CGOLD 0.3819660 
  834: #define ZEPS 1.0e-10 
  835: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  836: 
  837: #define GOLD 1.618034 
  838: #define GLIMIT 100.0 
  839: #define TINY 1.0e-20 
  840: 
  841: static double maxarg1,maxarg2;
  842: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  843: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  844:   
  845: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  846: #define rint(a) floor(a+0.5)
  847: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
  848: #define mytinydouble 1.0e-16
  849: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
  850: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
  851: /* static double dsqrarg; */
  852: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
  853: static double sqrarg;
  854: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  855: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  856: int agegomp= AGEGOMP;
  857: 
  858: int imx; 
  859: int stepm=1;
  860: /* Stepm, step in month: minimum step interpolation*/
  861: 
  862: int estepm;
  863: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  864: 
  865: int m,nb;
  866: long *num;
  867: int firstpass=0, lastpass=4,*cod, *cens;
  868: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
  869: 		   covariate for which somebody answered excluding 
  870: 		   undefined. Usually 2: 0 and 1. */
  871: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
  872: 			     covariate for which somebody answered including 
  873: 			     undefined. Usually 3: -1, 0 and 1. */
  874: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  875: double **pmmij, ***probs;
  876: double *ageexmed,*agecens;
  877: double dateintmean=0;
  878: 
  879: double *weight;
  880: int **s; /* Status */
  881: double *agedc;
  882: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
  883: 		  * covar=matrix(0,NCOVMAX,1,n); 
  884: 		  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
  885: double  idx; 
  886: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
  887: int *Tage;
  888: int *Ndum; /** Freq of modality (tricode */
  889: /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
  890: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
  891: double *lsurv, *lpop, *tpop;
  892: 
  893: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
  894: double ftolhess; /**< Tolerance for computing hessian */
  895: 
  896: /**************** split *************************/
  897: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  898: {
  899:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
  900:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
  901:   */ 
  902:   char	*ss;				/* pointer */
  903:   int	l1=0, l2=0;				/* length counters */
  904: 
  905:   l1 = strlen(path );			/* length of path */
  906:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  907:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  908:   if ( ss == NULL ) {			/* no directory, so determine current directory */
  909:     strcpy( name, path );		/* we got the fullname name because no directory */
  910:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  911:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  912:     /* get current working directory */
  913:     /*    extern  char* getcwd ( char *buf , int len);*/
  914: #ifdef WIN32
  915:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
  916: #else
  917: 	if (getcwd(dirc, FILENAME_MAX) == NULL) {
  918: #endif
  919:       return( GLOCK_ERROR_GETCWD );
  920:     }
  921:     /* got dirc from getcwd*/
  922:     printf(" DIRC = %s \n",dirc);
  923:   } else {				/* strip direcotry from path */
  924:     ss++;				/* after this, the filename */
  925:     l2 = strlen( ss );			/* length of filename */
  926:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  927:     strcpy( name, ss );		/* save file name */
  928:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  929:     dirc[l1-l2] = '\0';			/* add zero */
  930:     printf(" DIRC2 = %s \n",dirc);
  931:   }
  932:   /* We add a separator at the end of dirc if not exists */
  933:   l1 = strlen( dirc );			/* length of directory */
  934:   if( dirc[l1-1] != DIRSEPARATOR ){
  935:     dirc[l1] =  DIRSEPARATOR;
  936:     dirc[l1+1] = 0; 
  937:     printf(" DIRC3 = %s \n",dirc);
  938:   }
  939:   ss = strrchr( name, '.' );		/* find last / */
  940:   if (ss >0){
  941:     ss++;
  942:     strcpy(ext,ss);			/* save extension */
  943:     l1= strlen( name);
  944:     l2= strlen(ss)+1;
  945:     strncpy( finame, name, l1-l2);
  946:     finame[l1-l2]= 0;
  947:   }
  948: 
  949:   return( 0 );				/* we're done */
  950: }
  951: 
  952: 
  953: /******************************************/
  954: 
  955: void replace_back_to_slash(char *s, char*t)
  956: {
  957:   int i;
  958:   int lg=0;
  959:   i=0;
  960:   lg=strlen(t);
  961:   for(i=0; i<= lg; i++) {
  962:     (s[i] = t[i]);
  963:     if (t[i]== '\\') s[i]='/';
  964:   }
  965: }
  966: 
  967: char *trimbb(char *out, char *in)
  968: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
  969:   char *s;
  970:   s=out;
  971:   while (*in != '\0'){
  972:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
  973:       in++;
  974:     }
  975:     *out++ = *in++;
  976:   }
  977:   *out='\0';
  978:   return s;
  979: }
  980: 
  981: /* char *substrchaine(char *out, char *in, char *chain) */
  982: /* { */
  983: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
  984: /*   char *s, *t; */
  985: /*   t=in;s=out; */
  986: /*   while ((*in != *chain) && (*in != '\0')){ */
  987: /*     *out++ = *in++; */
  988: /*   } */
  989: 
  990: /*   /\* *in matches *chain *\/ */
  991: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
  992: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  993: /*   } */
  994: /*   in--; chain--; */
  995: /*   while ( (*in != '\0')){ */
  996: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  997: /*     *out++ = *in++; */
  998: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
  999: /*   } */
 1000: /*   *out='\0'; */
 1001: /*   out=s; */
 1002: /*   return out; */
 1003: /* } */
 1004: char *substrchaine(char *out, char *in, char *chain)
 1005: {
 1006:   /* Substract chain 'chain' from 'in', return and output 'out' */
 1007:   /* in="V1+V1*age+age*age+V2", chain="age*age" */
 1008: 
 1009:   char *strloc;
 1010: 
 1011:   strcpy (out, in); 
 1012:   strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
 1013:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
 1014:   if(strloc != NULL){ 
 1015:     /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
 1016:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
 1017:     /* strcpy (strloc, strloc +strlen(chain));*/
 1018:   }
 1019:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
 1020:   return out;
 1021: }
 1022: 
 1023: 
 1024: char *cutl(char *blocc, char *alocc, char *in, char occ)
 1025: {
 1026:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
 1027:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 1028:      gives blocc="abcdef" and alocc="ghi2j".
 1029:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
 1030:   */
 1031:   char *s, *t;
 1032:   t=in;s=in;
 1033:   while ((*in != occ) && (*in != '\0')){
 1034:     *alocc++ = *in++;
 1035:   }
 1036:   if( *in == occ){
 1037:     *(alocc)='\0';
 1038:     s=++in;
 1039:   }
 1040:  
 1041:   if (s == t) {/* occ not found */
 1042:     *(alocc-(in-s))='\0';
 1043:     in=s;
 1044:   }
 1045:   while ( *in != '\0'){
 1046:     *blocc++ = *in++;
 1047:   }
 1048: 
 1049:   *blocc='\0';
 1050:   return t;
 1051: }
 1052: char *cutv(char *blocc, char *alocc, char *in, char occ)
 1053: {
 1054:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
 1055:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 1056:      gives blocc="abcdef2ghi" and alocc="j".
 1057:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
 1058:   */
 1059:   char *s, *t;
 1060:   t=in;s=in;
 1061:   while (*in != '\0'){
 1062:     while( *in == occ){
 1063:       *blocc++ = *in++;
 1064:       s=in;
 1065:     }
 1066:     *blocc++ = *in++;
 1067:   }
 1068:   if (s == t) /* occ not found */
 1069:     *(blocc-(in-s))='\0';
 1070:   else
 1071:     *(blocc-(in-s)-1)='\0';
 1072:   in=s;
 1073:   while ( *in != '\0'){
 1074:     *alocc++ = *in++;
 1075:   }
 1076: 
 1077:   *alocc='\0';
 1078:   return s;
 1079: }
 1080: 
 1081: int nbocc(char *s, char occ)
 1082: {
 1083:   int i,j=0;
 1084:   int lg=20;
 1085:   i=0;
 1086:   lg=strlen(s);
 1087:   for(i=0; i<= lg; i++) {
 1088:   if  (s[i] == occ ) j++;
 1089:   }
 1090:   return j;
 1091: }
 1092: 
 1093: /* void cutv(char *u,char *v, char*t, char occ) */
 1094: /* { */
 1095: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 1096: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 1097: /*      gives u="abcdef2ghi" and v="j" *\/ */
 1098: /*   int i,lg,j,p=0; */
 1099: /*   i=0; */
 1100: /*   lg=strlen(t); */
 1101: /*   for(j=0; j<=lg-1; j++) { */
 1102: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 1103: /*   } */
 1104: 
 1105: /*   for(j=0; j<p; j++) { */
 1106: /*     (u[j] = t[j]); */
 1107: /*   } */
 1108: /*      u[p]='\0'; */
 1109: 
 1110: /*    for(j=0; j<= lg; j++) { */
 1111: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 1112: /*   } */
 1113: /* } */
 1114: 
 1115: #ifdef _WIN32
 1116: char * strsep(char **pp, const char *delim)
 1117: {
 1118:   char *p, *q;
 1119:          
 1120:   if ((p = *pp) == NULL)
 1121:     return 0;
 1122:   if ((q = strpbrk (p, delim)) != NULL)
 1123:   {
 1124:     *pp = q + 1;
 1125:     *q = '\0';
 1126:   }
 1127:   else
 1128:     *pp = 0;
 1129:   return p;
 1130: }
 1131: #endif
 1132: 
 1133: /********************** nrerror ********************/
 1134: 
 1135: void nrerror(char error_text[])
 1136: {
 1137:   fprintf(stderr,"ERREUR ...\n");
 1138:   fprintf(stderr,"%s\n",error_text);
 1139:   exit(EXIT_FAILURE);
 1140: }
 1141: /*********************** vector *******************/
 1142: double *vector(int nl, int nh)
 1143: {
 1144:   double *v;
 1145:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 1146:   if (!v) nrerror("allocation failure in vector");
 1147:   return v-nl+NR_END;
 1148: }
 1149: 
 1150: /************************ free vector ******************/
 1151: void free_vector(double*v, int nl, int nh)
 1152: {
 1153:   free((FREE_ARG)(v+nl-NR_END));
 1154: }
 1155: 
 1156: /************************ivector *******************************/
 1157: int *ivector(long nl,long nh)
 1158: {
 1159:   int *v;
 1160:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 1161:   if (!v) nrerror("allocation failure in ivector");
 1162:   return v-nl+NR_END;
 1163: }
 1164: 
 1165: /******************free ivector **************************/
 1166: void free_ivector(int *v, long nl, long nh)
 1167: {
 1168:   free((FREE_ARG)(v+nl-NR_END));
 1169: }
 1170: 
 1171: /************************lvector *******************************/
 1172: long *lvector(long nl,long nh)
 1173: {
 1174:   long *v;
 1175:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 1176:   if (!v) nrerror("allocation failure in ivector");
 1177:   return v-nl+NR_END;
 1178: }
 1179: 
 1180: /******************free lvector **************************/
 1181: void free_lvector(long *v, long nl, long nh)
 1182: {
 1183:   free((FREE_ARG)(v+nl-NR_END));
 1184: }
 1185: 
 1186: /******************* imatrix *******************************/
 1187: int **imatrix(long nrl, long nrh, long ncl, long nch) 
 1188:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 1189: { 
 1190:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 1191:   int **m; 
 1192:   
 1193:   /* allocate pointers to rows */ 
 1194:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 1195:   if (!m) nrerror("allocation failure 1 in matrix()"); 
 1196:   m += NR_END; 
 1197:   m -= nrl; 
 1198:   
 1199:   
 1200:   /* allocate rows and set pointers to them */ 
 1201:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 1202:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 1203:   m[nrl] += NR_END; 
 1204:   m[nrl] -= ncl; 
 1205:   
 1206:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 1207:   
 1208:   /* return pointer to array of pointers to rows */ 
 1209:   return m; 
 1210: } 
 1211: 
 1212: /****************** free_imatrix *************************/
 1213: void free_imatrix(m,nrl,nrh,ncl,nch)
 1214:       int **m;
 1215:       long nch,ncl,nrh,nrl; 
 1216:      /* free an int matrix allocated by imatrix() */ 
 1217: { 
 1218:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 1219:   free((FREE_ARG) (m+nrl-NR_END)); 
 1220: } 
 1221: 
 1222: /******************* matrix *******************************/
 1223: double **matrix(long nrl, long nrh, long ncl, long nch)
 1224: {
 1225:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 1226:   double **m;
 1227: 
 1228:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1229:   if (!m) nrerror("allocation failure 1 in matrix()");
 1230:   m += NR_END;
 1231:   m -= nrl;
 1232: 
 1233:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1234:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1235:   m[nrl] += NR_END;
 1236:   m[nrl] -= ncl;
 1237: 
 1238:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1239:   return m;
 1240:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 1241: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 1242: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 1243:    */
 1244: }
 1245: 
 1246: /*************************free matrix ************************/
 1247: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 1248: {
 1249:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1250:   free((FREE_ARG)(m+nrl-NR_END));
 1251: }
 1252: 
 1253: /******************* ma3x *******************************/
 1254: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 1255: {
 1256:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 1257:   double ***m;
 1258: 
 1259:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 1260:   if (!m) nrerror("allocation failure 1 in matrix()");
 1261:   m += NR_END;
 1262:   m -= nrl;
 1263: 
 1264:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 1265:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 1266:   m[nrl] += NR_END;
 1267:   m[nrl] -= ncl;
 1268: 
 1269:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 1270: 
 1271:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 1272:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 1273:   m[nrl][ncl] += NR_END;
 1274:   m[nrl][ncl] -= nll;
 1275:   for (j=ncl+1; j<=nch; j++) 
 1276:     m[nrl][j]=m[nrl][j-1]+nlay;
 1277:   
 1278:   for (i=nrl+1; i<=nrh; i++) {
 1279:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 1280:     for (j=ncl+1; j<=nch; j++) 
 1281:       m[i][j]=m[i][j-1]+nlay;
 1282:   }
 1283:   return m; 
 1284:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 1285:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 1286:   */
 1287: }
 1288: 
 1289: /*************************free ma3x ************************/
 1290: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 1291: {
 1292:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 1293:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
 1294:   free((FREE_ARG)(m+nrl-NR_END));
 1295: }
 1296: 
 1297: /*************** function subdirf ***********/
 1298: char *subdirf(char fileres[])
 1299: {
 1300:   /* Caution optionfilefiname is hidden */
 1301:   strcpy(tmpout,optionfilefiname);
 1302:   strcat(tmpout,"/"); /* Add to the right */
 1303:   strcat(tmpout,fileres);
 1304:   return tmpout;
 1305: }
 1306: 
 1307: /*************** function subdirf2 ***********/
 1308: char *subdirf2(char fileres[], char *preop)
 1309: {
 1310:   
 1311:   /* Caution optionfilefiname is hidden */
 1312:   strcpy(tmpout,optionfilefiname);
 1313:   strcat(tmpout,"/");
 1314:   strcat(tmpout,preop);
 1315:   strcat(tmpout,fileres);
 1316:   return tmpout;
 1317: }
 1318: 
 1319: /*************** function subdirf3 ***********/
 1320: char *subdirf3(char fileres[], char *preop, char *preop2)
 1321: {
 1322:   
 1323:   /* Caution optionfilefiname is hidden */
 1324:   strcpy(tmpout,optionfilefiname);
 1325:   strcat(tmpout,"/");
 1326:   strcat(tmpout,preop);
 1327:   strcat(tmpout,preop2);
 1328:   strcat(tmpout,fileres);
 1329:   return tmpout;
 1330: }
 1331: 
 1332: char *asc_diff_time(long time_sec, char ascdiff[])
 1333: {
 1334:   long sec_left, days, hours, minutes;
 1335:   days = (time_sec) / (60*60*24);
 1336:   sec_left = (time_sec) % (60*60*24);
 1337:   hours = (sec_left) / (60*60) ;
 1338:   sec_left = (sec_left) %(60*60);
 1339:   minutes = (sec_left) /60;
 1340:   sec_left = (sec_left) % (60);
 1341:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 1342:   return ascdiff;
 1343: }
 1344: 
 1345: /***************** f1dim *************************/
 1346: extern int ncom; 
 1347: extern double *pcom,*xicom;
 1348: extern double (*nrfunc)(double []); 
 1349:  
 1350: double f1dim(double x) 
 1351: { 
 1352:   int j; 
 1353:   double f;
 1354:   double *xt; 
 1355:  
 1356:   xt=vector(1,ncom); 
 1357:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 1358:   f=(*nrfunc)(xt); 
 1359:   free_vector(xt,1,ncom); 
 1360:   return f; 
 1361: } 
 1362: 
 1363: /*****************brent *************************/
 1364: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
 1365: {
 1366:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
 1367:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
 1368:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 1369:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
 1370:    * returned function value. 
 1371:   */
 1372:   int iter; 
 1373:   double a,b,d,etemp;
 1374:   double fu=0,fv,fw,fx;
 1375:   double ftemp=0.;
 1376:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
 1377:   double e=0.0; 
 1378:  
 1379:   a=(ax < cx ? ax : cx); 
 1380:   b=(ax > cx ? ax : cx); 
 1381:   x=w=v=bx; 
 1382:   fw=fv=fx=(*f)(x); 
 1383:   for (iter=1;iter<=ITMAX;iter++) { 
 1384:     xm=0.5*(a+b); 
 1385:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 1386:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 1387:     printf(".");fflush(stdout);
 1388:     fprintf(ficlog,".");fflush(ficlog);
 1389: #ifdef DEBUGBRENT
 1390:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1391:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 1392:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 1393: #endif
 1394:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 1395:       *xmin=x; 
 1396:       return fx; 
 1397:     } 
 1398:     ftemp=fu;
 1399:     if (fabs(e) > tol1) { 
 1400:       r=(x-w)*(fx-fv); 
 1401:       q=(x-v)*(fx-fw); 
 1402:       p=(x-v)*q-(x-w)*r; 
 1403:       q=2.0*(q-r); 
 1404:       if (q > 0.0) p = -p; 
 1405:       q=fabs(q); 
 1406:       etemp=e; 
 1407:       e=d; 
 1408:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 1409: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1410:       else { 
 1411: 	d=p/q; 
 1412: 	u=x+d; 
 1413: 	if (u-a < tol2 || b-u < tol2) 
 1414: 	  d=SIGN(tol1,xm-x); 
 1415:       } 
 1416:     } else { 
 1417:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 1418:     } 
 1419:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 1420:     fu=(*f)(u); 
 1421:     if (fu <= fx) { 
 1422:       if (u >= x) a=x; else b=x; 
 1423:       SHFT(v,w,x,u) 
 1424:       SHFT(fv,fw,fx,fu) 
 1425:     } else { 
 1426:       if (u < x) a=u; else b=u; 
 1427:       if (fu <= fw || w == x) { 
 1428: 	v=w; 
 1429: 	w=u; 
 1430: 	fv=fw; 
 1431: 	fw=fu; 
 1432:       } else if (fu <= fv || v == x || v == w) { 
 1433: 	v=u; 
 1434: 	fv=fu; 
 1435:       } 
 1436:     } 
 1437:   } 
 1438:   nrerror("Too many iterations in brent"); 
 1439:   *xmin=x; 
 1440:   return fx; 
 1441: } 
 1442: 
 1443: /****************** mnbrak ***********************/
 1444: 
 1445: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 1446: 	    double (*func)(double)) 
 1447: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 1448: the downhill direction (defined by the function as evaluated at the initial points) and returns
 1449: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 1450: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 1451:    */
 1452:   double ulim,u,r,q, dum;
 1453:   double fu; 
 1454: 
 1455:   double scale=10.;
 1456:   int iterscale=0;
 1457: 
 1458:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
 1459:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
 1460: 
 1461: 
 1462:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
 1463:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
 1464:   /*   *bx = *ax - (*ax - *bx)/scale; */
 1465:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
 1466:   /* } */
 1467: 
 1468:   if (*fb > *fa) { 
 1469:     SHFT(dum,*ax,*bx,dum) 
 1470:     SHFT(dum,*fb,*fa,dum) 
 1471:   } 
 1472:   *cx=(*bx)+GOLD*(*bx-*ax); 
 1473:   *fc=(*func)(*cx); 
 1474: #ifdef DEBUG
 1475:   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1476:   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
 1477: #endif
 1478:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
 1479:     r=(*bx-*ax)*(*fb-*fc); 
 1480:     q=(*bx-*cx)*(*fb-*fa); 
 1481:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 1482:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
 1483:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
 1484:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
 1485:       fu=(*func)(u); 
 1486: #ifdef DEBUG
 1487:       /* f(x)=A(x-u)**2+f(u) */
 1488:       double A, fparabu; 
 1489:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 1490:       fparabu= *fa - A*(*ax-u)*(*ax-u);
 1491:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1492:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 1493:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
 1494:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 1495:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
 1496:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
 1497: #endif 
 1498: #ifdef MNBRAKORIGINAL
 1499: #else
 1500: /*       if (fu > *fc) { */
 1501: /* #ifdef DEBUG */
 1502: /*       printf("mnbrak4  fu > fc \n"); */
 1503: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
 1504: /* #endif */
 1505: /* 	/\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
 1506: /* 	/\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
 1507: /* 	dum=u; /\* Shifting c and u *\/ */
 1508: /* 	u = *cx; */
 1509: /* 	*cx = dum; */
 1510: /* 	dum = fu; */
 1511: /* 	fu = *fc; */
 1512: /* 	*fc =dum; */
 1513: /*       } else { /\* end *\/ */
 1514: /* #ifdef DEBUG */
 1515: /*       printf("mnbrak3  fu < fc \n"); */
 1516: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
 1517: /* #endif */
 1518: /* 	dum=u; /\* Shifting c and u *\/ */
 1519: /* 	u = *cx; */
 1520: /* 	*cx = dum; */
 1521: /* 	dum = fu; */
 1522: /* 	fu = *fc; */
 1523: /* 	*fc =dum; */
 1524: /*       } */
 1525: #ifdef DEBUG
 1526:       printf("mnbrak34  fu < or >= fc \n");
 1527:       fprintf(ficlog, "mnbrak34 fu < fc\n");
 1528: #endif
 1529:       dum=u; /* Shifting c and u */
 1530:       u = *cx;
 1531:       *cx = dum;
 1532:       dum = fu;
 1533:       fu = *fc;
 1534:       *fc =dum;
 1535: #endif
 1536:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 1537: #ifdef DEBUG
 1538:       printf("mnbrak2  u after c but before ulim\n");
 1539:       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
 1540: #endif
 1541:       fu=(*func)(u); 
 1542:       if (fu < *fc) { 
 1543: #ifdef DEBUG
 1544:       printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 1545:       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
 1546: #endif
 1547: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 1548: 	SHFT(*fb,*fc,fu,(*func)(u)) 
 1549:       } 
 1550:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 1551: #ifdef DEBUG
 1552:       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
 1553:       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 1554: #endif
 1555:       u=ulim; 
 1556:       fu=(*func)(u); 
 1557:     } else { /* u could be left to b (if r > q parabola has a maximum) */
 1558: #ifdef DEBUG
 1559:       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1560:       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 1561: #endif
 1562:       u=(*cx)+GOLD*(*cx-*bx); 
 1563:       fu=(*func)(u); 
 1564:     } /* end tests */
 1565:     SHFT(*ax,*bx,*cx,u) 
 1566:     SHFT(*fa,*fb,*fc,fu) 
 1567: #ifdef DEBUG
 1568:       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1569:       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 1570: #endif
 1571:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 1572: } 
 1573: 
 1574: /*************** linmin ************************/
 1575: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 1576: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
 1577: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
 1578: the value of func at the returned location p . This is actually all accomplished by calling the
 1579: routines mnbrak and brent .*/
 1580: int ncom; 
 1581: double *pcom,*xicom;
 1582: double (*nrfunc)(double []); 
 1583:  
 1584: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 1585: { 
 1586:   double brent(double ax, double bx, double cx, 
 1587: 	       double (*f)(double), double tol, double *xmin); 
 1588:   double f1dim(double x); 
 1589:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 1590: 	      double *fc, double (*func)(double)); 
 1591:   int j; 
 1592:   double xx,xmin,bx,ax; 
 1593:   double fx,fb,fa;
 1594: 
 1595:   double scale=10., axs, xxs, xxss; /* Scale added for infinity */
 1596:  
 1597:   ncom=n; 
 1598:   pcom=vector(1,n); 
 1599:   xicom=vector(1,n); 
 1600:   nrfunc=func; 
 1601:   for (j=1;j<=n;j++) { 
 1602:     pcom[j]=p[j]; 
 1603:     xicom[j]=xi[j]; 
 1604:   } 
 1605: 
 1606:   /* axs=0.0; */
 1607:   /* xxss=1; /\* 1 and using scale *\/ */
 1608:   xxs=1;
 1609:   /* do{ */
 1610:     ax=0.;
 1611:     xx= xxs;
 1612:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
 1613:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 1614:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
 1615:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
 1616:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
 1617:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
 1618:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
 1619:   /*   if (fx != fx){ */
 1620:   /* 	xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
 1621:   /* 	printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
 1622:   /*   } */
 1623:   /* }while(fx != fx); */
 1624: 
 1625: #ifdef DEBUGLINMIN
 1626:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
 1627: #endif
 1628:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
 1629:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
 1630:   /* fmin = f(p[j] + xmin * xi[j]) */
 1631:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
 1632:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
 1633: #ifdef DEBUG
 1634:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1635:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 1636: #endif
 1637: #ifdef DEBUGLINMIN
 1638:   printf("linmin end ");
 1639: #endif
 1640:   for (j=1;j<=n;j++) { 
 1641:     /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
 1642:     xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
 1643:     /* if(xxs <1.0) */
 1644:     /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
 1645:     p[j] += xi[j]; /* Parameters values are updated accordingly */
 1646:   } 
 1647:   /* printf("\n"); */
 1648: #ifdef DEBUGLINMIN
 1649:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
 1650:   for (j=1;j<=n;j++) { 
 1651:     printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
 1652:     if(j % ncovmodel == 0)
 1653:       printf("\n");
 1654:   }
 1655: #endif
 1656:   free_vector(xicom,1,n); 
 1657:   free_vector(pcom,1,n); 
 1658: } 
 1659: 
 1660: 
 1661: /*************** powell ************************/
 1662: /*
 1663: Minimization of a function func of n variables. Input consists of an initial starting point
 1664: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 1665: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
 1666: such that failure to decrease by more than this amount on one iteration signals doneness. On
 1667: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 1668: function value at p , and iter is the number of iterations taken. The routine linmin is used.
 1669:  */
 1670: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 1671: 	    double (*func)(double [])) 
 1672: { 
 1673:   void linmin(double p[], double xi[], int n, double *fret, 
 1674: 	      double (*func)(double [])); 
 1675:   int i,ibig,j; 
 1676:   double del,t,*pt,*ptt,*xit;
 1677:   double directest;
 1678:   double fp,fptt;
 1679:   double *xits;
 1680:   int niterf, itmp;
 1681: 
 1682:   pt=vector(1,n); 
 1683:   ptt=vector(1,n); 
 1684:   xit=vector(1,n); 
 1685:   xits=vector(1,n); 
 1686:   *fret=(*func)(p); 
 1687:   for (j=1;j<=n;j++) pt[j]=p[j]; 
 1688:     rcurr_time = time(NULL);  
 1689:   for (*iter=1;;++(*iter)) { 
 1690:     fp=(*fret); /* From former iteration or initial value */
 1691:     ibig=0; 
 1692:     del=0.0; 
 1693:     rlast_time=rcurr_time;
 1694:     /* (void) gettimeofday(&curr_time,&tzp); */
 1695:     rcurr_time = time(NULL);  
 1696:     curr_time = *localtime(&rcurr_time);
 1697:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 1698:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 1699: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 1700:     for (i=1;i<=n;i++) {
 1701:       printf(" %d %.12f",i, p[i]);
 1702:       fprintf(ficlog," %d %.12lf",i, p[i]);
 1703:       fprintf(ficrespow," %.12lf", p[i]);
 1704:     }
 1705:     printf("\n");
 1706:     fprintf(ficlog,"\n");
 1707:     fprintf(ficrespow,"\n");fflush(ficrespow);
 1708:     if(*iter <=3){
 1709:       tml = *localtime(&rcurr_time);
 1710:       strcpy(strcurr,asctime(&tml));
 1711:       rforecast_time=rcurr_time; 
 1712:       itmp = strlen(strcurr);
 1713:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 1714: 	strcurr[itmp-1]='\0';
 1715:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1716:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 1717:       for(niterf=10;niterf<=30;niterf+=10){
 1718: 	rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 1719: 	forecast_time = *localtime(&rforecast_time);
 1720: 	strcpy(strfor,asctime(&forecast_time));
 1721: 	itmp = strlen(strfor);
 1722: 	if(strfor[itmp-1]=='\n')
 1723: 	strfor[itmp-1]='\0';
 1724: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1725: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 1726:       }
 1727:     }
 1728:     for (i=1;i<=n;i++) { /* For each direction i */
 1729:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
 1730:       fptt=(*fret); 
 1731: #ifdef DEBUG
 1732: 	  printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1733: 	  fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 1734: #endif
 1735: 	  printf("%d",i);fflush(stdout); /* print direction (parameter) i */
 1736:       fprintf(ficlog,"%d",i);fflush(ficlog);
 1737:       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
 1738: 				    /* Outputs are fret(new point p) p is updated and xit rescaled */
 1739:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
 1740: 	/* because that direction will be replaced unless the gain del is small */
 1741: 	/* in comparison with the 'probable' gain, mu^2, with the last average direction. */
 1742: 	/* Unless the n directions are conjugate some gain in the determinant may be obtained */
 1743: 	/* with the new direction. */
 1744: 	del=fabs(fptt-(*fret)); 
 1745: 	ibig=i; 
 1746:       } 
 1747: #ifdef DEBUG
 1748:       printf("%d %.12e",i,(*fret));
 1749:       fprintf(ficlog,"%d %.12e",i,(*fret));
 1750:       for (j=1;j<=n;j++) {
 1751: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 1752: 	printf(" x(%d)=%.12e",j,xit[j]);
 1753: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 1754:       }
 1755:       for(j=1;j<=n;j++) {
 1756: 	printf(" p(%d)=%.12e",j,p[j]);
 1757: 	fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 1758:       }
 1759:       printf("\n");
 1760:       fprintf(ficlog,"\n");
 1761: #endif
 1762:     } /* end loop on each direction i */
 1763:     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
 1764:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
 1765:     /* New value of last point Pn is not computed, P(n-1) */
 1766:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
 1767:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
 1768:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
 1769:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
 1770:       /* decreased of more than 3.84  */
 1771:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
 1772:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
 1773:       /* By adding 10 parameters more the gain should be 18.31 */
 1774: 
 1775:       /* Starting the program with initial values given by a former maximization will simply change */
 1776:       /* the scales of the directions and the directions, because the are reset to canonical directions */
 1777:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
 1778:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
 1779: #ifdef DEBUG
 1780:       int k[2],l;
 1781:       k[0]=1;
 1782:       k[1]=-1;
 1783:       printf("Max: %.12e",(*func)(p));
 1784:       fprintf(ficlog,"Max: %.12e",(*func)(p));
 1785:       for (j=1;j<=n;j++) {
 1786: 	printf(" %.12e",p[j]);
 1787: 	fprintf(ficlog," %.12e",p[j]);
 1788:       }
 1789:       printf("\n");
 1790:       fprintf(ficlog,"\n");
 1791:       for(l=0;l<=1;l++) {
 1792: 	for (j=1;j<=n;j++) {
 1793: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 1794: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1795: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 1796: 	}
 1797: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1798: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 1799:       }
 1800: #endif
 1801: 
 1802: 
 1803:       free_vector(xit,1,n); 
 1804:       free_vector(xits,1,n); 
 1805:       free_vector(ptt,1,n); 
 1806:       free_vector(pt,1,n); 
 1807:       return; 
 1808:     } /* enough precision */ 
 1809:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 1810:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 1811:       ptt[j]=2.0*p[j]-pt[j]; 
 1812:       xit[j]=p[j]-pt[j]; 
 1813:       pt[j]=p[j]; 
 1814:     } 
 1815:     fptt=(*func)(ptt); /* f_3 */
 1816: #ifdef POWELLF1F3
 1817: #else
 1818:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 1819: #endif
 1820:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 1821:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 1822:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 1823:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 1824:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
 1825:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 1826:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 1827: #ifdef NRCORIGINAL
 1828:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 1829: #else
 1830:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
 1831:       t= t- del*SQR(fp-fptt);
 1832: #endif
 1833:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
 1834: #ifdef DEBUG
 1835:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1836:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 1837:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1838: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1839:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 1840: 	     (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 1841:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1842:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 1843: #endif
 1844: #ifdef POWELLORIGINAL
 1845:       if (t < 0.0) { /* Then we use it for new direction */
 1846: #else
 1847:       if (directest*t < 0.0) { /* Contradiction between both tests */
 1848: 	printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
 1849:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1850:         fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
 1851:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
 1852:       } 
 1853:       if (directest < 0.0) { /* Then we use it for new direction */
 1854: #endif
 1855: #ifdef DEBUGLINMIN
 1856: 	printf("Before linmin in direction P%d-P0\n",n);
 1857: 	for (j=1;j<=n;j++) { 
 1858: 	  printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 1859: 	  if(j % ncovmodel == 0)
 1860: 	    printf("\n");
 1861: 	}
 1862: #endif
 1863: 	linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
 1864: #ifdef DEBUGLINMIN
 1865: 	for (j=1;j<=n;j++) { 
 1866: 	  printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 1867: 	  if(j % ncovmodel == 0)
 1868: 	    printf("\n");
 1869: 	}
 1870: #endif
 1871: 	for (j=1;j<=n;j++) { 
 1872: 	  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
 1873: 	  xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
 1874: 	}
 1875: 	printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1876: 	fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
 1877: 
 1878: #ifdef DEBUG
 1879: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1880: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 1881: 	for(j=1;j<=n;j++){
 1882: 	  printf(" %.12e",xit[j]);
 1883: 	  fprintf(ficlog," %.12e",xit[j]);
 1884: 	}
 1885: 	printf("\n");
 1886: 	fprintf(ficlog,"\n");
 1887: #endif
 1888:       } /* end of t or directest negative */
 1889: #ifdef POWELLF1F3
 1890: #else
 1891:     } /* end if (fptt < fp)  */
 1892: #endif
 1893:   } /* loop iteration */ 
 1894: } 
 1895: 
 1896: /**** Prevalence limit (stable or period prevalence)  ****************/
 1897: 
 1898: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 1899: {
 1900:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 1901:      matrix by transitions matrix until convergence is reached */
 1902:   
 1903:   int i, ii,j,k;
 1904:   double min, max, maxmin, maxmax,sumnew=0.;
 1905:   /* double **matprod2(); */ /* test */
 1906:   double **out, cov[NCOVMAX+1], **pmij();
 1907:   double **newm;
 1908:   double agefin, delaymax=50 ; /* Max number of years to converge */
 1909:   
 1910:   for (ii=1;ii<=nlstate+ndeath;ii++)
 1911:     for (j=1;j<=nlstate+ndeath;j++){
 1912:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1913:     }
 1914:   
 1915:   cov[1]=1.;
 1916:   
 1917:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1918:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 1919:     newm=savm;
 1920:     /* Covariates have to be included here again */
 1921:     cov[2]=agefin;
 1922:     if(nagesqr==1)
 1923:       cov[3]= agefin*agefin;;
 1924:     for (k=1; k<=cptcovn;k++) {
 1925:       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 1926:       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
 1927:       /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
 1928:     }
 1929:     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 1930:     /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
 1931:     for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
 1932:     for (k=1; k<=cptcovprod;k++) /* Useless */
 1933:       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
 1934:       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
 1935:     
 1936:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 1937:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 1938:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 1939:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 1940:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 1941:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 1942:     
 1943:     savm=oldm;
 1944:     oldm=newm;
 1945:     maxmax=0.;
 1946:     for(j=1;j<=nlstate;j++){
 1947:       min=1.;
 1948:       max=0.;
 1949:       for(i=1; i<=nlstate; i++) {
 1950: 	sumnew=0;
 1951: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 1952: 	prlim[i][j]= newm[i][j]/(1-sumnew);
 1953:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 1954: 	max=FMAX(max,prlim[i][j]);
 1955: 	min=FMIN(min,prlim[i][j]);
 1956:       }
 1957:       maxmin=max-min;
 1958:       maxmax=FMAX(maxmax,maxmin);
 1959:     } /* j loop */
 1960:     if(maxmax < ftolpl){
 1961:       return prlim;
 1962:     }
 1963:   } /* age loop */
 1964:   return prlim; /* should not reach here */
 1965: }
 1966: 
 1967: /*************** transition probabilities ***************/ 
 1968: 
 1969: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1970: {
 1971:   /* According to parameters values stored in x and the covariate's values stored in cov,
 1972:      computes the probability to be observed in state j being in state i by appying the
 1973:      model to the ncovmodel covariates (including constant and age).
 1974:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 1975:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 1976:      ncth covariate in the global vector x is given by the formula:
 1977:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 1978:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 1979:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 1980:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 1981:      Outputs ps[i][j] the probability to be observed in j being in j according to
 1982:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 1983:   */
 1984:   double s1, lnpijopii;
 1985:   /*double t34;*/
 1986:   int i,j, nc, ii, jj;
 1987: 
 1988:     for(i=1; i<= nlstate; i++){
 1989:       for(j=1; j<i;j++){
 1990: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 1991: 	  /*lnpijopii += param[i][j][nc]*cov[nc];*/
 1992: 	  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 1993: /* 	 printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1994: 	}
 1995: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 1996: /* 	printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 1997:       }
 1998:       for(j=i+1; j<=nlstate+ndeath;j++){
 1999: 	for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 2000: 	  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 2001: 	  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
 2002: /* 	  printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 2003: 	}
 2004: 	ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 2005:       }
 2006:     }
 2007:     
 2008:     for(i=1; i<= nlstate; i++){
 2009:       s1=0;
 2010:       for(j=1; j<i; j++){
 2011: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 2012: 	/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 2013:       }
 2014:       for(j=i+1; j<=nlstate+ndeath; j++){
 2015: 	s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 2016: 	/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 2017:       }
 2018:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 2019:       ps[i][i]=1./(s1+1.);
 2020:       /* Computing other pijs */
 2021:       for(j=1; j<i; j++)
 2022: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 2023:       for(j=i+1; j<=nlstate+ndeath; j++)
 2024: 	ps[i][j]= exp(ps[i][j])*ps[i][i];
 2025:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 2026:     } /* end i */
 2027:     
 2028:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 2029:       for(jj=1; jj<= nlstate+ndeath; jj++){
 2030: 	ps[ii][jj]=0;
 2031: 	ps[ii][ii]=1;
 2032:       }
 2033:     }
 2034:     
 2035:     
 2036:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 2037:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 2038:     /* 	printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 2039:     /*   } */
 2040:     /*   printf("\n "); */
 2041:     /* } */
 2042:     /* printf("\n ");printf("%lf ",cov[2]);*/
 2043:     /*
 2044:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
 2045:       goto end;*/
 2046:     return ps;
 2047: }
 2048: 
 2049: /**************** Product of 2 matrices ******************/
 2050: 
 2051: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 2052: {
 2053:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 2054:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 2055:   /* in, b, out are matrice of pointers which should have been initialized 
 2056:      before: only the contents of out is modified. The function returns
 2057:      a pointer to pointers identical to out */
 2058:   int i, j, k;
 2059:   for(i=nrl; i<= nrh; i++)
 2060:     for(k=ncolol; k<=ncoloh; k++){
 2061:       out[i][k]=0.;
 2062:       for(j=ncl; j<=nch; j++)
 2063:   	out[i][k] +=in[i][j]*b[j][k];
 2064:     }
 2065:   return out;
 2066: }
 2067: 
 2068: 
 2069: /************* Higher Matrix Product ***************/
 2070: 
 2071: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 2072: {
 2073:   /* Computes the transition matrix starting at age 'age' over 
 2074:      'nhstepm*hstepm*stepm' months (i.e. until
 2075:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 2076:      nhstepm*hstepm matrices. 
 2077:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 2078:      (typically every 2 years instead of every month which is too big 
 2079:      for the memory).
 2080:      Model is determined by parameters x and covariates have to be 
 2081:      included manually here. 
 2082: 
 2083:      */
 2084: 
 2085:   int i, j, d, h, k;
 2086:   double **out, cov[NCOVMAX+1];
 2087:   double **newm;
 2088:   double agexact;
 2089: 
 2090:   /* Hstepm could be zero and should return the unit matrix */
 2091:   for (i=1;i<=nlstate+ndeath;i++)
 2092:     for (j=1;j<=nlstate+ndeath;j++){
 2093:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 2094:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 2095:     }
 2096:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 2097:   for(h=1; h <=nhstepm; h++){
 2098:     for(d=1; d <=hstepm; d++){
 2099:       newm=savm;
 2100:       /* Covariates have to be included here again */
 2101:       cov[1]=1.;
 2102:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 2103:       cov[2]=agexact;
 2104:       if(nagesqr==1)
 2105: 	cov[3]= agexact*agexact;
 2106:       for (k=1; k<=cptcovn;k++) 
 2107: 	cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
 2108: 	/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 2109:       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
 2110: 	/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 2111: 	cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
 2112: 	/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
 2113:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 2114: 	cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
 2115: 	/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
 2116: 
 2117: 
 2118:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 2119:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 2120:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 2121: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 2122:       savm=oldm;
 2123:       oldm=newm;
 2124:     }
 2125:     for(i=1; i<=nlstate+ndeath; i++)
 2126:       for(j=1;j<=nlstate+ndeath;j++) {
 2127: 	po[i][j][h]=newm[i][j];
 2128: 	/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 2129:       }
 2130:     /*printf("h=%d ",h);*/
 2131:   } /* end h */
 2132: /*     printf("\n H=%d \n",h); */
 2133:   return po;
 2134: }
 2135: 
 2136: #ifdef NLOPT
 2137:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 2138:   double fret;
 2139:   double *xt;
 2140:   int j;
 2141:   myfunc_data *d2 = (myfunc_data *) pd;
 2142: /* xt = (p1-1); */
 2143:   xt=vector(1,n); 
 2144:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 2145: 
 2146:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 2147:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 2148:   printf("Function = %.12lf ",fret);
 2149:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 2150:   printf("\n");
 2151:  free_vector(xt,1,n);
 2152:   return fret;
 2153: }
 2154: #endif
 2155: 
 2156: /*************** log-likelihood *************/
 2157: double func( double *x)
 2158: {
 2159:   int i, ii, j, k, mi, d, kk;
 2160:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2161:   double **out;
 2162:   double sw; /* Sum of weights */
 2163:   double lli; /* Individual log likelihood */
 2164:   int s1, s2;
 2165:   double bbh, survp;
 2166:   long ipmx;
 2167:   double agexact;
 2168:   /*extern weight */
 2169:   /* We are differentiating ll according to initial status */
 2170:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2171:   /*for(i=1;i<imx;i++) 
 2172:     printf(" %d\n",s[4][i]);
 2173:   */
 2174: 
 2175:   ++countcallfunc;
 2176: 
 2177:   cov[1]=1.;
 2178: 
 2179:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2180: 
 2181:   if(mle==1){
 2182:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2183:       /* Computes the values of the ncovmodel covariates of the model
 2184: 	 depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 2185: 	 Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 2186: 	 to be observed in j being in i according to the model.
 2187:        */
 2188:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
 2189: 	  cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2190:       }
 2191:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 2192: 	 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 2193: 	 has been calculated etc */
 2194:       for(mi=1; mi<= wav[i]-1; mi++){
 2195: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2196: 	  for (j=1;j<=nlstate+ndeath;j++){
 2197: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2198: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2199: 	  }
 2200: 	for(d=0; d<dh[mi][i]; d++){
 2201: 	  newm=savm;
 2202: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2203: 	  cov[2]=agexact;
 2204: 	  if(nagesqr==1)
 2205: 	    cov[3]= agexact*agexact;
 2206: 	  for (kk=1; kk<=cptcovage;kk++) {
 2207: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
 2208: 	  }
 2209: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2210: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2211: 	  savm=oldm;
 2212: 	  oldm=newm;
 2213: 	} /* end mult */
 2214:       
 2215: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 2216: 	/* But now since version 0.9 we anticipate for bias at large stepm.
 2217: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 2218: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 2219: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 2220: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 2221: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 2222: 	 * probability in order to take into account the bias as a fraction of the way
 2223: 	 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 2224: 	 * -stepm/2 to stepm/2 .
 2225: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 2226: 	 * For stepm > 1 the results are less biased than in previous versions. 
 2227: 	 */
 2228: 	s1=s[mw[mi][i]][i];
 2229: 	s2=s[mw[mi+1][i]][i];
 2230: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2231: 	/* bias bh is positive if real duration
 2232: 	 * is higher than the multiple of stepm and negative otherwise.
 2233: 	 */
 2234: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 2235: 	if( s2 > nlstate){ 
 2236: 	  /* i.e. if s2 is a death state and if the date of death is known 
 2237: 	     then the contribution to the likelihood is the probability to 
 2238: 	     die between last step unit time and current  step unit time, 
 2239: 	     which is also equal to probability to die before dh 
 2240: 	     minus probability to die before dh-stepm . 
 2241: 	     In version up to 0.92 likelihood was computed
 2242: 	as if date of death was unknown. Death was treated as any other
 2243: 	health state: the date of the interview describes the actual state
 2244: 	and not the date of a change in health state. The former idea was
 2245: 	to consider that at each interview the state was recorded
 2246: 	(healthy, disable or death) and IMaCh was corrected; but when we
 2247: 	introduced the exact date of death then we should have modified
 2248: 	the contribution of an exact death to the likelihood. This new
 2249: 	contribution is smaller and very dependent of the step unit
 2250: 	stepm. It is no more the probability to die between last interview
 2251: 	and month of death but the probability to survive from last
 2252: 	interview up to one month before death multiplied by the
 2253: 	probability to die within a month. Thanks to Chris
 2254: 	Jackson for correcting this bug.  Former versions increased
 2255: 	mortality artificially. The bad side is that we add another loop
 2256: 	which slows down the processing. The difference can be up to 10%
 2257: 	lower mortality.
 2258: 	  */
 2259: 	/* If, at the beginning of the maximization mostly, the
 2260: 	   cumulative probability or probability to be dead is
 2261: 	   constant (ie = 1) over time d, the difference is equal to
 2262: 	   0.  out[s1][3] = savm[s1][3]: probability, being at state
 2263: 	   s1 at precedent wave, to be dead a month before current
 2264: 	   wave is equal to probability, being at state s1 at
 2265: 	   precedent wave, to be dead at mont of the current
 2266: 	   wave. Then the observed probability (that this person died)
 2267: 	   is null according to current estimated parameter. In fact,
 2268: 	   it should be very low but not zero otherwise the log go to
 2269: 	   infinity.
 2270: 	*/
 2271: /* #ifdef INFINITYORIGINAL */
 2272: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2273: /* #else */
 2274: /* 	  if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
 2275: /* 	    lli=log(mytinydouble); */
 2276: /* 	  else */
 2277: /* 	    lli=log(out[s1][s2] - savm[s1][s2]); */
 2278: /* #endif */
 2279: 	    lli=log(out[s1][s2] - savm[s1][s2]);
 2280: 
 2281: 	} else if  (s2==-2) {
 2282: 	  for (j=1,survp=0. ; j<=nlstate; j++) 
 2283: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2284: 	  /*survp += out[s1][j]; */
 2285: 	  lli= log(survp);
 2286: 	}
 2287: 	
 2288:  	else if  (s2==-4) { 
 2289: 	  for (j=3,survp=0. ; j<=nlstate; j++)  
 2290: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2291:  	  lli= log(survp); 
 2292:  	} 
 2293: 
 2294:  	else if  (s2==-5) { 
 2295:  	  for (j=1,survp=0. ; j<=2; j++)  
 2296: 	    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2297:  	  lli= log(survp); 
 2298:  	} 
 2299: 	
 2300: 	else{
 2301: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2302: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 2303: 	} 
 2304: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 2305: 	/*if(lli ==000.0)*/
 2306: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 2307:   	ipmx +=1;
 2308: 	sw += weight[i];
 2309: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2310: 	/* if (lli < log(mytinydouble)){ */
 2311: 	/*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 2312: 	/*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 2313: 	/* } */
 2314:       } /* end of wave */
 2315:     } /* end of individual */
 2316:   }  else if(mle==2){
 2317:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2318:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2319:       for(mi=1; mi<= wav[i]-1; mi++){
 2320: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2321: 	  for (j=1;j<=nlstate+ndeath;j++){
 2322: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2323: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2324: 	  }
 2325: 	for(d=0; d<=dh[mi][i]; d++){
 2326: 	  newm=savm;
 2327: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2328: 	  cov[2]=agexact;
 2329: 	  if(nagesqr==1)
 2330: 	    cov[3]= agexact*agexact;
 2331: 	  for (kk=1; kk<=cptcovage;kk++) {
 2332: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2333: 	  }
 2334: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2335: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2336: 	  savm=oldm;
 2337: 	  oldm=newm;
 2338: 	} /* end mult */
 2339:       
 2340: 	s1=s[mw[mi][i]][i];
 2341: 	s2=s[mw[mi+1][i]][i];
 2342: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2343: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2344: 	ipmx +=1;
 2345: 	sw += weight[i];
 2346: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2347:       } /* end of wave */
 2348:     } /* end of individual */
 2349:   }  else if(mle==3){  /* exponential inter-extrapolation */
 2350:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2351:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2352:       for(mi=1; mi<= wav[i]-1; mi++){
 2353: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2354: 	  for (j=1;j<=nlstate+ndeath;j++){
 2355: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2356: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2357: 	  }
 2358: 	for(d=0; d<dh[mi][i]; d++){
 2359: 	  newm=savm;
 2360: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2361: 	  cov[2]=agexact;
 2362: 	  if(nagesqr==1)
 2363: 	    cov[3]= agexact*agexact;
 2364: 	  for (kk=1; kk<=cptcovage;kk++) {
 2365: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2366: 	  }
 2367: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2368: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2369: 	  savm=oldm;
 2370: 	  oldm=newm;
 2371: 	} /* end mult */
 2372:       
 2373: 	s1=s[mw[mi][i]][i];
 2374: 	s2=s[mw[mi+1][i]][i];
 2375: 	bbh=(double)bh[mi][i]/(double)stepm; 
 2376: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2377: 	ipmx +=1;
 2378: 	sw += weight[i];
 2379: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2380:       } /* end of wave */
 2381:     } /* end of individual */
 2382:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 2383:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2384:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2385:       for(mi=1; mi<= wav[i]-1; mi++){
 2386: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2387: 	  for (j=1;j<=nlstate+ndeath;j++){
 2388: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2389: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2390: 	  }
 2391: 	for(d=0; d<dh[mi][i]; d++){
 2392: 	  newm=savm;
 2393: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2394: 	  cov[2]=agexact;
 2395: 	  if(nagesqr==1)
 2396: 	    cov[3]= agexact*agexact;
 2397: 	  for (kk=1; kk<=cptcovage;kk++) {
 2398: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2399: 	  }
 2400: 	
 2401: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2402: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2403: 	  savm=oldm;
 2404: 	  oldm=newm;
 2405: 	} /* end mult */
 2406:       
 2407: 	s1=s[mw[mi][i]][i];
 2408: 	s2=s[mw[mi+1][i]][i];
 2409: 	if( s2 > nlstate){ 
 2410: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 2411: 	}else{
 2412: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2413: 	}
 2414: 	ipmx +=1;
 2415: 	sw += weight[i];
 2416: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2417: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2418:       } /* end of wave */
 2419:     } /* end of individual */
 2420:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 2421:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2422:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2423:       for(mi=1; mi<= wav[i]-1; mi++){
 2424: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 2425: 	  for (j=1;j<=nlstate+ndeath;j++){
 2426: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2427: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2428: 	  }
 2429: 	for(d=0; d<dh[mi][i]; d++){
 2430: 	  newm=savm;
 2431: 	  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2432: 	  cov[2]=agexact;
 2433: 	  if(nagesqr==1)
 2434: 	    cov[3]= agexact*agexact;
 2435: 	  for (kk=1; kk<=cptcovage;kk++) {
 2436: 	    cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2437: 	  }
 2438: 	
 2439: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2440: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2441: 	  savm=oldm;
 2442: 	  oldm=newm;
 2443: 	} /* end mult */
 2444:       
 2445: 	s1=s[mw[mi][i]][i];
 2446: 	s2=s[mw[mi+1][i]][i];
 2447: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 2448: 	ipmx +=1;
 2449: 	sw += weight[i];
 2450: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2451: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 2452:       } /* end of wave */
 2453:     } /* end of individual */
 2454:   } /* End of if */
 2455:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2456:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2457:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2458:   return -l;
 2459: }
 2460: 
 2461: /*************** log-likelihood *************/
 2462: double funcone( double *x)
 2463: {
 2464:   /* Same as likeli but slower because of a lot of printf and if */
 2465:   int i, ii, j, k, mi, d, kk;
 2466:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 2467:   double **out;
 2468:   double lli; /* Individual log likelihood */
 2469:   double llt;
 2470:   int s1, s2;
 2471:   double bbh, survp;
 2472:   double agexact;
 2473:   /*extern weight */
 2474:   /* We are differentiating ll according to initial status */
 2475:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 2476:   /*for(i=1;i<imx;i++) 
 2477:     printf(" %d\n",s[4][i]);
 2478:   */
 2479:   cov[1]=1.;
 2480: 
 2481:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 2482: 
 2483:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 2484:     for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 2485:     for(mi=1; mi<= wav[i]-1; mi++){
 2486:       for (ii=1;ii<=nlstate+ndeath;ii++)
 2487: 	for (j=1;j<=nlstate+ndeath;j++){
 2488: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 2489: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 2490: 	}
 2491:       for(d=0; d<dh[mi][i]; d++){
 2492: 	newm=savm;
 2493: 	agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 2494: 	cov[2]=agexact;
 2495: 	if(nagesqr==1)
 2496: 	  cov[3]= agexact*agexact;
 2497: 	for (kk=1; kk<=cptcovage;kk++) {
 2498: 	  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 2499: 	}
 2500: 
 2501: 	/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 2502: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 2503: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 2504: 	/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 2505: 	/* 	     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 2506: 	savm=oldm;
 2507: 	oldm=newm;
 2508:       } /* end mult */
 2509:       
 2510:       s1=s[mw[mi][i]][i];
 2511:       s2=s[mw[mi+1][i]][i];
 2512:       bbh=(double)bh[mi][i]/(double)stepm; 
 2513:       /* bias is positive if real duration
 2514:        * is higher than the multiple of stepm and negative otherwise.
 2515:        */
 2516:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 2517: 	lli=log(out[s1][s2] - savm[s1][s2]);
 2518:       } else if  (s2==-2) {
 2519: 	for (j=1,survp=0. ; j<=nlstate; j++) 
 2520: 	  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 2521: 	lli= log(survp);
 2522:       }else if (mle==1){
 2523: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2524:       } else if(mle==2){
 2525: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 2526:       } else if(mle==3){  /* exponential inter-extrapolation */
 2527: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 2528:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 2529: 	lli=log(out[s1][s2]); /* Original formula */
 2530:       } else{  /* mle=0 back to 1 */
 2531: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 2532: 	/*lli=log(out[s1][s2]); */ /* Original formula */
 2533:       } /* End of if */
 2534:       ipmx +=1;
 2535:       sw += weight[i];
 2536:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 2537:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 2538:       if(globpr){
 2539: 	fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 2540:  %11.6f %11.6f %11.6f ", \
 2541: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 2542: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 2543: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 2544: 	  llt +=ll[k]*gipmx/gsw;
 2545: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 2546: 	}
 2547: 	fprintf(ficresilk," %10.6f\n", -llt);
 2548:       }
 2549:     } /* end of wave */
 2550:   } /* end of individual */
 2551:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 2552:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 2553:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 2554:   if(globpr==0){ /* First time we count the contributions and weights */
 2555:     gipmx=ipmx;
 2556:     gsw=sw;
 2557:   }
 2558:   return -l;
 2559: }
 2560: 
 2561: 
 2562: /*************** function likelione ***********/
 2563: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 2564: {
 2565:   /* This routine should help understanding what is done with 
 2566:      the selection of individuals/waves and
 2567:      to check the exact contribution to the likelihood.
 2568:      Plotting could be done.
 2569:    */
 2570:   int k;
 2571: 
 2572:   if(*globpri !=0){ /* Just counts and sums, no printings */
 2573:     strcpy(fileresilk,"ilk"); 
 2574:     strcat(fileresilk,fileres);
 2575:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 2576:       printf("Problem with resultfile: %s\n", fileresilk);
 2577:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 2578:     }
 2579:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 2580:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 2581:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 2582:     for(k=1; k<=nlstate; k++) 
 2583:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 2584:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 2585:   }
 2586: 
 2587:   *fretone=(*funcone)(p);
 2588:   if(*globpri !=0){
 2589:     fclose(ficresilk);
 2590:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 2591:     fflush(fichtm); 
 2592:   } 
 2593:   return;
 2594: }
 2595: 
 2596: 
 2597: /*********** Maximum Likelihood Estimation ***************/
 2598: 
 2599: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 2600: {
 2601:   int i,j, iter=0;
 2602:   double **xi;
 2603:   double fret;
 2604:   double fretone; /* Only one call to likelihood */
 2605:   /*  char filerespow[FILENAMELENGTH];*/
 2606: 
 2607: #ifdef NLOPT
 2608:   int creturn;
 2609:   nlopt_opt opt;
 2610:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 2611:   double *lb;
 2612:   double minf; /* the minimum objective value, upon return */
 2613:   double * p1; /* Shifted parameters from 0 instead of 1 */
 2614:   myfunc_data dinst, *d = &dinst;
 2615: #endif
 2616: 
 2617: 
 2618:   xi=matrix(1,npar,1,npar);
 2619:   for (i=1;i<=npar;i++)
 2620:     for (j=1;j<=npar;j++)
 2621:       xi[i][j]=(i==j ? 1.0 : 0.0);
 2622:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 2623:   strcpy(filerespow,"pow"); 
 2624:   strcat(filerespow,fileres);
 2625:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 2626:     printf("Problem with resultfile: %s\n", filerespow);
 2627:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 2628:   }
 2629:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 2630:   for (i=1;i<=nlstate;i++)
 2631:     for(j=1;j<=nlstate+ndeath;j++)
 2632:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 2633:   fprintf(ficrespow,"\n");
 2634: #ifdef POWELL
 2635:   powell(p,xi,npar,ftol,&iter,&fret,func);
 2636: #endif
 2637: 
 2638: #ifdef NLOPT
 2639: #ifdef NEWUOA
 2640:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
 2641: #else
 2642:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 2643: #endif
 2644:   lb=vector(0,npar-1);
 2645:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
 2646:   nlopt_set_lower_bounds(opt, lb);
 2647:   nlopt_set_initial_step1(opt, 0.1);
 2648:   
 2649:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 2650:   d->function = func;
 2651:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
 2652:   nlopt_set_min_objective(opt, myfunc, d);
 2653:   nlopt_set_xtol_rel(opt, ftol);
 2654:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
 2655:     printf("nlopt failed! %d\n",creturn); 
 2656:   }
 2657:   else {
 2658:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
 2659:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
 2660:     iter=1; /* not equal */
 2661:   }
 2662:   nlopt_destroy(opt);
 2663: #endif
 2664:   free_matrix(xi,1,npar,1,npar);
 2665:   fclose(ficrespow);
 2666:   printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2667:   fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2668:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 2669: 
 2670: }
 2671: 
 2672: /**** Computes Hessian and covariance matrix ***/
 2673: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 2674: {
 2675:   double  **a,**y,*x,pd;
 2676:   double **hess;
 2677:   int i, j;
 2678:   int *indx;
 2679: 
 2680:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
 2681:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 2682:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 2683:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 2684:   double gompertz(double p[]);
 2685:   hess=matrix(1,npar,1,npar);
 2686: 
 2687:   printf("\nCalculation of the hessian matrix. Wait...\n");
 2688:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 2689:   for (i=1;i<=npar;i++){
 2690:     printf("%d",i);fflush(stdout);
 2691:     fprintf(ficlog,"%d",i);fflush(ficlog);
 2692:    
 2693:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 2694:     
 2695:     /*  printf(" %f ",p[i]);
 2696: 	printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 2697:   }
 2698:   
 2699:   for (i=1;i<=npar;i++) {
 2700:     for (j=1;j<=npar;j++)  {
 2701:       if (j>i) { 
 2702: 	printf(".%d%d",i,j);fflush(stdout);
 2703: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 2704: 	hess[i][j]=hessij(p,delti,i,j,func,npar);
 2705: 	
 2706: 	hess[j][i]=hess[i][j];    
 2707: 	/*printf(" %lf ",hess[i][j]);*/
 2708:       }
 2709:     }
 2710:   }
 2711:   printf("\n");
 2712:   fprintf(ficlog,"\n");
 2713: 
 2714:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 2715:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 2716:   
 2717:   a=matrix(1,npar,1,npar);
 2718:   y=matrix(1,npar,1,npar);
 2719:   x=vector(1,npar);
 2720:   indx=ivector(1,npar);
 2721:   for (i=1;i<=npar;i++)
 2722:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 2723:   ludcmp(a,npar,indx,&pd);
 2724: 
 2725:   for (j=1;j<=npar;j++) {
 2726:     for (i=1;i<=npar;i++) x[i]=0;
 2727:     x[j]=1;
 2728:     lubksb(a,npar,indx,x);
 2729:     for (i=1;i<=npar;i++){ 
 2730:       matcov[i][j]=x[i];
 2731:     }
 2732:   }
 2733: 
 2734:   printf("\n#Hessian matrix#\n");
 2735:   fprintf(ficlog,"\n#Hessian matrix#\n");
 2736:   for (i=1;i<=npar;i++) { 
 2737:     for (j=1;j<=npar;j++) { 
 2738:       printf("%.3e ",hess[i][j]);
 2739:       fprintf(ficlog,"%.3e ",hess[i][j]);
 2740:     }
 2741:     printf("\n");
 2742:     fprintf(ficlog,"\n");
 2743:   }
 2744: 
 2745:   /* Recompute Inverse */
 2746:   for (i=1;i<=npar;i++)
 2747:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 2748:   ludcmp(a,npar,indx,&pd);
 2749: 
 2750:   /*  printf("\n#Hessian matrix recomputed#\n");
 2751: 
 2752:   for (j=1;j<=npar;j++) {
 2753:     for (i=1;i<=npar;i++) x[i]=0;
 2754:     x[j]=1;
 2755:     lubksb(a,npar,indx,x);
 2756:     for (i=1;i<=npar;i++){ 
 2757:       y[i][j]=x[i];
 2758:       printf("%.3e ",y[i][j]);
 2759:       fprintf(ficlog,"%.3e ",y[i][j]);
 2760:     }
 2761:     printf("\n");
 2762:     fprintf(ficlog,"\n");
 2763:   }
 2764:   */
 2765: 
 2766:   free_matrix(a,1,npar,1,npar);
 2767:   free_matrix(y,1,npar,1,npar);
 2768:   free_vector(x,1,npar);
 2769:   free_ivector(indx,1,npar);
 2770:   free_matrix(hess,1,npar,1,npar);
 2771: 
 2772: 
 2773: }
 2774: 
 2775: /*************** hessian matrix ****************/
 2776: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 2777: {
 2778:   int i;
 2779:   int l=1, lmax=20;
 2780:   double k1,k2;
 2781:   double p2[MAXPARM+1]; /* identical to x */
 2782:   double res;
 2783:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 2784:   double fx;
 2785:   int k=0,kmax=10;
 2786:   double l1;
 2787: 
 2788:   fx=func(x);
 2789:   for (i=1;i<=npar;i++) p2[i]=x[i];
 2790:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
 2791:     l1=pow(10,l);
 2792:     delts=delt;
 2793:     for(k=1 ; k <kmax; k=k+1){
 2794:       delt = delta*(l1*k);
 2795:       p2[theta]=x[theta] +delt;
 2796:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
 2797:       p2[theta]=x[theta]-delt;
 2798:       k2=func(p2)-fx;
 2799:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 2800:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 2801:       
 2802: #ifdef DEBUGHESS
 2803:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2804:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 2805: #endif
 2806:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 2807:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 2808: 	k=kmax;
 2809:       }
 2810:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 2811: 	k=kmax; l=lmax*10;
 2812:       }
 2813:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 2814: 	delts=delt;
 2815:       }
 2816:     }
 2817:   }
 2818:   delti[theta]=delts;
 2819:   return res; 
 2820:   
 2821: }
 2822: 
 2823: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 2824: {
 2825:   int i;
 2826:   int l=1, lmax=20;
 2827:   double k1,k2,k3,k4,res,fx;
 2828:   double p2[MAXPARM+1];
 2829:   int k;
 2830: 
 2831:   fx=func(x);
 2832:   for (k=1; k<=2; k++) {
 2833:     for (i=1;i<=npar;i++) p2[i]=x[i];
 2834:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2835:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2836:     k1=func(p2)-fx;
 2837:   
 2838:     p2[thetai]=x[thetai]+delti[thetai]/k;
 2839:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2840:     k2=func(p2)-fx;
 2841:   
 2842:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2843:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 2844:     k3=func(p2)-fx;
 2845:   
 2846:     p2[thetai]=x[thetai]-delti[thetai]/k;
 2847:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 2848:     k4=func(p2)-fx;
 2849:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 2850: #ifdef DEBUG
 2851:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2852:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 2853: #endif
 2854:   }
 2855:   return res;
 2856: }
 2857: 
 2858: /************** Inverse of matrix **************/
 2859: void ludcmp(double **a, int n, int *indx, double *d) 
 2860: { 
 2861:   int i,imax,j,k; 
 2862:   double big,dum,sum,temp; 
 2863:   double *vv; 
 2864:  
 2865:   vv=vector(1,n); 
 2866:   *d=1.0; 
 2867:   for (i=1;i<=n;i++) { 
 2868:     big=0.0; 
 2869:     for (j=1;j<=n;j++) 
 2870:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 2871:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 2872:     vv[i]=1.0/big; 
 2873:   } 
 2874:   for (j=1;j<=n;j++) { 
 2875:     for (i=1;i<j;i++) { 
 2876:       sum=a[i][j]; 
 2877:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 2878:       a[i][j]=sum; 
 2879:     } 
 2880:     big=0.0; 
 2881:     for (i=j;i<=n;i++) { 
 2882:       sum=a[i][j]; 
 2883:       for (k=1;k<j;k++) 
 2884: 	sum -= a[i][k]*a[k][j]; 
 2885:       a[i][j]=sum; 
 2886:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 2887: 	big=dum; 
 2888: 	imax=i; 
 2889:       } 
 2890:     } 
 2891:     if (j != imax) { 
 2892:       for (k=1;k<=n;k++) { 
 2893: 	dum=a[imax][k]; 
 2894: 	a[imax][k]=a[j][k]; 
 2895: 	a[j][k]=dum; 
 2896:       } 
 2897:       *d = -(*d); 
 2898:       vv[imax]=vv[j]; 
 2899:     } 
 2900:     indx[j]=imax; 
 2901:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 2902:     if (j != n) { 
 2903:       dum=1.0/(a[j][j]); 
 2904:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 2905:     } 
 2906:   } 
 2907:   free_vector(vv,1,n);  /* Doesn't work */
 2908: ;
 2909: } 
 2910: 
 2911: void lubksb(double **a, int n, int *indx, double b[]) 
 2912: { 
 2913:   int i,ii=0,ip,j; 
 2914:   double sum; 
 2915:  
 2916:   for (i=1;i<=n;i++) { 
 2917:     ip=indx[i]; 
 2918:     sum=b[ip]; 
 2919:     b[ip]=b[i]; 
 2920:     if (ii) 
 2921:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 2922:     else if (sum) ii=i; 
 2923:     b[i]=sum; 
 2924:   } 
 2925:   for (i=n;i>=1;i--) { 
 2926:     sum=b[i]; 
 2927:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 2928:     b[i]=sum/a[i][i]; 
 2929:   } 
 2930: } 
 2931: 
 2932: void pstamp(FILE *fichier)
 2933: {
 2934:   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 2935: }
 2936: 
 2937: /************ Frequencies ********************/
 2938: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 2939: {  /* Some frequencies */
 2940:   
 2941:   int i, m, jk, j1, bool, z1,j;
 2942:   int first;
 2943:   double ***freq; /* Frequencies */
 2944:   double *pp, **prop;
 2945:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 2946:   char fileresp[FILENAMELENGTH];
 2947:   
 2948:   pp=vector(1,nlstate);
 2949:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 2950:   strcpy(fileresp,"p");
 2951:   strcat(fileresp,fileres);
 2952:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 2953:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 2954:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 2955:     exit(0);
 2956:   }
 2957:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 2958:   j1=0;
 2959:   
 2960:   j=cptcoveff;
 2961:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2962: 
 2963:   first=1;
 2964: 
 2965:   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 2966:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 2967:   /*    j1++; */
 2968:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
 2969:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 2970: 	scanf("%d", i);*/
 2971:       for (i=-5; i<=nlstate+ndeath; i++)  
 2972: 	for (jk=-5; jk<=nlstate+ndeath; jk++)  
 2973: 	  for(m=iagemin; m <= iagemax+3; m++)
 2974: 	    freq[i][jk][m]=0;
 2975:       
 2976:       for (i=1; i<=nlstate; i++)  
 2977: 	for(m=iagemin; m <= iagemax+3; m++)
 2978: 	  prop[i][m]=0;
 2979:       
 2980:       dateintsum=0;
 2981:       k2cpt=0;
 2982:       for (i=1; i<=imx; i++) {
 2983: 	bool=1;
 2984: 	if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 2985: 	  for (z1=1; z1<=cptcoveff; z1++)       
 2986:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
 2987:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
 2988:               bool=0;
 2989:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
 2990:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
 2991:                 j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
 2992:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
 2993:             } 
 2994: 	}
 2995:  
 2996: 	if (bool==1){
 2997: 	  for(m=firstpass; m<=lastpass; m++){
 2998: 	    k2=anint[m][i]+(mint[m][i]/12.);
 2999: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 3000: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 3001: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 3002: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 3003: 	      if (m<lastpass) {
 3004: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 3005: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 3006: 	      }
 3007: 	      
 3008: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 3009: 		dateintsum=dateintsum+k2;
 3010: 		k2cpt++;
 3011: 	      }
 3012: 	      /*}*/
 3013: 	  }
 3014: 	}
 3015:       } /* end i */
 3016:        
 3017:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 3018:       pstamp(ficresp);
 3019:       if  (cptcovn>0) {
 3020: 	fprintf(ficresp, "\n#********** Variable "); 
 3021: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 3022: 	fprintf(ficresp, "**********\n#");
 3023: 	fprintf(ficlog, "\n#********** Variable "); 
 3024: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 3025: 	fprintf(ficlog, "**********\n#");
 3026:       }
 3027:       for(i=1; i<=nlstate;i++) 
 3028: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 3029:       fprintf(ficresp, "\n");
 3030:       
 3031:       for(i=iagemin; i <= iagemax+3; i++){
 3032: 	if(i==iagemax+3){
 3033: 	  fprintf(ficlog,"Total");
 3034: 	}else{
 3035: 	  if(first==1){
 3036: 	    first=0;
 3037: 	    printf("See log file for details...\n");
 3038: 	  }
 3039: 	  fprintf(ficlog,"Age %d", i);
 3040: 	}
 3041: 	for(jk=1; jk <=nlstate ; jk++){
 3042: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 3043: 	    pp[jk] += freq[jk][m][i]; 
 3044: 	}
 3045: 	for(jk=1; jk <=nlstate ; jk++){
 3046: 	  for(m=-1, pos=0; m <=0 ; m++)
 3047: 	    pos += freq[jk][m][i];
 3048: 	  if(pp[jk]>=1.e-10){
 3049: 	    if(first==1){
 3050: 	      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 3051: 	    }
 3052: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 3053: 	  }else{
 3054: 	    if(first==1)
 3055: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 3056: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 3057: 	  }
 3058: 	}
 3059: 
 3060: 	for(jk=1; jk <=nlstate ; jk++){
 3061: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 3062: 	    pp[jk] += freq[jk][m][i];
 3063: 	}	
 3064: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 3065: 	  pos += pp[jk];
 3066: 	  posprop += prop[jk][i];
 3067: 	}
 3068: 	for(jk=1; jk <=nlstate ; jk++){
 3069: 	  if(pos>=1.e-5){
 3070: 	    if(first==1)
 3071: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 3072: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 3073: 	  }else{
 3074: 	    if(first==1)
 3075: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 3076: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 3077: 	  }
 3078: 	  if( i <= iagemax){
 3079: 	    if(pos>=1.e-5){
 3080: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 3081: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 3082: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 3083: 	    }
 3084: 	    else
 3085: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 3086: 	  }
 3087: 	}
 3088: 	
 3089: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 3090: 	  for(m=-1; m <=nlstate+ndeath; m++)
 3091: 	    if(freq[jk][m][i] !=0 ) {
 3092: 	    if(first==1)
 3093: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 3094: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 3095: 	    }
 3096: 	if(i <= iagemax)
 3097: 	  fprintf(ficresp,"\n");
 3098: 	if(first==1)
 3099: 	  printf("Others in log...\n");
 3100: 	fprintf(ficlog,"\n");
 3101:       }
 3102:       /*}*/
 3103:   }
 3104:   dateintmean=dateintsum/k2cpt; 
 3105:  
 3106:   fclose(ficresp);
 3107:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 3108:   free_vector(pp,1,nlstate);
 3109:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 3110:   /* End of Freq */
 3111: }
 3112: 
 3113: /************ Prevalence ********************/
 3114: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 3115: {  
 3116:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 3117:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 3118:      We still use firstpass and lastpass as another selection.
 3119:   */
 3120:  
 3121:   int i, m, jk, j1, bool, z1,j;
 3122: 
 3123:   double **prop;
 3124:   double posprop; 
 3125:   double  y2; /* in fractional years */
 3126:   int iagemin, iagemax;
 3127:   int first; /** to stop verbosity which is redirected to log file */
 3128: 
 3129:   iagemin= (int) agemin;
 3130:   iagemax= (int) agemax;
 3131:   /*pp=vector(1,nlstate);*/
 3132:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 3133:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 3134:   j1=0;
 3135:   
 3136:   /*j=cptcoveff;*/
 3137:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 3138:   
 3139:   first=1;
 3140:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 3141:     /*for(i1=1; i1<=ncodemax[k1];i1++){
 3142:       j1++;*/
 3143:       
 3144:       for (i=1; i<=nlstate; i++)  
 3145: 	for(m=iagemin; m <= iagemax+3; m++)
 3146: 	  prop[i][m]=0.0;
 3147:      
 3148:       for (i=1; i<=imx; i++) { /* Each individual */
 3149: 	bool=1;
 3150: 	if  (cptcovn>0) {
 3151: 	  for (z1=1; z1<=cptcoveff; z1++) 
 3152: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
 3153: 	      bool=0;
 3154: 	} 
 3155: 	if (bool==1) { 
 3156: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 3157: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 3158: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 3159: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 3160: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 3161: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 3162:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 3163: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 3164:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 3165:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 3166:  	      } 
 3167: 	    }
 3168: 	  } /* end selection of waves */
 3169: 	}
 3170:       }
 3171:       for(i=iagemin; i <= iagemax+3; i++){  
 3172:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 3173:  	  posprop += prop[jk][i]; 
 3174:  	} 
 3175: 	
 3176:  	for(jk=1; jk <=nlstate ; jk++){	    
 3177:  	  if( i <=  iagemax){ 
 3178:  	    if(posprop>=1.e-5){ 
 3179:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 3180:  	    } else{
 3181: 	      if(first==1){
 3182: 		first=0;
 3183: 		printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 3184: 	      }
 3185: 	    }
 3186:  	  } 
 3187:  	}/* end jk */ 
 3188:       }/* end i */ 
 3189:     /*} *//* end i1 */
 3190:   } /* end j1 */
 3191:   
 3192:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 3193:   /*free_vector(pp,1,nlstate);*/
 3194:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 3195: }  /* End of prevalence */
 3196: 
 3197: /************* Waves Concatenation ***************/
 3198: 
 3199: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 3200: {
 3201:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 3202:      Death is a valid wave (if date is known).
 3203:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 3204:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 3205:      and mw[mi+1][i]. dh depends on stepm.
 3206:      */
 3207: 
 3208:   int i, mi, m;
 3209:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 3210:      double sum=0., jmean=0.;*/
 3211:   int first;
 3212:   int j, k=0,jk, ju, jl;
 3213:   double sum=0.;
 3214:   first=0;
 3215:   jmin=100000;
 3216:   jmax=-1;
 3217:   jmean=0.;
 3218:   for(i=1; i<=imx; i++){
 3219:     mi=0;
 3220:     m=firstpass;
 3221:     while(s[m][i] <= nlstate){
 3222:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 3223: 	mw[++mi][i]=m;
 3224:       if(m >=lastpass)
 3225: 	break;
 3226:       else
 3227: 	m++;
 3228:     }/* end while */
 3229:     if (s[m][i] > nlstate){
 3230:       mi++;	/* Death is another wave */
 3231:       /* if(mi==0)  never been interviewed correctly before death */
 3232: 	 /* Only death is a correct wave */
 3233:       mw[mi][i]=m;
 3234:     }
 3235: 
 3236:     wav[i]=mi;
 3237:     if(mi==0){
 3238:       nbwarn++;
 3239:       if(first==0){
 3240: 	printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 3241: 	first=1;
 3242:       }
 3243:       if(first==1){
 3244: 	fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 3245:       }
 3246:     } /* end mi==0 */
 3247:   } /* End individuals */
 3248: 
 3249:   for(i=1; i<=imx; i++){
 3250:     for(mi=1; mi<wav[i];mi++){
 3251:       if (stepm <=0)
 3252: 	dh[mi][i]=1;
 3253:       else{
 3254: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 3255: 	  if (agedc[i] < 2*AGESUP) {
 3256: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 3257: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 3258: 	    else if(j<0){
 3259: 	      nberr++;
 3260: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3261: 	      j=1; /* Temporary Dangerous patch */
 3262: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3263: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3264: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 3265: 	    }
 3266: 	    k=k+1;
 3267: 	    if (j >= jmax){
 3268: 	      jmax=j;
 3269: 	      ijmax=i;
 3270: 	    }
 3271: 	    if (j <= jmin){
 3272: 	      jmin=j;
 3273: 	      ijmin=i;
 3274: 	    }
 3275: 	    sum=sum+j;
 3276: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 3277: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 3278: 	  }
 3279: 	}
 3280: 	else{
 3281: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 3282: /* 	  if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 3283: 
 3284: 	  k=k+1;
 3285: 	  if (j >= jmax) {
 3286: 	    jmax=j;
 3287: 	    ijmax=i;
 3288: 	  }
 3289: 	  else if (j <= jmin){
 3290: 	    jmin=j;
 3291: 	    ijmin=i;
 3292: 	  }
 3293: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 3294: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 3295: 	  if(j<0){
 3296: 	    nberr++;
 3297: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3298: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 3299: 	  }
 3300: 	  sum=sum+j;
 3301: 	}
 3302: 	jk= j/stepm;
 3303: 	jl= j -jk*stepm;
 3304: 	ju= j -(jk+1)*stepm;
 3305: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 3306: 	  if(jl==0){
 3307: 	    dh[mi][i]=jk;
 3308: 	    bh[mi][i]=0;
 3309: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 3310: 		  * to avoid the price of an extra matrix product in likelihood */
 3311: 	    dh[mi][i]=jk+1;
 3312: 	    bh[mi][i]=ju;
 3313: 	  }
 3314: 	}else{
 3315: 	  if(jl <= -ju){
 3316: 	    dh[mi][i]=jk;
 3317: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 3318: 				 * is higher than the multiple of stepm and negative otherwise.
 3319: 				 */
 3320: 	  }
 3321: 	  else{
 3322: 	    dh[mi][i]=jk+1;
 3323: 	    bh[mi][i]=ju;
 3324: 	  }
 3325: 	  if(dh[mi][i]==0){
 3326: 	    dh[mi][i]=1; /* At least one step */
 3327: 	    bh[mi][i]=ju; /* At least one step */
 3328: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 3329: 	  }
 3330: 	} /* end if mle */
 3331:       }
 3332:     } /* end wave */
 3333:   }
 3334:   jmean=sum/k;
 3335:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 3336:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 3337:  }
 3338: 
 3339: /*********** Tricode ****************************/
 3340: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
 3341: {
 3342:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
 3343:   /*	  Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 3344:    * Boring subroutine which should only output nbcode[Tvar[j]][k]
 3345:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 3346:    * nbcode[Tvar[j]][1]= 
 3347:   */
 3348: 
 3349:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 3350:   int modmaxcovj=0; /* Modality max of covariates j */
 3351:   int cptcode=0; /* Modality max of covariates j */
 3352:   int modmincovj=0; /* Modality min of covariates j */
 3353: 
 3354: 
 3355:   cptcoveff=0; 
 3356:  
 3357:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 3358: 
 3359:   /* Loop on covariates without age and products */
 3360:   for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 3361:     for (k=-1; k < maxncov; k++) Ndum[k]=0;
 3362:     for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
 3363: 			       modality of this covariate Vj*/ 
 3364:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 3365: 				    * If product of Vn*Vm, still boolean *:
 3366: 				    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 3367: 				    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 3368:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 3369: 				      modality of the nth covariate of individual i. */
 3370:       if (ij > modmaxcovj)
 3371:         modmaxcovj=ij; 
 3372:       else if (ij < modmincovj) 
 3373: 	modmincovj=ij; 
 3374:       if ((ij < -1) && (ij > NCOVMAX)){
 3375: 	printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
 3376: 	exit(1);
 3377:       }else
 3378:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 3379:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
 3380:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 3381:       /* getting the maximum value of the modality of the covariate
 3382: 	 (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 3383: 	 female is 1, then modmaxcovj=1.*/
 3384:     } /* end for loop on individuals i */
 3385:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3386:     fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 3387:     cptcode=modmaxcovj;
 3388:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
 3389:    /*for (i=0; i<=cptcode; i++) {*/
 3390:     for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
 3391:       printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
 3392:       fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
 3393:       if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
 3394: 	if( k != -1){
 3395: 	  ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
 3396: 			     covariate for which somebody answered excluding 
 3397: 			     undefined. Usually 2: 0 and 1. */
 3398: 	}
 3399: 	ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
 3400: 			     covariate for which somebody answered including 
 3401: 			     undefined. Usually 3: -1, 0 and 1. */
 3402:       }
 3403:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
 3404: 	 historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 3405:     } /* Ndum[-1] number of undefined modalities */
 3406: 
 3407:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 3408:     /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
 3409:        If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
 3410:        modmincovj=3; modmaxcovj = 7;
 3411:        There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
 3412:        which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
 3413:        defining two dummy variables: variables V1_1 and V1_2.
 3414:        nbcode[Tvar[j]][ij]=k;
 3415:        nbcode[Tvar[j]][1]=0;
 3416:        nbcode[Tvar[j]][2]=1;
 3417:        nbcode[Tvar[j]][3]=2;
 3418:        To be continued (not working yet).
 3419:     */
 3420:     ij=0; /* ij is similar to i but can jump over null modalities */
 3421:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
 3422:     	if (Ndum[i] == 0) { /* If nobody responded to this modality k */
 3423: 	  break;
 3424: 	}
 3425: 	ij++;
 3426: 	nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
 3427: 	cptcode = ij; /* New max modality for covar j */
 3428:     } /* end of loop on modality i=-1 to 1 or more */
 3429:       
 3430:     /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
 3431:     /* 	/\*recode from 0 *\/ */
 3432:     /* 				     k is a modality. If we have model=V1+V1*sex  */
 3433:     /* 				     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 3434:     /* 				  But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
 3435:     /* 	} */
 3436:     /* 	/\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
 3437:     /* 	if (ij > ncodemax[j]) { */
 3438:     /* 	  printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
 3439:     /* 	  fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
 3440:     /* 	  break; */
 3441:     /* 	} */
 3442:     /*   }  /\* end of loop on modality k *\/ */
 3443:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 3444:   
 3445:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 3446:   
 3447:   for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
 3448:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 3449:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 3450:    Ndum[ij]++; /* Might be supersed V1 + V1*age */
 3451:  } 
 3452: 
 3453:  ij=0;
 3454:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 3455:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 3456:    if((Ndum[i]!=0) && (i<=ncovcol)){
 3457:      ij++;
 3458:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 3459:      Tvaraff[ij]=i; /*For printing (unclear) */
 3460:    }else{
 3461:        /* Tvaraff[ij]=0; */
 3462:    }
 3463:  }
 3464:  /* ij--; */
 3465:  cptcoveff=ij; /*Number of total covariates*/
 3466: 
 3467: }
 3468: 
 3469: 
 3470: /*********** Health Expectancies ****************/
 3471: 
 3472: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 3473: 
 3474: {
 3475:   /* Health expectancies, no variances */
 3476:   int i, j, nhstepm, hstepm, h, nstepm;
 3477:   int nhstepma, nstepma; /* Decreasing with age */
 3478:   double age, agelim, hf;
 3479:   double ***p3mat;
 3480:   double eip;
 3481: 
 3482:   pstamp(ficreseij);
 3483:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 3484:   fprintf(ficreseij,"# Age");
 3485:   for(i=1; i<=nlstate;i++){
 3486:     for(j=1; j<=nlstate;j++){
 3487:       fprintf(ficreseij," e%1d%1d ",i,j);
 3488:     }
 3489:     fprintf(ficreseij," e%1d. ",i);
 3490:   }
 3491:   fprintf(ficreseij,"\n");
 3492: 
 3493:   
 3494:   if(estepm < stepm){
 3495:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3496:   }
 3497:   else  hstepm=estepm;   
 3498:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3499:    * This is mainly to measure the difference between two models: for example
 3500:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3501:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3502:    * progression in between and thus overestimating or underestimating according
 3503:    * to the curvature of the survival function. If, for the same date, we 
 3504:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3505:    * to compare the new estimate of Life expectancy with the same linear 
 3506:    * hypothesis. A more precise result, taking into account a more precise
 3507:    * curvature will be obtained if estepm is as small as stepm. */
 3508: 
 3509:   /* For example we decided to compute the life expectancy with the smallest unit */
 3510:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3511:      nhstepm is the number of hstepm from age to agelim 
 3512:      nstepm is the number of stepm from age to agelin. 
 3513:      Look at hpijx to understand the reason of that which relies in memory size
 3514:      and note for a fixed period like estepm months */
 3515:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3516:      survival function given by stepm (the optimization length). Unfortunately it
 3517:      means that if the survival funtion is printed only each two years of age and if
 3518:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3519:      results. So we changed our mind and took the option of the best precision.
 3520:   */
 3521:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3522: 
 3523:   agelim=AGESUP;
 3524:   /* If stepm=6 months */
 3525:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 3526:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 3527:     
 3528: /* nhstepm age range expressed in number of stepm */
 3529:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3530:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3531:   /* if (stepm >= YEARM) hstepm=1;*/
 3532:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3533:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3534: 
 3535:   for (age=bage; age<=fage; age ++){ 
 3536:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3537:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3538:     /* if (stepm >= YEARM) hstepm=1;*/
 3539:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3540: 
 3541:     /* If stepm=6 months */
 3542:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3543:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3544:     
 3545:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3546:     
 3547:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3548:     
 3549:     printf("%d|",(int)age);fflush(stdout);
 3550:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3551:     
 3552:     /* Computing expectancies */
 3553:     for(i=1; i<=nlstate;i++)
 3554:       for(j=1; j<=nlstate;j++)
 3555: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3556: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 3557: 	  
 3558: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3559: 
 3560: 	}
 3561: 
 3562:     fprintf(ficreseij,"%3.0f",age );
 3563:     for(i=1; i<=nlstate;i++){
 3564:       eip=0;
 3565:       for(j=1; j<=nlstate;j++){
 3566: 	eip +=eij[i][j][(int)age];
 3567: 	fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 3568:       }
 3569:       fprintf(ficreseij,"%9.4f", eip );
 3570:     }
 3571:     fprintf(ficreseij,"\n");
 3572:     
 3573:   }
 3574:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3575:   printf("\n");
 3576:   fprintf(ficlog,"\n");
 3577:   
 3578: }
 3579: 
 3580: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 3581: 
 3582: {
 3583:   /* Covariances of health expectancies eij and of total life expectancies according
 3584:    to initial status i, ei. .
 3585:   */
 3586:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 3587:   int nhstepma, nstepma; /* Decreasing with age */
 3588:   double age, agelim, hf;
 3589:   double ***p3matp, ***p3matm, ***varhe;
 3590:   double **dnewm,**doldm;
 3591:   double *xp, *xm;
 3592:   double **gp, **gm;
 3593:   double ***gradg, ***trgradg;
 3594:   int theta;
 3595: 
 3596:   double eip, vip;
 3597: 
 3598:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 3599:   xp=vector(1,npar);
 3600:   xm=vector(1,npar);
 3601:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 3602:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 3603:   
 3604:   pstamp(ficresstdeij);
 3605:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 3606:   fprintf(ficresstdeij,"# Age");
 3607:   for(i=1; i<=nlstate;i++){
 3608:     for(j=1; j<=nlstate;j++)
 3609:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
 3610:     fprintf(ficresstdeij," e%1d. ",i);
 3611:   }
 3612:   fprintf(ficresstdeij,"\n");
 3613: 
 3614:   pstamp(ficrescveij);
 3615:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 3616:   fprintf(ficrescveij,"# Age");
 3617:   for(i=1; i<=nlstate;i++)
 3618:     for(j=1; j<=nlstate;j++){
 3619:       cptj= (j-1)*nlstate+i;
 3620:       for(i2=1; i2<=nlstate;i2++)
 3621: 	for(j2=1; j2<=nlstate;j2++){
 3622: 	  cptj2= (j2-1)*nlstate+i2;
 3623: 	  if(cptj2 <= cptj)
 3624: 	    fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 3625: 	}
 3626:     }
 3627:   fprintf(ficrescveij,"\n");
 3628:   
 3629:   if(estepm < stepm){
 3630:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3631:   }
 3632:   else  hstepm=estepm;   
 3633:   /* We compute the life expectancy from trapezoids spaced every estepm months
 3634:    * This is mainly to measure the difference between two models: for example
 3635:    * if stepm=24 months pijx are given only every 2 years and by summing them
 3636:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 3637:    * progression in between and thus overestimating or underestimating according
 3638:    * to the curvature of the survival function. If, for the same date, we 
 3639:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 3640:    * to compare the new estimate of Life expectancy with the same linear 
 3641:    * hypothesis. A more precise result, taking into account a more precise
 3642:    * curvature will be obtained if estepm is as small as stepm. */
 3643: 
 3644:   /* For example we decided to compute the life expectancy with the smallest unit */
 3645:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3646:      nhstepm is the number of hstepm from age to agelim 
 3647:      nstepm is the number of stepm from age to agelin. 
 3648:      Look at hpijx to understand the reason of that which relies in memory size
 3649:      and note for a fixed period like estepm months */
 3650:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3651:      survival function given by stepm (the optimization length). Unfortunately it
 3652:      means that if the survival funtion is printed only each two years of age and if
 3653:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3654:      results. So we changed our mind and took the option of the best precision.
 3655:   */
 3656:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3657: 
 3658:   /* If stepm=6 months */
 3659:   /* nhstepm age range expressed in number of stepm */
 3660:   agelim=AGESUP;
 3661:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 3662:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3663:   /* if (stepm >= YEARM) hstepm=1;*/
 3664:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3665:   
 3666:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3667:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3668:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 3669:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 3670:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
 3671:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
 3672: 
 3673:   for (age=bage; age<=fage; age ++){ 
 3674:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 3675:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 3676:     /* if (stepm >= YEARM) hstepm=1;*/
 3677:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 3678: 
 3679:     /* If stepm=6 months */
 3680:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
 3681:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 3682:     
 3683:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3684: 
 3685:     /* Computing  Variances of health expectancies */
 3686:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 3687:        decrease memory allocation */
 3688:     for(theta=1; theta <=npar; theta++){
 3689:       for(i=1; i<=npar; i++){ 
 3690: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3691: 	xm[i] = x[i] - (i==theta ?delti[theta]:0);
 3692:       }
 3693:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 3694:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 3695:   
 3696:       for(j=1; j<= nlstate; j++){
 3697: 	for(i=1; i<=nlstate; i++){
 3698: 	  for(h=0; h<=nhstepm-1; h++){
 3699: 	    gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 3700: 	    gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 3701: 	  }
 3702: 	}
 3703:       }
 3704:      
 3705:       for(ij=1; ij<= nlstate*nlstate; ij++)
 3706: 	for(h=0; h<=nhstepm-1; h++){
 3707: 	  gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 3708: 	}
 3709:     }/* End theta */
 3710:     
 3711:     
 3712:     for(h=0; h<=nhstepm-1; h++)
 3713:       for(j=1; j<=nlstate*nlstate;j++)
 3714: 	for(theta=1; theta <=npar; theta++)
 3715: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3716:     
 3717: 
 3718:      for(ij=1;ij<=nlstate*nlstate;ij++)
 3719:       for(ji=1;ji<=nlstate*nlstate;ji++)
 3720: 	varhe[ij][ji][(int)age] =0.;
 3721: 
 3722:      printf("%d|",(int)age);fflush(stdout);
 3723:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 3724:      for(h=0;h<=nhstepm-1;h++){
 3725:       for(k=0;k<=nhstepm-1;k++){
 3726: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 3727: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 3728: 	for(ij=1;ij<=nlstate*nlstate;ij++)
 3729: 	  for(ji=1;ji<=nlstate*nlstate;ji++)
 3730: 	    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 3731:       }
 3732:     }
 3733: 
 3734:     /* Computing expectancies */
 3735:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 3736:     for(i=1; i<=nlstate;i++)
 3737:       for(j=1; j<=nlstate;j++)
 3738: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 3739: 	  eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 3740: 	  
 3741: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 3742: 
 3743: 	}
 3744: 
 3745:     fprintf(ficresstdeij,"%3.0f",age );
 3746:     for(i=1; i<=nlstate;i++){
 3747:       eip=0.;
 3748:       vip=0.;
 3749:       for(j=1; j<=nlstate;j++){
 3750: 	eip += eij[i][j][(int)age];
 3751: 	for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 3752: 	  vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 3753: 	fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
 3754:       }
 3755:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 3756:     }
 3757:     fprintf(ficresstdeij,"\n");
 3758: 
 3759:     fprintf(ficrescveij,"%3.0f",age );
 3760:     for(i=1; i<=nlstate;i++)
 3761:       for(j=1; j<=nlstate;j++){
 3762: 	cptj= (j-1)*nlstate+i;
 3763: 	for(i2=1; i2<=nlstate;i2++)
 3764: 	  for(j2=1; j2<=nlstate;j2++){
 3765: 	    cptj2= (j2-1)*nlstate+i2;
 3766: 	    if(cptj2 <= cptj)
 3767: 	      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 3768: 	  }
 3769:       }
 3770:     fprintf(ficrescveij,"\n");
 3771:    
 3772:   }
 3773:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 3774:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 3775:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 3776:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 3777:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3778:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3779:   printf("\n");
 3780:   fprintf(ficlog,"\n");
 3781: 
 3782:   free_vector(xm,1,npar);
 3783:   free_vector(xp,1,npar);
 3784:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 3785:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 3786:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 3787: }
 3788: 
 3789: /************ Variance ******************/
 3790: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
 3791: {
 3792:   /* Variance of health expectancies */
 3793:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 3794:   /* double **newm;*/
 3795:   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
 3796:   
 3797:   int movingaverage();
 3798:   double **dnewm,**doldm;
 3799:   double **dnewmp,**doldmp;
 3800:   int i, j, nhstepm, hstepm, h, nstepm ;
 3801:   int k;
 3802:   double *xp;
 3803:   double **gp, **gm;  /* for var eij */
 3804:   double ***gradg, ***trgradg; /*for var eij */
 3805:   double **gradgp, **trgradgp; /* for var p point j */
 3806:   double *gpp, *gmp; /* for var p point j */
 3807:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 3808:   double ***p3mat;
 3809:   double age,agelim, hf;
 3810:   double ***mobaverage;
 3811:   int theta;
 3812:   char digit[4];
 3813:   char digitp[25];
 3814: 
 3815:   char fileresprobmorprev[FILENAMELENGTH];
 3816: 
 3817:   if(popbased==1){
 3818:     if(mobilav!=0)
 3819:       strcpy(digitp,"-populbased-mobilav-");
 3820:     else strcpy(digitp,"-populbased-nomobil-");
 3821:   }
 3822:   else 
 3823:     strcpy(digitp,"-stablbased-");
 3824: 
 3825:   if (mobilav!=0) {
 3826:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3827:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 3828:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3829:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3830:     }
 3831:   }
 3832: 
 3833:   strcpy(fileresprobmorprev,"prmorprev"); 
 3834:   sprintf(digit,"%-d",ij);
 3835:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 3836:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 3837:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 3838:   strcat(fileresprobmorprev,fileres);
 3839:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 3840:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 3841:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 3842:   }
 3843:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3844:  
 3845:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 3846:   pstamp(ficresprobmorprev);
 3847:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 3848:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 3849:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 3850:     fprintf(ficresprobmorprev," p.%-d SE",j);
 3851:     for(i=1; i<=nlstate;i++)
 3852:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 3853:   }  
 3854:   fprintf(ficresprobmorprev,"\n");
 3855:   fprintf(ficgp,"\n# Routine varevsij");
 3856:   fprintf(ficgp,"\nunset title \n");
 3857: /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 3858:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 3859:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 3860: /*   } */
 3861:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3862:   pstamp(ficresvij);
 3863:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 3864:   if(popbased==1)
 3865:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 3866:   else
 3867:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 3868:   fprintf(ficresvij,"# Age");
 3869:   for(i=1; i<=nlstate;i++)
 3870:     for(j=1; j<=nlstate;j++)
 3871:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 3872:   fprintf(ficresvij,"\n");
 3873: 
 3874:   xp=vector(1,npar);
 3875:   dnewm=matrix(1,nlstate,1,npar);
 3876:   doldm=matrix(1,nlstate,1,nlstate);
 3877:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 3878:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 3879: 
 3880:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 3881:   gpp=vector(nlstate+1,nlstate+ndeath);
 3882:   gmp=vector(nlstate+1,nlstate+ndeath);
 3883:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 3884:   
 3885:   if(estepm < stepm){
 3886:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3887:   }
 3888:   else  hstepm=estepm;   
 3889:   /* For example we decided to compute the life expectancy with the smallest unit */
 3890:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 3891:      nhstepm is the number of hstepm from age to agelim 
 3892:      nstepm is the number of stepm from age to agelin. 
 3893:      Look at function hpijx to understand why (it is linked to memory size questions) */
 3894:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 3895:      survival function given by stepm (the optimization length). Unfortunately it
 3896:      means that if the survival funtion is printed every two years of age and if
 3897:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 3898:      results. So we changed our mind and took the option of the best precision.
 3899:   */
 3900:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 3901:   agelim = AGESUP;
 3902:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 3903:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3904:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 3905:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3906:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 3907:     gp=matrix(0,nhstepm,1,nlstate);
 3908:     gm=matrix(0,nhstepm,1,nlstate);
 3909: 
 3910: 
 3911:     for(theta=1; theta <=npar; theta++){
 3912:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 3913: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 3914:       }
 3915:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3916:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3917: 
 3918:       if (popbased==1) {
 3919: 	if(mobilav ==0){
 3920: 	  for(i=1; i<=nlstate;i++)
 3921: 	    prlim[i][i]=probs[(int)age][i][ij];
 3922: 	}else{ /* mobilav */ 
 3923: 	  for(i=1; i<=nlstate;i++)
 3924: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3925: 	}
 3926:       }
 3927:   
 3928:       for(j=1; j<= nlstate; j++){
 3929: 	for(h=0; h<=nhstepm; h++){
 3930: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 3931: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 3932: 	}
 3933:       }
 3934:       /* This for computing probability of death (h=1 means
 3935:          computed over hstepm matrices product = hstepm*stepm months) 
 3936:          as a weighted average of prlim.
 3937:       */
 3938:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3939: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 3940: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 3941:       }    
 3942:       /* end probability of death */
 3943: 
 3944:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 3945: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 3946:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 3947:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 3948:  
 3949:       if (popbased==1) {
 3950: 	if(mobilav ==0){
 3951: 	  for(i=1; i<=nlstate;i++)
 3952: 	    prlim[i][i]=probs[(int)age][i][ij];
 3953: 	}else{ /* mobilav */ 
 3954: 	  for(i=1; i<=nlstate;i++)
 3955: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 3956: 	}
 3957:       }
 3958: 
 3959:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
 3960: 	for(h=0; h<=nhstepm; h++){
 3961: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 3962: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 3963: 	}
 3964:       }
 3965:       /* This for computing probability of death (h=1 means
 3966:          computed over hstepm matrices product = hstepm*stepm months) 
 3967:          as a weighted average of prlim.
 3968:       */
 3969:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 3970: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 3971:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 3972:       }    
 3973:       /* end probability of death */
 3974: 
 3975:       for(j=1; j<= nlstate; j++) /* vareij */
 3976: 	for(h=0; h<=nhstepm; h++){
 3977: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 3978: 	}
 3979: 
 3980:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 3981: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 3982:       }
 3983: 
 3984:     } /* End theta */
 3985: 
 3986:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 3987: 
 3988:     for(h=0; h<=nhstepm; h++) /* veij */
 3989:       for(j=1; j<=nlstate;j++)
 3990: 	for(theta=1; theta <=npar; theta++)
 3991: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 3992: 
 3993:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 3994:       for(theta=1; theta <=npar; theta++)
 3995: 	trgradgp[j][theta]=gradgp[theta][j];
 3996:   
 3997: 
 3998:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 3999:     for(i=1;i<=nlstate;i++)
 4000:       for(j=1;j<=nlstate;j++)
 4001: 	vareij[i][j][(int)age] =0.;
 4002: 
 4003:     for(h=0;h<=nhstepm;h++){
 4004:       for(k=0;k<=nhstepm;k++){
 4005: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 4006: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 4007: 	for(i=1;i<=nlstate;i++)
 4008: 	  for(j=1;j<=nlstate;j++)
 4009: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 4010:       }
 4011:     }
 4012:   
 4013:     /* pptj */
 4014:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 4015:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 4016:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 4017:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 4018: 	varppt[j][i]=doldmp[j][i];
 4019:     /* end ppptj */
 4020:     /*  x centered again */
 4021:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 4022:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 4023:  
 4024:     if (popbased==1) {
 4025:       if(mobilav ==0){
 4026: 	for(i=1; i<=nlstate;i++)
 4027: 	  prlim[i][i]=probs[(int)age][i][ij];
 4028:       }else{ /* mobilav */ 
 4029: 	for(i=1; i<=nlstate;i++)
 4030: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 4031:       }
 4032:     }
 4033:              
 4034:     /* This for computing probability of death (h=1 means
 4035:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 4036:        as a weighted average of prlim.
 4037:     */
 4038:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 4039:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 4040: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 4041:     }    
 4042:     /* end probability of death */
 4043: 
 4044:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 4045:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 4046:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 4047:       for(i=1; i<=nlstate;i++){
 4048: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 4049:       }
 4050:     } 
 4051:     fprintf(ficresprobmorprev,"\n");
 4052: 
 4053:     fprintf(ficresvij,"%.0f ",age );
 4054:     for(i=1; i<=nlstate;i++)
 4055:       for(j=1; j<=nlstate;j++){
 4056: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 4057:       }
 4058:     fprintf(ficresvij,"\n");
 4059:     free_matrix(gp,0,nhstepm,1,nlstate);
 4060:     free_matrix(gm,0,nhstepm,1,nlstate);
 4061:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 4062:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 4063:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4064:   } /* End age */
 4065:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 4066:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 4067:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 4068:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 4069:   /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
 4070:   fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
 4071:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 4072:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 4073:   fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 4074: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 4075: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 4076: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 4077:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
 4078:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 4079:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
 4080:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 4081:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 4082:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
 4083: */
 4084: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
 4085:   fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 4086: 
 4087:   free_vector(xp,1,npar);
 4088:   free_matrix(doldm,1,nlstate,1,nlstate);
 4089:   free_matrix(dnewm,1,nlstate,1,npar);
 4090:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 4091:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 4092:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 4093:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4094:   fclose(ficresprobmorprev);
 4095:   fflush(ficgp);
 4096:   fflush(fichtm); 
 4097: }  /* end varevsij */
 4098: 
 4099: /************ Variance of prevlim ******************/
 4100: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 4101: {
 4102:   /* Variance of prevalence limit */
 4103:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 4104: 
 4105:   double **dnewm,**doldm;
 4106:   int i, j, nhstepm, hstepm;
 4107:   double *xp;
 4108:   double *gp, *gm;
 4109:   double **gradg, **trgradg;
 4110:   double age,agelim;
 4111:   int theta;
 4112:   
 4113:   pstamp(ficresvpl);
 4114:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
 4115:   fprintf(ficresvpl,"# Age");
 4116:   for(i=1; i<=nlstate;i++)
 4117:       fprintf(ficresvpl," %1d-%1d",i,i);
 4118:   fprintf(ficresvpl,"\n");
 4119: 
 4120:   xp=vector(1,npar);
 4121:   dnewm=matrix(1,nlstate,1,npar);
 4122:   doldm=matrix(1,nlstate,1,nlstate);
 4123:   
 4124:   hstepm=1*YEARM; /* Every year of age */
 4125:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 4126:   agelim = AGESUP;
 4127:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 4128:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4129:     if (stepm >= YEARM) hstepm=1;
 4130:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4131:     gradg=matrix(1,npar,1,nlstate);
 4132:     gp=vector(1,nlstate);
 4133:     gm=vector(1,nlstate);
 4134: 
 4135:     for(theta=1; theta <=npar; theta++){
 4136:       for(i=1; i<=npar; i++){ /* Computes gradient */
 4137: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 4138:       }
 4139:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 4140:       for(i=1;i<=nlstate;i++)
 4141: 	gp[i] = prlim[i][i];
 4142:     
 4143:       for(i=1; i<=npar; i++) /* Computes gradient */
 4144: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 4145:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 4146:       for(i=1;i<=nlstate;i++)
 4147: 	gm[i] = prlim[i][i];
 4148: 
 4149:       for(i=1;i<=nlstate;i++)
 4150: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 4151:     } /* End theta */
 4152: 
 4153:     trgradg =matrix(1,nlstate,1,npar);
 4154: 
 4155:     for(j=1; j<=nlstate;j++)
 4156:       for(theta=1; theta <=npar; theta++)
 4157: 	trgradg[j][theta]=gradg[theta][j];
 4158: 
 4159:     for(i=1;i<=nlstate;i++)
 4160:       varpl[i][(int)age] =0.;
 4161:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 4162:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 4163:     for(i=1;i<=nlstate;i++)
 4164:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 4165: 
 4166:     fprintf(ficresvpl,"%.0f ",age );
 4167:     for(i=1; i<=nlstate;i++)
 4168:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 4169:     fprintf(ficresvpl,"\n");
 4170:     free_vector(gp,1,nlstate);
 4171:     free_vector(gm,1,nlstate);
 4172:     free_matrix(gradg,1,npar,1,nlstate);
 4173:     free_matrix(trgradg,1,nlstate,1,npar);
 4174:   } /* End age */
 4175: 
 4176:   free_vector(xp,1,npar);
 4177:   free_matrix(doldm,1,nlstate,1,npar);
 4178:   free_matrix(dnewm,1,nlstate,1,nlstate);
 4179: 
 4180: }
 4181: 
 4182: /************ Variance of one-step probabilities  ******************/
 4183: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 4184: {
 4185:   int i, j=0,  k1, l1, tj;
 4186:   int k2, l2, j1,  z1;
 4187:   int k=0, l;
 4188:   int first=1, first1, first2;
 4189:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 4190:   double **dnewm,**doldm;
 4191:   double *xp;
 4192:   double *gp, *gm;
 4193:   double **gradg, **trgradg;
 4194:   double **mu;
 4195:   double age, cov[NCOVMAX+1];
 4196:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 4197:   int theta;
 4198:   char fileresprob[FILENAMELENGTH];
 4199:   char fileresprobcov[FILENAMELENGTH];
 4200:   char fileresprobcor[FILENAMELENGTH];
 4201:   double ***varpij;
 4202: 
 4203:   strcpy(fileresprob,"prob"); 
 4204:   strcat(fileresprob,fileres);
 4205:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 4206:     printf("Problem with resultfile: %s\n", fileresprob);
 4207:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 4208:   }
 4209:   strcpy(fileresprobcov,"probcov"); 
 4210:   strcat(fileresprobcov,fileres);
 4211:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 4212:     printf("Problem with resultfile: %s\n", fileresprobcov);
 4213:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 4214:   }
 4215:   strcpy(fileresprobcor,"probcor"); 
 4216:   strcat(fileresprobcor,fileres);
 4217:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 4218:     printf("Problem with resultfile: %s\n", fileresprobcor);
 4219:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 4220:   }
 4221:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 4222:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 4223:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 4224:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 4225:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 4226:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 4227:   pstamp(ficresprob);
 4228:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 4229:   fprintf(ficresprob,"# Age");
 4230:   pstamp(ficresprobcov);
 4231:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 4232:   fprintf(ficresprobcov,"# Age");
 4233:   pstamp(ficresprobcor);
 4234:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 4235:   fprintf(ficresprobcor,"# Age");
 4236: 
 4237: 
 4238:   for(i=1; i<=nlstate;i++)
 4239:     for(j=1; j<=(nlstate+ndeath);j++){
 4240:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 4241:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 4242:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 4243:     }  
 4244:  /* fprintf(ficresprob,"\n");
 4245:   fprintf(ficresprobcov,"\n");
 4246:   fprintf(ficresprobcor,"\n");
 4247:  */
 4248:   xp=vector(1,npar);
 4249:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4250:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4251:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 4252:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 4253:   first=1;
 4254:   fprintf(ficgp,"\n# Routine varprob");
 4255:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 4256:   fprintf(fichtm,"\n");
 4257: 
 4258:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
 4259:   fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
 4260:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
 4261: and drawn. It helps understanding how is the covariance between two incidences.\
 4262:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 4263:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 4264: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 4265: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 4266: standard deviations wide on each axis. <br>\
 4267:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 4268:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 4269: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 4270: 
 4271:   cov[1]=1;
 4272:   /* tj=cptcoveff; */
 4273:   tj = (int) pow(2,cptcoveff);
 4274:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 4275:   j1=0;
 4276:   for(j1=1; j1<=tj;j1++){
 4277:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
 4278:     /*j1++;*/
 4279:       if  (cptcovn>0) {
 4280: 	fprintf(ficresprob, "\n#********** Variable "); 
 4281: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 4282: 	fprintf(ficresprob, "**********\n#\n");
 4283: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 4284: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 4285: 	fprintf(ficresprobcov, "**********\n#\n");
 4286: 	
 4287: 	fprintf(ficgp, "\n#********** Variable "); 
 4288: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 4289: 	fprintf(ficgp, "**********\n#\n");
 4290: 	
 4291: 	
 4292: 	fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 4293: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 4294: 	fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 4295: 	
 4296: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 4297: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 4298: 	fprintf(ficresprobcor, "**********\n#");    
 4299:       }
 4300:       
 4301:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 4302:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 4303:       gp=vector(1,(nlstate)*(nlstate+ndeath));
 4304:       gm=vector(1,(nlstate)*(nlstate+ndeath));
 4305:       for (age=bage; age<=fage; age ++){ 
 4306: 	cov[2]=age;
 4307: 	if(nagesqr==1)
 4308: 	  cov[3]= age*age;
 4309: 	for (k=1; k<=cptcovn;k++) {
 4310: 	  cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
 4311: 	  /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
 4312: 							 * 1  1 1 1 1
 4313: 							 * 2  2 1 1 1
 4314: 							 * 3  1 2 1 1
 4315: 							 */
 4316: 	  /* nbcode[1][1]=0 nbcode[1][2]=1;*/
 4317: 	}
 4318: 	/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 4319: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
 4320: 	for (k=1; k<=cptcovprod;k++)
 4321: 	  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
 4322: 	
 4323:     
 4324: 	for(theta=1; theta <=npar; theta++){
 4325: 	  for(i=1; i<=npar; i++)
 4326: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 4327: 	  
 4328: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4329: 	  
 4330: 	  k=0;
 4331: 	  for(i=1; i<= (nlstate); i++){
 4332: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4333: 	      k=k+1;
 4334: 	      gp[k]=pmmij[i][j];
 4335: 	    }
 4336: 	  }
 4337: 	  
 4338: 	  for(i=1; i<=npar; i++)
 4339: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 4340:     
 4341: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 4342: 	  k=0;
 4343: 	  for(i=1; i<=(nlstate); i++){
 4344: 	    for(j=1; j<=(nlstate+ndeath);j++){
 4345: 	      k=k+1;
 4346: 	      gm[k]=pmmij[i][j];
 4347: 	    }
 4348: 	  }
 4349:      
 4350: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 4351: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 4352: 	}
 4353: 
 4354: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 4355: 	  for(theta=1; theta <=npar; theta++)
 4356: 	    trgradg[j][theta]=gradg[theta][j];
 4357: 	
 4358: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 4359: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 4360: 
 4361: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 4362: 	
 4363: 	k=0;
 4364: 	for(i=1; i<=(nlstate); i++){
 4365: 	  for(j=1; j<=(nlstate+ndeath);j++){
 4366: 	    k=k+1;
 4367: 	    mu[k][(int) age]=pmmij[i][j];
 4368: 	  }
 4369: 	}
 4370:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 4371: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 4372: 	    varpij[i][j][(int)age] = doldm[i][j];
 4373: 
 4374: 	/*printf("\n%d ",(int)age);
 4375: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4376: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4377: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 4378: 	  }*/
 4379: 
 4380: 	fprintf(ficresprob,"\n%d ",(int)age);
 4381: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 4382: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 4383: 
 4384: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 4385: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 4386: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 4387: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 4388: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 4389: 	}
 4390: 	i=0;
 4391: 	for (k=1; k<=(nlstate);k++){
 4392:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 4393:  	    i++;
 4394: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 4395: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 4396: 	    for (j=1; j<=i;j++){
 4397: 	      /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 4398: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 4399: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 4400: 	    }
 4401: 	  }
 4402: 	}/* end of loop for state */
 4403:       } /* end of loop for age */
 4404:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 4405:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 4406:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4407:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 4408:       
 4409:       /* Confidence intervalle of pij  */
 4410:       /*
 4411: 	fprintf(ficgp,"\nunset parametric;unset label");
 4412: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 4413: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 4414: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 4415: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 4416: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 4417: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 4418:       */
 4419: 
 4420:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 4421:       first1=1;first2=2;
 4422:       for (k2=1; k2<=(nlstate);k2++){
 4423: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 4424: 	  if(l2==k2) continue;
 4425: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 4426: 	  for (k1=1; k1<=(nlstate);k1++){
 4427: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 4428: 	      if(l1==k1) continue;
 4429: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 4430: 	      if(i<=j) continue;
 4431: 	      for (age=bage; age<=fage; age ++){ 
 4432: 		if ((int)age %5==0){
 4433: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 4434: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4435: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 4436: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 4437: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 4438: 		  c12=cv12/sqrt(v1*v2);
 4439: 		  /* Computing eigen value of matrix of covariance */
 4440: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4441: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 4442: 		  if ((lc2 <0) || (lc1 <0) ){
 4443: 		    if(first2==1){
 4444: 		      first1=0;
 4445: 		    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 4446: 		    }
 4447: 		    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
 4448: 		    /* lc1=fabs(lc1); */ /* If we want to have them positive */
 4449: 		    /* lc2=fabs(lc2); */
 4450: 		  }
 4451: 
 4452: 		  /* Eigen vectors */
 4453: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 4454: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 4455: 		  v21=(lc1-v1)/cv12*v11;
 4456: 		  v12=-v21;
 4457: 		  v22=v11;
 4458: 		  tnalp=v21/v11;
 4459: 		  if(first1==1){
 4460: 		    first1=0;
 4461: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4462: 		  }
 4463: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 4464: 		  /*printf(fignu*/
 4465: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 4466: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 4467: 		  if(first==1){
 4468: 		    first=0;
 4469:  		    fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
 4470:  		    fprintf(ficgp,"\nset parametric;unset label");
 4471: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 4472: 		    fprintf(ficgp,"\nset ter svg size 640, 480");
 4473: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 4474:  :<a href=\"%s%d%1d%1d-%1d%1d.svg\">\
 4475: %s%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
 4476: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 4477: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4478: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4479: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 4480: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4481: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4482: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4483: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4484: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4485: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4486: 		  }else{
 4487: 		    first=0;
 4488: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 4489: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 4490: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 4491: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 4492: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 4493: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 4494: 		  }/* if first */
 4495: 		} /* age mod 5 */
 4496: 	      } /* end loop age */
 4497: 	      fprintf(ficgp,"\nset out;\nset out \"%s%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 4498: 	      first=1;
 4499: 	    } /*l12 */
 4500: 	  } /* k12 */
 4501: 	} /*l1 */
 4502:       }/* k1 */
 4503:       /* } */ /* loop covariates */
 4504:   }
 4505:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 4506:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 4507:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 4508:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 4509:   free_vector(xp,1,npar);
 4510:   fclose(ficresprob);
 4511:   fclose(ficresprobcov);
 4512:   fclose(ficresprobcor);
 4513:   fflush(ficgp);
 4514:   fflush(fichtmcov);
 4515: }
 4516: 
 4517: 
 4518: /******************* Printing html file ***********/
 4519: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 4520: 		  int lastpass, int stepm, int weightopt, char model[],\
 4521: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 4522: 		  int popforecast, int estepm ,\
 4523: 		  double jprev1, double mprev1,double anprev1, \
 4524: 		  double jprev2, double mprev2,double anprev2){
 4525:   int jj1, k1, i1, cpt;
 4526: 
 4527:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
 4528:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 4529: </ul>");
 4530:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 4531:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 4532: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 4533:    fprintf(fichtm,"\
 4534:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 4535: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 4536:    fprintf(fichtm,"\
 4537:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 4538: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
 4539:    fprintf(fichtm,"\
 4540:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 4541:    <a href=\"%s\">%s</a> <br>\n",
 4542: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 4543:    fprintf(fichtm,"\
 4544:  - Population projections by age and states: \
 4545:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
 4546: 
 4547: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 4548: 
 4549:  m=pow(2,cptcoveff);
 4550:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4551: 
 4552:  jj1=0;
 4553:  for(k1=1; k1<=m;k1++){
 4554:    /* for(i1=1; i1<=ncodemax[k1];i1++){ */
 4555:      jj1++;
 4556:      if (cptcovn > 0) {
 4557:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4558:        for (cpt=1; cpt<=cptcoveff;cpt++){ 
 4559: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
 4560: 	 printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
 4561:        }
 4562:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4563:      }
 4564:      /* Pij */
 4565:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.svg\">%s%d_1.svg</a><br> \
 4566: <img src=\"%s%d_1.svg\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 4567:      /* Quasi-incidences */
 4568:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 4569:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.svg\">%s%d_2.svg</a><br> \
 4570: <img src=\"%s%d_2.svg\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 4571:        /* Period (stable) prevalence in each health state */
 4572:        for(cpt=1; cpt<=nlstate;cpt++){
 4573: 	 fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
 4574: <img src=\"%s%d_%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 4575:        }
 4576:      for(cpt=1; cpt<=nlstate;cpt++) {
 4577:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
 4578: <img src=\"%s%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 4579:      }
 4580:    /* } /\* end i1 *\/ */
 4581:  }/* End k1 */
 4582:  fprintf(fichtm,"</ul>");
 4583: 
 4584:  fprintf(fichtm,"\
 4585: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
 4586:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
 4587:  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
 4588: But because parameters are usually highly correlated (a higher incidence of disability \
 4589: and a higher incidence of recovery can give very close observed transition) it might \
 4590: be very useful to look not only at linear confidence intervals estimated from the \
 4591: variances but at the covariance matrix. And instead of looking at the estimated coefficients \
 4592: (parameters) of the logistic regression, it might be more meaningful to visualize the \
 4593: covariance matrix of the one-step probabilities. \
 4594: See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
 4595: 
 4596:  fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4597: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 4598:  fprintf(fichtm,"\
 4599:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4600: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 4601: 
 4602:  fprintf(fichtm,"\
 4603:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 4604: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 4605:  fprintf(fichtm,"\
 4606:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 4607:    <a href=\"%s\">%s</a> <br>\n</li>",
 4608: 	   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 4609:  fprintf(fichtm,"\
 4610:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 4611:    <a href=\"%s\">%s</a> <br>\n</li>",
 4612: 	   estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 4613:  fprintf(fichtm,"\
 4614:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 4615: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 4616:  fprintf(fichtm,"\
 4617:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
 4618: 	 estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 4619:  fprintf(fichtm,"\
 4620:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 4621: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 4622: 
 4623: /*  if(popforecast==1) fprintf(fichtm,"\n */
 4624: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 4625: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 4626: /* 	<br>",fileres,fileres,fileres,fileres); */
 4627: /*  else  */
 4628: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 4629:  fflush(fichtm);
 4630:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 4631: 
 4632:  m=pow(2,cptcoveff);
 4633:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 4634: 
 4635:  jj1=0;
 4636:  for(k1=1; k1<=m;k1++){
 4637:    /* for(i1=1; i1<=ncodemax[k1];i1++){ */
 4638:      jj1++;
 4639:      if (cptcovn > 0) {
 4640:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 4641:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 4642: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
 4643:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 4644:      }
 4645:      for(cpt=1; cpt<=nlstate;cpt++) {
 4646:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 4647: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
 4648: <img src=\"%s%d_%d.svg\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 4649:      }
 4650:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 4651: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 4652: true period expectancies (those weighted with period prevalences are also\
 4653:  drawn in addition to the population based expectancies computed using\
 4654:  observed and cahotic prevalences: %s%d.svg<br>\
 4655: <img src=\"%s%d.svg\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 4656:    /* } /\* end i1 *\/ */
 4657:  }/* End k1 */
 4658:  fprintf(fichtm,"</ul>");
 4659:  fflush(fichtm);
 4660: }
 4661: 
 4662: /******************* Gnuplot file **************/
 4663: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 4664: 
 4665:   char dirfileres[132],optfileres[132];
 4666:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
 4667:   int ng=0;
 4668: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 4669: /*     printf("Problem with file %s",optionfilegnuplot); */
 4670: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 4671: /*   } */
 4672: 
 4673:   /*#ifdef windows */
 4674:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 4675:     /*#endif */
 4676:   m=pow(2,cptcoveff);
 4677: 
 4678:   strcpy(dirfileres,optionfilefiname);
 4679:   strcpy(optfileres,"vpl");
 4680:  /* 1eme*/
 4681:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 4682:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 4683:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
 4684:      fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 4685:      fprintf(ficgp,"\n#set out \"v%s%d_%d.svg\" \n",optionfilefiname,cpt,k1);
 4686:      fprintf(ficgp,"set xlabel \"Age\" \n\
 4687: set ylabel \"Probability\" \n\
 4688: set ter svg size 640, 480\n\
 4689: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 4690: 
 4691:      for (i=1; i<= nlstate ; i ++) {
 4692:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4693:        else        fprintf(ficgp," %%*lf (%%*lf)");
 4694:      }
 4695:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 4696:      for (i=1; i<= nlstate ; i ++) {
 4697:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4698:        else fprintf(ficgp," %%*lf (%%*lf)");
 4699:      } 
 4700:      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 4701:      for (i=1; i<= nlstate ; i ++) {
 4702:        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 4703:        else fprintf(ficgp," %%*lf (%%*lf)");
 4704:      }  
 4705:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 4706:    }
 4707:   }
 4708:   /*2 eme*/
 4709:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
 4710:   for (k1=1; k1<= m ; k1 ++) { 
 4711:     fprintf(ficgp,"\nset out \"%s%d.svg\" \n",subdirf2(optionfilefiname,"e"),k1);
 4712:     fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
 4713:     
 4714:     for (i=1; i<= nlstate+1 ; i ++) {
 4715:       k=2*i;
 4716:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4717:       for (j=1; j<= nlstate+1 ; j ++) {
 4718: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4719: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4720:       }   
 4721:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 4722:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 4723:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4724:       for (j=1; j<= nlstate+1 ; j ++) {
 4725: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4726: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4727:       }   
 4728:       fprintf(ficgp,"\" t\"\" w l lt 0,");
 4729:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 4730:       for (j=1; j<= nlstate+1 ; j ++) {
 4731: 	if (j==i) fprintf(ficgp," %%lf (%%lf)");
 4732: 	else fprintf(ficgp," %%*lf (%%*lf)");
 4733:       }   
 4734:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
 4735:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
 4736:     }
 4737:   }
 4738:   
 4739:   /*3eme*/
 4740:   
 4741:   for (k1=1; k1<= m ; k1 ++) { 
 4742:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 4743:       /*       k=2+nlstate*(2*cpt-2); */
 4744:       k=2+(nlstate+1)*(cpt-1);
 4745:       fprintf(ficgp,"\nset out \"%s%d%d.svg\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 4746:       fprintf(ficgp,"set ter svg size 640, 480\n\
 4747: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 4748:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4749: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4750: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4751: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 4752: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 4753: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 4754: 	
 4755:       */
 4756:       for (i=1; i< nlstate ; i ++) {
 4757: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 4758: 	/*	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 4759: 	
 4760:       } 
 4761:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 4762:     }
 4763:   }
 4764:   
 4765:   /* CV preval stable (period) */
 4766:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
 4767:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 4768:       k=3;
 4769:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
 4770:       fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 4771:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 4772: set ter svg size 640, 480\n\
 4773: unset log y\n\
 4774: plot [%.f:%.f]  ", ageminpar, agemaxpar);
 4775:       for (i=1; i<= nlstate ; i ++){
 4776: 	if(i==1)
 4777: 	  fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
 4778: 	else
 4779: 	  fprintf(ficgp,", '' ");
 4780: 	l=(nlstate+ndeath)*(i-1)+1;
 4781: 	fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 4782: 	for (j=1; j<= (nlstate-1) ; j ++)
 4783: 	  fprintf(ficgp,"+$%d",k+l+j);
 4784: 	fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
 4785:       } /* nlstate */
 4786:       fprintf(ficgp,"\n");
 4787:     } /* end cpt state*/ 
 4788:   } /* end covariate */  
 4789:   
 4790:   /* proba elementaires */
 4791:   fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
 4792:   for(i=1,jk=1; i <=nlstate; i++){
 4793:     fprintf(ficgp,"# initial state %d\n",i);
 4794:     for(k=1; k <=(nlstate+ndeath); k++){
 4795:       if (k != i) {
 4796: 	fprintf(ficgp,"#   current state %d\n",k);
 4797: 	for(j=1; j <=ncovmodel; j++){
 4798: 	  fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
 4799: 	  jk++; 
 4800: 	}
 4801: 	fprintf(ficgp,"\n");
 4802:       }
 4803:     }
 4804:    }
 4805:   fprintf(ficgp,"##############\n#\n");
 4806: 
 4807:   /*goto avoid;*/
 4808:   fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
 4809:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
 4810:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
 4811:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
 4812:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
 4813:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4814:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
 4815:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4816:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
 4817:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
 4818:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
 4819:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
 4820:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
 4821:   fprintf(ficgp,"#\n");
 4822:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 4823:      fprintf(ficgp,"# ng=%d\n",ng);
 4824:      fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
 4825:      for(jk=1; jk <=m; jk++) {
 4826:        fprintf(ficgp,"#    jk=%d\n",jk);
 4827:        fprintf(ficgp,"\nset out \"%s%d_%d.svg\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 4828:        if (ng==2)
 4829: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 4830:        else
 4831: 	 fprintf(ficgp,"\nunset title \n");
 4832:        fprintf(ficgp,"\nset ter svg size 640, 480\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 4833:        i=1;
 4834:        for(k2=1; k2<=nlstate; k2++) {
 4835: 	 k3=i;
 4836: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 4837: 	   if (k != k2){
 4838: 	     if(ng==2)
 4839: 	       if(nagesqr==0)
 4840: 		 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 4841: 	       else /* nagesqr =1 */
 4842: 		 fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
 4843: 	     else
 4844: 	       if(nagesqr==0)
 4845: 		 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 4846: 	       else /* nagesqr =1 */
 4847: 		 fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
 4848: 	     ij=1;/* To be checked else nbcode[0][0] wrong */
 4849: 	     for(j=3; j <=ncovmodel-nagesqr; j++) {
 4850: 	       /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
 4851: 	       if(ij <=cptcovage) { /* Bug valgrind */
 4852: 		 if((j-2)==Tage[ij]) { /* Bug valgrind */
 4853: 		   fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
 4854: 		   /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
 4855: 		   ij++;
 4856: 		 }
 4857: 	       }
 4858: 	       else
 4859: 		 fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
 4860: 	     }
 4861: 	     fprintf(ficgp,")/(1");
 4862: 	     
 4863: 	     for(k1=1; k1 <=nlstate; k1++){ 
 4864: 	       if(nagesqr==0)
 4865: 		 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 4866: 	       else /* nagesqr =1 */
 4867: 		 fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
 4868:   
 4869: 	       ij=1;
 4870: 	       for(j=3; j <=ncovmodel-nagesqr; j++){
 4871: 		 if(ij <=cptcovage) { /* Bug valgrind */
 4872: 		   if((j-2)==Tage[ij]) { /* Bug valgrind */
 4873: 		     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
 4874: 		     /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
 4875: 		     ij++;
 4876: 		   }
 4877: 		 }
 4878: 		 else
 4879: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
 4880: 	       }
 4881: 	       fprintf(ficgp,")");
 4882: 	     }
 4883: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 4884: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 4885: 	     i=i+ncovmodel;
 4886: 	   }
 4887: 	 } /* end k */
 4888:        } /* end k2 */
 4889:      } /* end jk */
 4890:    } /* end ng */
 4891:  /* avoid: */
 4892:    fflush(ficgp); 
 4893: }  /* end gnuplot */
 4894: 
 4895: 
 4896: /*************** Moving average **************/
 4897: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 4898: 
 4899:   int i, cpt, cptcod;
 4900:   int modcovmax =1;
 4901:   int mobilavrange, mob;
 4902:   double age;
 4903: 
 4904:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 4905: 			   a covariate has 2 modalities */
 4906:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 4907: 
 4908:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 4909:     if(mobilav==1) mobilavrange=5; /* default */
 4910:     else mobilavrange=mobilav;
 4911:     for (age=bage; age<=fage; age++)
 4912:       for (i=1; i<=nlstate;i++)
 4913: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 4914: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 4915:     /* We keep the original values on the extreme ages bage, fage and for 
 4916:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 4917:        we use a 5 terms etc. until the borders are no more concerned. 
 4918:     */ 
 4919:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 4920:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 4921: 	for (i=1; i<=nlstate;i++){
 4922: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 4923: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 4924: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 4925: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 4926: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 4927: 	      }
 4928: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 4929: 	  }
 4930: 	}
 4931:       }/* end age */
 4932:     }/* end mob */
 4933:   }else return -1;
 4934:   return 0;
 4935: }/* End movingaverage */
 4936: 
 4937: 
 4938: /************** Forecasting ******************/
 4939: void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 4940:   /* proj1, year, month, day of starting projection 
 4941:      agemin, agemax range of age
 4942:      dateprev1 dateprev2 range of dates during which prevalence is computed
 4943:      anproj2 year of en of projection (same day and month as proj1).
 4944:   */
 4945:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
 4946:   double agec; /* generic age */
 4947:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 4948:   double *popeffectif,*popcount;
 4949:   double ***p3mat;
 4950:   double ***mobaverage;
 4951:   char fileresf[FILENAMELENGTH];
 4952: 
 4953:   agelim=AGESUP;
 4954:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4955:  
 4956:   strcpy(fileresf,"f"); 
 4957:   strcat(fileresf,fileres);
 4958:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 4959:     printf("Problem with forecast resultfile: %s\n", fileresf);
 4960:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 4961:   }
 4962:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 4963:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 4964: 
 4965:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 4966: 
 4967:   if (mobilav!=0) {
 4968:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4969:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 4970:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4971:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4972:     }
 4973:   }
 4974: 
 4975:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4976:   if (stepm<=12) stepsize=1;
 4977:   if(estepm < stepm){
 4978:     printf ("Problem %d lower than %d\n",estepm, stepm);
 4979:   }
 4980:   else  hstepm=estepm;   
 4981: 
 4982:   hstepm=hstepm/stepm; 
 4983:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 4984:                                fractional in yp1 */
 4985:   anprojmean=yp;
 4986:   yp2=modf((yp1*12),&yp);
 4987:   mprojmean=yp;
 4988:   yp1=modf((yp2*30.5),&yp);
 4989:   jprojmean=yp;
 4990:   if(jprojmean==0) jprojmean=1;
 4991:   if(mprojmean==0) jprojmean=1;
 4992: 
 4993:   i1=cptcoveff;
 4994:   if (cptcovn < 1){i1=1;}
 4995:   
 4996:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 4997:   
 4998:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 4999: 
 5000: /* 	      if (h==(int)(YEARM*yearp)){ */
 5001:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 5002:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 5003:       k=k+1;
 5004:       fprintf(ficresf,"\n#******");
 5005:       for(j=1;j<=cptcoveff;j++) {
 5006: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 5007:       }
 5008:       fprintf(ficresf,"******\n");
 5009:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 5010:       for(j=1; j<=nlstate+ndeath;j++){ 
 5011: 	for(i=1; i<=nlstate;i++) 	      
 5012:           fprintf(ficresf," p%d%d",i,j);
 5013: 	fprintf(ficresf," p.%d",j);
 5014:       }
 5015:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 5016: 	fprintf(ficresf,"\n");
 5017: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 5018: 
 5019:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 5020: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 5021: 	  nhstepm = nhstepm/hstepm; 
 5022: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5023: 	  oldm=oldms;savm=savms;
 5024: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5025: 	
 5026: 	  for (h=0; h<=nhstepm; h++){
 5027: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 5028:               fprintf(ficresf,"\n");
 5029:               for(j=1;j<=cptcoveff;j++) 
 5030:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 5031: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 5032: 	    } 
 5033: 	    for(j=1; j<=nlstate+ndeath;j++) {
 5034: 	      ppij=0.;
 5035: 	      for(i=1; i<=nlstate;i++) {
 5036: 		if (mobilav==1) 
 5037: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 5038: 		else {
 5039: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 5040: 		}
 5041: 		if (h*hstepm/YEARM*stepm== yearp) {
 5042: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 5043: 		}
 5044: 	      } /* end i */
 5045: 	      if (h*hstepm/YEARM*stepm==yearp) {
 5046: 		fprintf(ficresf," %.3f", ppij);
 5047: 	      }
 5048: 	    }/* end j */
 5049: 	  } /* end h */
 5050: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5051: 	} /* end agec */
 5052:       } /* end yearp */
 5053:     } /* end cptcod */
 5054:   } /* end  cptcov */
 5055:        
 5056:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5057: 
 5058:   fclose(ficresf);
 5059: }
 5060: 
 5061: /************** Forecasting *****not tested NB*************/
 5062: void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 5063:   
 5064:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 5065:   int *popage;
 5066:   double calagedatem, agelim, kk1, kk2;
 5067:   double *popeffectif,*popcount;
 5068:   double ***p3mat,***tabpop,***tabpopprev;
 5069:   double ***mobaverage;
 5070:   char filerespop[FILENAMELENGTH];
 5071: 
 5072:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5073:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5074:   agelim=AGESUP;
 5075:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 5076:   
 5077:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 5078:   
 5079:   
 5080:   strcpy(filerespop,"pop"); 
 5081:   strcat(filerespop,fileres);
 5082:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 5083:     printf("Problem with forecast resultfile: %s\n", filerespop);
 5084:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 5085:   }
 5086:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 5087:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 5088: 
 5089:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 5090: 
 5091:   if (mobilav!=0) {
 5092:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5093:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 5094:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 5095:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 5096:     }
 5097:   }
 5098: 
 5099:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 5100:   if (stepm<=12) stepsize=1;
 5101:   
 5102:   agelim=AGESUP;
 5103:   
 5104:   hstepm=1;
 5105:   hstepm=hstepm/stepm; 
 5106:   
 5107:   if (popforecast==1) {
 5108:     if((ficpop=fopen(popfile,"r"))==NULL) {
 5109:       printf("Problem with population file : %s\n",popfile);exit(0);
 5110:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 5111:     } 
 5112:     popage=ivector(0,AGESUP);
 5113:     popeffectif=vector(0,AGESUP);
 5114:     popcount=vector(0,AGESUP);
 5115:     
 5116:     i=1;   
 5117:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 5118:    
 5119:     imx=i;
 5120:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 5121:   }
 5122: 
 5123:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 5124:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 5125:       k=k+1;
 5126:       fprintf(ficrespop,"\n#******");
 5127:       for(j=1;j<=cptcoveff;j++) {
 5128: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 5129:       }
 5130:       fprintf(ficrespop,"******\n");
 5131:       fprintf(ficrespop,"# Age");
 5132:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 5133:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 5134:       
 5135:       for (cpt=0; cpt<=0;cpt++) { 
 5136: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 5137: 	
 5138:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 5139: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 5140: 	  nhstepm = nhstepm/hstepm; 
 5141: 	  
 5142: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5143: 	  oldm=oldms;savm=savms;
 5144: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5145: 	
 5146: 	  for (h=0; h<=nhstepm; h++){
 5147: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 5148: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 5149: 	    } 
 5150: 	    for(j=1; j<=nlstate+ndeath;j++) {
 5151: 	      kk1=0.;kk2=0;
 5152: 	      for(i=1; i<=nlstate;i++) {	      
 5153: 		if (mobilav==1) 
 5154: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 5155: 		else {
 5156: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 5157: 		}
 5158: 	      }
 5159: 	      if (h==(int)(calagedatem+12*cpt)){
 5160: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 5161: 		  /*fprintf(ficrespop," %.3f", kk1);
 5162: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 5163: 	      }
 5164: 	    }
 5165: 	    for(i=1; i<=nlstate;i++){
 5166: 	      kk1=0.;
 5167: 		for(j=1; j<=nlstate;j++){
 5168: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 5169: 		}
 5170: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 5171: 	    }
 5172: 
 5173: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 5174: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 5175: 	  }
 5176: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5177: 	}
 5178:       }
 5179:  
 5180:   /******/
 5181: 
 5182:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 5183: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 5184: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 5185: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 5186: 	  nhstepm = nhstepm/hstepm; 
 5187: 	  
 5188: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5189: 	  oldm=oldms;savm=savms;
 5190: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 5191: 	  for (h=0; h<=nhstepm; h++){
 5192: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 5193: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 5194: 	    } 
 5195: 	    for(j=1; j<=nlstate+ndeath;j++) {
 5196: 	      kk1=0.;kk2=0;
 5197: 	      for(i=1; i<=nlstate;i++) {	      
 5198: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 5199: 	      }
 5200: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 5201: 	    }
 5202: 	  }
 5203: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 5204: 	}
 5205:       }
 5206:    } 
 5207:   }
 5208:  
 5209:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5210: 
 5211:   if (popforecast==1) {
 5212:     free_ivector(popage,0,AGESUP);
 5213:     free_vector(popeffectif,0,AGESUP);
 5214:     free_vector(popcount,0,AGESUP);
 5215:   }
 5216:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5217:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5218:   fclose(ficrespop);
 5219: } /* End of popforecast */
 5220: 
 5221: int fileappend(FILE *fichier, char *optionfich)
 5222: {
 5223:   if((fichier=fopen(optionfich,"a"))==NULL) {
 5224:     printf("Problem with file: %s\n", optionfich);
 5225:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 5226:     return (0);
 5227:   }
 5228:   fflush(fichier);
 5229:   return (1);
 5230: }
 5231: 
 5232: 
 5233: /**************** function prwizard **********************/
 5234: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 5235: {
 5236: 
 5237:   /* Wizard to print covariance matrix template */
 5238: 
 5239:   char ca[32], cb[32];
 5240:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
 5241:   int numlinepar;
 5242: 
 5243:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5244:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 5245:   for(i=1; i <=nlstate; i++){
 5246:     jj=0;
 5247:     for(j=1; j <=nlstate+ndeath; j++){
 5248:       if(j==i) continue;
 5249:       jj++;
 5250:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 5251:       printf("%1d%1d",i,j);
 5252:       fprintf(ficparo,"%1d%1d",i,j);
 5253:       for(k=1; k<=ncovmodel;k++){
 5254: 	/* 	  printf(" %lf",param[i][j][k]); */
 5255: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 5256: 	printf(" 0.");
 5257: 	fprintf(ficparo," 0.");
 5258:       }
 5259:       printf("\n");
 5260:       fprintf(ficparo,"\n");
 5261:     }
 5262:   }
 5263:   printf("# Scales (for hessian or gradient estimation)\n");
 5264:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 5265:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 5266:   for(i=1; i <=nlstate; i++){
 5267:     jj=0;
 5268:     for(j=1; j <=nlstate+ndeath; j++){
 5269:       if(j==i) continue;
 5270:       jj++;
 5271:       fprintf(ficparo,"%1d%1d",i,j);
 5272:       printf("%1d%1d",i,j);
 5273:       fflush(stdout);
 5274:       for(k=1; k<=ncovmodel;k++){
 5275: 	/* 	printf(" %le",delti3[i][j][k]); */
 5276: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 5277: 	printf(" 0.");
 5278: 	fprintf(ficparo," 0.");
 5279:       }
 5280:       numlinepar++;
 5281:       printf("\n");
 5282:       fprintf(ficparo,"\n");
 5283:     }
 5284:   }
 5285:   printf("# Covariance matrix\n");
 5286: /* # 121 Var(a12)\n\ */
 5287: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5288: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 5289: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 5290: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 5291: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 5292: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 5293: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 5294:   fflush(stdout);
 5295:   fprintf(ficparo,"# Covariance matrix\n");
 5296:   /* # 121 Var(a12)\n\ */
 5297:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 5298:   /* #   ...\n\ */
 5299:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 5300:   
 5301:   for(itimes=1;itimes<=2;itimes++){
 5302:     jj=0;
 5303:     for(i=1; i <=nlstate; i++){
 5304:       for(j=1; j <=nlstate+ndeath; j++){
 5305: 	if(j==i) continue;
 5306: 	for(k=1; k<=ncovmodel;k++){
 5307: 	  jj++;
 5308: 	  ca[0]= k+'a'-1;ca[1]='\0';
 5309: 	  if(itimes==1){
 5310: 	    printf("#%1d%1d%d",i,j,k);
 5311: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 5312: 	  }else{
 5313: 	    printf("%1d%1d%d",i,j,k);
 5314: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 5315: 	    /* 	printf(" %.5le",matcov[i][j]); */
 5316: 	  }
 5317: 	  ll=0;
 5318: 	  for(li=1;li <=nlstate; li++){
 5319: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 5320: 	      if(lj==li) continue;
 5321: 	      for(lk=1;lk<=ncovmodel;lk++){
 5322: 		ll++;
 5323: 		if(ll<=jj){
 5324: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 5325: 		  if(ll<jj){
 5326: 		    if(itimes==1){
 5327: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5328: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 5329: 		    }else{
 5330: 		      printf(" 0.");
 5331: 		      fprintf(ficparo," 0.");
 5332: 		    }
 5333: 		  }else{
 5334: 		    if(itimes==1){
 5335: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 5336: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 5337: 		    }else{
 5338: 		      printf(" 0.");
 5339: 		      fprintf(ficparo," 0.");
 5340: 		    }
 5341: 		  }
 5342: 		}
 5343: 	      } /* end lk */
 5344: 	    } /* end lj */
 5345: 	  } /* end li */
 5346: 	  printf("\n");
 5347: 	  fprintf(ficparo,"\n");
 5348: 	  numlinepar++;
 5349: 	} /* end k*/
 5350:       } /*end j */
 5351:     } /* end i */
 5352:   } /* end itimes */
 5353: 
 5354: } /* end of prwizard */
 5355: /******************* Gompertz Likelihood ******************************/
 5356: double gompertz(double x[])
 5357: { 
 5358:   double A,B,L=0.0,sump=0.,num=0.;
 5359:   int i,n=0; /* n is the size of the sample */
 5360: 
 5361:   for (i=0;i<=imx-1 ; i++) {
 5362:     sump=sump+weight[i];
 5363:     /*    sump=sump+1;*/
 5364:     num=num+1;
 5365:   }
 5366:  
 5367:  
 5368:   /* for (i=0; i<=imx; i++) 
 5369:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5370: 
 5371:   for (i=1;i<=imx ; i++)
 5372:     {
 5373:       if (cens[i] == 1 && wav[i]>1)
 5374: 	A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 5375:       
 5376:       if (cens[i] == 0 && wav[i]>1)
 5377: 	A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 5378: 	     +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 5379:       
 5380:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5381:       if (wav[i] > 1 ) { /* ??? */
 5382: 	L=L+A*weight[i];
 5383: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5384:       }
 5385:     }
 5386: 
 5387:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5388:  
 5389:   return -2*L*num/sump;
 5390: }
 5391: 
 5392: #ifdef GSL
 5393: /******************* Gompertz_f Likelihood ******************************/
 5394: double gompertz_f(const gsl_vector *v, void *params)
 5395: { 
 5396:   double A,B,LL=0.0,sump=0.,num=0.;
 5397:   double *x= (double *) v->data;
 5398:   int i,n=0; /* n is the size of the sample */
 5399: 
 5400:   for (i=0;i<=imx-1 ; i++) {
 5401:     sump=sump+weight[i];
 5402:     /*    sump=sump+1;*/
 5403:     num=num+1;
 5404:   }
 5405:  
 5406:  
 5407:   /* for (i=0; i<=imx; i++) 
 5408:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
 5409:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
 5410:   for (i=1;i<=imx ; i++)
 5411:     {
 5412:       if (cens[i] == 1 && wav[i]>1)
 5413: 	A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
 5414:       
 5415:       if (cens[i] == 0 && wav[i]>1)
 5416: 	A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
 5417: 	     +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
 5418:       
 5419:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
 5420:       if (wav[i] > 1 ) { /* ??? */
 5421: 	LL=LL+A*weight[i];
 5422: 	/* 	printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 5423:       }
 5424:     }
 5425: 
 5426:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 5427:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
 5428:  
 5429:   return -2*LL*num/sump;
 5430: }
 5431: #endif
 5432: 
 5433: /******************* Printing html file ***********/
 5434: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
 5435: 		  int lastpass, int stepm, int weightopt, char model[],\
 5436: 		  int imx,  double p[],double **matcov,double agemortsup){
 5437:   int i,k;
 5438: 
 5439:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
 5440:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 5441:   for (i=1;i<=2;i++) 
 5442:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 5443:   fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
 5444:   fprintf(fichtm,"</ul>");
 5445: 
 5446: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 5447: 
 5448:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
 5449: 
 5450:  for (k=agegomp;k<(agemortsup-2);k++) 
 5451:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 5452: 
 5453:  
 5454:   fflush(fichtm);
 5455: }
 5456: 
 5457: /******************* Gnuplot file **************/
 5458: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 5459: 
 5460:   char dirfileres[132],optfileres[132];
 5461: 
 5462:   int ng;
 5463: 
 5464: 
 5465:   /*#ifdef windows */
 5466:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 5467:     /*#endif */
 5468: 
 5469: 
 5470:   strcpy(dirfileres,optionfilefiname);
 5471:   strcpy(optfileres,"vpl");
 5472:   fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
 5473:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
 5474:   fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
 5475:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
 5476:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
 5477: 
 5478: } 
 5479: 
 5480: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
 5481: {
 5482: 
 5483:   /*-------- data file ----------*/
 5484:   FILE *fic;
 5485:   char dummy[]="                         ";
 5486:   int i=0, j=0, n=0;
 5487:   int linei, month, year,iout;
 5488:   char line[MAXLINE], linetmp[MAXLINE];
 5489:   char stra[MAXLINE], strb[MAXLINE];
 5490:   char *stratrunc;
 5491:   int lstra;
 5492: 
 5493: 
 5494:   if((fic=fopen(datafile,"r"))==NULL)    {
 5495:     printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
 5496:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
 5497:   }
 5498: 
 5499:   i=1;
 5500:   linei=0;
 5501:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
 5502:     linei=linei+1;
 5503:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
 5504:       if(line[j] == '\t')
 5505: 	line[j] = ' ';
 5506:     }
 5507:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
 5508:       ;
 5509:     };
 5510:     line[j+1]=0;  /* Trims blanks at end of line */
 5511:     if(line[0]=='#'){
 5512:       fprintf(ficlog,"Comment line\n%s\n",line);
 5513:       printf("Comment line\n%s\n",line);
 5514:       continue;
 5515:     }
 5516:     trimbb(linetmp,line); /* Trims multiple blanks in line */
 5517:     strcpy(line, linetmp);
 5518:   
 5519: 
 5520:     for (j=maxwav;j>=1;j--){
 5521:       cutv(stra, strb, line, ' '); 
 5522:       if(strb[0]=='.') { /* Missing status */
 5523: 	lval=-1;
 5524:       }else{
 5525: 	errno=0;
 5526: 	lval=strtol(strb,&endptr,10); 
 5527:       /*	if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
 5528: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5529: 	  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
 5530: 	  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
 5531: 	  return 1;
 5532: 	}
 5533:       }
 5534:       s[j][i]=lval;
 5535:       
 5536:       strcpy(line,stra);
 5537:       cutv(stra, strb,line,' ');
 5538:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5539:       }
 5540:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5541: 	month=99;
 5542: 	year=9999;
 5543:       }else{
 5544: 	printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 5545: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
 5546: 	return 1;
 5547:       }
 5548:       anint[j][i]= (double) year; 
 5549:       mint[j][i]= (double)month; 
 5550:       strcpy(line,stra);
 5551:     } /* ENd Waves */
 5552:     
 5553:     cutv(stra, strb,line,' '); 
 5554:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5555:     }
 5556:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
 5557:       month=99;
 5558:       year=9999;
 5559:     }else{
 5560:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5561: 	fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5562: 	return 1;
 5563:     }
 5564:     andc[i]=(double) year; 
 5565:     moisdc[i]=(double) month; 
 5566:     strcpy(line,stra);
 5567:     
 5568:     cutv(stra, strb,line,' '); 
 5569:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
 5570:     }
 5571:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
 5572:       month=99;
 5573:       year=9999;
 5574:     }else{
 5575:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
 5576:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5577: 	return 1;
 5578:     }
 5579:     if (year==9999) {
 5580:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
 5581:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
 5582: 	return 1;
 5583: 
 5584:     }
 5585:     annais[i]=(double)(year);
 5586:     moisnais[i]=(double)(month); 
 5587:     strcpy(line,stra);
 5588:     
 5589:     cutv(stra, strb,line,' '); 
 5590:     errno=0;
 5591:     dval=strtod(strb,&endptr); 
 5592:     if( strb[0]=='\0' || (*endptr != '\0')){
 5593:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5594:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 5595:       fflush(ficlog);
 5596:       return 1;
 5597:     }
 5598:     weight[i]=dval; 
 5599:     strcpy(line,stra);
 5600:     
 5601:     for (j=ncovcol;j>=1;j--){
 5602:       cutv(stra, strb,line,' '); 
 5603:       if(strb[0]=='.') { /* Missing status */
 5604: 	lval=-1;
 5605:       }else{
 5606: 	errno=0;
 5607: 	lval=strtol(strb,&endptr,10); 
 5608: 	if( strb[0]=='\0' || (*endptr != '\0')){
 5609: 	  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
 5610: 	  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
 5611: 	  return 1;
 5612: 	}
 5613:       }
 5614:       if(lval <-1 || lval >1){
 5615: 	printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5616:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5617:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5618:  For example, for multinomial values like 1, 2 and 3,\n \
 5619:  build V1=0 V2=0 for the reference value (1),\n \
 5620:         V1=1 V2=0 for (2) \n \
 5621:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5622:  output of IMaCh is often meaningless.\n \
 5623:  Exiting.\n",lval,linei, i,line,j);
 5624: 	fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
 5625:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
 5626:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
 5627:  For example, for multinomial values like 1, 2 and 3,\n \
 5628:  build V1=0 V2=0 for the reference value (1),\n \
 5629:         V1=1 V2=0 for (2) \n \
 5630:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
 5631:  output of IMaCh is often meaningless.\n \
 5632:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
 5633: 	return 1;
 5634:       }
 5635:       covar[j][i]=(double)(lval);
 5636:       strcpy(line,stra);
 5637:     }  
 5638:     lstra=strlen(stra);
 5639:      
 5640:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 5641:       stratrunc = &(stra[lstra-9]);
 5642:       num[i]=atol(stratrunc);
 5643:     }
 5644:     else
 5645:       num[i]=atol(stra);
 5646:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 5647:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 5648:     
 5649:     i=i+1;
 5650:   } /* End loop reading  data */
 5651: 
 5652:   *imax=i-1; /* Number of individuals */
 5653:   fclose(fic);
 5654:  
 5655:   return (0);
 5656:   /* endread: */
 5657:     printf("Exiting readdata: ");
 5658:     fclose(fic);
 5659:     return (1);
 5660: 
 5661: 
 5662: 
 5663: }
 5664: void removespace(char *str) {
 5665:   char *p1 = str, *p2 = str;
 5666:   do
 5667:     while (*p2 == ' ')
 5668:       p2++;
 5669:   while (*p1++ == *p2++);
 5670: }
 5671: 
 5672: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
 5673:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
 5674:    * - nagesqr = 1 if age*age in the model, otherwise 0.
 5675:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
 5676:    * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
 5677:    * - cptcovage number of covariates with age*products =2
 5678:    * - cptcovs number of simple covariates
 5679:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
 5680:    *     which is a new column after the 9 (ncovcol) variables. 
 5681:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
 5682:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
 5683:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
 5684:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
 5685:  */
 5686: {
 5687:   int i, j, k, ks;
 5688:   int  j1, k1, k2;
 5689:   char modelsav[80];
 5690:   char stra[80], strb[80], strc[80], strd[80],stre[80];
 5691:   char *strpt;
 5692: 
 5693:   /*removespace(model);*/
 5694:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 5695:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
 5696:     if (strstr(model,"AGE") !=0){
 5697:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
 5698:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
 5699:       return 1;
 5700:     }
 5701:     if (strstr(model,"v") !=0){
 5702:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
 5703:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
 5704:       return 1;
 5705:     }
 5706:     strcpy(modelsav,model); 
 5707:     if ((strpt=strstr(model,"age*age")) !=0){
 5708:       printf(" strpt=%s, model=%s\n",strpt, model);
 5709:       if(strpt != model){
 5710:       printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
 5711:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
 5712:  corresponding column of parameters.\n",model);
 5713:       fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
 5714:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
 5715:  corresponding column of parameters.\n",model); fflush(ficlog);
 5716:       return 1;
 5717:     }
 5718: 
 5719:       nagesqr=1;
 5720:       if (strstr(model,"+age*age") !=0)
 5721: 	substrchaine(modelsav, model, "+age*age");
 5722:       else if (strstr(model,"age*age+") !=0)
 5723: 	substrchaine(modelsav, model, "age*age+");
 5724:       else 
 5725: 	substrchaine(modelsav, model, "age*age");
 5726:     }else
 5727:       nagesqr=0;
 5728:     if (strlen(modelsav) >1){
 5729:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
 5730:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
 5731:       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
 5732:       cptcovt= j+1; /* Number of total covariates in the model, not including
 5733: 		   * cst, age and age*age 
 5734: 		   * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
 5735:                   /* including age products which are counted in cptcovage.
 5736: 		  * but the covariates which are products must be treated 
 5737: 		  * separately: ncovn=4- 2=2 (V1+V3). */
 5738:       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
 5739:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
 5740: 
 5741:     
 5742:       /*   Design
 5743:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
 5744:        *  <          ncovcol=8                >
 5745:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
 5746:        *   k=  1    2      3       4     5       6      7        8
 5747:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
 5748:        *  covar[k,i], value of kth covariate if not including age for individual i:
 5749:        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
 5750:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
 5751:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
 5752:        *  Tage[++cptcovage]=k
 5753:        *       if products, new covar are created after ncovcol with k1
 5754:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
 5755:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
 5756:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
 5757:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
 5758:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
 5759:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
 5760:        *  <          ncovcol=8                >
 5761:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
 5762:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
 5763:        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
 5764:        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5765:        * p Tprod[1]@2={                         6, 5}
 5766:        *p Tvard[1][1]@4= {7, 8, 5, 6}
 5767:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
 5768:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 5769:        *How to reorganize?
 5770:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
 5771:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
 5772:        *       {2,   1,     4,      8,    5,      6,     3,       7}
 5773:        * Struct []
 5774:        */
 5775: 
 5776:       /* This loop fills the array Tvar from the string 'model'.*/
 5777:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
 5778:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
 5779:       /* 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
 5780:       /* 	k=3 V4 Tvar[k=3]= 4 (from V4) */
 5781:       /* 	k=2 V1 Tvar[k=2]= 1 (from V1) */
 5782:       /* 	k=1 Tvar[1]=2 (from V2) */
 5783:       /* 	k=5 Tvar[5] */
 5784:       /* for (k=1; k<=cptcovn;k++) { */
 5785:       /* 	cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 5786:       /* 	} */
 5787:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
 5788:       /*
 5789:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
 5790:       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
 5791:         Tvar[k]=0;
 5792:       cptcovage=0;
 5793:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
 5794: 	cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
 5795: 					 modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
 5796: 	if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 5797: 	/*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 5798: 	/*scanf("%d",i);*/
 5799: 	if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
 5800: 	  cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
 5801: 	  if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
 5802: 	    /* covar is not filled and then is empty */
 5803: 	    cptcovprod--;
 5804: 	    cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
 5805: 	    Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
 5806: 	    cptcovage++; /* Sums the number of covariates which include age as a product */
 5807: 	    Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
 5808: 	    /*printf("stre=%s ", stre);*/
 5809: 	  } else if (strcmp(strd,"age")==0) { /* or age*Vn */
 5810: 	    cptcovprod--;
 5811: 	    cutl(stre,strb,strc,'V');
 5812: 	    Tvar[k]=atoi(stre);
 5813: 	    cptcovage++;
 5814: 	    Tage[cptcovage]=k;
 5815: 	  } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
 5816: 	    /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
 5817: 	    cptcovn++;
 5818: 	    cptcovprodnoage++;k1++;
 5819: 	    cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
 5820: 	    Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
 5821: 				   because this model-covariate is a construction we invent a new column
 5822: 				   ncovcol + k1
 5823: 				   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
 5824: 				   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
 5825: 	    cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
 5826: 	    Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
 5827: 	    Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
 5828: 	    Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
 5829: 	    k2=k2+2;
 5830: 	    Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
 5831: 	    Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
 5832: 	    for (i=1; i<=lastobs;i++){
 5833: 	      /* Computes the new covariate which is a product of
 5834: 		 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
 5835: 	      covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
 5836: 	    }
 5837: 	  } /* End age is not in the model */
 5838: 	} /* End if model includes a product */
 5839: 	else { /* no more sum */
 5840: 	  /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 5841: 	  /*  scanf("%d",i);*/
 5842: 	  cutl(strd,strc,strb,'V');
 5843: 	  ks++; /**< Number of simple covariates */
 5844: 	  cptcovn++;
 5845: 	  Tvar[k]=atoi(strd);
 5846: 	}
 5847: 	strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
 5848: 	/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 5849: 	  scanf("%d",i);*/
 5850:       } /* end of loop + on total covariates */
 5851:     } /* end if strlen(modelsave == 0) age*age might exist */
 5852:   } /* end if strlen(model == 0) */
 5853:   
 5854:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 5855:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 5856: 
 5857:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 5858:   printf("cptcovprod=%d ", cptcovprod);
 5859:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 5860: 
 5861:   scanf("%d ",i);*/
 5862: 
 5863: 
 5864:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
 5865:   /*endread:*/
 5866:     printf("Exiting decodemodel: ");
 5867:     return (1);
 5868: }
 5869: 
 5870: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 5871: {
 5872:   int i, m;
 5873: 
 5874:   for (i=1; i<=imx; i++) {
 5875:     for(m=2; (m<= maxwav); m++) {
 5876:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 5877: 	anint[m][i]=9999;
 5878: 	s[m][i]=-1;
 5879:       }
 5880:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 5881: 	*nberr = *nberr + 1;
 5882: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5883: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
 5884: 	s[m][i]=-1;
 5885:       }
 5886:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 5887: 	(*nberr)++;
 5888: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 5889: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 5890: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 5891:       }
 5892:     }
 5893:   }
 5894: 
 5895:   for (i=1; i<=imx; i++)  {
 5896:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 5897:     for(m=firstpass; (m<= lastpass); m++){
 5898:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
 5899: 	if (s[m][i] >= nlstate+1) {
 5900: 	  if(agedc[i]>0){
 5901: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
 5902: 	      agev[m][i]=agedc[i];
 5903: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 5904: 	    }else {
 5905: 	      if ((int)andc[i]!=9999){
 5906: 		nbwarn++;
 5907: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 5908: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 5909: 		agev[m][i]=-1;
 5910: 	      }
 5911: 	    }
 5912: 	  } /* agedc > 0 */
 5913: 	}
 5914: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 5915: 				 years but with the precision of a month */
 5916: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 5917: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 5918: 	    agev[m][i]=1;
 5919: 	  else if(agev[m][i] < *agemin){ 
 5920: 	    *agemin=agev[m][i];
 5921: 	    printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
 5922: 	  }
 5923: 	  else if(agev[m][i] >*agemax){
 5924: 	    *agemax=agev[m][i];
 5925: 	    /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
 5926: 	  }
 5927: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 5928: 	  /*	 agev[m][i] = age[i]+2*m;*/
 5929: 	}
 5930: 	else { /* =9 */
 5931: 	  agev[m][i]=1;
 5932: 	  s[m][i]=-1;
 5933: 	}
 5934:       }
 5935:       else /*= 0 Unknown */
 5936: 	agev[m][i]=1;
 5937:     }
 5938:     
 5939:   }
 5940:   for (i=1; i<=imx; i++)  {
 5941:     for(m=firstpass; (m<=lastpass); m++){
 5942:       if (s[m][i] > (nlstate+ndeath)) {
 5943: 	(*nberr)++;
 5944: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5945: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 5946: 	return 1;
 5947:       }
 5948:     }
 5949:   }
 5950: 
 5951:   /*for (i=1; i<=imx; i++){
 5952:   for (m=firstpass; (m<lastpass); m++){
 5953:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 5954: }
 5955: 
 5956: }*/
 5957: 
 5958: 
 5959:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
 5960:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
 5961: 
 5962:   return (0);
 5963:  /* endread:*/
 5964:     printf("Exiting calandcheckages: ");
 5965:     return (1);
 5966: }
 5967: 
 5968: #if defined(_MSC_VER)
 5969: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5970: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
 5971: //#include "stdafx.h"
 5972: //#include <stdio.h>
 5973: //#include <tchar.h>
 5974: //#include <windows.h>
 5975: //#include <iostream>
 5976: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
 5977: 
 5978: LPFN_ISWOW64PROCESS fnIsWow64Process;
 5979: 
 5980: BOOL IsWow64()
 5981: {
 5982: 	BOOL bIsWow64 = FALSE;
 5983: 
 5984: 	//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
 5985: 	//  (HANDLE, PBOOL);
 5986: 
 5987: 	//LPFN_ISWOW64PROCESS fnIsWow64Process;
 5988: 
 5989: 	HMODULE module = GetModuleHandle(_T("kernel32"));
 5990: 	const char funcName[] = "IsWow64Process";
 5991: 	fnIsWow64Process = (LPFN_ISWOW64PROCESS)
 5992: 		GetProcAddress(module, funcName);
 5993: 
 5994: 	if (NULL != fnIsWow64Process)
 5995: 	{
 5996: 		if (!fnIsWow64Process(GetCurrentProcess(),
 5997: 			&bIsWow64))
 5998: 			//throw std::exception("Unknown error");
 5999: 			printf("Unknown error\n");
 6000: 	}
 6001: 	return bIsWow64 != FALSE;
 6002: }
 6003: #endif
 6004: 
 6005: void syscompilerinfo(int logged)
 6006:  {
 6007:    /* #include "syscompilerinfo.h"*/
 6008:    /* command line Intel compiler 32bit windows, XP compatible:*/
 6009:    /* /GS /W3 /Gy
 6010:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
 6011:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
 6012:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
 6013:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
 6014:    */ 
 6015:    /* 64 bits */
 6016:    /*
 6017:      /GS /W3 /Gy
 6018:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
 6019:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
 6020:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
 6021:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
 6022:    /* Optimization are useless and O3 is slower than O2 */
 6023:    /*
 6024:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
 6025:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
 6026:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
 6027:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
 6028:    */
 6029:    /* Link is */ /* /OUT:"visual studio
 6030:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
 6031:       /PDB:"visual studio
 6032:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
 6033:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
 6034:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
 6035:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
 6036:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
 6037:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
 6038:       uiAccess='false'"
 6039:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
 6040:       /NOLOGO /TLBID:1
 6041:    */
 6042: #if defined __INTEL_COMPILER
 6043: #if defined(__GNUC__)
 6044: 	struct utsname sysInfo;  /* For Intel on Linux and OS/X */
 6045: #endif
 6046: #elif defined(__GNUC__) 
 6047: #ifndef  __APPLE__
 6048: #include <gnu/libc-version.h>  /* Only on gnu */
 6049: #endif
 6050:    struct utsname sysInfo;
 6051:    int cross = CROSS;
 6052:    if (cross){
 6053: 	   printf("Cross-");
 6054: 	   if(logged) fprintf(ficlog, "Cross-");
 6055:    }
 6056: #endif
 6057: 
 6058: #include <stdint.h>
 6059: 
 6060:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
 6061: #if defined(__clang__)
 6062:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");	/* Clang/LLVM. ---------------------------------------------- */
 6063: #endif
 6064: #if defined(__ICC) || defined(__INTEL_COMPILER)
 6065:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
 6066: #endif
 6067: #if defined(__GNUC__) || defined(__GNUG__)
 6068:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
 6069: #endif
 6070: #if defined(__HP_cc) || defined(__HP_aCC)
 6071:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
 6072: #endif
 6073: #if defined(__IBMC__) || defined(__IBMCPP__)
 6074:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
 6075: #endif
 6076: #if defined(_MSC_VER)
 6077:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
 6078: #endif
 6079: #if defined(__PGI)
 6080:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
 6081: #endif
 6082: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
 6083:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
 6084: #endif
 6085:    printf(" for "); if (logged) fprintf(ficlog, " for ");
 6086:    
 6087: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
 6088: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
 6089:     // Windows (x64 and x86)
 6090:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
 6091: #elif __unix__ // all unices, not all compilers
 6092:     // Unix
 6093:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
 6094: #elif __linux__
 6095:     // linux
 6096:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
 6097: #elif __APPLE__
 6098:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
 6099:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
 6100: #endif
 6101: 
 6102: /*  __MINGW32__	  */
 6103: /*  __CYGWIN__	 */
 6104: /* __MINGW64__  */
 6105: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
 6106: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
 6107: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
 6108: /* _WIN64  // Defined for applications for Win64. */
 6109: /* _M_X64 // Defined for compilations that target x64 processors. */
 6110: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
 6111: 
 6112: #if UINTPTR_MAX == 0xffffffff
 6113:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
 6114: #elif UINTPTR_MAX == 0xffffffffffffffff
 6115:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
 6116: #else
 6117:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
 6118: #endif
 6119: 
 6120: #if defined(__GNUC__)
 6121: # if defined(__GNUC_PATCHLEVEL__)
 6122: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 6123:                             + __GNUC_MINOR__ * 100 \
 6124:                             + __GNUC_PATCHLEVEL__)
 6125: # else
 6126: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
 6127:                             + __GNUC_MINOR__ * 100)
 6128: # endif
 6129:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
 6130:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
 6131: 
 6132:    if (uname(&sysInfo) != -1) {
 6133:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 6134: 	 if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
 6135:    }
 6136:    else
 6137:       perror("uname() error");
 6138:    //#ifndef __INTEL_COMPILER 
 6139: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 6140:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
 6141:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
 6142: #endif
 6143: #endif
 6144: 
 6145:    //   void main()
 6146:    //   {
 6147: #if defined(_MSC_VER)
 6148:    if (IsWow64()){
 6149: 	   printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 6150: 	   if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
 6151:    }
 6152:    else{
 6153: 	   printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 6154: 	   if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
 6155:    }
 6156:    //	   printf("\nPress Enter to continue...");
 6157:    //	   getchar();
 6158:    //   }
 6159: 
 6160: #endif
 6161:    
 6162: 
 6163:  }
 6164: 
 6165: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
 6166:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 6167:   int i, j, k, i1 ;
 6168:   double ftolpl = 1.e-10;
 6169:   double age, agebase, agelim;
 6170: 
 6171:     strcpy(filerespl,"pl");
 6172:     strcat(filerespl,fileres);
 6173:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
 6174:       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 6175:       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
 6176:     }
 6177:     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6178:     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
 6179:     pstamp(ficrespl);
 6180:     fprintf(ficrespl,"# Period (stable) prevalence \n");
 6181:     fprintf(ficrespl,"#Age ");
 6182:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 6183:     fprintf(ficrespl,"\n");
 6184:   
 6185:     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
 6186: 
 6187:     agebase=ageminpar;
 6188:     agelim=agemaxpar;
 6189: 
 6190:     i1=pow(2,cptcoveff);
 6191:     if (cptcovn < 1){i1=1;}
 6192: 
 6193:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 6194:     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
 6195:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 6196: 	k=k+1;
 6197: 	/* to clean */
 6198: 	//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
 6199: 	fprintf(ficrespl,"#******");
 6200: 	printf("#******");
 6201: 	fprintf(ficlog,"#******");
 6202: 	for(j=1;j<=cptcoveff;j++) {
 6203: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6204: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6205: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6206: 	}
 6207: 	fprintf(ficrespl,"******\n");
 6208: 	printf("******\n");
 6209: 	fprintf(ficlog,"******\n");
 6210: 
 6211: 	fprintf(ficrespl,"#Age ");
 6212: 	for(j=1;j<=cptcoveff;j++) {
 6213: 	  fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6214: 	}
 6215: 	for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 6216: 	fprintf(ficrespl,"\n");
 6217: 	
 6218: 	for (age=agebase; age<=agelim; age++){
 6219: 	/* for (age=agebase; age<=agebase; age++){ */
 6220: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 6221: 	  fprintf(ficrespl,"%.0f ",age );
 6222: 	  for(j=1;j<=cptcoveff;j++)
 6223: 	    fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6224: 	  for(i=1; i<=nlstate;i++)
 6225: 	    fprintf(ficrespl," %.5f", prlim[i][i]);
 6226: 	  fprintf(ficrespl,"\n");
 6227: 	} /* Age */
 6228: 	/* was end of cptcod */
 6229:     } /* cptcov */
 6230: 	return 0;
 6231: }
 6232: 
 6233: int hPijx(double *p, int bage, int fage){
 6234:     /*------------- h Pij x at various ages ------------*/
 6235: 
 6236:   int stepsize;
 6237:   int agelim;
 6238:   int hstepm;
 6239:   int nhstepm;
 6240:   int h, i, i1, j, k;
 6241: 
 6242:   double agedeb;
 6243:   double ***p3mat;
 6244: 
 6245:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 6246:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
 6247:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
 6248:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
 6249:     }
 6250:     printf("Computing pij: result on file '%s' \n", filerespij);
 6251:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 6252:   
 6253:     stepsize=(int) (stepm+YEARM-1)/YEARM;
 6254:     /*if (stepm<=24) stepsize=2;*/
 6255: 
 6256:     agelim=AGESUP;
 6257:     hstepm=stepsize*YEARM; /* Every year of age */
 6258:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 6259: 
 6260:     /* hstepm=1;   aff par mois*/
 6261:     pstamp(ficrespij);
 6262:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 6263:     i1= pow(2,cptcoveff);
 6264:    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
 6265:    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
 6266:    /*  	k=k+1;  */
 6267:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 6268:       fprintf(ficrespij,"\n#****** ");
 6269:       for(j=1;j<=cptcoveff;j++) 
 6270: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 6271:       fprintf(ficrespij,"******\n");
 6272:       
 6273:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 6274: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 6275: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 6276: 	
 6277: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 6278: 	
 6279: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6280: 	oldm=oldms;savm=savms;
 6281: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 6282: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 6283: 	for(i=1; i<=nlstate;i++)
 6284: 	  for(j=1; j<=nlstate+ndeath;j++)
 6285: 	    fprintf(ficrespij," %1d-%1d",i,j);
 6286: 	fprintf(ficrespij,"\n");
 6287: 	for (h=0; h<=nhstepm; h++){
 6288: 	  /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
 6289: 	  fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
 6290: 	  for(i=1; i<=nlstate;i++)
 6291: 	    for(j=1; j<=nlstate+ndeath;j++)
 6292: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 6293: 	  fprintf(ficrespij,"\n");
 6294: 	}
 6295: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 6296: 	fprintf(ficrespij,"\n");
 6297:       }
 6298:       /*}*/
 6299:     }
 6300: 	return 0;
 6301: }
 6302: 
 6303: 
 6304: /***********************************************/
 6305: /**************** Main Program *****************/
 6306: /***********************************************/
 6307: 
 6308: int main(int argc, char *argv[])
 6309: {
 6310: #ifdef GSL
 6311:   const gsl_multimin_fminimizer_type *T;
 6312:   size_t iteri = 0, it;
 6313:   int rval = GSL_CONTINUE;
 6314:   int status = GSL_SUCCESS;
 6315:   double ssval;
 6316: #endif
 6317:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 6318:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
 6319: 
 6320:   int jj, ll, li, lj, lk;
 6321:   int numlinepar=0; /* Current linenumber of parameter file */
 6322:   int num_filled;
 6323:   int itimes;
 6324:   int NDIM=2;
 6325:   int vpopbased=0;
 6326: 
 6327:   char ca[32], cb[32];
 6328:   /*  FILE *fichtm; *//* Html File */
 6329:   /* FILE *ficgp;*/ /*Gnuplot File */
 6330:   struct stat info;
 6331:   double agedeb=0.;
 6332: 
 6333:   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
 6334: 
 6335:   double fret;
 6336:   double dum=0.; /* Dummy variable */
 6337:   double ***p3mat;
 6338:   double ***mobaverage;
 6339: 
 6340:   char line[MAXLINE];
 6341:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
 6342: 
 6343:   char model[MAXLINE], modeltemp[MAXLINE];
 6344:   char pathr[MAXLINE], pathimach[MAXLINE]; 
 6345:   char *tok, *val; /* pathtot */
 6346:   int firstobs=1, lastobs=10;
 6347:   int c,  h , cpt, c2;
 6348:   int jl=0;
 6349:   int i1, j1, jk, stepsize=0;
 6350:   int count=0;
 6351: 
 6352:   int *tab; 
 6353:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 6354:   int mobilav=0,popforecast=0;
 6355:   int hstepm=0, nhstepm=0;
 6356:   int agemortsup;
 6357:   float  sumlpop=0.;
 6358:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 6359:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 6360: 
 6361:   double bage=0, fage=110., age, agelim=0., agebase=0.;
 6362:   double ftolpl=FTOL;
 6363:   double **prlim;
 6364:   double ***param; /* Matrix of parameters */
 6365:   double  *p;
 6366:   double **matcov; /* Matrix of covariance */
 6367:   double ***delti3; /* Scale */
 6368:   double *delti; /* Scale */
 6369:   double ***eij, ***vareij;
 6370:   double **varpl; /* Variances of prevalence limits by age */
 6371:   double *epj, vepp;
 6372: 
 6373:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 6374:   double **ximort;
 6375:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
 6376:   int *dcwave;
 6377: 
 6378:   char z[1]="c";
 6379: 
 6380:   /*char  *strt;*/
 6381:   char strtend[80];
 6382: 
 6383: 
 6384: /*   setlocale (LC_ALL, ""); */
 6385: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 6386: /*   textdomain (PACKAGE); */
 6387: /*   setlocale (LC_CTYPE, ""); */
 6388: /*   setlocale (LC_MESSAGES, ""); */
 6389: 
 6390:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 6391:   rstart_time = time(NULL);  
 6392:   /*  (void) gettimeofday(&start_time,&tzp);*/
 6393:   start_time = *localtime(&rstart_time);
 6394:   curr_time=start_time;
 6395:   /*tml = *localtime(&start_time.tm_sec);*/
 6396:   /* strcpy(strstart,asctime(&tml)); */
 6397:   strcpy(strstart,asctime(&start_time));
 6398: 
 6399: /*  printf("Localtime (at start)=%s",strstart); */
 6400: /*  tp.tm_sec = tp.tm_sec +86400; */
 6401: /*  tm = *localtime(&start_time.tm_sec); */
 6402: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 6403: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 6404: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 6405: /*   tp.tm_sec = mktime(&tmg); */
 6406: /*   strt=asctime(&tmg); */
 6407: /*   printf("Time(after) =%s",strstart);  */
 6408: /*  (void) time (&time_value);
 6409: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 6410: *  tm = *localtime(&time_value);
 6411: *  strstart=asctime(&tm);
 6412: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 6413: */
 6414: 
 6415:   nberr=0; /* Number of errors and warnings */
 6416:   nbwarn=0;
 6417: #ifdef WIN32
 6418:   _getcwd(pathcd, size);
 6419: #else
 6420:   getcwd(pathcd, size);
 6421: #endif
 6422:   syscompilerinfo(0);
 6423:   printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
 6424:   if(argc <=1){
 6425:     printf("\nEnter the parameter file name: ");
 6426:     fgets(pathr,FILENAMELENGTH,stdin);
 6427:     i=strlen(pathr);
 6428:     if(pathr[i-1]=='\n')
 6429:       pathr[i-1]='\0';
 6430:     i=strlen(pathr);
 6431:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
 6432:       pathr[i-1]='\0';
 6433:    for (tok = pathr; tok != NULL; ){
 6434:       printf("Pathr |%s|\n",pathr);
 6435:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
 6436:       printf("val= |%s| pathr=%s\n",val,pathr);
 6437:       strcpy (pathtot, val);
 6438:       if(pathr[0] == '\0') break; /* Dirty */
 6439:     }
 6440:   }
 6441:   else{
 6442:     strcpy(pathtot,argv[1]);
 6443:   }
 6444:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 6445:   /*cygwin_split_path(pathtot,path,optionfile);
 6446:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 6447:   /* cutv(path,optionfile,pathtot,'\\');*/
 6448: 
 6449:   /* Split argv[0], imach program to get pathimach */
 6450:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
 6451:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6452:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 6453:  /*   strcpy(pathimach,argv[0]); */
 6454:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 6455:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 6456:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 6457: #ifdef WIN32
 6458:   _chdir(path); /* Can be a relative path */
 6459:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 6460: #else
 6461:   chdir(path); /* Can be a relative path */
 6462:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
 6463: #endif
 6464:   printf("Current directory %s!\n",pathcd);
 6465:   strcpy(command,"mkdir ");
 6466:   strcat(command,optionfilefiname);
 6467:   if((outcmd=system(command)) != 0){
 6468:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
 6469:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 6470:     /* fclose(ficlog); */
 6471: /*     exit(1); */
 6472:   }
 6473: /*   if((imk=mkdir(optionfilefiname))<0){ */
 6474: /*     perror("mkdir"); */
 6475: /*   } */
 6476: 
 6477:   /*-------- arguments in the command line --------*/
 6478: 
 6479:   /* Main Log file */
 6480:   strcat(filelog, optionfilefiname);
 6481:   strcat(filelog,".log");    /* */
 6482:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 6483:     printf("Problem with logfile %s\n",filelog);
 6484:     goto end;
 6485:   }
 6486:   fprintf(ficlog,"Log filename:%s\n",filelog);
 6487:   fprintf(ficlog,"Version %s %s",version,fullversion);
 6488:   fprintf(ficlog,"\nEnter the parameter file name: \n");
 6489:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
 6490:  path=%s \n\
 6491:  optionfile=%s\n\
 6492:  optionfilext=%s\n\
 6493:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
 6494: 
 6495:   syscompilerinfo(1);
 6496: 
 6497:   printf("Local time (at start):%s",strstart);
 6498:   fprintf(ficlog,"Local time (at start): %s",strstart);
 6499:   fflush(ficlog);
 6500: /*   (void) gettimeofday(&curr_time,&tzp); */
 6501: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
 6502: 
 6503:   /* */
 6504:   strcpy(fileres,"r");
 6505:   strcat(fileres, optionfilefiname);
 6506:   strcat(fileres,".txt");    /* Other files have txt extension */
 6507: 
 6508:   /* Main ---------arguments file --------*/
 6509: 
 6510:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 6511:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6512:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
 6513:     fflush(ficlog);
 6514:     /* goto end; */
 6515:     exit(70); 
 6516:   }
 6517: 
 6518: 
 6519: 
 6520:   strcpy(filereso,"o");
 6521:   strcat(filereso,fileres);
 6522:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 6523:     printf("Problem with Output resultfile: %s\n", filereso);
 6524:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 6525:     fflush(ficlog);
 6526:     goto end;
 6527:   }
 6528: 
 6529:   /* Reads comments: lines beginning with '#' */
 6530:   numlinepar=0;
 6531: 
 6532:     /* First parameter line */
 6533:   while(fgets(line, MAXLINE, ficpar)) {
 6534:     /* If line starts with a # it is a comment */
 6535:     if (line[0] == '#') {
 6536:       numlinepar++;
 6537:       fputs(line,stdout);
 6538:       fputs(line,ficparo);
 6539:       fputs(line,ficlog);
 6540:       continue;
 6541:     }else
 6542:       break;
 6543:   }
 6544:   if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
 6545: 			title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
 6546:     if (num_filled != 5) {
 6547:       printf("Should be 5 parameters\n");
 6548:     }
 6549:     numlinepar++;
 6550:     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
 6551:   }
 6552:   /* Second parameter line */
 6553:   while(fgets(line, MAXLINE, ficpar)) {
 6554:     /* If line starts with a # it is a comment */
 6555:     if (line[0] == '#') {
 6556:       numlinepar++;
 6557:       fputs(line,stdout);
 6558:       fputs(line,ficparo);
 6559:       fputs(line,ficlog);
 6560:       continue;
 6561:     }else
 6562:       break;
 6563:   }
 6564:   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
 6565: 			&ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
 6566:     if (num_filled != 8) {
 6567:       printf("Not 8\n");
 6568:     }
 6569:     printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
 6570:   }
 6571: 
 6572:   /* Third parameter line */
 6573:   while(fgets(line, MAXLINE, ficpar)) {
 6574:     /* If line starts with a # it is a comment */
 6575:     if (line[0] == '#') {
 6576:       numlinepar++;
 6577:       fputs(line,stdout);
 6578:       fputs(line,ficparo);
 6579:       fputs(line,ficlog);
 6580:       continue;
 6581:     }else
 6582:       break;
 6583:   }
 6584:   if((num_filled=sscanf(line,"model=1+age%[^.\n]\n", model)) !=EOF){
 6585:     if (num_filled != 1) {
 6586:       printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
 6587:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
 6588:       model[0]='\0';
 6589:       goto end;
 6590:     }
 6591:     else{
 6592:       if (model[0]=='+'){
 6593: 	for(i=1; i<=strlen(model);i++)
 6594: 	  modeltemp[i-1]=model[i];
 6595:       }
 6596:       strcpy(model,modeltemp); 
 6597:     }
 6598:     /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
 6599:   }
 6600:   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
 6601:   /* numlinepar=numlinepar+3; /\* In general *\/ */
 6602:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
 6603:   if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
 6604:     model[strlen(model)-1]='\0';
 6605:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6606:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 6607:   fflush(ficlog);
 6608:   /* if(model[0]=='#'|| model[0]== '\0'){ */
 6609:   if(model[0]=='#'){
 6610:     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
 6611:  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
 6612:  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");		\
 6613:     if(mle != -1){
 6614:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
 6615:       exit(1);
 6616:     }
 6617:   }
 6618:   while((c=getc(ficpar))=='#' && c!= EOF){
 6619:     ungetc(c,ficpar);
 6620:     fgets(line, MAXLINE, ficpar);
 6621:     numlinepar++;
 6622:     if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
 6623:       z[0]=line[1];
 6624:     }
 6625:     /* printf("****line [1] = %c \n",line[1]); */
 6626:     fputs(line, stdout);
 6627:     //puts(line);
 6628:     fputs(line,ficparo);
 6629:     fputs(line,ficlog);
 6630:   }
 6631:   ungetc(c,ficpar);
 6632: 
 6633:    
 6634:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
 6635:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
 6636:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
 6637:      v1+v2*age+v2*v3 makes cptcovn = 3
 6638:   */
 6639:   if (strlen(model)>1) 
 6640:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
 6641:   else
 6642:     ncovmodel=2; /* Constant and age */
 6643:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
 6644:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
 6645:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
 6646:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6647:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
 6648:     fflush(stdout);
 6649:     fclose (ficlog);
 6650:     goto end;
 6651:   }
 6652:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6653:   delti=delti3[1][1];
 6654:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 6655:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 6656:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6657:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6658:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 6659:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 6660:     fclose (ficparo);
 6661:     fclose (ficlog);
 6662:     goto end;
 6663:     exit(0);
 6664:   }
 6665:   else if(mle==-3) { /* Main Wizard */
 6666:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 6667:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6668:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
 6669:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6670:     matcov=matrix(1,npar,1,npar);
 6671:   }
 6672:   else{
 6673:     /* Read guessed parameters */
 6674:     /* Reads comments: lines beginning with '#' */
 6675:     while((c=getc(ficpar))=='#' && c!= EOF){
 6676:       ungetc(c,ficpar);
 6677:       fgets(line, MAXLINE, ficpar);
 6678:       numlinepar++;
 6679:       fputs(line,stdout);
 6680:       fputs(line,ficparo);
 6681:       fputs(line,ficlog);
 6682:     }
 6683:     ungetc(c,ficpar);
 6684:     
 6685:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 6686:     for(i=1; i <=nlstate; i++){
 6687:       j=0;
 6688:       for(jj=1; jj <=nlstate+ndeath; jj++){
 6689: 	if(jj==i) continue;
 6690: 	j++;
 6691: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6692: 	if ((i1 != i) || (j1 != jj)){
 6693: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 6694: It might be a problem of design; if ncovcol and the model are correct\n \
 6695: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
 6696: 	  exit(1);
 6697: 	}
 6698: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6699: 	if(mle==1)
 6700: 	  printf("%1d%1d",i,jj);
 6701: 	fprintf(ficlog,"%1d%1d",i,jj);
 6702: 	for(k=1; k<=ncovmodel;k++){
 6703: 	  fscanf(ficpar," %lf",&param[i][j][k]);
 6704: 	  if(mle==1){
 6705: 	    printf(" %lf",param[i][j][k]);
 6706: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6707: 	  }
 6708: 	  else
 6709: 	    fprintf(ficlog," %lf",param[i][j][k]);
 6710: 	  fprintf(ficparo," %lf",param[i][j][k]);
 6711: 	}
 6712: 	fscanf(ficpar,"\n");
 6713: 	numlinepar++;
 6714: 	if(mle==1)
 6715: 	  printf("\n");
 6716: 	fprintf(ficlog,"\n");
 6717: 	fprintf(ficparo,"\n");
 6718:       }
 6719:     }  
 6720:     fflush(ficlog);
 6721: 
 6722:     /* Reads scales values */
 6723:     p=param[1][1];
 6724:     
 6725:     /* Reads comments: lines beginning with '#' */
 6726:     while((c=getc(ficpar))=='#' && c!= EOF){
 6727:       ungetc(c,ficpar);
 6728:       fgets(line, MAXLINE, ficpar);
 6729:       numlinepar++;
 6730:       fputs(line,stdout);
 6731:       fputs(line,ficparo);
 6732:       fputs(line,ficlog);
 6733:     }
 6734:     ungetc(c,ficpar);
 6735: 
 6736:     for(i=1; i <=nlstate; i++){
 6737:       for(j=1; j <=nlstate+ndeath-1; j++){
 6738: 	fscanf(ficpar,"%1d%1d",&i1,&j1);
 6739: 	if ( (i1-i) * (j1-j) != 0){
 6740: 	  printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 6741: 	  exit(1);
 6742: 	}
 6743: 	printf("%1d%1d",i,j);
 6744: 	fprintf(ficparo,"%1d%1d",i1,j1);
 6745: 	fprintf(ficlog,"%1d%1d",i1,j1);
 6746: 	for(k=1; k<=ncovmodel;k++){
 6747: 	  fscanf(ficpar,"%le",&delti3[i][j][k]);
 6748: 	  printf(" %le",delti3[i][j][k]);
 6749: 	  fprintf(ficparo," %le",delti3[i][j][k]);
 6750: 	  fprintf(ficlog," %le",delti3[i][j][k]);
 6751: 	}
 6752: 	fscanf(ficpar,"\n");
 6753: 	numlinepar++;
 6754: 	printf("\n");
 6755: 	fprintf(ficparo,"\n");
 6756: 	fprintf(ficlog,"\n");
 6757:       }
 6758:     }
 6759:     fflush(ficlog);
 6760: 
 6761:     /* Reads covariance matrix */
 6762:     delti=delti3[1][1];
 6763: 
 6764: 
 6765:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 6766:   
 6767:     /* Reads comments: lines beginning with '#' */
 6768:     while((c=getc(ficpar))=='#' && c!= EOF){
 6769:       ungetc(c,ficpar);
 6770:       fgets(line, MAXLINE, ficpar);
 6771:       numlinepar++;
 6772:       fputs(line,stdout);
 6773:       fputs(line,ficparo);
 6774:       fputs(line,ficlog);
 6775:     }
 6776:     ungetc(c,ficpar);
 6777:   
 6778:     matcov=matrix(1,npar,1,npar);
 6779:     for(i=1; i <=npar; i++)
 6780:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
 6781:       
 6782:     /* Scans npar lines */
 6783:     for(i=1; i <=npar; i++){
 6784:       count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
 6785:       if(count != 3){
 6786: 	printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
 6787: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
 6788: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
 6789: 	fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
 6790: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
 6791: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
 6792: 	exit(1);
 6793:       }else
 6794:       if(mle==1)
 6795: 	printf("%1d%1d%1d",i1,j1,jk);
 6796:       fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
 6797:       fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
 6798:       for(j=1; j <=i; j++){
 6799: 	fscanf(ficpar," %le",&matcov[i][j]);
 6800: 	if(mle==1){
 6801: 	  printf(" %.5le",matcov[i][j]);
 6802: 	}
 6803: 	fprintf(ficlog," %.5le",matcov[i][j]);
 6804: 	fprintf(ficparo," %.5le",matcov[i][j]);
 6805:       }
 6806:       fscanf(ficpar,"\n");
 6807:       numlinepar++;
 6808:       if(mle==1)
 6809: 	printf("\n");
 6810:       fprintf(ficlog,"\n");
 6811:       fprintf(ficparo,"\n");
 6812:     }
 6813:     /* End of read covariance matrix npar lines */
 6814:     for(i=1; i <=npar; i++)
 6815:       for(j=i+1;j<=npar;j++)
 6816: 	matcov[i][j]=matcov[j][i];
 6817:     
 6818:     if(mle==1)
 6819:       printf("\n");
 6820:     fprintf(ficlog,"\n");
 6821:     
 6822:     fflush(ficlog);
 6823:     
 6824:     /*-------- Rewriting parameter file ----------*/
 6825:     strcpy(rfileres,"r");    /* "Rparameterfile */
 6826:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 6827:     strcat(rfileres,".");    /* */
 6828:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
 6829:     if((ficres =fopen(rfileres,"w"))==NULL) {
 6830:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 6831:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 6832:     }
 6833:     fprintf(ficres,"#%s\n",version);
 6834:   }    /* End of mle != -3 */
 6835: 
 6836:   /*  Main data
 6837:    */
 6838:   n= lastobs;
 6839:   num=lvector(1,n);
 6840:   moisnais=vector(1,n);
 6841:   annais=vector(1,n);
 6842:   moisdc=vector(1,n);
 6843:   andc=vector(1,n);
 6844:   agedc=vector(1,n);
 6845:   cod=ivector(1,n);
 6846:   weight=vector(1,n);
 6847:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 6848:   mint=matrix(1,maxwav,1,n);
 6849:   anint=matrix(1,maxwav,1,n);
 6850:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
 6851:   tab=ivector(1,NCOVMAX);
 6852:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6853:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
 6854: 
 6855:   /* Reads data from file datafile */
 6856:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
 6857:     goto end;
 6858: 
 6859:   /* Calculation of the number of parameters from char model */
 6860:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
 6861: 	k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
 6862: 	k=3 V4 Tvar[k=3]= 4 (from V4)
 6863: 	k=2 V1 Tvar[k=2]= 1 (from V1)
 6864: 	k=1 Tvar[1]=2 (from V2)
 6865:     */
 6866:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
 6867:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
 6868:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
 6869:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
 6870:   */
 6871:   /* For model-covariate k tells which data-covariate to use but
 6872:     because this model-covariate is a construction we invent a new column
 6873:     ncovcol + k1
 6874:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
 6875:     Tvar[3=V1*V4]=4+1 etc */
 6876:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
 6877:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
 6878:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 6879:   */
 6880:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
 6881:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
 6882: 			    * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
 6883: 			    * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
 6884:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
 6885: 			 4 covariates (3 plus signs)
 6886: 			 Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
 6887: 		      */  
 6888: 
 6889: /* Main decodemodel */
 6890: 
 6891: 
 6892:   if(decodemodel(model, lastobs) == 1)
 6893:     goto end;
 6894: 
 6895:   if((double)(lastobs-imx)/(double)imx > 1.10){
 6896:     nbwarn++;
 6897:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6898:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
 6899:   }
 6900:     /*  if(mle==1){*/
 6901:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
 6902:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
 6903:   }
 6904: 
 6905:     /*-calculation of age at interview from date of interview and age at death -*/
 6906:   agev=matrix(1,maxwav,1,imx);
 6907: 
 6908:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
 6909:     goto end;
 6910: 
 6911: 
 6912:   agegomp=(int)agemin;
 6913:   free_vector(moisnais,1,n);
 6914:   free_vector(annais,1,n);
 6915:   /* free_matrix(mint,1,maxwav,1,n);
 6916:      free_matrix(anint,1,maxwav,1,n);*/
 6917:   free_vector(moisdc,1,n);
 6918:   free_vector(andc,1,n);
 6919:   /* */
 6920:   
 6921:   wav=ivector(1,imx);
 6922:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 6923:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 6924:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 6925:    
 6926:   /* Concatenates waves */
 6927:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 6928:   /* */
 6929:  
 6930:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 6931: 
 6932:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 6933:   ncodemax[1]=1;
 6934:   Ndum =ivector(-1,NCOVMAX);  
 6935:   if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
 6936:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
 6937:   /* Nbcode gives the value of the lth modality of jth covariate, in
 6938:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
 6939:   /* 1 to ncodemax[j] is the maximum value of this jth covariate */
 6940: 
 6941:   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
 6942:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
 6943:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
 6944:   h=0;
 6945: 
 6946: 
 6947:   /*if (cptcovn > 0) */
 6948:       
 6949:  
 6950:   m=pow(2,cptcoveff);
 6951:  
 6952: 	  /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
 6953: 	   * For k=4 covariates, h goes from 1 to 2**k
 6954: 	   * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
 6955: 	   *     h\k   1     2     3     4
 6956: 	   *______________________________  
 6957: 	   *     1 i=1 1 i=1 1 i=1 1 i=1 1
 6958: 	   *     2     2     1     1     1
 6959: 	   *     3 i=2 1     2     1     1
 6960: 	   *     4     2     2     1     1
 6961: 	   *     5 i=3 1 i=2 1     2     1
 6962: 	   *     6     2     1     2     1
 6963: 	   *     7 i=4 1     2     2     1
 6964: 	   *     8     2     2     2     1
 6965: 	   *     9 i=5 1 i=3 1 i=2 1     2
 6966: 	   *    10     2     1     1     2
 6967: 	   *    11 i=6 1     2     1     2
 6968: 	   *    12     2     2     1     2
 6969: 	   *    13 i=7 1 i=4 1     2     2    
 6970: 	   *    14     2     1     2     2
 6971: 	   *    15 i=8 1     2     2     2
 6972: 	   *    16     2     2     2     2
 6973: 	   */
 6974:   for(h=1; h <=100 ;h++){ 
 6975:     /* printf("h=%2d ", h); */
 6976:      /* for(k=1; k <=10; k++){ */
 6977:        /* printf("k=%d %d ",k,codtabm(h,k)); */
 6978:      /*   codtab[h][k]=codtabm(h,k); */
 6979:      /* } */
 6980:      /* printf("\n"); */
 6981:   }
 6982:   /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
 6983:   /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
 6984:   /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
 6985:   /* 	for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
 6986:   /* 	  h++; */
 6987:   /* 	  if (h>m)  */
 6988:   /* 	    h=1; */
 6989:   /* 	  codtab[h][k]=j; */
 6990:   /* 	  /\* codtab[12][3]=1; *\/ */
 6991:   /* 	  /\*codtab[h][Tvar[k]]=j;*\/ */
 6992:   /* 	  /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
 6993:   /* 	}  */
 6994:   /*     } */
 6995:   /*   } */
 6996:   /* }  */
 6997:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 6998:      codtab[1][2]=1;codtab[2][2]=2; */
 6999:   /* for(i=1; i <=m ;i++){  */
 7000:   /*    for(k=1; k <=cptcovn; k++){ */
 7001:   /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
 7002:   /*    } */
 7003:   /*    printf("\n"); */
 7004:   /* } */
 7005:   /*   scanf("%d",i);*/
 7006: 
 7007:  free_ivector(Ndum,-1,NCOVMAX);
 7008: 
 7009: 
 7010:     
 7011:   /* Initialisation of ----------- gnuplot -------------*/
 7012:   strcpy(optionfilegnuplot,optionfilefiname);
 7013:   if(mle==-3)
 7014:     strcat(optionfilegnuplot,"-mort");
 7015:   strcat(optionfilegnuplot,".gp");
 7016: 
 7017:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 7018:     printf("Problem with file %s",optionfilegnuplot);
 7019:   }
 7020:   else{
 7021:     fprintf(ficgp,"\n# %s\n", version); 
 7022:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 7023:     //fprintf(ficgp,"set missing 'NaNq'\n");
 7024:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
 7025:   }
 7026:   /*  fclose(ficgp);*/
 7027: 
 7028: 
 7029:   /* Initialisation of --------- index.htm --------*/
 7030: 
 7031:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 7032:   if(mle==-3)
 7033:     strcat(optionfilehtm,"-mort");
 7034:   strcat(optionfilehtm,".htm");
 7035:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 7036:     printf("Problem with %s \n",optionfilehtm);
 7037:     exit(0);
 7038:   }
 7039: 
 7040:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 7041:   strcat(optionfilehtmcov,"-cov.htm");
 7042:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 7043:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 7044:   }
 7045:   else{
 7046:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 7047: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 7048: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 7049: 	  optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 7050:   }
 7051: 
 7052:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 7053: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 7054: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 7055: \n\
 7056: <hr  size=\"2\" color=\"#EC5E5E\">\
 7057:  <ul><li><h4>Parameter files</h4>\n\
 7058:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
 7059:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 7060:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 7061:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 7062:  - Date and time at start: %s</ul>\n",\
 7063: 	  optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 7064: 	  optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
 7065: 	  fileres,fileres,\
 7066: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 7067:   fflush(fichtm);
 7068: 
 7069:   strcpy(pathr,path);
 7070:   strcat(pathr,optionfilefiname);
 7071: #ifdef WIN32
 7072:   _chdir(optionfilefiname); /* Move to directory named optionfile */
 7073: #else
 7074:   chdir(optionfilefiname); /* Move to directory named optionfile */
 7075: #endif
 7076: 	  
 7077:   
 7078:   /* Calculates basic frequencies. Computes observed prevalence at single age
 7079:      and prints on file fileres'p'. */
 7080:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
 7081: 
 7082:   fprintf(fichtm,"\n");
 7083:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 7084: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 7085: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 7086: 	  imx,agemin,agemax,jmin,jmax,jmean);
 7087:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 7088:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 7089:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 7090:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 7091:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 7092:     
 7093:    
 7094:   /* For Powell, parameters are in a vector p[] starting at p[1]
 7095:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 7096:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 7097: 
 7098:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 7099:   /* For mortality only */
 7100:   if (mle==-3){
 7101:     ximort=matrix(1,NDIM,1,NDIM); 
 7102:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 7103:     cens=ivector(1,n);
 7104:     ageexmed=vector(1,n);
 7105:     agecens=vector(1,n);
 7106:     dcwave=ivector(1,n);
 7107:  
 7108:     for (i=1; i<=imx; i++){
 7109:       dcwave[i]=-1;
 7110:       for (m=firstpass; m<=lastpass; m++)
 7111: 	if (s[m][i]>nlstate) {
 7112: 	  dcwave[i]=m;
 7113: 	  /*	printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
 7114: 	  break;
 7115: 	}
 7116:     }
 7117: 
 7118:     for (i=1; i<=imx; i++) {
 7119:       if (wav[i]>0){
 7120: 	ageexmed[i]=agev[mw[1][i]][i];
 7121: 	j=wav[i];
 7122: 	agecens[i]=1.; 
 7123: 
 7124: 	if (ageexmed[i]> 1 && wav[i] > 0){
 7125: 	  agecens[i]=agev[mw[j][i]][i];
 7126: 	  cens[i]= 1;
 7127: 	}else if (ageexmed[i]< 1) 
 7128: 	  cens[i]= -1;
 7129: 	if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
 7130: 	  cens[i]=0 ;
 7131:       }
 7132:       else cens[i]=-1;
 7133:     }
 7134:     
 7135:     for (i=1;i<=NDIM;i++) {
 7136:       for (j=1;j<=NDIM;j++)
 7137: 	ximort[i][j]=(i == j ? 1.0 : 0.0);
 7138:     }
 7139:     
 7140:     /*p[1]=0.0268; p[NDIM]=0.083;*/
 7141:     /*printf("%lf %lf", p[1], p[2]);*/
 7142:     
 7143:     
 7144: #ifdef GSL
 7145:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
 7146: #else
 7147:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 7148: #endif
 7149:     strcpy(filerespow,"pow-mort"); 
 7150:     strcat(filerespow,fileres);
 7151:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 7152:       printf("Problem with resultfile: %s\n", filerespow);
 7153:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 7154:     }
 7155: #ifdef GSL
 7156:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
 7157: #else
 7158:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 7159: #endif
 7160:     /*  for (i=1;i<=nlstate;i++)
 7161: 	for(j=1;j<=nlstate+ndeath;j++)
 7162: 	if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 7163:     */
 7164:     fprintf(ficrespow,"\n");
 7165: #ifdef GSL
 7166:     /* gsl starts here */ 
 7167:     T = gsl_multimin_fminimizer_nmsimplex;
 7168:     gsl_multimin_fminimizer *sfm = NULL;
 7169:     gsl_vector *ss, *x;
 7170:     gsl_multimin_function minex_func;
 7171: 
 7172:     /* Initial vertex size vector */
 7173:     ss = gsl_vector_alloc (NDIM);
 7174:     
 7175:     if (ss == NULL){
 7176:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
 7177:     }
 7178:     /* Set all step sizes to 1 */
 7179:     gsl_vector_set_all (ss, 0.001);
 7180: 
 7181:     /* Starting point */
 7182:     
 7183:     x = gsl_vector_alloc (NDIM);
 7184:     
 7185:     if (x == NULL){
 7186:       gsl_vector_free(ss);
 7187:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
 7188:     }
 7189:   
 7190:     /* Initialize method and iterate */
 7191:     /*     p[1]=0.0268; p[NDIM]=0.083; */
 7192:     /*     gsl_vector_set(x, 0, 0.0268); */
 7193:     /*     gsl_vector_set(x, 1, 0.083); */
 7194:     gsl_vector_set(x, 0, p[1]);
 7195:     gsl_vector_set(x, 1, p[2]);
 7196: 
 7197:     minex_func.f = &gompertz_f;
 7198:     minex_func.n = NDIM;
 7199:     minex_func.params = (void *)&p; /* ??? */
 7200:     
 7201:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
 7202:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
 7203:     
 7204:     printf("Iterations beginning .....\n\n");
 7205:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
 7206: 
 7207:     iteri=0;
 7208:     while (rval == GSL_CONTINUE){
 7209:       iteri++;
 7210:       status = gsl_multimin_fminimizer_iterate(sfm);
 7211:       
 7212:       if (status) printf("error: %s\n", gsl_strerror (status));
 7213:       fflush(0);
 7214:       
 7215:       if (status) 
 7216:         break;
 7217:       
 7218:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
 7219:       ssval = gsl_multimin_fminimizer_size (sfm);
 7220:       
 7221:       if (rval == GSL_SUCCESS)
 7222:         printf ("converged to a local maximum at\n");
 7223:       
 7224:       printf("%5d ", iteri);
 7225:       for (it = 0; it < NDIM; it++){
 7226: 	printf ("%10.5f ", gsl_vector_get (sfm->x, it));
 7227:       }
 7228:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
 7229:     }
 7230:     
 7231:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
 7232:     
 7233:     gsl_vector_free(x); /* initial values */
 7234:     gsl_vector_free(ss); /* inital step size */
 7235:     for (it=0; it<NDIM; it++){
 7236:       p[it+1]=gsl_vector_get(sfm->x,it);
 7237:       fprintf(ficrespow," %.12lf", p[it]);
 7238:     }
 7239:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
 7240: #endif
 7241: #ifdef POWELL
 7242:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
 7243: #endif  
 7244:     fclose(ficrespow);
 7245:     
 7246:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
 7247: 
 7248:     for(i=1; i <=NDIM; i++)
 7249:       for(j=i+1;j<=NDIM;j++)
 7250: 	matcov[i][j]=matcov[j][i];
 7251:     
 7252:     printf("\nCovariance matrix\n ");
 7253:     for(i=1; i <=NDIM; i++) {
 7254:       for(j=1;j<=NDIM;j++){ 
 7255: 	printf("%f ",matcov[i][j]);
 7256:       }
 7257:       printf("\n ");
 7258:     }
 7259:     
 7260:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
 7261:     for (i=1;i<=NDIM;i++) {
 7262:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 7263:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 7264:     }
 7265:     lsurv=vector(1,AGESUP);
 7266:     lpop=vector(1,AGESUP);
 7267:     tpop=vector(1,AGESUP);
 7268:     lsurv[agegomp]=100000;
 7269:     
 7270:     for (k=agegomp;k<=AGESUP;k++) {
 7271:       agemortsup=k;
 7272:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
 7273:     }
 7274:     
 7275:     for (k=agegomp;k<agemortsup;k++)
 7276:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
 7277:     
 7278:     for (k=agegomp;k<agemortsup;k++){
 7279:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
 7280:       sumlpop=sumlpop+lpop[k];
 7281:     }
 7282:     
 7283:     tpop[agegomp]=sumlpop;
 7284:     for (k=agegomp;k<(agemortsup-3);k++){
 7285:       /*  tpop[k+1]=2;*/
 7286:       tpop[k+1]=tpop[k]-lpop[k];
 7287:     }
 7288:     
 7289:     
 7290:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
 7291:     for (k=agegomp;k<(agemortsup-2);k++) 
 7292:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
 7293:     
 7294:     
 7295:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7296:     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
 7297:       	printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 7298: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 7299: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
 7300:       	fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 7301: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 7302: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
 7303:     }else
 7304:       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7305:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
 7306: 		     stepm, weightopt,\
 7307: 		     model,imx,p,matcov,agemortsup);
 7308:     
 7309:     free_vector(lsurv,1,AGESUP);
 7310:     free_vector(lpop,1,AGESUP);
 7311:     free_vector(tpop,1,AGESUP);
 7312: #ifdef GSL
 7313:     free_ivector(cens,1,n);
 7314:     free_vector(agecens,1,n);
 7315:     free_ivector(dcwave,1,n);
 7316:     free_matrix(ximort,1,NDIM,1,NDIM);
 7317: #endif
 7318:   } /* Endof if mle==-3 mortality only */
 7319:   /* Standard maximisation */
 7320:   else{ /* For mle >=1 */
 7321:     globpr=0;/* debug */
 7322:     /* Computes likelihood for initial parameters */
 7323:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 7324:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 7325:     for (k=1; k<=npar;k++)
 7326:       printf(" %d %8.5f",k,p[k]);
 7327:     printf("\n");
 7328:     globpr=1; /* again, to print the contributions */
 7329:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 7330:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 7331:     for (k=1; k<=npar;k++)
 7332:       printf(" %d %8.5f",k,p[k]);
 7333:     printf("\n");
 7334:     if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
 7335:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 7336:     }
 7337:     
 7338:     /*--------- results files --------------*/
 7339:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 7340:     
 7341:     
 7342:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7343:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7344:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 7345:     for(i=1,jk=1; i <=nlstate; i++){
 7346:       for(k=1; k <=(nlstate+ndeath); k++){
 7347: 	if (k != i) {
 7348: 	  printf("%d%d ",i,k);
 7349: 	  fprintf(ficlog,"%d%d ",i,k);
 7350: 	  fprintf(ficres,"%1d%1d ",i,k);
 7351: 	  for(j=1; j <=ncovmodel; j++){
 7352: 	    printf("%12.7f ",p[jk]);
 7353: 	    fprintf(ficlog,"%12.7f ",p[jk]);
 7354: 	    fprintf(ficres,"%12.7f ",p[jk]);
 7355: 	    jk++; 
 7356: 	  }
 7357: 	  printf("\n");
 7358: 	  fprintf(ficlog,"\n");
 7359: 	  fprintf(ficres,"\n");
 7360: 	}
 7361:       }
 7362:     }
 7363:     if(mle!=0){
 7364:       /* Computing hessian and covariance matrix */
 7365:       ftolhess=ftol; /* Usually correct */
 7366:       hesscov(matcov, p, npar, delti, ftolhess, func);
 7367:     }
 7368:     printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
 7369:     fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
 7370:     for(i=1,jk=1; i <=nlstate; i++){
 7371:       for(k=1; k <=(nlstate+ndeath); k++){
 7372: 	if (k != i) {
 7373: 	  printf("%d%d ",i,k);
 7374: 	  fprintf(ficlog,"%d%d ",i,k);
 7375: 	  for(j=1; j <=ncovmodel; j++){
 7376: 	    printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
 7377: 	    fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
 7378: 	    jk++; 
 7379: 	  }
 7380: 	  printf("\n");
 7381: 	  fprintf(ficlog,"\n");
 7382: 	}
 7383:       }
 7384:     }
 7385: 
 7386:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 7387:     printf("# Scales (for hessian or gradient estimation)\n");
 7388:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 7389:     for(i=1,jk=1; i <=nlstate; i++){
 7390:       for(j=1; j <=nlstate+ndeath; j++){
 7391: 	if (j!=i) {
 7392: 	  fprintf(ficres,"%1d%1d",i,j);
 7393: 	  printf("%1d%1d",i,j);
 7394: 	  fprintf(ficlog,"%1d%1d",i,j);
 7395: 	  for(k=1; k<=ncovmodel;k++){
 7396: 	    printf(" %.5e",delti[jk]);
 7397: 	    fprintf(ficlog," %.5e",delti[jk]);
 7398: 	    fprintf(ficres," %.5e",delti[jk]);
 7399: 	    jk++;
 7400: 	  }
 7401: 	  printf("\n");
 7402: 	  fprintf(ficlog,"\n");
 7403: 	  fprintf(ficres,"\n");
 7404: 	}
 7405:       }
 7406:     }
 7407:     
 7408:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7409:     if(mle>=1)
 7410:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7411:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 7412:     /* # 121 Var(a12)\n\ */
 7413:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 7414:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 7415:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 7416:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 7417:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 7418:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 7419:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 7420:     
 7421:     
 7422:     /* Just to have a covariance matrix which will be more understandable
 7423:        even is we still don't want to manage dictionary of variables
 7424:     */
 7425:     for(itimes=1;itimes<=2;itimes++){
 7426:       jj=0;
 7427:       for(i=1; i <=nlstate; i++){
 7428: 	for(j=1; j <=nlstate+ndeath; j++){
 7429: 	  if(j==i) continue;
 7430: 	  for(k=1; k<=ncovmodel;k++){
 7431: 	    jj++;
 7432: 	    ca[0]= k+'a'-1;ca[1]='\0';
 7433: 	    if(itimes==1){
 7434: 	      if(mle>=1)
 7435: 		printf("#%1d%1d%d",i,j,k);
 7436: 	      fprintf(ficlog,"#%1d%1d%d",i,j,k);
 7437: 	      fprintf(ficres,"#%1d%1d%d",i,j,k);
 7438: 	    }else{
 7439: 	      if(mle>=1)
 7440: 		printf("%1d%1d%d",i,j,k);
 7441: 	      fprintf(ficlog,"%1d%1d%d",i,j,k);
 7442: 	      fprintf(ficres,"%1d%1d%d",i,j,k);
 7443: 	    }
 7444: 	    ll=0;
 7445: 	    for(li=1;li <=nlstate; li++){
 7446: 	      for(lj=1;lj <=nlstate+ndeath; lj++){
 7447: 		if(lj==li) continue;
 7448: 		for(lk=1;lk<=ncovmodel;lk++){
 7449: 		  ll++;
 7450: 		  if(ll<=jj){
 7451: 		    cb[0]= lk +'a'-1;cb[1]='\0';
 7452: 		    if(ll<jj){
 7453: 		      if(itimes==1){
 7454: 			if(mle>=1)
 7455: 			  printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7456: 			fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7457: 			fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 7458: 		      }else{
 7459: 			if(mle>=1)
 7460: 			  printf(" %.5e",matcov[jj][ll]); 
 7461: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7462: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7463: 		      }
 7464: 		    }else{
 7465: 		      if(itimes==1){
 7466: 			if(mle>=1)
 7467: 			  printf(" Var(%s%1d%1d)",ca,i,j);
 7468: 			fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
 7469: 			fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
 7470: 		      }else{
 7471: 			if(mle>=1)
 7472: 			  printf(" %.5e",matcov[jj][ll]); 
 7473: 			fprintf(ficlog," %.5e",matcov[jj][ll]); 
 7474: 			fprintf(ficres," %.5e",matcov[jj][ll]); 
 7475: 		      }
 7476: 		    }
 7477: 		  }
 7478: 		} /* end lk */
 7479: 	      } /* end lj */
 7480: 	    } /* end li */
 7481: 	    if(mle>=1)
 7482: 	      printf("\n");
 7483: 	    fprintf(ficlog,"\n");
 7484: 	    fprintf(ficres,"\n");
 7485: 	    numlinepar++;
 7486: 	  } /* end k*/
 7487: 	} /*end j */
 7488:       } /* end i */
 7489:     } /* end itimes */
 7490:     
 7491:     fflush(ficlog);
 7492:     fflush(ficres);
 7493:     
 7494:     while((c=getc(ficpar))=='#' && c!= EOF){
 7495:       ungetc(c,ficpar);
 7496:       fgets(line, MAXLINE, ficpar);
 7497:       fputs(line,stdout);
 7498:       fputs(line,ficparo);
 7499:     }
 7500:     ungetc(c,ficpar);
 7501:     
 7502:     estepm=0;
 7503:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 7504:     if (estepm==0 || estepm < stepm) estepm=stepm;
 7505:     if (fage <= 2) {
 7506:       bage = ageminpar;
 7507:       fage = agemaxpar;
 7508:     }
 7509:     
 7510:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 7511:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7512:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 7513: 
 7514:     /* Other stuffs, more or less useful */    
 7515:     while((c=getc(ficpar))=='#' && c!= EOF){
 7516:       ungetc(c,ficpar);
 7517:       fgets(line, MAXLINE, ficpar);
 7518:       fputs(line,stdout);
 7519:       fputs(line,ficparo);
 7520:     }
 7521:     ungetc(c,ficpar);
 7522:     
 7523:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 7524:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7525:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7526:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7527:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 7528:     
 7529:     while((c=getc(ficpar))=='#' && c!= EOF){
 7530:       ungetc(c,ficpar);
 7531:       fgets(line, MAXLINE, ficpar);
 7532:       fputs(line,stdout);
 7533:       fputs(line,ficparo);
 7534:     }
 7535:     ungetc(c,ficpar);
 7536:     
 7537:     
 7538:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 7539:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 7540:     
 7541:     fscanf(ficpar,"pop_based=%d\n",&popbased);
 7542:     fprintf(ficlog,"pop_based=%d\n",popbased);
 7543:     fprintf(ficparo,"pop_based=%d\n",popbased);   
 7544:     fprintf(ficres,"pop_based=%d\n",popbased);   
 7545:     
 7546:     while((c=getc(ficpar))=='#' && c!= EOF){
 7547:       ungetc(c,ficpar);
 7548:       fgets(line, MAXLINE, ficpar);
 7549:       fputs(line,stdout);
 7550:       fputs(line,ficparo);
 7551:     }
 7552:     ungetc(c,ficpar);
 7553:     
 7554:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 7555:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7556:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7557:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7558:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 7559:     /* day and month of proj2 are not used but only year anproj2.*/
 7560:     
 7561:     
 7562:     
 7563:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
 7564:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
 7565:     
 7566:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
 7567:     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
 7568:       	printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 7569: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 7570: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
 7571:       	fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 7572: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 7573: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
 7574:     }else
 7575:       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 7576:     
 7577:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 7578: 		 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 7579: 		 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 7580:       
 7581:    /*------------ free_vector  -------------*/
 7582:    /*  chdir(path); */
 7583:  
 7584:     free_ivector(wav,1,imx);
 7585:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 7586:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 7587:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 7588:     free_lvector(num,1,n);
 7589:     free_vector(agedc,1,n);
 7590:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
 7591:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
 7592:     fclose(ficparo);
 7593:     fclose(ficres);
 7594: 
 7595: 
 7596:     /* Other results (useful)*/
 7597: 
 7598: 
 7599:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
 7600:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
 7601:     prlim=matrix(1,nlstate,1,nlstate);
 7602:     prevalence_limit(p, prlim,  ageminpar, agemaxpar);
 7603:     fclose(ficrespl);
 7604: 
 7605: #ifdef FREEEXIT2
 7606: #include "freeexit2.h"
 7607: #endif
 7608: 
 7609:     /*------------- h Pij x at various ages ------------*/
 7610:     /*#include "hpijx.h"*/
 7611:     hPijx(p, bage, fage);
 7612:     fclose(ficrespij);
 7613: 
 7614:   /*-------------- Variance of one-step probabilities---*/
 7615:     k=1;
 7616:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 7617: 
 7618: 
 7619:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7620:     for(i=1;i<=AGESUP;i++)
 7621:       for(j=1;j<=NCOVMAX;j++)
 7622: 	for(k=1;k<=NCOVMAX;k++)
 7623: 	  probs[i][j][k]=0.;
 7624: 
 7625:     /*---------- Forecasting ------------------*/
 7626:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 7627:     if(prevfcast==1){
 7628:       /*    if(stepm ==1){*/
 7629:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 7630:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 7631:       /*      }  */
 7632:       /*      else{ */
 7633:       /*        erreur=108; */
 7634:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7635:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 7636:       /*      } */
 7637:     }
 7638:  
 7639:     /* ------ Other prevalence ratios------------ */
 7640: 
 7641:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 7642: 
 7643:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 7644:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 7645: 	ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 7646:     */
 7647: 
 7648:     if (mobilav!=0) {
 7649:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7650:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 7651: 	fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 7652: 	printf(" Error in movingaverage mobilav=%d\n",mobilav);
 7653:       }
 7654:     }
 7655: 
 7656: 
 7657:     /*---------- Health expectancies, no variances ------------*/
 7658: 
 7659:     strcpy(filerese,"e");
 7660:     strcat(filerese,fileres);
 7661:     if((ficreseij=fopen(filerese,"w"))==NULL) {
 7662:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7663:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 7664:     }
 7665:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 7666:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 7667:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7668:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7669:           
 7670:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7671: 	fprintf(ficreseij,"\n#****** ");
 7672: 	for(j=1;j<=cptcoveff;j++) {
 7673: 	  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7674: 	}
 7675: 	fprintf(ficreseij,"******\n");
 7676: 
 7677: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7678: 	oldm=oldms;savm=savms;
 7679: 	evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
 7680:       
 7681: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7682:       /*}*/
 7683:     }
 7684:     fclose(ficreseij);
 7685: 
 7686: 
 7687:     /*---------- Health expectancies and variances ------------*/
 7688: 
 7689: 
 7690:     strcpy(filerest,"t");
 7691:     strcat(filerest,fileres);
 7692:     if((ficrest=fopen(filerest,"w"))==NULL) {
 7693:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 7694:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 7695:     }
 7696:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7697:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
 7698: 
 7699: 
 7700:     strcpy(fileresstde,"stde");
 7701:     strcat(fileresstde,fileres);
 7702:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
 7703:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7704:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
 7705:     }
 7706:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7707:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 7708: 
 7709:     strcpy(filerescve,"cve");
 7710:     strcat(filerescve,fileres);
 7711:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
 7712:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7713:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
 7714:     }
 7715:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7716:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
 7717: 
 7718:     strcpy(fileresv,"v");
 7719:     strcat(fileresv,fileres);
 7720:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
 7721:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 7722:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 7723:     }
 7724:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7725:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 7726: 
 7727:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7728:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7729:           
 7730:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7731:     	fprintf(ficrest,"\n#****** ");
 7732: 	for(j=1;j<=cptcoveff;j++) 
 7733: 	  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7734: 	fprintf(ficrest,"******\n");
 7735: 
 7736: 	fprintf(ficresstdeij,"\n#****** ");
 7737: 	fprintf(ficrescveij,"\n#****** ");
 7738: 	for(j=1;j<=cptcoveff;j++) {
 7739: 	  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7740: 	  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7741: 	}
 7742: 	fprintf(ficresstdeij,"******\n");
 7743: 	fprintf(ficrescveij,"******\n");
 7744: 
 7745: 	fprintf(ficresvij,"\n#****** ");
 7746: 	for(j=1;j<=cptcoveff;j++) 
 7747: 	  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7748: 	fprintf(ficresvij,"******\n");
 7749: 
 7750: 	eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7751: 	oldm=oldms;savm=savms;
 7752: 	cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
 7753: 	/*
 7754: 	 */
 7755: 	/* goto endfree; */
 7756:  
 7757: 	vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 7758: 	pstamp(ficrest);
 7759: 
 7760: 
 7761: 	for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
 7762: 	  oldm=oldms;savm=savms; /* ZZ Segmentation fault */
 7763: 	  cptcod= 0; /* To be deleted */
 7764: 	  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
 7765: 	  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
 7766: 	  if(vpopbased==1)
 7767: 	    fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
 7768: 	  else
 7769: 	    fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
 7770: 	  fprintf(ficrest,"# Age e.. (std) ");
 7771: 	  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 7772: 	  fprintf(ficrest,"\n");
 7773: 	  /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
 7774: 	  epj=vector(1,nlstate+1);
 7775: 	  for(age=bage; age <=fage ;age++){
 7776: 	    prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */
 7777: 	    if (vpopbased==1) {
 7778: 	      if(mobilav ==0){
 7779: 		for(i=1; i<=nlstate;i++)
 7780: 		  prlim[i][i]=probs[(int)age][i][k];
 7781: 	      }else{ /* mobilav */ 
 7782: 		for(i=1; i<=nlstate;i++)
 7783: 		  prlim[i][i]=mobaverage[(int)age][i][k];
 7784: 	      }
 7785: 	    }
 7786: 	
 7787: 	    fprintf(ficrest," %4.0f",age);
 7788: 	    /* printf(" age %4.0f ",age); */
 7789: 	    for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 7790: 	      for(i=1, epj[j]=0.;i <=nlstate;i++) {
 7791: 		epj[j] += prlim[i][i]*eij[i][j][(int)age];
 7792: 		/*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 7793: 	        /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
 7794: 	      }
 7795: 	      epj[nlstate+1] +=epj[j];
 7796: 	    }
 7797: 	    /* printf(" age %4.0f \n",age); */
 7798: 
 7799: 	    for(i=1, vepp=0.;i <=nlstate;i++)
 7800: 	      for(j=1;j <=nlstate;j++)
 7801: 		vepp += vareij[i][j][(int)age];
 7802: 	    fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 7803: 	    for(j=1;j <=nlstate;j++){
 7804: 	      fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 7805: 	    }
 7806: 	    fprintf(ficrest,"\n");
 7807: 	  }
 7808: 	}
 7809: 	free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7810: 	free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 7811: 	free_vector(epj,1,nlstate+1);
 7812:       /*}*/
 7813:     }
 7814:     free_vector(weight,1,n);
 7815:     free_imatrix(Tvard,1,NCOVMAX,1,2);
 7816:     free_imatrix(s,1,maxwav+1,1,n);
 7817:     free_matrix(anint,1,maxwav,1,n); 
 7818:     free_matrix(mint,1,maxwav,1,n);
 7819:     free_ivector(cod,1,n);
 7820:     free_ivector(tab,1,NCOVMAX);
 7821:     fclose(ficresstdeij);
 7822:     fclose(ficrescveij);
 7823:     fclose(ficresvij);
 7824:     fclose(ficrest);
 7825:     fclose(ficpar);
 7826:   
 7827:     /*------- Variance of period (stable) prevalence------*/   
 7828: 
 7829:     strcpy(fileresvpl,"vpl");
 7830:     strcat(fileresvpl,fileres);
 7831:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 7832:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 7833:       exit(0);
 7834:     }
 7835:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
 7836: 
 7837:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 7838:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
 7839:           
 7840:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
 7841:     	fprintf(ficresvpl,"\n#****** ");
 7842: 	for(j=1;j<=cptcoveff;j++) 
 7843: 	  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
 7844: 	fprintf(ficresvpl,"******\n");
 7845:       
 7846: 	varpl=matrix(1,nlstate,(int) bage, (int) fage);
 7847: 	oldm=oldms;savm=savms;
 7848: 	varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
 7849: 	free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 7850:       /*}*/
 7851:     }
 7852: 
 7853:     fclose(ficresvpl);
 7854: 
 7855:     /*---------- End : free ----------------*/
 7856:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7857:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 7858:   }  /* mle==-3 arrives here for freeing */
 7859:  /* endfree:*/
 7860:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
 7861:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 7862:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7863:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7864:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 7865:     free_matrix(covar,0,NCOVMAX,1,n);
 7866:     free_matrix(matcov,1,npar,1,npar);
 7867:     /*free_vector(delti,1,npar);*/
 7868:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 7869:     free_matrix(agev,1,maxwav,1,imx);
 7870:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 7871: 
 7872:     free_ivector(ncodemax,1,NCOVMAX);
 7873:     free_ivector(ncodemaxwundef,1,NCOVMAX);
 7874:     free_ivector(Tvar,1,NCOVMAX);
 7875:     free_ivector(Tprod,1,NCOVMAX);
 7876:     free_ivector(Tvaraff,1,NCOVMAX);
 7877:     free_ivector(Tage,1,NCOVMAX);
 7878: 
 7879:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
 7880:     /* free_imatrix(codtab,1,100,1,10); */
 7881:   fflush(fichtm);
 7882:   fflush(ficgp);
 7883:   
 7884: 
 7885:   if((nberr >0) || (nbwarn>0)){
 7886:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
 7887:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 7888:   }else{
 7889:     printf("End of Imach\n");
 7890:     fprintf(ficlog,"End of Imach\n");
 7891:   }
 7892:   printf("See log file on %s\n",filelog);
 7893:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 7894:   /*(void) gettimeofday(&end_time,&tzp);*/
 7895:   rend_time = time(NULL);  
 7896:   end_time = *localtime(&rend_time);
 7897:   /* tml = *localtime(&end_time.tm_sec); */
 7898:   strcpy(strtend,asctime(&end_time));
 7899:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
 7900:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 7901:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7902: 
 7903:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7904:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
 7905:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
 7906:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 7907: /*   if(fileappend(fichtm,optionfilehtm)){ */
 7908:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7909:   fclose(fichtm);
 7910:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 7911:   fclose(fichtmcov);
 7912:   fclose(ficgp);
 7913:   fclose(ficlog);
 7914:   /*------ End -----------*/
 7915: 
 7916: 
 7917:    printf("Before Current directory %s!\n",pathcd);
 7918: #ifdef WIN32
 7919:    if (_chdir(pathcd) != 0)
 7920: 	   printf("Can't move to directory %s!\n",path);
 7921:    if(_getcwd(pathcd,MAXLINE) > 0)
 7922: #else
 7923:    if(chdir(pathcd) != 0)
 7924: 	   printf("Can't move to directory %s!\n", path);
 7925:    if (getcwd(pathcd, MAXLINE) > 0)
 7926: #endif 
 7927:     printf("Current directory %s!\n",pathcd);
 7928:   /*strcat(plotcmd,CHARSEPARATOR);*/
 7929:   sprintf(plotcmd,"gnuplot");
 7930: #ifdef _WIN32
 7931:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 7932: #endif
 7933:   if(!stat(plotcmd,&info)){
 7934:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7935:     if(!stat(getenv("GNUPLOTBIN"),&info)){
 7936:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
 7937:     }else
 7938:       strcpy(pplotcmd,plotcmd);
 7939: #ifdef __unix
 7940:     strcpy(plotcmd,GNUPLOTPROGRAM);
 7941:     if(!stat(plotcmd,&info)){
 7942:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
 7943:     }else
 7944:       strcpy(pplotcmd,plotcmd);
 7945: #endif
 7946:   }else
 7947:     strcpy(pplotcmd,plotcmd);
 7948:   
 7949:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 7950:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
 7951: 
 7952:   if((outcmd=system(plotcmd)) != 0){
 7953:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
 7954:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
 7955:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
 7956:     if((outcmd=system(plotcmd)) != 0)
 7957:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
 7958:   }
 7959:   printf(" Successful, please wait...");
 7960:   while (z[0] != 'q') {
 7961:     /* chdir(path); */
 7962:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
 7963:     scanf("%s",z);
 7964: /*     if (z[0] == 'c') system("./imach"); */
 7965:     if (z[0] == 'e') {
 7966: #ifdef __APPLE__
 7967:       sprintf(pplotcmd, "open %s", optionfilehtm);
 7968: #elif __linux
 7969:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
 7970: #else
 7971:       sprintf(pplotcmd, "%s", optionfilehtm);
 7972: #endif
 7973:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
 7974:       system(pplotcmd);
 7975:     }
 7976:     else if (z[0] == 'g') system(plotcmd);
 7977:     else if (z[0] == 'q') exit(0);
 7978:   }
 7979:   end:
 7980:   while (z[0] != 'q') {
 7981:     printf("\nType  q for exiting: "); fflush(stdout);
 7982:     scanf("%s",z);
 7983:   }
 7984: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>