File:  [Local Repository] / imach / src / imach.c
Revision 1.35: download - view: text, annotated - select for diffs
Tue Mar 26 17:08:39 2002 UTC (22 years, 2 months ago) by lievre
Branches: MAIN
CVS tags: HEAD
Version used for article20.tex Changes in varevsij.

    1: /* $Id: imach.c,v 1.35 2002/03/26 17:08:39 lievre Exp $
    2:    Interpolated Markov Chain
    3: 
    4:   Short summary of the programme:
    5:   
    6:   This program computes Healthy Life Expectancies from
    7:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    8:   first survey ("cross") where individuals from different ages are
    9:   interviewed on their health status or degree of disability (in the
   10:   case of a health survey which is our main interest) -2- at least a
   11:   second wave of interviews ("longitudinal") which measure each change
   12:   (if any) in individual health status.  Health expectancies are
   13:   computed from the time spent in each health state according to a
   14:   model. More health states you consider, more time is necessary to reach the
   15:   Maximum Likelihood of the parameters involved in the model.  The
   16:   simplest model is the multinomial logistic model where pij is the
   17:   probabibility to be observed in state j at the second wave
   18:   conditional to be observed in state i at the first wave. Therefore
   19:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   20:   'age' is age and 'sex' is a covariate. If you want to have a more
   21:   complex model than "constant and age", you should modify the program
   22:   where the markup *Covariates have to be included here again* invites
   23:   you to do it.  More covariates you add, slower the
   24:   convergence.
   25: 
   26:   The advantage of this computer programme, compared to a simple
   27:   multinomial logistic model, is clear when the delay between waves is not
   28:   identical for each individual. Also, if a individual missed an
   29:   intermediate interview, the information is lost, but taken into
   30:   account using an interpolation or extrapolation.  
   31: 
   32:   hPijx is the probability to be observed in state i at age x+h
   33:   conditional to the observed state i at age x. The delay 'h' can be
   34:   split into an exact number (nh*stepm) of unobserved intermediate
   35:   states. This elementary transition (by month or quarter trimester,
   36:   semester or year) is model as a multinomial logistic.  The hPx
   37:   matrix is simply the matrix product of nh*stepm elementary matrices
   38:   and the contribution of each individual to the likelihood is simply
   39:   hPijx.
   40: 
   41:   Also this programme outputs the covariance matrix of the parameters but also
   42:   of the life expectancies. It also computes the prevalence limits. 
   43:   
   44:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   45:            Institut national d'études démographiques, Paris.
   46:   This software have been partly granted by Euro-REVES, a concerted action
   47:   from the European Union.
   48:   It is copyrighted identically to a GNU software product, ie programme and
   49:   software can be distributed freely for non commercial use. Latest version
   50:   can be accessed at http://euroreves.ined.fr/imach .
   51:   **********************************************************************/
   52:  
   53: #include <math.h>
   54: #include <stdio.h>
   55: #include <stdlib.h>
   56: #include <unistd.h>
   57: 
   58: #define MAXLINE 256
   59: #define GNUPLOTPROGRAM "wgnuplot"
   60: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   61: #define FILENAMELENGTH 80
   62: /*#define DEBUG*/
   63: #define windows
   64: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
   65: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
   66: 
   67: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   68: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   69: 
   70: #define NINTERVMAX 8
   71: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   72: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   73: #define NCOVMAX 8 /* Maximum number of covariates */
   74: #define MAXN 20000
   75: #define YEARM 12. /* Number of months per year */
   76: #define AGESUP 130
   77: #define AGEBASE 40
   78: 
   79: 
   80: int erreur; /* Error number */
   81: int nvar;
   82: int cptcovn, cptcovage=0, cptcoveff=0,cptcov;
   83: int npar=NPARMAX;
   84: int nlstate=2; /* Number of live states */
   85: int ndeath=1; /* Number of dead states */
   86: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   87: int popbased=0;
   88: 
   89: int *wav; /* Number of waves for this individuual 0 is possible */
   90: int maxwav; /* Maxim number of waves */
   91: int jmin, jmax; /* min, max spacing between 2 waves */
   92: int mle, weightopt;
   93: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   94: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   95: double jmean; /* Mean space between 2 waves */
   96: double **oldm, **newm, **savm; /* Working pointers to matrices */
   97: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   98: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   99: FILE *ficgp,*ficresprob,*ficpop;
  100: FILE *ficreseij;
  101:   char filerese[FILENAMELENGTH];
  102:  FILE  *ficresvij;
  103:   char fileresv[FILENAMELENGTH];
  104:  FILE  *ficresvpl;
  105:   char fileresvpl[FILENAMELENGTH];
  106: 
  107: #define NR_END 1
  108: #define FREE_ARG char*
  109: #define FTOL 1.0e-10
  110: 
  111: #define NRANSI 
  112: #define ITMAX 200 
  113: 
  114: #define TOL 2.0e-4 
  115: 
  116: #define CGOLD 0.3819660 
  117: #define ZEPS 1.0e-10 
  118: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  119: 
  120: #define GOLD 1.618034 
  121: #define GLIMIT 100.0 
  122: #define TINY 1.0e-20 
  123: 
  124: static double maxarg1,maxarg2;
  125: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  126: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  127:   
  128: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  129: #define rint(a) floor(a+0.5)
  130: 
  131: static double sqrarg;
  132: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  133: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  134: 
  135: int imx; 
  136: int stepm;
  137: /* Stepm, step in month: minimum step interpolation*/
  138: 
  139: int m,nb;
  140: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  141: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  142: double **pmmij, ***probs, ***mobaverage;
  143: double dateintmean=0;
  144: 
  145: double *weight;
  146: int **s; /* Status */
  147: double *agedc, **covar, idx;
  148: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  149: 
  150: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  151: double ftolhess; /* Tolerance for computing hessian */
  152: 
  153: /**************** split *************************/
  154: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  155: {
  156:    char	*s;				/* pointer */
  157:    int	l1, l2;				/* length counters */
  158: 
  159:    l1 = strlen( path );			/* length of path */
  160:    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  161: #ifdef windows
  162:    s = strrchr( path, '\\' );		/* find last / */
  163: #else
  164:    s = strrchr( path, '/' );		/* find last / */
  165: #endif
  166:    if ( s == NULL ) {			/* no directory, so use current */
  167: #if	defined(__bsd__)		/* get current working directory */
  168:       extern char	*getwd( );
  169: 
  170:       if ( getwd( dirc ) == NULL ) {
  171: #else
  172:       extern char	*getcwd( );
  173: 
  174:       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  175: #endif
  176:          return( GLOCK_ERROR_GETCWD );
  177:       }
  178:       strcpy( name, path );		/* we've got it */
  179:    } else {				/* strip direcotry from path */
  180:       s++;				/* after this, the filename */
  181:       l2 = strlen( s );			/* length of filename */
  182:       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  183:       strcpy( name, s );		/* save file name */
  184:       strncpy( dirc, path, l1 - l2 );	/* now the directory */
  185:       dirc[l1-l2] = 0;			/* add zero */
  186:    }
  187:    l1 = strlen( dirc );			/* length of directory */
  188: #ifdef windows
  189:    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  190: #else
  191:    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  192: #endif
  193:    s = strrchr( name, '.' );		/* find last / */
  194:    s++;
  195:    strcpy(ext,s);			/* save extension */
  196:    l1= strlen( name);
  197:    l2= strlen( s)+1;
  198:    strncpy( finame, name, l1-l2);
  199:    finame[l1-l2]= 0;
  200:    return( 0 );				/* we're done */
  201: }
  202: 
  203: 
  204: /******************************************/
  205: 
  206: void replace(char *s, char*t)
  207: {
  208:   int i;
  209:   int lg=20;
  210:   i=0;
  211:   lg=strlen(t);
  212:   for(i=0; i<= lg; i++) {
  213:     (s[i] = t[i]);
  214:     if (t[i]== '\\') s[i]='/';
  215:   }
  216: }
  217: 
  218: int nbocc(char *s, char occ)
  219: {
  220:   int i,j=0;
  221:   int lg=20;
  222:   i=0;
  223:   lg=strlen(s);
  224:   for(i=0; i<= lg; i++) {
  225:   if  (s[i] == occ ) j++;
  226:   }
  227:   return j;
  228: }
  229: 
  230: void cutv(char *u,char *v, char*t, char occ)
  231: {
  232:   int i,lg,j,p=0;
  233:   i=0;
  234:   for(j=0; j<=strlen(t)-1; j++) {
  235:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  236:   }
  237: 
  238:   lg=strlen(t);
  239:   for(j=0; j<p; j++) {
  240:     (u[j] = t[j]);
  241:   }
  242:      u[p]='\0';
  243: 
  244:    for(j=0; j<= lg; j++) {
  245:     if (j>=(p+1))(v[j-p-1] = t[j]);
  246:   }
  247: }
  248: 
  249: /********************** nrerror ********************/
  250: 
  251: void nrerror(char error_text[])
  252: {
  253:   fprintf(stderr,"ERREUR ...\n");
  254:   fprintf(stderr,"%s\n",error_text);
  255:   exit(1);
  256: }
  257: /*********************** vector *******************/
  258: double *vector(int nl, int nh)
  259: {
  260:   double *v;
  261:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  262:   if (!v) nrerror("allocation failure in vector");
  263:   return v-nl+NR_END;
  264: }
  265: 
  266: /************************ free vector ******************/
  267: void free_vector(double*v, int nl, int nh)
  268: {
  269:   free((FREE_ARG)(v+nl-NR_END));
  270: }
  271: 
  272: /************************ivector *******************************/
  273: int *ivector(long nl,long nh)
  274: {
  275:   int *v;
  276:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  277:   if (!v) nrerror("allocation failure in ivector");
  278:   return v-nl+NR_END;
  279: }
  280: 
  281: /******************free ivector **************************/
  282: void free_ivector(int *v, long nl, long nh)
  283: {
  284:   free((FREE_ARG)(v+nl-NR_END));
  285: }
  286: 
  287: /******************* imatrix *******************************/
  288: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  289:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  290: { 
  291:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  292:   int **m; 
  293:   
  294:   /* allocate pointers to rows */ 
  295:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  296:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  297:   m += NR_END; 
  298:   m -= nrl; 
  299:   
  300:   
  301:   /* allocate rows and set pointers to them */ 
  302:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  303:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  304:   m[nrl] += NR_END; 
  305:   m[nrl] -= ncl; 
  306:   
  307:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  308:   
  309:   /* return pointer to array of pointers to rows */ 
  310:   return m; 
  311: } 
  312: 
  313: /****************** free_imatrix *************************/
  314: void free_imatrix(m,nrl,nrh,ncl,nch)
  315:       int **m;
  316:       long nch,ncl,nrh,nrl; 
  317:      /* free an int matrix allocated by imatrix() */ 
  318: { 
  319:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  320:   free((FREE_ARG) (m+nrl-NR_END)); 
  321: } 
  322: 
  323: /******************* matrix *******************************/
  324: double **matrix(long nrl, long nrh, long ncl, long nch)
  325: {
  326:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  327:   double **m;
  328: 
  329:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  330:   if (!m) nrerror("allocation failure 1 in matrix()");
  331:   m += NR_END;
  332:   m -= nrl;
  333: 
  334:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  335:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  336:   m[nrl] += NR_END;
  337:   m[nrl] -= ncl;
  338: 
  339:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  340:   return m;
  341: }
  342: 
  343: /*************************free matrix ************************/
  344: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  345: {
  346:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  347:   free((FREE_ARG)(m+nrl-NR_END));
  348: }
  349: 
  350: /******************* ma3x *******************************/
  351: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  352: {
  353:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  354:   double ***m;
  355: 
  356:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  357:   if (!m) nrerror("allocation failure 1 in matrix()");
  358:   m += NR_END;
  359:   m -= nrl;
  360: 
  361:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  362:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  363:   m[nrl] += NR_END;
  364:   m[nrl] -= ncl;
  365: 
  366:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  367: 
  368:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  369:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  370:   m[nrl][ncl] += NR_END;
  371:   m[nrl][ncl] -= nll;
  372:   for (j=ncl+1; j<=nch; j++) 
  373:     m[nrl][j]=m[nrl][j-1]+nlay;
  374:   
  375:   for (i=nrl+1; i<=nrh; i++) {
  376:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  377:     for (j=ncl+1; j<=nch; j++) 
  378:       m[i][j]=m[i][j-1]+nlay;
  379:   }
  380:   return m;
  381: }
  382: 
  383: /*************************free ma3x ************************/
  384: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  385: {
  386:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  387:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  388:   free((FREE_ARG)(m+nrl-NR_END));
  389: }
  390: 
  391: /***************** f1dim *************************/
  392: extern int ncom; 
  393: extern double *pcom,*xicom;
  394: extern double (*nrfunc)(double []); 
  395:  
  396: double f1dim(double x) 
  397: { 
  398:   int j; 
  399:   double f;
  400:   double *xt; 
  401:  
  402:   xt=vector(1,ncom); 
  403:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  404:   f=(*nrfunc)(xt); 
  405:   free_vector(xt,1,ncom); 
  406:   return f; 
  407: } 
  408: 
  409: /*****************brent *************************/
  410: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  411: { 
  412:   int iter; 
  413:   double a,b,d,etemp;
  414:   double fu,fv,fw,fx;
  415:   double ftemp;
  416:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  417:   double e=0.0; 
  418:  
  419:   a=(ax < cx ? ax : cx); 
  420:   b=(ax > cx ? ax : cx); 
  421:   x=w=v=bx; 
  422:   fw=fv=fx=(*f)(x); 
  423:   for (iter=1;iter<=ITMAX;iter++) { 
  424:     xm=0.5*(a+b); 
  425:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  426:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  427:     printf(".");fflush(stdout);
  428: #ifdef DEBUG
  429:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  430:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  431: #endif
  432:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  433:       *xmin=x; 
  434:       return fx; 
  435:     } 
  436:     ftemp=fu;
  437:     if (fabs(e) > tol1) { 
  438:       r=(x-w)*(fx-fv); 
  439:       q=(x-v)*(fx-fw); 
  440:       p=(x-v)*q-(x-w)*r; 
  441:       q=2.0*(q-r); 
  442:       if (q > 0.0) p = -p; 
  443:       q=fabs(q); 
  444:       etemp=e; 
  445:       e=d; 
  446:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  447: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  448:       else { 
  449: 	d=p/q; 
  450: 	u=x+d; 
  451: 	if (u-a < tol2 || b-u < tol2) 
  452: 	  d=SIGN(tol1,xm-x); 
  453:       } 
  454:     } else { 
  455:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  456:     } 
  457:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  458:     fu=(*f)(u); 
  459:     if (fu <= fx) { 
  460:       if (u >= x) a=x; else b=x; 
  461:       SHFT(v,w,x,u) 
  462: 	SHFT(fv,fw,fx,fu) 
  463: 	} else { 
  464: 	  if (u < x) a=u; else b=u; 
  465: 	  if (fu <= fw || w == x) { 
  466: 	    v=w; 
  467: 	    w=u; 
  468: 	    fv=fw; 
  469: 	    fw=fu; 
  470: 	  } else if (fu <= fv || v == x || v == w) { 
  471: 	    v=u; 
  472: 	    fv=fu; 
  473: 	  } 
  474: 	} 
  475:   } 
  476:   nrerror("Too many iterations in brent"); 
  477:   *xmin=x; 
  478:   return fx; 
  479: } 
  480: 
  481: /****************** mnbrak ***********************/
  482: 
  483: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  484: 	    double (*func)(double)) 
  485: { 
  486:   double ulim,u,r,q, dum;
  487:   double fu; 
  488:  
  489:   *fa=(*func)(*ax); 
  490:   *fb=(*func)(*bx); 
  491:   if (*fb > *fa) { 
  492:     SHFT(dum,*ax,*bx,dum) 
  493:       SHFT(dum,*fb,*fa,dum) 
  494:       } 
  495:   *cx=(*bx)+GOLD*(*bx-*ax); 
  496:   *fc=(*func)(*cx); 
  497:   while (*fb > *fc) { 
  498:     r=(*bx-*ax)*(*fb-*fc); 
  499:     q=(*bx-*cx)*(*fb-*fa); 
  500:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  501:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  502:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  503:     if ((*bx-u)*(u-*cx) > 0.0) { 
  504:       fu=(*func)(u); 
  505:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  506:       fu=(*func)(u); 
  507:       if (fu < *fc) { 
  508: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  509: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  510: 	  } 
  511:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  512:       u=ulim; 
  513:       fu=(*func)(u); 
  514:     } else { 
  515:       u=(*cx)+GOLD*(*cx-*bx); 
  516:       fu=(*func)(u); 
  517:     } 
  518:     SHFT(*ax,*bx,*cx,u) 
  519:       SHFT(*fa,*fb,*fc,fu) 
  520:       } 
  521: } 
  522: 
  523: /*************** linmin ************************/
  524: 
  525: int ncom; 
  526: double *pcom,*xicom;
  527: double (*nrfunc)(double []); 
  528:  
  529: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  530: { 
  531:   double brent(double ax, double bx, double cx, 
  532: 	       double (*f)(double), double tol, double *xmin); 
  533:   double f1dim(double x); 
  534:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  535: 	      double *fc, double (*func)(double)); 
  536:   int j; 
  537:   double xx,xmin,bx,ax; 
  538:   double fx,fb,fa;
  539:  
  540:   ncom=n; 
  541:   pcom=vector(1,n); 
  542:   xicom=vector(1,n); 
  543:   nrfunc=func; 
  544:   for (j=1;j<=n;j++) { 
  545:     pcom[j]=p[j]; 
  546:     xicom[j]=xi[j]; 
  547:   } 
  548:   ax=0.0; 
  549:   xx=1.0; 
  550:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  551:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  552: #ifdef DEBUG
  553:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  554: #endif
  555:   for (j=1;j<=n;j++) { 
  556:     xi[j] *= xmin; 
  557:     p[j] += xi[j]; 
  558:   } 
  559:   free_vector(xicom,1,n); 
  560:   free_vector(pcom,1,n); 
  561: } 
  562: 
  563: /*************** powell ************************/
  564: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  565: 	    double (*func)(double [])) 
  566: { 
  567:   void linmin(double p[], double xi[], int n, double *fret, 
  568: 	      double (*func)(double [])); 
  569:   int i,ibig,j; 
  570:   double del,t,*pt,*ptt,*xit;
  571:   double fp,fptt;
  572:   double *xits;
  573:   pt=vector(1,n); 
  574:   ptt=vector(1,n); 
  575:   xit=vector(1,n); 
  576:   xits=vector(1,n); 
  577:   *fret=(*func)(p); 
  578:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  579:   for (*iter=1;;++(*iter)) { 
  580:     fp=(*fret); 
  581:     ibig=0; 
  582:     del=0.0; 
  583:     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  584:     for (i=1;i<=n;i++) 
  585:       printf(" %d %.12f",i, p[i]);
  586:     printf("\n");
  587:     for (i=1;i<=n;i++) { 
  588:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  589:       fptt=(*fret); 
  590: #ifdef DEBUG
  591:       printf("fret=%lf \n",*fret);
  592: #endif
  593:       printf("%d",i);fflush(stdout);
  594:       linmin(p,xit,n,fret,func); 
  595:       if (fabs(fptt-(*fret)) > del) { 
  596: 	del=fabs(fptt-(*fret)); 
  597: 	ibig=i; 
  598:       } 
  599: #ifdef DEBUG
  600:       printf("%d %.12e",i,(*fret));
  601:       for (j=1;j<=n;j++) {
  602: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  603: 	printf(" x(%d)=%.12e",j,xit[j]);
  604:       }
  605:       for(j=1;j<=n;j++) 
  606: 	printf(" p=%.12e",p[j]);
  607:       printf("\n");
  608: #endif
  609:     } 
  610:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  611: #ifdef DEBUG
  612:       int k[2],l;
  613:       k[0]=1;
  614:       k[1]=-1;
  615:       printf("Max: %.12e",(*func)(p));
  616:       for (j=1;j<=n;j++) 
  617: 	printf(" %.12e",p[j]);
  618:       printf("\n");
  619:       for(l=0;l<=1;l++) {
  620: 	for (j=1;j<=n;j++) {
  621: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  622: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  623: 	}
  624: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  625:       }
  626: #endif
  627: 
  628: 
  629:       free_vector(xit,1,n); 
  630:       free_vector(xits,1,n); 
  631:       free_vector(ptt,1,n); 
  632:       free_vector(pt,1,n); 
  633:       return; 
  634:     } 
  635:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  636:     for (j=1;j<=n;j++) { 
  637:       ptt[j]=2.0*p[j]-pt[j]; 
  638:       xit[j]=p[j]-pt[j]; 
  639:       pt[j]=p[j]; 
  640:     } 
  641:     fptt=(*func)(ptt); 
  642:     if (fptt < fp) { 
  643:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  644:       if (t < 0.0) { 
  645: 	linmin(p,xit,n,fret,func); 
  646: 	for (j=1;j<=n;j++) { 
  647: 	  xi[j][ibig]=xi[j][n]; 
  648: 	  xi[j][n]=xit[j]; 
  649: 	}
  650: #ifdef DEBUG
  651: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  652: 	for(j=1;j<=n;j++)
  653: 	  printf(" %.12e",xit[j]);
  654: 	printf("\n");
  655: #endif
  656:       } 
  657:     } 
  658:   } 
  659: } 
  660: 
  661: /**** Prevalence limit ****************/
  662: 
  663: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  664: {
  665:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  666:      matrix by transitions matrix until convergence is reached */
  667: 
  668:   int i, ii,j,k;
  669:   double min, max, maxmin, maxmax,sumnew=0.;
  670:   double **matprod2();
  671:   double **out, cov[NCOVMAX], **pmij();
  672:   double **newm;
  673:   double agefin, delaymax=50 ; /* Max number of years to converge */
  674: 
  675:   for (ii=1;ii<=nlstate+ndeath;ii++)
  676:     for (j=1;j<=nlstate+ndeath;j++){
  677:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  678:     }
  679: 
  680:    cov[1]=1.;
  681:  
  682:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  683:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  684:     newm=savm;
  685:     /* Covariates have to be included here again */
  686:      cov[2]=agefin;
  687:   
  688:       for (k=1; k<=cptcovn;k++) {
  689: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  690: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  691:       }
  692:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  693:       for (k=1; k<=cptcovprod;k++)
  694: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  695: 
  696:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  697:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  698:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  699:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  700: 
  701:     savm=oldm;
  702:     oldm=newm;
  703:     maxmax=0.;
  704:     for(j=1;j<=nlstate;j++){
  705:       min=1.;
  706:       max=0.;
  707:       for(i=1; i<=nlstate; i++) {
  708: 	sumnew=0;
  709: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  710: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  711: 	max=FMAX(max,prlim[i][j]);
  712: 	min=FMIN(min,prlim[i][j]);
  713:       }
  714:       maxmin=max-min;
  715:       maxmax=FMAX(maxmax,maxmin);
  716:     }
  717:     if(maxmax < ftolpl){
  718:       return prlim;
  719:     }
  720:   }
  721: }
  722: 
  723: /*************** transition probabilities ***************/ 
  724: 
  725: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  726: {
  727:   double s1, s2;
  728:   /*double t34;*/
  729:   int i,j,j1, nc, ii, jj;
  730: 
  731:     for(i=1; i<= nlstate; i++){
  732:     for(j=1; j<i;j++){
  733:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  734: 	/*s2 += param[i][j][nc]*cov[nc];*/
  735: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  736: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  737:       }
  738:       ps[i][j]=s2;
  739:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  740:     }
  741:     for(j=i+1; j<=nlstate+ndeath;j++){
  742:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  743: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  744: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  745:       }
  746:       ps[i][j]=s2;
  747:     }
  748:   }
  749:     /*ps[3][2]=1;*/
  750: 
  751:   for(i=1; i<= nlstate; i++){
  752:      s1=0;
  753:     for(j=1; j<i; j++)
  754:       s1+=exp(ps[i][j]);
  755:     for(j=i+1; j<=nlstate+ndeath; j++)
  756:       s1+=exp(ps[i][j]);
  757:     ps[i][i]=1./(s1+1.);
  758:     for(j=1; j<i; j++)
  759:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  760:     for(j=i+1; j<=nlstate+ndeath; j++)
  761:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  762:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  763:   } /* end i */
  764: 
  765:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
  766:     for(jj=1; jj<= nlstate+ndeath; jj++){
  767:       ps[ii][jj]=0;
  768:       ps[ii][ii]=1;
  769:     }
  770:   }
  771: 
  772: 
  773:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
  774:     for(jj=1; jj<= nlstate+ndeath; jj++){
  775:      printf("%lf ",ps[ii][jj]);
  776:    }
  777:     printf("\n ");
  778:     }
  779:     printf("\n ");printf("%lf ",cov[2]);*/
  780: /*
  781:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
  782:   goto end;*/
  783:     return ps;
  784: }
  785: 
  786: /**************** Product of 2 matrices ******************/
  787: 
  788: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
  789: {
  790:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  791:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  792:   /* in, b, out are matrice of pointers which should have been initialized 
  793:      before: only the contents of out is modified. The function returns
  794:      a pointer to pointers identical to out */
  795:   long i, j, k;
  796:   for(i=nrl; i<= nrh; i++)
  797:     for(k=ncolol; k<=ncoloh; k++)
  798:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
  799: 	out[i][k] +=in[i][j]*b[j][k];
  800: 
  801:   return out;
  802: }
  803: 
  804: 
  805: /************* Higher Matrix Product ***************/
  806: 
  807: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  808: {
  809:   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
  810:      duration (i.e. until
  811:      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
  812:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  813:      (typically every 2 years instead of every month which is too big).
  814:      Model is determined by parameters x and covariates have to be 
  815:      included manually here. 
  816: 
  817:      */
  818: 
  819:   int i, j, d, h, k;
  820:   double **out, cov[NCOVMAX];
  821:   double **newm;
  822: 
  823:   /* Hstepm could be zero and should return the unit matrix */
  824:   for (i=1;i<=nlstate+ndeath;i++)
  825:     for (j=1;j<=nlstate+ndeath;j++){
  826:       oldm[i][j]=(i==j ? 1.0 : 0.0);
  827:       po[i][j][0]=(i==j ? 1.0 : 0.0);
  828:     }
  829:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  830:   for(h=1; h <=nhstepm; h++){
  831:     for(d=1; d <=hstepm; d++){
  832:       newm=savm;
  833:       /* Covariates have to be included here again */
  834:       cov[1]=1.;
  835:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  836:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  837:       for (k=1; k<=cptcovage;k++)
  838: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  839:       for (k=1; k<=cptcovprod;k++)
  840: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  841: 
  842: 
  843:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  844:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  845:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  846: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
  847:       savm=oldm;
  848:       oldm=newm;
  849:     }
  850:     for(i=1; i<=nlstate+ndeath; i++)
  851:       for(j=1;j<=nlstate+ndeath;j++) {
  852: 	po[i][j][h]=newm[i][j];
  853: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  854: 	 */
  855:       }
  856:   } /* end h */
  857:   return po;
  858: }
  859: 
  860: 
  861: /*************** log-likelihood *************/
  862: double func( double *x)
  863: {
  864:   int i, ii, j, k, mi, d, kk;
  865:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
  866:   double **out;
  867:   double sw; /* Sum of weights */
  868:   double lli; /* Individual log likelihood */
  869:   long ipmx;
  870:   /*extern weight */
  871:   /* We are differentiating ll according to initial status */
  872:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  873:   /*for(i=1;i<imx;i++) 
  874:     printf(" %d\n",s[4][i]);
  875:   */
  876:   cov[1]=1.;
  877: 
  878:   for(k=1; k<=nlstate; k++) ll[k]=0.;
  879:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  880:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  881:     for(mi=1; mi<= wav[i]-1; mi++){
  882:       for (ii=1;ii<=nlstate+ndeath;ii++)
  883: 	for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  884:       for(d=0; d<dh[mi][i]; d++){
  885: 	newm=savm;
  886: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  887: 	for (kk=1; kk<=cptcovage;kk++) {
  888: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  889: 	}
  890: 	
  891: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  892: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  893: 	savm=oldm;
  894: 	oldm=newm;
  895: 	
  896: 	
  897:       } /* end mult */
  898:       
  899:       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
  900:       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
  901:       ipmx +=1;
  902:       sw += weight[i];
  903:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  904:     } /* end of wave */
  905:   } /* end of individual */
  906: 
  907:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  908:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  909:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  910:   return -l;
  911: }
  912: 
  913: 
  914: /*********** Maximum Likelihood Estimation ***************/
  915: 
  916: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  917: {
  918:   int i,j, iter;
  919:   double **xi,*delti;
  920:   double fret;
  921:   xi=matrix(1,npar,1,npar);
  922:   for (i=1;i<=npar;i++)
  923:     for (j=1;j<=npar;j++)
  924:       xi[i][j]=(i==j ? 1.0 : 0.0);
  925:   printf("Powell\n");
  926:   powell(p,xi,npar,ftol,&iter,&fret,func);
  927: 
  928:    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  929:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  930: 
  931: }
  932: 
  933: /**** Computes Hessian and covariance matrix ***/
  934: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  935: {
  936:   double  **a,**y,*x,pd;
  937:   double **hess;
  938:   int i, j,jk;
  939:   int *indx;
  940: 
  941:   double hessii(double p[], double delta, int theta, double delti[]);
  942:   double hessij(double p[], double delti[], int i, int j);
  943:   void lubksb(double **a, int npar, int *indx, double b[]) ;
  944:   void ludcmp(double **a, int npar, int *indx, double *d) ;
  945: 
  946:   hess=matrix(1,npar,1,npar);
  947: 
  948:   printf("\nCalculation of the hessian matrix. Wait...\n");
  949:   for (i=1;i<=npar;i++){
  950:     printf("%d",i);fflush(stdout);
  951:     hess[i][i]=hessii(p,ftolhess,i,delti);
  952:     /*printf(" %f ",p[i]);*/
  953:     /*printf(" %lf ",hess[i][i]);*/
  954:   }
  955:   
  956:   for (i=1;i<=npar;i++) {
  957:     for (j=1;j<=npar;j++)  {
  958:       if (j>i) { 
  959: 	printf(".%d%d",i,j);fflush(stdout);
  960: 	hess[i][j]=hessij(p,delti,i,j);
  961: 	hess[j][i]=hess[i][j];    
  962: 	/*printf(" %lf ",hess[i][j]);*/
  963:       }
  964:     }
  965:   }
  966:   printf("\n");
  967: 
  968:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  969:   
  970:   a=matrix(1,npar,1,npar);
  971:   y=matrix(1,npar,1,npar);
  972:   x=vector(1,npar);
  973:   indx=ivector(1,npar);
  974:   for (i=1;i<=npar;i++)
  975:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  976:   ludcmp(a,npar,indx,&pd);
  977: 
  978:   for (j=1;j<=npar;j++) {
  979:     for (i=1;i<=npar;i++) x[i]=0;
  980:     x[j]=1;
  981:     lubksb(a,npar,indx,x);
  982:     for (i=1;i<=npar;i++){ 
  983:       matcov[i][j]=x[i];
  984:     }
  985:   }
  986: 
  987:   printf("\n#Hessian matrix#\n");
  988:   for (i=1;i<=npar;i++) { 
  989:     for (j=1;j<=npar;j++) { 
  990:       printf("%.3e ",hess[i][j]);
  991:     }
  992:     printf("\n");
  993:   }
  994: 
  995:   /* Recompute Inverse */
  996:   for (i=1;i<=npar;i++)
  997:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
  998:   ludcmp(a,npar,indx,&pd);
  999: 
 1000:   /*  printf("\n#Hessian matrix recomputed#\n");
 1001: 
 1002:   for (j=1;j<=npar;j++) {
 1003:     for (i=1;i<=npar;i++) x[i]=0;
 1004:     x[j]=1;
 1005:     lubksb(a,npar,indx,x);
 1006:     for (i=1;i<=npar;i++){ 
 1007:       y[i][j]=x[i];
 1008:       printf("%.3e ",y[i][j]);
 1009:     }
 1010:     printf("\n");
 1011:   }
 1012:   */
 1013: 
 1014:   free_matrix(a,1,npar,1,npar);
 1015:   free_matrix(y,1,npar,1,npar);
 1016:   free_vector(x,1,npar);
 1017:   free_ivector(indx,1,npar);
 1018:   free_matrix(hess,1,npar,1,npar);
 1019: 
 1020: 
 1021: }
 1022: 
 1023: /*************** hessian matrix ****************/
 1024: double hessii( double x[], double delta, int theta, double delti[])
 1025: {
 1026:   int i;
 1027:   int l=1, lmax=20;
 1028:   double k1,k2;
 1029:   double p2[NPARMAX+1];
 1030:   double res;
 1031:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1032:   double fx;
 1033:   int k=0,kmax=10;
 1034:   double l1;
 1035: 
 1036:   fx=func(x);
 1037:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1038:   for(l=0 ; l <=lmax; l++){
 1039:     l1=pow(10,l);
 1040:     delts=delt;
 1041:     for(k=1 ; k <kmax; k=k+1){
 1042:       delt = delta*(l1*k);
 1043:       p2[theta]=x[theta] +delt;
 1044:       k1=func(p2)-fx;
 1045:       p2[theta]=x[theta]-delt;
 1046:       k2=func(p2)-fx;
 1047:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1048:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1049:       
 1050: #ifdef DEBUG
 1051:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1052: #endif
 1053:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1054:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1055: 	k=kmax;
 1056:       }
 1057:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1058: 	k=kmax; l=lmax*10.;
 1059:       }
 1060:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1061: 	delts=delt;
 1062:       }
 1063:     }
 1064:   }
 1065:   delti[theta]=delts;
 1066:   return res; 
 1067:   
 1068: }
 1069: 
 1070: double hessij( double x[], double delti[], int thetai,int thetaj)
 1071: {
 1072:   int i;
 1073:   int l=1, l1, lmax=20;
 1074:   double k1,k2,k3,k4,res,fx;
 1075:   double p2[NPARMAX+1];
 1076:   int k;
 1077: 
 1078:   fx=func(x);
 1079:   for (k=1; k<=2; k++) {
 1080:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1081:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1082:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1083:     k1=func(p2)-fx;
 1084:   
 1085:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1086:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1087:     k2=func(p2)-fx;
 1088:   
 1089:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1090:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1091:     k3=func(p2)-fx;
 1092:   
 1093:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1094:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1095:     k4=func(p2)-fx;
 1096:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1097: #ifdef DEBUG
 1098:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1099: #endif
 1100:   }
 1101:   return res;
 1102: }
 1103: 
 1104: /************** Inverse of matrix **************/
 1105: void ludcmp(double **a, int n, int *indx, double *d) 
 1106: { 
 1107:   int i,imax,j,k; 
 1108:   double big,dum,sum,temp; 
 1109:   double *vv; 
 1110:  
 1111:   vv=vector(1,n); 
 1112:   *d=1.0; 
 1113:   for (i=1;i<=n;i++) { 
 1114:     big=0.0; 
 1115:     for (j=1;j<=n;j++) 
 1116:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1117:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1118:     vv[i]=1.0/big; 
 1119:   } 
 1120:   for (j=1;j<=n;j++) { 
 1121:     for (i=1;i<j;i++) { 
 1122:       sum=a[i][j]; 
 1123:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1124:       a[i][j]=sum; 
 1125:     } 
 1126:     big=0.0; 
 1127:     for (i=j;i<=n;i++) { 
 1128:       sum=a[i][j]; 
 1129:       for (k=1;k<j;k++) 
 1130: 	sum -= a[i][k]*a[k][j]; 
 1131:       a[i][j]=sum; 
 1132:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1133: 	big=dum; 
 1134: 	imax=i; 
 1135:       } 
 1136:     } 
 1137:     if (j != imax) { 
 1138:       for (k=1;k<=n;k++) { 
 1139: 	dum=a[imax][k]; 
 1140: 	a[imax][k]=a[j][k]; 
 1141: 	a[j][k]=dum; 
 1142:       } 
 1143:       *d = -(*d); 
 1144:       vv[imax]=vv[j]; 
 1145:     } 
 1146:     indx[j]=imax; 
 1147:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1148:     if (j != n) { 
 1149:       dum=1.0/(a[j][j]); 
 1150:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1151:     } 
 1152:   } 
 1153:   free_vector(vv,1,n);  /* Doesn't work */
 1154: ;
 1155: } 
 1156: 
 1157: void lubksb(double **a, int n, int *indx, double b[]) 
 1158: { 
 1159:   int i,ii=0,ip,j; 
 1160:   double sum; 
 1161:  
 1162:   for (i=1;i<=n;i++) { 
 1163:     ip=indx[i]; 
 1164:     sum=b[ip]; 
 1165:     b[ip]=b[i]; 
 1166:     if (ii) 
 1167:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1168:     else if (sum) ii=i; 
 1169:     b[i]=sum; 
 1170:   } 
 1171:   for (i=n;i>=1;i--) { 
 1172:     sum=b[i]; 
 1173:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1174:     b[i]=sum/a[i][i]; 
 1175:   } 
 1176: } 
 1177: 
 1178: /************ Frequencies ********************/
 1179: void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 1180: {  /* Some frequencies */
 1181:   
 1182:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1183:   double ***freq; /* Frequencies */
 1184:   double *pp;
 1185:   double pos, k2, dateintsum=0,k2cpt=0;
 1186:   FILE *ficresp;
 1187:   char fileresp[FILENAMELENGTH];
 1188:   
 1189:   pp=vector(1,nlstate);
 1190:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 1191:   strcpy(fileresp,"p");
 1192:   strcat(fileresp,fileres);
 1193:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1194:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1195:     exit(0);
 1196:   }
 1197:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1198:   j1=0;
 1199:   
 1200:   j=cptcoveff;
 1201:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1202:   
 1203:   for(k1=1; k1<=j;k1++){
 1204:     for(i1=1; i1<=ncodemax[k1];i1++){
 1205:       j1++;
 1206:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1207: 	scanf("%d", i);*/
 1208:       for (i=-1; i<=nlstate+ndeath; i++)  
 1209: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1210: 	  for(m=agemin; m <= agemax+3; m++)
 1211: 	    freq[i][jk][m]=0;
 1212:       
 1213:       dateintsum=0;
 1214:       k2cpt=0;
 1215:       for (i=1; i<=imx; i++) {
 1216: 	bool=1;
 1217: 	if  (cptcovn>0) {
 1218: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1219: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1220: 	      bool=0;
 1221: 	}
 1222: 	if (bool==1) {
 1223: 	  for(m=firstpass; m<=lastpass; m++){
 1224: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1225: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1226: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1227: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1228: 	      if (m<lastpass) {
 1229: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1230: 		freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
 1231: 	      }
 1232: 	      
 1233: 	      if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
 1234: 		dateintsum=dateintsum+k2;
 1235: 		k2cpt++;
 1236: 	      }
 1237: 	    }
 1238: 	  }
 1239: 	}
 1240:       }
 1241:        
 1242:       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 1243: 
 1244:       if  (cptcovn>0) {
 1245: 	fprintf(ficresp, "\n#********** Variable "); 
 1246: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1247: 	fprintf(ficresp, "**********\n#");
 1248:       }
 1249:       for(i=1; i<=nlstate;i++) 
 1250: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1251:       fprintf(ficresp, "\n");
 1252:       
 1253:       for(i=(int)agemin; i <= (int)agemax+3; i++){
 1254: 	if(i==(int)agemax+3)
 1255: 	  printf("Total");
 1256: 	else
 1257: 	  printf("Age %d", i);
 1258: 	for(jk=1; jk <=nlstate ; jk++){
 1259: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1260: 	    pp[jk] += freq[jk][m][i]; 
 1261: 	}
 1262: 	for(jk=1; jk <=nlstate ; jk++){
 1263: 	  for(m=-1, pos=0; m <=0 ; m++)
 1264: 	    pos += freq[jk][m][i];
 1265: 	  if(pp[jk]>=1.e-10)
 1266: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1267: 	  else
 1268: 	    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1269: 	}
 1270: 
 1271: 	for(jk=1; jk <=nlstate ; jk++){
 1272: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1273: 	    pp[jk] += freq[jk][m][i];
 1274: 	}
 1275: 
 1276: 	for(jk=1,pos=0; jk <=nlstate ; jk++)
 1277: 	  pos += pp[jk];
 1278: 	for(jk=1; jk <=nlstate ; jk++){
 1279: 	  if(pos>=1.e-5)
 1280: 	    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1281: 	  else
 1282: 	    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1283: 	  if( i <= (int) agemax){
 1284: 	    if(pos>=1.e-5){
 1285: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
 1286: 	      probs[i][jk][j1]= pp[jk]/pos;
 1287: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1288: 	    }
 1289: 	    else
 1290: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
 1291: 	  }
 1292: 	}
 1293: 	
 1294: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1295: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1296: 	    if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1297: 	if(i <= (int) agemax)
 1298: 	  fprintf(ficresp,"\n");
 1299: 	printf("\n");
 1300:       }
 1301:     }
 1302:   }
 1303:   dateintmean=dateintsum/k2cpt; 
 1304:  
 1305:   fclose(ficresp);
 1306:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1307:   free_vector(pp,1,nlstate);
 1308:   
 1309:   /* End of Freq */
 1310: }
 1311: 
 1312: /************ Prevalence ********************/
 1313: void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 1314: {  /* Some frequencies */
 1315:  
 1316:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1317:   double ***freq; /* Frequencies */
 1318:   double *pp;
 1319:   double pos, k2;
 1320: 
 1321:   pp=vector(1,nlstate);
 1322:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 1323:   
 1324:   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1325:   j1=0;
 1326:   
 1327:   j=cptcoveff;
 1328:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1329:   
 1330:  for(k1=1; k1<=j;k1++){
 1331:     for(i1=1; i1<=ncodemax[k1];i1++){
 1332:       j1++;
 1333:  
 1334:       for (i=-1; i<=nlstate+ndeath; i++)  
 1335: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1336: 	  for(m=agemin; m <= agemax+3; m++)
 1337: 	    freq[i][jk][m]=0;
 1338:      
 1339:       for (i=1; i<=imx; i++) {
 1340: 	bool=1;
 1341: 	if  (cptcovn>0) {
 1342: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1343: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1344: 	      bool=0;
 1345: 	} 
 1346: 	if (bool==1) { 
 1347: 	  for(m=firstpass; m<=lastpass; m++){
 1348: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1349: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1350: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1351: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1352: 	      if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
 1353: 	      /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */ 
 1354: 	    }
 1355: 	  }
 1356: 	}
 1357:       }
 1358: 	for(i=(int)agemin; i <= (int)agemax+3; i++){ 
 1359: 	  for(jk=1; jk <=nlstate ; jk++){
 1360: 	    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1361: 	      pp[jk] += freq[jk][m][i]; 
 1362: 	  }
 1363: 	  for(jk=1; jk <=nlstate ; jk++){
 1364: 	    for(m=-1, pos=0; m <=0 ; m++)
 1365: 	    pos += freq[jk][m][i];
 1366: 	}
 1367: 	
 1368: 	 for(jk=1; jk <=nlstate ; jk++){
 1369: 	   for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1370: 	     pp[jk] += freq[jk][m][i];
 1371: 	 }
 1372: 	 
 1373: 	 for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
 1374: 
 1375: 	 for(jk=1; jk <=nlstate ; jk++){	   
 1376: 	   if( i <= (int) agemax){
 1377: 	     if(pos>=1.e-5){
 1378: 	       probs[i][jk][j1]= pp[jk]/pos;
 1379: 	     }
 1380: 	   }
 1381: 	 }
 1382: 	 
 1383: 	}
 1384:     }
 1385:   }
 1386:   
 1387:   
 1388:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1389:   free_vector(pp,1,nlstate);
 1390:   
 1391: }  /* End of Freq */
 1392: 
 1393: /************* Waves Concatenation ***************/
 1394: 
 1395: void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 1396: {
 1397:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 1398:      Death is a valid wave (if date is known).
 1399:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 1400:      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
 1401:      and mw[mi+1][i]. dh depends on stepm.
 1402:      */
 1403: 
 1404:   int i, mi, m;
 1405:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 1406:      double sum=0., jmean=0.;*/
 1407: 
 1408:   int j, k=0,jk, ju, jl;
 1409:   double sum=0.;
 1410:   jmin=1e+5;
 1411:   jmax=-1;
 1412:   jmean=0.;
 1413:   for(i=1; i<=imx; i++){
 1414:     mi=0;
 1415:     m=firstpass;
 1416:     while(s[m][i] <= nlstate){
 1417:       if(s[m][i]>=1)
 1418: 	mw[++mi][i]=m;
 1419:       if(m >=lastpass)
 1420: 	break;
 1421:       else
 1422: 	m++;
 1423:     }/* end while */
 1424:     if (s[m][i] > nlstate){
 1425:       mi++;	/* Death is another wave */
 1426:       /* if(mi==0)  never been interviewed correctly before death */
 1427: 	 /* Only death is a correct wave */
 1428:       mw[mi][i]=m;
 1429:     }
 1430: 
 1431:     wav[i]=mi;
 1432:     if(mi==0)
 1433:       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
 1434:   }
 1435: 
 1436:   for(i=1; i<=imx; i++){
 1437:     for(mi=1; mi<wav[i];mi++){
 1438:       if (stepm <=0)
 1439: 	dh[mi][i]=1;
 1440:       else{
 1441: 	if (s[mw[mi+1][i]][i] > nlstate) {
 1442: 	  if (agedc[i] < 2*AGESUP) {
 1443: 	  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 1444: 	  if(j==0) j=1;  /* Survives at least one month after exam */
 1445: 	  k=k+1;
 1446: 	  if (j >= jmax) jmax=j;
 1447: 	  if (j <= jmin) jmin=j;
 1448: 	  sum=sum+j;
 1449: 	  /*if (j<0) printf("j=%d num=%d \n",j,i); */
 1450: 	  }
 1451: 	}
 1452: 	else{
 1453: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 1454: 	  k=k+1;
 1455: 	  if (j >= jmax) jmax=j;
 1456: 	  else if (j <= jmin)jmin=j;
 1457: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 1458: 	  sum=sum+j;
 1459: 	}
 1460: 	jk= j/stepm;
 1461: 	jl= j -jk*stepm;
 1462: 	ju= j -(jk+1)*stepm;
 1463: 	if(jl <= -ju)
 1464: 	  dh[mi][i]=jk;
 1465: 	else
 1466: 	  dh[mi][i]=jk+1;
 1467: 	if(dh[mi][i]==0)
 1468: 	  dh[mi][i]=1; /* At least one step */
 1469:       }
 1470:     }
 1471:   }
 1472:   jmean=sum/k;
 1473:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 1474:  }
 1475: /*********** Tricode ****************************/
 1476: void tricode(int *Tvar, int **nbcode, int imx)
 1477: {
 1478:   int Ndum[20],ij=1, k, j, i;
 1479:   int cptcode=0;
 1480:   cptcoveff=0; 
 1481:  
 1482:   for (k=0; k<19; k++) Ndum[k]=0;
 1483:   for (k=1; k<=7; k++) ncodemax[k]=0;
 1484: 
 1485:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 1486:     for (i=1; i<=imx; i++) {
 1487:       ij=(int)(covar[Tvar[j]][i]);
 1488:       Ndum[ij]++; 
 1489:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 1490:       if (ij > cptcode) cptcode=ij; 
 1491:     }
 1492: 
 1493:     for (i=0; i<=cptcode; i++) {
 1494:       if(Ndum[i]!=0) ncodemax[j]++;
 1495:     }
 1496:     ij=1; 
 1497: 
 1498: 
 1499:     for (i=1; i<=ncodemax[j]; i++) {
 1500:       for (k=0; k<=19; k++) {
 1501: 	if (Ndum[k] != 0) {
 1502: 	  nbcode[Tvar[j]][ij]=k; 
 1503: 	  /*	 printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/
 1504: 	  ij++;
 1505: 	}
 1506: 	if (ij > ncodemax[j]) break; 
 1507:       }  
 1508:     } 
 1509:   }  
 1510: 
 1511:  for (k=0; k<19; k++) Ndum[k]=0;
 1512: 
 1513:  for (i=1; i<=ncovmodel-2; i++) {
 1514:       ij=Tvar[i];
 1515:       Ndum[ij]++; 
 1516:     }
 1517: 
 1518:  ij=1;
 1519:  for (i=1; i<=10; i++) {
 1520:    if((Ndum[i]!=0) && (i<=ncovcol)){
 1521:      Tvaraff[ij]=i; 
 1522:      ij++;
 1523:    }
 1524:  }
 1525:  
 1526:     cptcoveff=ij-1;
 1527: }
 1528: 
 1529: /*********** Health Expectancies ****************/
 1530: 
 1531: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)
 1532: {
 1533:   /* Health expectancies */
 1534:   int i, j, nhstepm, hstepm, h, nstepm, k;
 1535:   double age, agelim, hf;
 1536:   double ***p3mat;
 1537:   
 1538:   fprintf(ficreseij,"# Health expectancies\n");
 1539:   fprintf(ficreseij,"# Age");
 1540:   for(i=1; i<=nlstate;i++)
 1541:     for(j=1; j<=nlstate;j++)
 1542:       fprintf(ficreseij," %1d-%1d",i,j);
 1543:   fprintf(ficreseij,"\n");
 1544: 
 1545:   k=1;             /* For example stepm=6 months */
 1546:   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */
 1547:   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */
 1548:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 1549:      nhstepm is the number of hstepm from age to agelim 
 1550:      nstepm is the number of stepm from age to agelin. 
 1551:      Look at hpijx to understand the reason of that which relies in memory size
 1552:      and note for a fixed period like k years */
 1553:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 1554:      survival function given by stepm (the optimization length). Unfortunately it
 1555:      means that if the survival funtion is printed only each two years of age and if
 1556:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 1557:      results. So we changed our mind and took the option of the best precision.
 1558:   */
 1559:   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */ 
 1560: 
 1561:   agelim=AGESUP;
 1562:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1563:     /* nhstepm age range expressed in number of stepm */
 1564:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 1565:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 1566:     /* if (stepm >= YEARM) hstepm=1;*/
 1567:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 1568:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1569:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 1570:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 1571:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 1572:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 1573:     for(i=1; i<=nlstate;i++)
 1574:       for(j=1; j<=nlstate;j++)
 1575: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 1576: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 1577: 	  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 1578: 	}
 1579:     fprintf(ficreseij,"%3.0f",age );
 1580:     for(i=1; i<=nlstate;i++)
 1581:       for(j=1; j<=nlstate;j++){
 1582: 	fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);
 1583:       }
 1584:     fprintf(ficreseij,"\n");
 1585:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1586:   }
 1587: }
 1588: 
 1589: /************ Variance ******************/
 1590: void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 1591: {
 1592:   /* Variance of health expectancies */
 1593:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1594:   double **newm;
 1595:   double **dnewm,**doldm;
 1596:   int i, j, nhstepm, hstepm, h, nstepm, kk;
 1597:   int k, cptcode;
 1598:   double *xp;
 1599:   double **gp, **gm;
 1600:   double ***gradg, ***trgradg;
 1601:   double ***p3mat;
 1602:   double age,agelim, hf;
 1603:   int theta;
 1604: 
 1605:    fprintf(ficresvij,"# Covariances of life expectancies\n");
 1606:   fprintf(ficresvij,"# Age");
 1607:   for(i=1; i<=nlstate;i++)
 1608:     for(j=1; j<=nlstate;j++)
 1609:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 1610:   fprintf(ficresvij,"\n");
 1611: 
 1612:   xp=vector(1,npar);
 1613:   dnewm=matrix(1,nlstate,1,npar);
 1614:   doldm=matrix(1,nlstate,1,nlstate);
 1615:   
 1616:   kk=1;             /* For example stepm=6 months */
 1617:   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */
 1618:   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */
 1619:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 1620:      nhstepm is the number of hstepm from age to agelim 
 1621:      nstepm is the number of stepm from age to agelin. 
 1622:      Look at hpijx to understand the reason of that which relies in memory size
 1623:      and note for a fixed period like k years */
 1624:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 1625:      survival function given by stepm (the optimization length). Unfortunately it
 1626:      means that if the survival funtion is printed only each two years of age and if
 1627:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 1628:      results. So we changed our mind and took the option of the best precision.
 1629:   */
 1630:   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */ 
 1631:   agelim = AGESUP;
 1632:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1633:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 1634:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 1635:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1636:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 1637:     gp=matrix(0,nhstepm,1,nlstate);
 1638:     gm=matrix(0,nhstepm,1,nlstate);
 1639: 
 1640:     for(theta=1; theta <=npar; theta++){
 1641:       for(i=1; i<=npar; i++){ /* Computes gradient */
 1642: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1643:       }
 1644:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1645:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1646: 
 1647:       if (popbased==1) {
 1648: 	for(i=1; i<=nlstate;i++)
 1649: 	  prlim[i][i]=probs[(int)age][i][ij];
 1650:       }
 1651:   
 1652:       for(j=1; j<= nlstate; j++){
 1653: 	for(h=0; h<=nhstepm; h++){
 1654: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 1655: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 1656: 	}
 1657:       }
 1658:     
 1659:       for(i=1; i<=npar; i++) /* Computes gradient */
 1660: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1661:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1662:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1663:  
 1664:       if (popbased==1) {
 1665: 	for(i=1; i<=nlstate;i++)
 1666: 	  prlim[i][i]=probs[(int)age][i][ij];
 1667:       }
 1668: 
 1669:       for(j=1; j<= nlstate; j++){
 1670: 	for(h=0; h<=nhstepm; h++){
 1671: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 1672: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 1673: 	}
 1674:       }
 1675: 
 1676:       for(j=1; j<= nlstate; j++)
 1677: 	for(h=0; h<=nhstepm; h++){
 1678: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 1679: 	}
 1680:     } /* End theta */
 1681: 
 1682:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
 1683: 
 1684:     for(h=0; h<=nhstepm; h++)
 1685:       for(j=1; j<=nlstate;j++)
 1686: 	for(theta=1; theta <=npar; theta++)
 1687: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 1688: 
 1689:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 1690:     for(i=1;i<=nlstate;i++)
 1691:       for(j=1;j<=nlstate;j++)
 1692: 	vareij[i][j][(int)age] =0.;
 1693: 
 1694:     for(h=0;h<=nhstepm;h++){
 1695:       for(k=0;k<=nhstepm;k++){
 1696: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 1697: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 1698: 	for(i=1;i<=nlstate;i++)
 1699: 	  for(j=1;j<=nlstate;j++)
 1700: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 1701:       }
 1702:     }
 1703: 
 1704:     fprintf(ficresvij,"%.0f ",age );
 1705:     for(i=1; i<=nlstate;i++)
 1706:       for(j=1; j<=nlstate;j++){
 1707: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 1708:       }
 1709:     fprintf(ficresvij,"\n");
 1710:     free_matrix(gp,0,nhstepm,1,nlstate);
 1711:     free_matrix(gm,0,nhstepm,1,nlstate);
 1712:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 1713:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 1714:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1715:   } /* End age */
 1716:   
 1717:   free_vector(xp,1,npar);
 1718:   free_matrix(doldm,1,nlstate,1,npar);
 1719:   free_matrix(dnewm,1,nlstate,1,nlstate);
 1720: 
 1721: }
 1722: 
 1723: /************ Variance of prevlim ******************/
 1724: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 1725: {
 1726:   /* Variance of prevalence limit */
 1727:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1728:   double **newm;
 1729:   double **dnewm,**doldm;
 1730:   int i, j, nhstepm, hstepm;
 1731:   int k, cptcode;
 1732:   double *xp;
 1733:   double *gp, *gm;
 1734:   double **gradg, **trgradg;
 1735:   double age,agelim;
 1736:   int theta;
 1737:    
 1738:   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
 1739:   fprintf(ficresvpl,"# Age");
 1740:   for(i=1; i<=nlstate;i++)
 1741:       fprintf(ficresvpl," %1d-%1d",i,i);
 1742:   fprintf(ficresvpl,"\n");
 1743: 
 1744:   xp=vector(1,npar);
 1745:   dnewm=matrix(1,nlstate,1,npar);
 1746:   doldm=matrix(1,nlstate,1,nlstate);
 1747:   
 1748:   hstepm=1*YEARM; /* Every year of age */
 1749:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 1750:   agelim = AGESUP;
 1751:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1752:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 1753:     if (stepm >= YEARM) hstepm=1;
 1754:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 1755:     gradg=matrix(1,npar,1,nlstate);
 1756:     gp=vector(1,nlstate);
 1757:     gm=vector(1,nlstate);
 1758: 
 1759:     for(theta=1; theta <=npar; theta++){
 1760:       for(i=1; i<=npar; i++){ /* Computes gradient */
 1761: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1762:       }
 1763:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1764:       for(i=1;i<=nlstate;i++)
 1765: 	gp[i] = prlim[i][i];
 1766:     
 1767:       for(i=1; i<=npar; i++) /* Computes gradient */
 1768: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1769:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1770:       for(i=1;i<=nlstate;i++)
 1771: 	gm[i] = prlim[i][i];
 1772: 
 1773:       for(i=1;i<=nlstate;i++)
 1774: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 1775:     } /* End theta */
 1776: 
 1777:     trgradg =matrix(1,nlstate,1,npar);
 1778: 
 1779:     for(j=1; j<=nlstate;j++)
 1780:       for(theta=1; theta <=npar; theta++)
 1781: 	trgradg[j][theta]=gradg[theta][j];
 1782: 
 1783:     for(i=1;i<=nlstate;i++)
 1784:       varpl[i][(int)age] =0.;
 1785:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 1786:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 1787:     for(i=1;i<=nlstate;i++)
 1788:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 1789: 
 1790:     fprintf(ficresvpl,"%.0f ",age );
 1791:     for(i=1; i<=nlstate;i++)
 1792:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 1793:     fprintf(ficresvpl,"\n");
 1794:     free_vector(gp,1,nlstate);
 1795:     free_vector(gm,1,nlstate);
 1796:     free_matrix(gradg,1,npar,1,nlstate);
 1797:     free_matrix(trgradg,1,nlstate,1,npar);
 1798:   } /* End age */
 1799: 
 1800:   free_vector(xp,1,npar);
 1801:   free_matrix(doldm,1,nlstate,1,npar);
 1802:   free_matrix(dnewm,1,nlstate,1,nlstate);
 1803: 
 1804: }
 1805: 
 1806: /************ Variance of one-step probabilities  ******************/
 1807: void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)
 1808: {
 1809:   int i, j;
 1810:   int k=0, cptcode;
 1811:   double **dnewm,**doldm;
 1812:   double *xp;
 1813:   double *gp, *gm;
 1814:   double **gradg, **trgradg;
 1815:   double age,agelim, cov[NCOVMAX];
 1816:   int theta;
 1817:   char fileresprob[FILENAMELENGTH];
 1818: 
 1819:   strcpy(fileresprob,"prob"); 
 1820:   strcat(fileresprob,fileres);
 1821:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 1822:     printf("Problem with resultfile: %s\n", fileresprob);
 1823:   }
 1824:   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);
 1825:   
 1826: 
 1827:   xp=vector(1,npar);
 1828:   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 1829:   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));
 1830:   
 1831:   cov[1]=1;
 1832:   for (age=bage; age<=fage; age ++){ 
 1833:     cov[2]=age;
 1834:     gradg=matrix(1,npar,1,9);
 1835:     trgradg=matrix(1,9,1,npar);
 1836:     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
 1837:     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
 1838:     
 1839:     for(theta=1; theta <=npar; theta++){
 1840:       for(i=1; i<=npar; i++)
 1841: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1842:      
 1843:       pmij(pmmij,cov,ncovmodel,xp,nlstate);
 1844:    
 1845:       k=0;
 1846:       for(i=1; i<= (nlstate+ndeath); i++){
 1847: 	for(j=1; j<=(nlstate+ndeath);j++){
 1848: 	   k=k+1;
 1849: 	  gp[k]=pmmij[i][j];
 1850: 	}
 1851:       }
 1852: 
 1853:       for(i=1; i<=npar; i++)
 1854: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1855:     
 1856: 
 1857:       pmij(pmmij,cov,ncovmodel,xp,nlstate);
 1858:       k=0;
 1859:       for(i=1; i<=(nlstate+ndeath); i++){
 1860: 	for(j=1; j<=(nlstate+ndeath);j++){
 1861: 	  k=k+1;
 1862: 	  gm[k]=pmmij[i][j];
 1863: 	}
 1864:       }
 1865:      
 1866:        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++) 
 1867: 	   gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
 1868:     }
 1869: 
 1870:      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)
 1871:       for(theta=1; theta <=npar; theta++)
 1872:       trgradg[j][theta]=gradg[theta][j];
 1873:  
 1874:      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);
 1875:      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);
 1876: 
 1877:      pmij(pmmij,cov,ncovmodel,x,nlstate);
 1878: 
 1879:      k=0;
 1880:      for(i=1; i<=(nlstate+ndeath); i++){
 1881:        for(j=1; j<=(nlstate+ndeath);j++){
 1882: 	 k=k+1;
 1883: 	 gm[k]=pmmij[i][j];
 1884: 	}
 1885:      }
 1886:      
 1887:      /*printf("\n%d ",(int)age);
 1888:      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
 1889:        
 1890: 
 1891:        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 1892:      }*/
 1893: 
 1894:   fprintf(ficresprob,"\n%d ",(int)age);
 1895: 
 1896:   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
 1897:     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
 1898: if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
 1899:   }
 1900: 
 1901:     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 1902:     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 1903:     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 1904:     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 1905: }
 1906:  free_vector(xp,1,npar);
 1907: fclose(ficresprob);
 1908: 
 1909: }
 1910: 
 1911: /******************* Printing html file ***********/
 1912: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 1913:  int lastpass, int stepm, int weightopt, char model[],\
 1914:  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \
 1915:  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\
 1916:  char version[], int popforecast ){
 1917:   int jj1, k1, i1, cpt;
 1918:   FILE *fichtm;
 1919:   /*char optionfilehtm[FILENAMELENGTH];*/
 1920: 
 1921:   strcpy(optionfilehtm,optionfile);
 1922:   strcat(optionfilehtm,".htm");
 1923:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 1924:     printf("Problem with %s \n",optionfilehtm), exit(0);
 1925:   }
 1926: 
 1927:  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
 1928: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
 1929: \n
 1930: Total number of observations=%d <br>\n
 1931: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
 1932: <hr  size=\"2\" color=\"#EC5E5E\"> 
 1933:  <ul><li>Outputs files<br>\n
 1934:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
 1935:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n
 1936:  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
 1937:  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n
 1938:  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n
 1939:  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);
 1940: 
 1941:  fprintf(fichtm,"\n
 1942:  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n
 1943:  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n
 1944:  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n
 1945:  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);
 1946: 
 1947:  if(popforecast==1) fprintf(fichtm,"\n
 1948:  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
 1949:  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
 1950: 	<br>",fileres,fileres,fileres,fileres);
 1951:  else 
 1952:    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
 1953: fprintf(fichtm," <li>Graphs</li><p>");
 1954: 
 1955:  m=cptcoveff;
 1956:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 1957: 
 1958:  jj1=0;
 1959:  for(k1=1; k1<=m;k1++){
 1960:    for(i1=1; i1<=ncodemax[k1];i1++){
 1961:        jj1++;
 1962:        if (cptcovn > 0) {
 1963: 	 fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 1964: 	 for (cpt=1; cpt<=cptcoveff;cpt++) 
 1965: 	   fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 1966: 	 fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 1967:        }
 1968:        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
 1969: <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
 1970:        for(cpt=1; cpt<nlstate;cpt++){
 1971: 	 fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
 1972: <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 1973:        }
 1974:     for(cpt=1; cpt<=nlstate;cpt++) {
 1975:        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
 1976: interval) in state (%d): v%s%d%d.gif <br>
 1977: <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
 1978:      }
 1979:      for(cpt=1; cpt<=nlstate;cpt++) {
 1980:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
 1981: <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 1982:      }
 1983:      fprintf(fichtm,"\n<br>- Total life expectancy by age and
 1984: health expectancies in states (1) and (2): e%s%d.gif<br>
 1985: <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
 1986: fprintf(fichtm,"\n</body>");
 1987:    }
 1988:    }
 1989: fclose(fichtm);
 1990: }
 1991: 
 1992: /******************* Gnuplot file **************/
 1993: void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 1994: 
 1995:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 1996: 
 1997:   strcpy(optionfilegnuplot,optionfilefiname);
 1998:   strcat(optionfilegnuplot,".gp.txt");
 1999:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 2000:     printf("Problem with file %s",optionfilegnuplot);
 2001:   }
 2002: 
 2003: #ifdef windows
 2004:     fprintf(ficgp,"cd \"%s\" \n",pathc);
 2005: #endif
 2006: m=pow(2,cptcoveff);
 2007:   
 2008:  /* 1eme*/
 2009:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 2010:    for (k1=1; k1<= m ; k1 ++) {
 2011: 
 2012: #ifdef windows
 2013:     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
 2014: #endif
 2015: #ifdef unix
 2016: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);
 2017: #endif
 2018: 
 2019: for (i=1; i<= nlstate ; i ++) {
 2020:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2021:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2022: }
 2023:     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
 2024:     for (i=1; i<= nlstate ; i ++) {
 2025:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2026:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2027: } 
 2028:   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 2029:      for (i=1; i<= nlstate ; i ++) {
 2030:   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2031:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2032: }  
 2033:      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 2034: #ifdef unix
 2035: fprintf(ficgp,"\nset ter gif small size 400,300");
 2036: #endif
 2037: fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2038:    }
 2039:   }
 2040:   /*2 eme*/
 2041: 
 2042:   for (k1=1; k1<= m ; k1 ++) { 
 2043:     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);
 2044:     
 2045:     for (i=1; i<= nlstate+1 ; i ++) {
 2046:       k=2*i;
 2047:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
 2048:       for (j=1; j<= nlstate+1 ; j ++) {
 2049:   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2050:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2051: }   
 2052:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 2053:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 2054:     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2055:       for (j=1; j<= nlstate+1 ; j ++) {
 2056: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2057: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2058: }   
 2059:       fprintf(ficgp,"\" t\"\" w l 0,");
 2060:      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2061:       for (j=1; j<= nlstate+1 ; j ++) {
 2062:   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2063:   else fprintf(ficgp," \%%*lf (\%%*lf)");
 2064: }   
 2065:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 2066:       else fprintf(ficgp,"\" t\"\" w l 0,");
 2067:     }
 2068:     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
 2069:   }
 2070:  
 2071:   /*3eme*/
 2072: 
 2073:   for (k1=1; k1<= m ; k1 ++) { 
 2074:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 2075:       k=2+nlstate*(cpt-1);
 2076:       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
 2077:       for (i=1; i< nlstate ; i ++) {
 2078: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);
 2079:       } 
 2080:       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2081:     }
 2082:     }
 2083:  
 2084:   /* CV preval stat */
 2085:     for (k1=1; k1<= m ; k1 ++) { 
 2086:     for (cpt=1; cpt<nlstate ; cpt ++) {
 2087:       k=3;
 2088:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
 2089: 
 2090:       for (i=1; i< nlstate ; i ++)
 2091: 	fprintf(ficgp,"+$%d",k+i+1);
 2092:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 2093:       
 2094:       l=3+(nlstate+ndeath)*cpt;
 2095:       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
 2096:       for (i=1; i< nlstate ; i ++) {
 2097: 	l=3+(nlstate+ndeath)*cpt;
 2098: 	fprintf(ficgp,"+$%d",l+i+1);
 2099:       }
 2100:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 2101:       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
 2102:     } 
 2103:   }  
 2104:   
 2105:   /* proba elementaires */
 2106:    for(i=1,jk=1; i <=nlstate; i++){
 2107:     for(k=1; k <=(nlstate+ndeath); k++){
 2108:       if (k != i) {
 2109: 	for(j=1; j <=ncovmodel; j++){
 2110: 	
 2111: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 2112: 	  jk++; 
 2113: 	  fprintf(ficgp,"\n");
 2114: 	}
 2115:       }
 2116:     }
 2117:     }
 2118: 
 2119:     for(jk=1; jk <=m; jk++) {
 2120:   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 2121:    i=1;
 2122:    for(k2=1; k2<=nlstate; k2++) {
 2123:      k3=i;
 2124:      for(k=1; k<=(nlstate+ndeath); k++) {
 2125:        if (k != k2){
 2126:     	fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 2127: ij=1;
 2128: 	for(j=3; j <=ncovmodel; j++) {
 2129: 	  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2130: 	    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2131: 	    ij++;
 2132: 	  }
 2133: 	  else
 2134: 	  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2135: 	}
 2136: 	  fprintf(ficgp,")/(1");
 2137: 	
 2138: 	for(k1=1; k1 <=nlstate; k1++){   
 2139: 	  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 2140: ij=1;
 2141: 	  for(j=3; j <=ncovmodel; j++){
 2142: 	  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2143: 	    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2144: 	    ij++;
 2145: 	  }
 2146: 	  else
 2147: 	    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2148: 	  }
 2149: 	  fprintf(ficgp,")");
 2150: 	}
 2151: 	fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 2152: 	if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 2153: 	i=i+ncovmodel;
 2154:        }
 2155:      }
 2156:    }
 2157:    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk); 
 2158:    }
 2159:    
 2160:   fclose(ficgp);
 2161: }  /* end gnuplot */
 2162: 
 2163: 
 2164: /*************** Moving average **************/
 2165: void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){
 2166: 
 2167:   int i, cpt, cptcod;
 2168:     for (agedeb=ageminpar; agedeb<=fage; agedeb++)
 2169:       for (i=1; i<=nlstate;i++)
 2170: 	for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
 2171: 	  mobaverage[(int)agedeb][i][cptcod]=0.;
 2172:     
 2173:     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){
 2174:       for (i=1; i<=nlstate;i++){
 2175: 	for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 2176: 	  for (cpt=0;cpt<=4;cpt++){
 2177: 	    mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];
 2178: 	  }
 2179: 	  mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;
 2180: 	}
 2181:       }
 2182:     }
 2183:     
 2184: }
 2185: 
 2186: 
 2187: /************** Forecasting ******************/
 2188: prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
 2189:   
 2190:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 2191:   int *popage;
 2192:   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 2193:   double *popeffectif,*popcount;
 2194:   double ***p3mat;
 2195:   char fileresf[FILENAMELENGTH];
 2196: 
 2197:  agelim=AGESUP;
 2198: calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
 2199: 
 2200:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 2201:  
 2202:  
 2203:   strcpy(fileresf,"f"); 
 2204:   strcat(fileresf,fileres);
 2205:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 2206:     printf("Problem with forecast resultfile: %s\n", fileresf);
 2207:   }
 2208:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 2209: 
 2210:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 2211: 
 2212:   if (mobilav==1) {
 2213:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2214:     movingaverage(agedeb, fage, ageminpar, mobaverage);
 2215:   }
 2216: 
 2217:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 2218:   if (stepm<=12) stepsize=1;
 2219:   
 2220:   agelim=AGESUP;
 2221:   
 2222:   hstepm=1;
 2223:   hstepm=hstepm/stepm; 
 2224:   yp1=modf(dateintmean,&yp);
 2225:   anprojmean=yp;
 2226:   yp2=modf((yp1*12),&yp);
 2227:   mprojmean=yp;
 2228:   yp1=modf((yp2*30.5),&yp);
 2229:   jprojmean=yp;
 2230:   if(jprojmean==0) jprojmean=1;
 2231:   if(mprojmean==0) jprojmean=1;
 2232:   
 2233:   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
 2234:   
 2235:   for(cptcov=1;cptcov<=i2;cptcov++){
 2236:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 2237:       k=k+1;
 2238:       fprintf(ficresf,"\n#******");
 2239:       for(j=1;j<=cptcoveff;j++) {
 2240: 	fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 2241:       }
 2242:       fprintf(ficresf,"******\n");
 2243:       fprintf(ficresf,"# StartingAge FinalAge");
 2244:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
 2245:       
 2246:       
 2247:       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
 2248: 	fprintf(ficresf,"\n");
 2249: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
 2250: 
 2251:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 2252: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 2253: 	  nhstepm = nhstepm/hstepm; 
 2254: 	  
 2255: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2256: 	  oldm=oldms;savm=savms;
 2257: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 2258: 	
 2259: 	  for (h=0; h<=nhstepm; h++){
 2260: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 2261: 	      fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
 2262: 	    } 
 2263: 	    for(j=1; j<=nlstate+ndeath;j++) {
 2264: 	      kk1=0.;kk2=0;
 2265: 	      for(i=1; i<=nlstate;i++) {	      
 2266: 		if (mobilav==1) 
 2267: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 2268: 		else {
 2269: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 2270: 		}
 2271: 		
 2272: 	      }
 2273: 	      if (h==(int)(calagedate+12*cpt)){
 2274: 		fprintf(ficresf," %.3f", kk1);
 2275: 	     		
 2276: 	      }
 2277: 	    }
 2278: 	  }
 2279: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2280: 	}
 2281:       }
 2282:     }
 2283:   }
 2284:        
 2285:   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2286: 
 2287:   fclose(ficresf);
 2288: }
 2289: /************** Forecasting ******************/
 2290: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 2291:   
 2292:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 2293:   int *popage;
 2294:   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 2295:   double *popeffectif,*popcount;
 2296:   double ***p3mat,***tabpop,***tabpopprev;
 2297:   char filerespop[FILENAMELENGTH];
 2298: 
 2299:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2300:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2301:   agelim=AGESUP;
 2302:   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 2303:   
 2304:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 2305:   
 2306:   
 2307:   strcpy(filerespop,"pop"); 
 2308:   strcat(filerespop,fileres);
 2309:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 2310:     printf("Problem with forecast resultfile: %s\n", filerespop);
 2311:   }
 2312:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 2313: 
 2314:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 2315: 
 2316:   if (mobilav==1) {
 2317:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2318:     movingaverage(agedeb, fage, ageminpar, mobaverage);
 2319:   }
 2320: 
 2321:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 2322:   if (stepm<=12) stepsize=1;
 2323:   
 2324:   agelim=AGESUP;
 2325:   
 2326:   hstepm=1;
 2327:   hstepm=hstepm/stepm; 
 2328:   
 2329:   if (popforecast==1) {
 2330:     if((ficpop=fopen(popfile,"r"))==NULL) {
 2331:       printf("Problem with population file : %s\n",popfile);exit(0);
 2332:     } 
 2333:     popage=ivector(0,AGESUP);
 2334:     popeffectif=vector(0,AGESUP);
 2335:     popcount=vector(0,AGESUP);
 2336:     
 2337:     i=1;   
 2338:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 2339:    
 2340:     imx=i;
 2341:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 2342:   }
 2343: 
 2344:   for(cptcov=1;cptcov<=i2;cptcov++){
 2345:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 2346:       k=k+1;
 2347:       fprintf(ficrespop,"\n#******");
 2348:       for(j=1;j<=cptcoveff;j++) {
 2349: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 2350:       }
 2351:       fprintf(ficrespop,"******\n");
 2352:       fprintf(ficrespop,"# Age");
 2353:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 2354:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 2355:       
 2356:       for (cpt=0; cpt<=0;cpt++) { 
 2357: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 2358: 	
 2359:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 2360: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 2361: 	  nhstepm = nhstepm/hstepm; 
 2362: 	  
 2363: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2364: 	  oldm=oldms;savm=savms;
 2365: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 2366: 	
 2367: 	  for (h=0; h<=nhstepm; h++){
 2368: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 2369: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 2370: 	    } 
 2371: 	    for(j=1; j<=nlstate+ndeath;j++) {
 2372: 	      kk1=0.;kk2=0;
 2373: 	      for(i=1; i<=nlstate;i++) {	      
 2374: 		if (mobilav==1) 
 2375: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 2376: 		else {
 2377: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 2378: 		}
 2379: 	      }
 2380: 	      if (h==(int)(calagedate+12*cpt)){
 2381: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 2382: 		  /*fprintf(ficrespop," %.3f", kk1);
 2383: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 2384: 	      }
 2385: 	    }
 2386: 	    for(i=1; i<=nlstate;i++){
 2387: 	      kk1=0.;
 2388: 		for(j=1; j<=nlstate;j++){
 2389: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 2390: 		}
 2391: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
 2392: 	    }
 2393: 
 2394: 	    if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
 2395: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 2396: 	  }
 2397: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2398: 	}
 2399:       }
 2400:  
 2401:   /******/
 2402: 
 2403:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 2404: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 2405: 	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 2406: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 2407: 	  nhstepm = nhstepm/hstepm; 
 2408: 	  
 2409: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2410: 	  oldm=oldms;savm=savms;
 2411: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 2412: 	  for (h=0; h<=nhstepm; h++){
 2413: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 2414: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 2415: 	    } 
 2416: 	    for(j=1; j<=nlstate+ndeath;j++) {
 2417: 	      kk1=0.;kk2=0;
 2418: 	      for(i=1; i<=nlstate;i++) {	      
 2419: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 2420: 	      }
 2421: 	      if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 2422: 	    }
 2423: 	  }
 2424: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2425: 	}
 2426:       }
 2427:    } 
 2428:   }
 2429:  
 2430:   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2431: 
 2432:   if (popforecast==1) {
 2433:     free_ivector(popage,0,AGESUP);
 2434:     free_vector(popeffectif,0,AGESUP);
 2435:     free_vector(popcount,0,AGESUP);
 2436:   }
 2437:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2438:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2439:   fclose(ficrespop);
 2440: }
 2441: 
 2442: /***********************************************/
 2443: /**************** Main Program *****************/
 2444: /***********************************************/
 2445: 
 2446: int main(int argc, char *argv[])
 2447: {
 2448: 
 2449:   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
 2450:   double agedeb, agefin,hf;
 2451:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 2452: 
 2453:   double fret;
 2454:   double **xi,tmp,delta;
 2455: 
 2456:   double dum; /* Dummy variable */
 2457:   double ***p3mat;
 2458:   int *indx;
 2459:   char line[MAXLINE], linepar[MAXLINE];
 2460:   char title[MAXLINE];
 2461:   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 2462:   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 2463:   
 2464:   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 2465: 
 2466:   char filerest[FILENAMELENGTH];
 2467:   char fileregp[FILENAMELENGTH];
 2468:   char popfile[FILENAMELENGTH];
 2469:   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
 2470:   int firstobs=1, lastobs=10;
 2471:   int sdeb, sfin; /* Status at beginning and end */
 2472:   int c,  h , cpt,l;
 2473:   int ju,jl, mi;
 2474:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 2475:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; 
 2476:   int mobilav=0,popforecast=0;
 2477:   int hstepm, nhstepm;
 2478:   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;
 2479: 
 2480:   double bage, fage, age, agelim, agebase;
 2481:   double ftolpl=FTOL;
 2482:   double **prlim;
 2483:   double *severity;
 2484:   double ***param; /* Matrix of parameters */
 2485:   double  *p;
 2486:   double **matcov; /* Matrix of covariance */
 2487:   double ***delti3; /* Scale */
 2488:   double *delti; /* Scale */
 2489:   double ***eij, ***vareij;
 2490:   double **varpl; /* Variances of prevalence limits by age */
 2491:   double *epj, vepp;
 2492:   double kk1, kk2;
 2493:   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
 2494:   
 2495: 
 2496:   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";
 2497:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 2498: 
 2499: 
 2500:   char z[1]="c", occ;
 2501: #include <sys/time.h>
 2502: #include <time.h>
 2503:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 2504:  
 2505:   /* long total_usecs;
 2506:   struct timeval start_time, end_time;
 2507:   
 2508:   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 2509:   getcwd(pathcd, size);
 2510: 
 2511:   printf("\n%s",version);
 2512:   if(argc <=1){
 2513:     printf("\nEnter the parameter file name: ");
 2514:     scanf("%s",pathtot);
 2515:   }
 2516:   else{
 2517:     strcpy(pathtot,argv[1]);
 2518:   }
 2519:   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
 2520:   /*cygwin_split_path(pathtot,path,optionfile);
 2521:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 2522:   /* cutv(path,optionfile,pathtot,'\\');*/
 2523: 
 2524:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 2525:    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 2526:   chdir(path);
 2527:   replace(pathc,path);
 2528: 
 2529: /*-------- arguments in the command line --------*/
 2530: 
 2531:   strcpy(fileres,"r");
 2532:   strcat(fileres, optionfilefiname);
 2533:   strcat(fileres,".txt");    /* Other files have txt extension */
 2534: 
 2535:   /*---------arguments file --------*/
 2536: 
 2537:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 2538:     printf("Problem with optionfile %s\n",optionfile);
 2539:     goto end;
 2540:   }
 2541: 
 2542:   strcpy(filereso,"o");
 2543:   strcat(filereso,fileres);
 2544:   if((ficparo=fopen(filereso,"w"))==NULL) {
 2545:     printf("Problem with Output resultfile: %s\n", filereso);goto end;
 2546:   }
 2547: 
 2548:   /* Reads comments: lines beginning with '#' */
 2549:   while((c=getc(ficpar))=='#' && c!= EOF){
 2550:     ungetc(c,ficpar);
 2551:     fgets(line, MAXLINE, ficpar);
 2552:     puts(line);
 2553:     fputs(line,ficparo);
 2554:   }
 2555:   ungetc(c,ficpar);
 2556: 
 2557:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 2558:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 2559:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 2560: while((c=getc(ficpar))=='#' && c!= EOF){
 2561:     ungetc(c,ficpar);
 2562:     fgets(line, MAXLINE, ficpar);
 2563:     puts(line);
 2564:     fputs(line,ficparo);
 2565:   }
 2566:   ungetc(c,ficpar);
 2567:   
 2568:    
 2569:   covar=matrix(0,NCOVMAX,1,n); 
 2570:   cptcovn=0; 
 2571:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 2572: 
 2573:   ncovmodel=2+cptcovn;
 2574:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 2575:   
 2576:   /* Read guess parameters */
 2577:   /* Reads comments: lines beginning with '#' */
 2578:   while((c=getc(ficpar))=='#' && c!= EOF){
 2579:     ungetc(c,ficpar);
 2580:     fgets(line, MAXLINE, ficpar);
 2581:     puts(line);
 2582:     fputs(line,ficparo);
 2583:   }
 2584:   ungetc(c,ficpar);
 2585:   
 2586:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 2587:     for(i=1; i <=nlstate; i++)
 2588:     for(j=1; j <=nlstate+ndeath-1; j++){
 2589:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 2590:       fprintf(ficparo,"%1d%1d",i1,j1);
 2591:       printf("%1d%1d",i,j);
 2592:       for(k=1; k<=ncovmodel;k++){
 2593: 	fscanf(ficpar," %lf",&param[i][j][k]);
 2594: 	printf(" %lf",param[i][j][k]);
 2595: 	fprintf(ficparo," %lf",param[i][j][k]);
 2596:       }
 2597:       fscanf(ficpar,"\n");
 2598:       printf("\n");
 2599:       fprintf(ficparo,"\n");
 2600:     }
 2601:   
 2602:     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
 2603: 
 2604:   p=param[1][1];
 2605:   
 2606:   /* Reads comments: lines beginning with '#' */
 2607:   while((c=getc(ficpar))=='#' && c!= EOF){
 2608:     ungetc(c,ficpar);
 2609:     fgets(line, MAXLINE, ficpar);
 2610:     puts(line);
 2611:     fputs(line,ficparo);
 2612:   }
 2613:   ungetc(c,ficpar);
 2614: 
 2615:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 2616:   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
 2617:   for(i=1; i <=nlstate; i++){
 2618:     for(j=1; j <=nlstate+ndeath-1; j++){
 2619:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 2620:       printf("%1d%1d",i,j);
 2621:       fprintf(ficparo,"%1d%1d",i1,j1);
 2622:       for(k=1; k<=ncovmodel;k++){
 2623: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 2624: 	printf(" %le",delti3[i][j][k]);
 2625: 	fprintf(ficparo," %le",delti3[i][j][k]);
 2626:       }
 2627:       fscanf(ficpar,"\n");
 2628:       printf("\n");
 2629:       fprintf(ficparo,"\n");
 2630:     }
 2631:   }
 2632:   delti=delti3[1][1];
 2633:   
 2634:   /* Reads comments: lines beginning with '#' */
 2635:   while((c=getc(ficpar))=='#' && c!= EOF){
 2636:     ungetc(c,ficpar);
 2637:     fgets(line, MAXLINE, ficpar);
 2638:     puts(line);
 2639:     fputs(line,ficparo);
 2640:   }
 2641:   ungetc(c,ficpar);
 2642:   
 2643:   matcov=matrix(1,npar,1,npar);
 2644:   for(i=1; i <=npar; i++){
 2645:     fscanf(ficpar,"%s",&str);
 2646:     printf("%s",str);
 2647:     fprintf(ficparo,"%s",str);
 2648:     for(j=1; j <=i; j++){
 2649:       fscanf(ficpar," %le",&matcov[i][j]);
 2650:       printf(" %.5le",matcov[i][j]);
 2651:       fprintf(ficparo," %.5le",matcov[i][j]);
 2652:     }
 2653:     fscanf(ficpar,"\n");
 2654:     printf("\n");
 2655:     fprintf(ficparo,"\n");
 2656:   }
 2657:   for(i=1; i <=npar; i++)
 2658:     for(j=i+1;j<=npar;j++)
 2659:       matcov[i][j]=matcov[j][i];
 2660:    
 2661:   printf("\n");
 2662: 
 2663: 
 2664:     /*-------- Rewriting paramater file ----------*/
 2665:      strcpy(rfileres,"r");    /* "Rparameterfile */
 2666:      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 2667:      strcat(rfileres,".");    /* */
 2668:      strcat(rfileres,optionfilext);    /* Other files have txt extension */
 2669:     if((ficres =fopen(rfileres,"w"))==NULL) {
 2670:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 2671:     }
 2672:     fprintf(ficres,"#%s\n",version);
 2673:     
 2674:     /*-------- data file ----------*/
 2675:     if((fic=fopen(datafile,"r"))==NULL)    {
 2676:       printf("Problem with datafile: %s\n", datafile);goto end;
 2677:     }
 2678: 
 2679:     n= lastobs;
 2680:     severity = vector(1,maxwav);
 2681:     outcome=imatrix(1,maxwav+1,1,n);
 2682:     num=ivector(1,n);
 2683:     moisnais=vector(1,n);
 2684:     annais=vector(1,n);
 2685:     moisdc=vector(1,n);
 2686:     andc=vector(1,n);
 2687:     agedc=vector(1,n);
 2688:     cod=ivector(1,n);
 2689:     weight=vector(1,n);
 2690:     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 2691:     mint=matrix(1,maxwav,1,n);
 2692:     anint=matrix(1,maxwav,1,n);
 2693:     s=imatrix(1,maxwav+1,1,n);
 2694:     adl=imatrix(1,maxwav+1,1,n);    
 2695:     tab=ivector(1,NCOVMAX);
 2696:     ncodemax=ivector(1,8);
 2697: 
 2698:     i=1;
 2699:     while (fgets(line, MAXLINE, fic) != NULL)    {
 2700:       if ((i >= firstobs) && (i <=lastobs)) {
 2701: 	
 2702: 	for (j=maxwav;j>=1;j--){
 2703: 	  cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 2704: 	  strcpy(line,stra);
 2705: 	  cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 2706: 	  cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 2707: 	}
 2708: 	
 2709: 	cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 2710: 	cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 2711: 
 2712: 	cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 2713: 	cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 2714: 
 2715: 	cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 2716: 	for (j=ncovcol;j>=1;j--){
 2717: 	  cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 2718: 	} 
 2719: 	num[i]=atol(stra);
 2720: 	
 2721: 	/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 2722: 	  printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 2723: 
 2724: 	i=i+1;
 2725:       }
 2726:     } 
 2727:     /* printf("ii=%d", ij);
 2728:        scanf("%d",i);*/
 2729:   imx=i-1; /* Number of individuals */
 2730: 
 2731:   /* for (i=1; i<=imx; i++){
 2732:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 2733:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 2734:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 2735:     }*/
 2736:  
 2737:   /* for (i=1; i<=imx; i++){
 2738:      if (s[4][i]==9)  s[4][i]=-1; 
 2739:      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}
 2740:   */
 2741:  
 2742:   /* Calculation of the number of parameter from char model*/
 2743:   Tvar=ivector(1,15); 
 2744:   Tprod=ivector(1,15); 
 2745:   Tvaraff=ivector(1,15); 
 2746:   Tvard=imatrix(1,15,1,2);
 2747:   Tage=ivector(1,15);      
 2748:    
 2749:   if (strlen(model) >1){
 2750:     j=0, j1=0, k1=1, k2=1;
 2751:     j=nbocc(model,'+');
 2752:     j1=nbocc(model,'*');
 2753:     cptcovn=j+1;
 2754:     cptcovprod=j1;
 2755:     
 2756:     strcpy(modelsav,model); 
 2757:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 2758:       printf("Error. Non available option model=%s ",model);
 2759:       goto end;
 2760:     }
 2761:     
 2762:     for(i=(j+1); i>=1;i--){
 2763:       cutv(stra,strb,modelsav,'+');
 2764:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); 
 2765:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 2766:       /*scanf("%d",i);*/
 2767:       if (strchr(strb,'*')) {
 2768: 	cutv(strd,strc,strb,'*');
 2769: 	if (strcmp(strc,"age")==0) {
 2770: 	  cptcovprod--;
 2771: 	  cutv(strb,stre,strd,'V');
 2772: 	  Tvar[i]=atoi(stre);
 2773: 	  cptcovage++;
 2774: 	    Tage[cptcovage]=i;
 2775: 	    /*printf("stre=%s ", stre);*/
 2776: 	}
 2777: 	else if (strcmp(strd,"age")==0) {
 2778: 	  cptcovprod--;
 2779: 	  cutv(strb,stre,strc,'V');
 2780: 	  Tvar[i]=atoi(stre);
 2781: 	  cptcovage++;
 2782: 	  Tage[cptcovage]=i;
 2783: 	}
 2784: 	else {
 2785: 	  cutv(strb,stre,strc,'V');
 2786: 	  Tvar[i]=ncovcol+k1;
 2787: 	  cutv(strb,strc,strd,'V'); 
 2788: 	  Tprod[k1]=i;
 2789: 	  Tvard[k1][1]=atoi(strc);
 2790: 	  Tvard[k1][2]=atoi(stre);
 2791: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 2792: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 2793: 	  for (k=1; k<=lastobs;k++) 
 2794: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 2795: 	  k1++;
 2796: 	  k2=k2+2;
 2797: 	}
 2798:       }
 2799:       else {
 2800: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 2801:        /*  scanf("%d",i);*/
 2802:       cutv(strd,strc,strb,'V');
 2803:       Tvar[i]=atoi(strc);
 2804:       }
 2805:       strcpy(modelsav,stra);  
 2806:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 2807: 	scanf("%d",i);*/
 2808:     }
 2809: }
 2810:   
 2811:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 2812:   printf("cptcovprod=%d ", cptcovprod);
 2813:   scanf("%d ",i);*/
 2814:     fclose(fic);
 2815: 
 2816:     /*  if(mle==1){*/
 2817:     if (weightopt != 1) { /* Maximisation without weights*/
 2818:       for(i=1;i<=n;i++) weight[i]=1.0;
 2819:     }
 2820:     /*-calculation of age at interview from date of interview and age at death -*/
 2821:     agev=matrix(1,maxwav,1,imx);
 2822: 
 2823:     for (i=1; i<=imx; i++) {
 2824:       for(m=2; (m<= maxwav); m++) {
 2825:        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
 2826: 	 anint[m][i]=9999;
 2827: 	 s[m][i]=-1;
 2828:        }
 2829:      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
 2830:       }
 2831:     }
 2832: 
 2833:     for (i=1; i<=imx; i++)  {
 2834:       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 2835:       for(m=1; (m<= maxwav); m++){
 2836: 	if(s[m][i] >0){
 2837: 	  if (s[m][i] >= nlstate+1) {
 2838: 	    if(agedc[i]>0)
 2839: 	      if(moisdc[i]!=99 && andc[i]!=9999)
 2840: 		agev[m][i]=agedc[i];
 2841: 	    /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 2842: 	   else {
 2843: 	      if (andc[i]!=9999){
 2844: 	      printf("Warning negative age at death: %d line:%d\n",num[i],i);
 2845: 	      agev[m][i]=-1;
 2846: 	      }
 2847: 	    }
 2848: 	  }
 2849: 	  else if(s[m][i] !=9){ /* Should no more exist */
 2850: 	    agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 2851: 	    if(mint[m][i]==99 || anint[m][i]==9999)
 2852: 	      agev[m][i]=1;
 2853: 	    else if(agev[m][i] <agemin){ 
 2854: 	      agemin=agev[m][i];
 2855: 	      /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 2856: 	    }
 2857: 	    else if(agev[m][i] >agemax){
 2858: 	      agemax=agev[m][i];
 2859: 	     /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 2860: 	    }
 2861: 	    /*agev[m][i]=anint[m][i]-annais[i];*/
 2862: 	    /*	 agev[m][i] = age[i]+2*m;*/
 2863: 	  }
 2864: 	  else { /* =9 */
 2865: 	    agev[m][i]=1;
 2866: 	    s[m][i]=-1;
 2867: 	  }
 2868: 	}
 2869: 	else /*= 0 Unknown */
 2870: 	  agev[m][i]=1;
 2871:       }
 2872:     
 2873:     }
 2874:     for (i=1; i<=imx; i++)  {
 2875:       for(m=1; (m<= maxwav); m++){
 2876: 	if (s[m][i] > (nlstate+ndeath)) {
 2877: 	  printf("Error: Wrong value in nlstate or ndeath\n");	
 2878: 	  goto end;
 2879: 	}
 2880:       }
 2881:     }
 2882: 
 2883: printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 2884: 
 2885:     free_vector(severity,1,maxwav);
 2886:     free_imatrix(outcome,1,maxwav+1,1,n);
 2887:     free_vector(moisnais,1,n);
 2888:     free_vector(annais,1,n);
 2889:     /* free_matrix(mint,1,maxwav,1,n);
 2890:        free_matrix(anint,1,maxwav,1,n);*/
 2891:     free_vector(moisdc,1,n);
 2892:     free_vector(andc,1,n);
 2893: 
 2894:    
 2895:     wav=ivector(1,imx);
 2896:     dh=imatrix(1,lastpass-firstpass+1,1,imx);
 2897:     mw=imatrix(1,lastpass-firstpass+1,1,imx);
 2898:    
 2899:     /* Concatenates waves */
 2900:       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 2901: 
 2902: 
 2903:       Tcode=ivector(1,100);
 2904:       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 2905:       ncodemax[1]=1;
 2906:       if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 2907:       
 2908:    codtab=imatrix(1,100,1,10);
 2909:    h=0;
 2910:    m=pow(2,cptcoveff);
 2911:  
 2912:    for(k=1;k<=cptcoveff; k++){
 2913:      for(i=1; i <=(m/pow(2,k));i++){
 2914:        for(j=1; j <= ncodemax[k]; j++){
 2915: 	 for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 2916: 	   h++;
 2917: 	   if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 2918: 	   /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 2919: 	 } 
 2920:        }
 2921:      }
 2922:    } 
 2923:    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 2924:       codtab[1][2]=1;codtab[2][2]=2; */
 2925:    /* for(i=1; i <=m ;i++){ 
 2926:       for(k=1; k <=cptcovn; k++){
 2927:       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 2928:       }
 2929:       printf("\n");
 2930:       }
 2931:       scanf("%d",i);*/
 2932:     
 2933:    /* Calculates basic frequencies. Computes observed prevalence at single age
 2934:        and prints on file fileres'p'. */
 2935: 
 2936:     
 2937:    
 2938:     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2939:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2940:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2941:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 2942:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 2943:      
 2944:     /* For Powell, parameters are in a vector p[] starting at p[1]
 2945:        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 2946:     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 2947: 
 2948:     if(mle==1){
 2949:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 2950:     }
 2951:     
 2952:     /*--------- results files --------------*/
 2953:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 2954:   
 2955: 
 2956:    jk=1;
 2957:    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 2958:    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 2959:    for(i=1,jk=1; i <=nlstate; i++){
 2960:      for(k=1; k <=(nlstate+ndeath); k++){
 2961:        if (k != i) 
 2962: 	 {
 2963: 	   printf("%d%d ",i,k);
 2964: 	   fprintf(ficres,"%1d%1d ",i,k);
 2965: 	   for(j=1; j <=ncovmodel; j++){
 2966: 	     printf("%f ",p[jk]);
 2967: 	     fprintf(ficres,"%f ",p[jk]);
 2968: 	     jk++; 
 2969: 	   }
 2970: 	   printf("\n");
 2971: 	   fprintf(ficres,"\n");
 2972: 	 }
 2973:      }
 2974:    }
 2975:  if(mle==1){
 2976:     /* Computing hessian and covariance matrix */
 2977:     ftolhess=ftol; /* Usually correct */
 2978:     hesscov(matcov, p, npar, delti, ftolhess, func);
 2979:  }
 2980:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 2981:     printf("# Scales (for hessian or gradient estimation)\n");
 2982:      for(i=1,jk=1; i <=nlstate; i++){
 2983:       for(j=1; j <=nlstate+ndeath; j++){
 2984: 	if (j!=i) {
 2985: 	  fprintf(ficres,"%1d%1d",i,j);
 2986: 	  printf("%1d%1d",i,j);
 2987: 	  for(k=1; k<=ncovmodel;k++){
 2988: 	    printf(" %.5e",delti[jk]);
 2989: 	    fprintf(ficres," %.5e",delti[jk]);
 2990: 	    jk++;
 2991: 	  }
 2992: 	  printf("\n");
 2993: 	  fprintf(ficres,"\n");
 2994: 	}
 2995:       }
 2996:      }
 2997:     
 2998:     k=1;
 2999:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3000:     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3001:     for(i=1;i<=npar;i++){
 3002:       /*  if (k>nlstate) k=1;
 3003:       i1=(i-1)/(ncovmodel*nlstate)+1; 
 3004:       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 3005:       printf("%s%d%d",alph[k],i1,tab[i]);*/
 3006:       fprintf(ficres,"%3d",i);
 3007:       printf("%3d",i);
 3008:       for(j=1; j<=i;j++){
 3009: 	fprintf(ficres," %.5e",matcov[i][j]);
 3010: 	printf(" %.5e",matcov[i][j]);
 3011:       }
 3012:       fprintf(ficres,"\n");
 3013:       printf("\n");
 3014:       k++;
 3015:     }
 3016:     
 3017:     while((c=getc(ficpar))=='#' && c!= EOF){
 3018:       ungetc(c,ficpar);
 3019:       fgets(line, MAXLINE, ficpar);
 3020:       puts(line);
 3021:       fputs(line,ficparo);
 3022:     }
 3023:     ungetc(c,ficpar);
 3024:   
 3025:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);
 3026:     
 3027:     if (fage <= 2) {
 3028:       bage = ageminpar;
 3029:       fage = agemaxpar;
 3030:     }
 3031:     
 3032:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 3033:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);
 3034:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);
 3035:  
 3036:     while((c=getc(ficpar))=='#' && c!= EOF){
 3037:     ungetc(c,ficpar);
 3038:     fgets(line, MAXLINE, ficpar);
 3039:     puts(line);
 3040:     fputs(line,ficparo);
 3041:   }
 3042:   ungetc(c,ficpar);
 3043:   
 3044:   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);
 3045:   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 3046:  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 3047:      
 3048:   while((c=getc(ficpar))=='#' && c!= EOF){
 3049:     ungetc(c,ficpar);
 3050:     fgets(line, MAXLINE, ficpar);
 3051:     puts(line);
 3052:     fputs(line,ficparo);
 3053:   }
 3054:   ungetc(c,ficpar);
 3055:  
 3056: 
 3057:    dateprev1=anprev1+mprev1/12.+jprev1/365.;
 3058:    dateprev2=anprev2+mprev2/12.+jprev2/365.;
 3059: 
 3060:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 3061:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 3062:   fprintf(ficres,"pop_based=%d\n",popbased);   
 3063:   
 3064:   while((c=getc(ficpar))=='#' && c!= EOF){
 3065:     ungetc(c,ficpar);
 3066:     fgets(line, MAXLINE, ficpar);
 3067:     puts(line);
 3068:     fputs(line,ficparo);
 3069:   }
 3070:   ungetc(c,ficpar);
 3071: 
 3072:   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);
 3073: fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
 3074: fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);
 3075: 
 3076: 
 3077: while((c=getc(ficpar))=='#' && c!= EOF){
 3078:     ungetc(c,ficpar);
 3079:     fgets(line, MAXLINE, ficpar);
 3080:     puts(line);
 3081:     fputs(line,ficparo);
 3082:   }
 3083:   ungetc(c,ficpar);
 3084: 
 3085:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 3086:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3087:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3088: 
 3089:  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 3090: 
 3091: /*------------ gnuplot -------------*/
 3092:  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);
 3093:  
 3094: /*------------ free_vector  -------------*/
 3095:  chdir(path);
 3096:  
 3097:  free_ivector(wav,1,imx);
 3098:  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 3099:  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 3100:  free_ivector(num,1,n);
 3101:  free_vector(agedc,1,n);
 3102:  /*free_matrix(covar,1,NCOVMAX,1,n);*/
 3103:  fclose(ficparo);
 3104:  fclose(ficres);
 3105: 
 3106: /*--------- index.htm --------*/
 3107: 
 3108:   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);
 3109: 
 3110:   
 3111:   /*--------------- Prevalence limit --------------*/
 3112:   
 3113:   strcpy(filerespl,"pl");
 3114:   strcat(filerespl,fileres);
 3115:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 3116:     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
 3117:   }
 3118:   printf("Computing prevalence limit: result on file '%s' \n", filerespl);
 3119:   fprintf(ficrespl,"#Prevalence limit\n");
 3120:   fprintf(ficrespl,"#Age ");
 3121:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 3122:   fprintf(ficrespl,"\n");
 3123:   
 3124:   prlim=matrix(1,nlstate,1,nlstate);
 3125:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3126:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3127:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3128:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3129:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 3130:   k=0;
 3131:   agebase=ageminpar;
 3132:   agelim=agemaxpar;
 3133:   ftolpl=1.e-10;
 3134:   i1=cptcoveff;
 3135:   if (cptcovn < 1){i1=1;}
 3136: 
 3137:   for(cptcov=1;cptcov<=i1;cptcov++){
 3138:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3139: 	k=k+1;
 3140: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 3141: 	fprintf(ficrespl,"\n#******");
 3142: 	for(j=1;j<=cptcoveff;j++) 
 3143: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3144: 	fprintf(ficrespl,"******\n");
 3145: 	
 3146: 	for (age=agebase; age<=agelim; age++){
 3147: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 3148: 	  fprintf(ficrespl,"%.0f",age );
 3149: 	  for(i=1; i<=nlstate;i++)
 3150: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 3151: 	  fprintf(ficrespl,"\n");
 3152: 	}
 3153:       }
 3154:     }
 3155:   fclose(ficrespl);
 3156: 
 3157:   /*------------- h Pij x at various ages ------------*/
 3158:   
 3159:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 3160:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 3161:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 3162:   }
 3163:   printf("Computing pij: result on file '%s' \n", filerespij);
 3164:   
 3165:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3166:   /*if (stepm<=24) stepsize=2;*/
 3167: 
 3168:   agelim=AGESUP;
 3169:   hstepm=stepsize*YEARM; /* Every year of age */
 3170:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 3171:   
 3172:   k=0;
 3173:   for(cptcov=1;cptcov<=i1;cptcov++){
 3174:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3175:       k=k+1;
 3176: 	fprintf(ficrespij,"\n#****** ");
 3177: 	for(j=1;j<=cptcoveff;j++) 
 3178: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3179: 	fprintf(ficrespij,"******\n");
 3180: 	
 3181: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 3182: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3183: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3184: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3185: 	  oldm=oldms;savm=savms;
 3186: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3187: 	  fprintf(ficrespij,"# Age");
 3188: 	  for(i=1; i<=nlstate;i++)
 3189: 	    for(j=1; j<=nlstate+ndeath;j++)
 3190: 	      fprintf(ficrespij," %1d-%1d",i,j);
 3191: 	  fprintf(ficrespij,"\n");
 3192: 	  for (h=0; h<=nhstepm; h++){
 3193: 	    fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 3194: 	    for(i=1; i<=nlstate;i++)
 3195: 	      for(j=1; j<=nlstate+ndeath;j++)
 3196: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 3197: 	    fprintf(ficrespij,"\n");
 3198: 	  }
 3199: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3200: 	  fprintf(ficrespij,"\n");
 3201: 	}
 3202:     }
 3203:   }
 3204: 
 3205:   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/
 3206: 
 3207:   fclose(ficrespij);
 3208: 
 3209: 
 3210:   /*---------- Forecasting ------------------*/
 3211:   if((stepm == 1) && (strcmp(model,".")==0)){
 3212:     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
 3213:     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
 3214:     free_matrix(mint,1,maxwav,1,n);
 3215:     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
 3216:     free_vector(weight,1,n);}
 3217:   else{
 3218:     erreur=108;
 3219:     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
 3220:   }
 3221:   
 3222: 
 3223:   /*---------- Health expectancies and variances ------------*/
 3224: 
 3225:   strcpy(filerest,"t");
 3226:   strcat(filerest,fileres);
 3227:   if((ficrest=fopen(filerest,"w"))==NULL) {
 3228:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 3229:   }
 3230:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 3231: 
 3232: 
 3233:   strcpy(filerese,"e");
 3234:   strcat(filerese,fileres);
 3235:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 3236:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 3237:   }
 3238:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 3239: 
 3240:  strcpy(fileresv,"v");
 3241:   strcat(fileresv,fileres);
 3242:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 3243:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 3244:   }
 3245:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 3246: 
 3247:   k=0;
 3248:   for(cptcov=1;cptcov<=i1;cptcov++){
 3249:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3250:       k=k+1;
 3251:       fprintf(ficrest,"\n#****** ");
 3252:       for(j=1;j<=cptcoveff;j++) 
 3253: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3254:       fprintf(ficrest,"******\n");
 3255: 
 3256:       fprintf(ficreseij,"\n#****** ");
 3257:       for(j=1;j<=cptcoveff;j++) 
 3258: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3259:       fprintf(ficreseij,"******\n");
 3260: 
 3261:       fprintf(ficresvij,"\n#****** ");
 3262:       for(j=1;j<=cptcoveff;j++) 
 3263: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3264:       fprintf(ficresvij,"******\n");
 3265: 
 3266:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 3267:       oldm=oldms;savm=savms;
 3268:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);  
 3269:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 3270:       oldm=oldms;savm=savms;
 3271:        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 3272:     
 3273: 
 3274:  
 3275:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 3276:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 3277:       fprintf(ficrest,"\n");
 3278: 
 3279:       epj=vector(1,nlstate+1);
 3280:       for(age=bage; age <=fage ;age++){
 3281: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 3282: 	if (popbased==1) {
 3283: 	  for(i=1; i<=nlstate;i++)
 3284: 	    prlim[i][i]=probs[(int)age][i][k];
 3285: 	}
 3286: 	
 3287: 	fprintf(ficrest," %4.0f",age);
 3288: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 3289: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 3290: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 3291: 	  }
 3292: 	  epj[nlstate+1] +=epj[j];
 3293: 	}
 3294: 	for(i=1, vepp=0.;i <=nlstate;i++)
 3295: 	  for(j=1;j <=nlstate;j++)
 3296: 	    vepp += vareij[i][j][(int)age];
 3297: 	fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));
 3298: 	for(j=1;j <=nlstate;j++){
 3299: 	  fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));
 3300: 	}
 3301: 	fprintf(ficrest,"\n");
 3302:       }
 3303:     }
 3304:   }
 3305: 
 3306:   fclose(ficreseij);
 3307:   fclose(ficresvij);
 3308:   fclose(ficrest);
 3309:   fclose(ficpar);
 3310:   free_vector(epj,1,nlstate+1);
 3311:   
 3312:   /*------- Variance limit prevalence------*/   
 3313: 
 3314:   strcpy(fileresvpl,"vpl");
 3315:   strcat(fileresvpl,fileres);
 3316:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 3317:     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
 3318:     exit(0);
 3319:   }
 3320:   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
 3321: 
 3322:   k=0;
 3323:   for(cptcov=1;cptcov<=i1;cptcov++){
 3324:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3325:       k=k+1;
 3326:       fprintf(ficresvpl,"\n#****** ");
 3327:       for(j=1;j<=cptcoveff;j++) 
 3328: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3329:       fprintf(ficresvpl,"******\n");
 3330:       
 3331:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 3332:       oldm=oldms;savm=savms;
 3333:      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 3334:     }
 3335:  }
 3336: 
 3337:   fclose(ficresvpl);
 3338: 
 3339:   /*---------- End : free ----------------*/
 3340:   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 3341:   
 3342:   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 3343:   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 3344:   
 3345:   
 3346:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 3347:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 3348:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 3349:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 3350:  
 3351:   free_matrix(matcov,1,npar,1,npar);
 3352:   free_vector(delti,1,npar);
 3353:   free_matrix(agev,1,maxwav,1,imx);
 3354:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 3355: 
 3356:   if(erreur >0)
 3357:     printf("End of Imach with error or warning %d\n",erreur);
 3358:   else   printf("End of Imach\n");
 3359:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 3360:   
 3361:   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
 3362:   /*printf("Total time was %d uSec.\n", total_usecs);*/
 3363:   /*------ End -----------*/
 3364: 
 3365: 
 3366:  end:
 3367: #ifdef windows
 3368:   /* chdir(pathcd);*/
 3369: #endif 
 3370:  /*system("wgnuplot graph.plt");*/
 3371:  /*system("../gp37mgw/wgnuplot graph.plt");*/
 3372:  /*system("cd ../gp37mgw");*/
 3373:  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
 3374:  strcpy(plotcmd,GNUPLOTPROGRAM);
 3375:  strcat(plotcmd," ");
 3376:  strcat(plotcmd,optionfilegnuplot);
 3377:  system(plotcmd);
 3378: 
 3379: #ifdef windows
 3380:   while (z[0] != 'q') {
 3381:     /* chdir(path); */
 3382:     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
 3383:     scanf("%s",z);
 3384:     if (z[0] == 'c') system("./imach");
 3385:     else if (z[0] == 'e') system(optionfilehtm);
 3386:     else if (z[0] == 'g') system(plotcmd);
 3387:     else if (z[0] == 'q') exit(0);
 3388:   }
 3389: #endif 
 3390: }
 3391: 
 3392: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>