File:  [Local Repository] / imach / src / imach.c
Revision 1.58: download - view: text, annotated - select for diffs
Fri Jul 26 12:29:55 2002 UTC (21 years, 10 months ago) by lievre
Branches: MAIN
CVS tags: HEAD
Comments added and corrections in routine moving average done.

    1: /* $Id: imach.c,v 1.58 2002/07/26 12:29:55 lievre Exp $
    2:    Interpolated Markov Chain
    3: 
    4:   Short summary of the programme:
    5:   
    6:   This program computes Healthy Life Expectancies from
    7:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    8:   first survey ("cross") where individuals from different ages are
    9:   interviewed on their health status or degree of disability (in the
   10:   case of a health survey which is our main interest) -2- at least a
   11:   second wave of interviews ("longitudinal") which measure each change
   12:   (if any) in individual health status.  Health expectancies are
   13:   computed from the time spent in each health state according to a
   14:   model. More health states you consider, more time is necessary to reach the
   15:   Maximum Likelihood of the parameters involved in the model.  The
   16:   simplest model is the multinomial logistic model where pij is the
   17:   probability to be observed in state j at the second wave
   18:   conditional to be observed in state i at the first wave. Therefore
   19:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   20:   'age' is age and 'sex' is a covariate. If you want to have a more
   21:   complex model than "constant and age", you should modify the program
   22:   where the markup *Covariates have to be included here again* invites
   23:   you to do it.  More covariates you add, slower the
   24:   convergence.
   25: 
   26:   The advantage of this computer programme, compared to a simple
   27:   multinomial logistic model, is clear when the delay between waves is not
   28:   identical for each individual. Also, if a individual missed an
   29:   intermediate interview, the information is lost, but taken into
   30:   account using an interpolation or extrapolation.  
   31: 
   32:   hPijx is the probability to be observed in state i at age x+h
   33:   conditional to the observed state i at age x. The delay 'h' can be
   34:   split into an exact number (nh*stepm) of unobserved intermediate
   35:   states. This elementary transition (by month or quarter trimester,
   36:   semester or year) is model as a multinomial logistic.  The hPx
   37:   matrix is simply the matrix product of nh*stepm elementary matrices
   38:   and the contribution of each individual to the likelihood is simply
   39:   hPijx.
   40: 
   41:   Also this programme outputs the covariance matrix of the parameters but also
   42:   of the life expectancies. It also computes the stable prevalence. 
   43:   
   44:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   45:            Institut national d'études démographiques, Paris.
   46:   This software have been partly granted by Euro-REVES, a concerted action
   47:   from the European Union.
   48:   It is copyrighted identically to a GNU software product, ie programme and
   49:   software can be distributed freely for non commercial use. Latest version
   50:   can be accessed at http://euroreves.ined.fr/imach .
   51:   **********************************************************************/
   52:  
   53: #include <math.h>
   54: #include <stdio.h>
   55: #include <stdlib.h>
   56: #include <unistd.h>
   57: 
   58: #define MAXLINE 256
   59: #define GNUPLOTPROGRAM "gnuplot"
   60: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   61: #define FILENAMELENGTH 80
   62: /*#define DEBUG*/
   63: #define windows
   64: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
   65: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
   66: 
   67: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   68: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   69: 
   70: #define NINTERVMAX 8
   71: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   72: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   73: #define NCOVMAX 8 /* Maximum number of covariates */
   74: #define MAXN 20000
   75: #define YEARM 12. /* Number of months per year */
   76: #define AGESUP 130
   77: #define AGEBASE 40
   78: #ifdef windows
   79: #define DIRSEPARATOR '\\'
   80: #define ODIRSEPARATOR '/'
   81: #else
   82: #define DIRSEPARATOR '/'
   83: #define ODIRSEPARATOR '\\'
   84: #endif
   85: 
   86: char version[80]="Imach version 0.8k, July 2002, INED-EUROREVES ";
   87: int erreur; /* Error number */
   88: int nvar;
   89: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   90: int npar=NPARMAX;
   91: int nlstate=2; /* Number of live states */
   92: int ndeath=1; /* Number of dead states */
   93: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   94: int popbased=0;
   95: 
   96: int *wav; /* Number of waves for this individuual 0 is possible */
   97: int maxwav; /* Maxim number of waves */
   98: int jmin, jmax; /* min, max spacing between 2 waves */
   99: int mle, weightopt;
  100: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  101: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  102: double jmean; /* Mean space between 2 waves */
  103: double **oldm, **newm, **savm; /* Working pointers to matrices */
  104: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  105: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  106: FILE *ficlog;
  107: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  108: FILE *ficresprobmorprev;
  109: FILE *fichtm; /* Html File */
  110: FILE *ficreseij;
  111: char filerese[FILENAMELENGTH];
  112: FILE  *ficresvij;
  113: char fileresv[FILENAMELENGTH];
  114: FILE  *ficresvpl;
  115: char fileresvpl[FILENAMELENGTH];
  116: char title[MAXLINE];
  117: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  118: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  119: 
  120: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  121: char filelog[FILENAMELENGTH]; /* Log file */
  122: char filerest[FILENAMELENGTH];
  123: char fileregp[FILENAMELENGTH];
  124: char popfile[FILENAMELENGTH];
  125: 
  126: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
  127: 
  128: #define NR_END 1
  129: #define FREE_ARG char*
  130: #define FTOL 1.0e-10
  131: 
  132: #define NRANSI 
  133: #define ITMAX 200 
  134: 
  135: #define TOL 2.0e-4 
  136: 
  137: #define CGOLD 0.3819660 
  138: #define ZEPS 1.0e-10 
  139: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  140: 
  141: #define GOLD 1.618034 
  142: #define GLIMIT 100.0 
  143: #define TINY 1.0e-20 
  144: 
  145: static double maxarg1,maxarg2;
  146: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  147: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  148:   
  149: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  150: #define rint(a) floor(a+0.5)
  151: 
  152: static double sqrarg;
  153: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  154: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  155: 
  156: int imx; 
  157: int stepm;
  158: /* Stepm, step in month: minimum step interpolation*/
  159: 
  160: int estepm;
  161: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  162: 
  163: int m,nb;
  164: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  165: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  166: double **pmmij, ***probs;
  167: double dateintmean=0;
  168: 
  169: double *weight;
  170: int **s; /* Status */
  171: double *agedc, **covar, idx;
  172: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  173: 
  174: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  175: double ftolhess; /* Tolerance for computing hessian */
  176: 
  177: /**************** split *************************/
  178: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  179: {
  180:    char	*s;				/* pointer */
  181:    int	l1, l2;				/* length counters */
  182: 
  183:    l1 = strlen( path );			/* length of path */
  184:    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  185:    s= strrchr( path, DIRSEPARATOR );		/* find last / */
  186:    if ( s == NULL ) {			/* no directory, so use current */
  187:      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  188:        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  189: #if	defined(__bsd__)		/* get current working directory */
  190:       extern char	*getwd( );
  191: 
  192:       if ( getwd( dirc ) == NULL ) {
  193: #else
  194:       extern char	*getcwd( );
  195: 
  196:       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  197: #endif
  198:          return( GLOCK_ERROR_GETCWD );
  199:       }
  200:       strcpy( name, path );		/* we've got it */
  201:    } else {				/* strip direcotry from path */
  202:       s++;				/* after this, the filename */
  203:       l2 = strlen( s );			/* length of filename */
  204:       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  205:       strcpy( name, s );		/* save file name */
  206:       strncpy( dirc, path, l1 - l2 );	/* now the directory */
  207:       dirc[l1-l2] = 0;			/* add zero */
  208:    }
  209:    l1 = strlen( dirc );			/* length of directory */
  210: #ifdef windows
  211:    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  212: #else
  213:    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  214: #endif
  215:    s = strrchr( name, '.' );		/* find last / */
  216:    s++;
  217:    strcpy(ext,s);			/* save extension */
  218:    l1= strlen( name);
  219:    l2= strlen( s)+1;
  220:    strncpy( finame, name, l1-l2);
  221:    finame[l1-l2]= 0;
  222:    return( 0 );				/* we're done */
  223: }
  224: 
  225: 
  226: /******************************************/
  227: 
  228: void replace(char *s, char*t)
  229: {
  230:   int i;
  231:   int lg=20;
  232:   i=0;
  233:   lg=strlen(t);
  234:   for(i=0; i<= lg; i++) {
  235:     (s[i] = t[i]);
  236:     if (t[i]== '\\') s[i]='/';
  237:   }
  238: }
  239: 
  240: int nbocc(char *s, char occ)
  241: {
  242:   int i,j=0;
  243:   int lg=20;
  244:   i=0;
  245:   lg=strlen(s);
  246:   for(i=0; i<= lg; i++) {
  247:   if  (s[i] == occ ) j++;
  248:   }
  249:   return j;
  250: }
  251: 
  252: void cutv(char *u,char *v, char*t, char occ)
  253: {
  254:   /* cuts string t into u and v where u is ended by char occ excluding it
  255:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
  256:      gives u="abcedf" and v="ghi2j" */
  257:   int i,lg,j,p=0;
  258:   i=0;
  259:   for(j=0; j<=strlen(t)-1; j++) {
  260:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  261:   }
  262: 
  263:   lg=strlen(t);
  264:   for(j=0; j<p; j++) {
  265:     (u[j] = t[j]);
  266:   }
  267:      u[p]='\0';
  268: 
  269:    for(j=0; j<= lg; j++) {
  270:     if (j>=(p+1))(v[j-p-1] = t[j]);
  271:   }
  272: }
  273: 
  274: /********************** nrerror ********************/
  275: 
  276: void nrerror(char error_text[])
  277: {
  278:   fprintf(stderr,"ERREUR ...\n");
  279:   fprintf(stderr,"%s\n",error_text);
  280:   exit(1);
  281: }
  282: /*********************** vector *******************/
  283: double *vector(int nl, int nh)
  284: {
  285:   double *v;
  286:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  287:   if (!v) nrerror("allocation failure in vector");
  288:   return v-nl+NR_END;
  289: }
  290: 
  291: /************************ free vector ******************/
  292: void free_vector(double*v, int nl, int nh)
  293: {
  294:   free((FREE_ARG)(v+nl-NR_END));
  295: }
  296: 
  297: /************************ivector *******************************/
  298: int *ivector(long nl,long nh)
  299: {
  300:   int *v;
  301:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  302:   if (!v) nrerror("allocation failure in ivector");
  303:   return v-nl+NR_END;
  304: }
  305: 
  306: /******************free ivector **************************/
  307: void free_ivector(int *v, long nl, long nh)
  308: {
  309:   free((FREE_ARG)(v+nl-NR_END));
  310: }
  311: 
  312: /******************* imatrix *******************************/
  313: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  314:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  315: { 
  316:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  317:   int **m; 
  318:   
  319:   /* allocate pointers to rows */ 
  320:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  321:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  322:   m += NR_END; 
  323:   m -= nrl; 
  324:   
  325:   
  326:   /* allocate rows and set pointers to them */ 
  327:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  328:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  329:   m[nrl] += NR_END; 
  330:   m[nrl] -= ncl; 
  331:   
  332:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  333:   
  334:   /* return pointer to array of pointers to rows */ 
  335:   return m; 
  336: } 
  337: 
  338: /****************** free_imatrix *************************/
  339: void free_imatrix(m,nrl,nrh,ncl,nch)
  340:       int **m;
  341:       long nch,ncl,nrh,nrl; 
  342:      /* free an int matrix allocated by imatrix() */ 
  343: { 
  344:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  345:   free((FREE_ARG) (m+nrl-NR_END)); 
  346: } 
  347: 
  348: /******************* matrix *******************************/
  349: double **matrix(long nrl, long nrh, long ncl, long nch)
  350: {
  351:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  352:   double **m;
  353: 
  354:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  355:   if (!m) nrerror("allocation failure 1 in matrix()");
  356:   m += NR_END;
  357:   m -= nrl;
  358: 
  359:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  360:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  361:   m[nrl] += NR_END;
  362:   m[nrl] -= ncl;
  363: 
  364:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  365:   return m;
  366: }
  367: 
  368: /*************************free matrix ************************/
  369: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  370: {
  371:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  372:   free((FREE_ARG)(m+nrl-NR_END));
  373: }
  374: 
  375: /******************* ma3x *******************************/
  376: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  377: {
  378:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  379:   double ***m;
  380: 
  381:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  382:   if (!m) nrerror("allocation failure 1 in matrix()");
  383:   m += NR_END;
  384:   m -= nrl;
  385: 
  386:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  387:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  388:   m[nrl] += NR_END;
  389:   m[nrl] -= ncl;
  390: 
  391:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  392: 
  393:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  394:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  395:   m[nrl][ncl] += NR_END;
  396:   m[nrl][ncl] -= nll;
  397:   for (j=ncl+1; j<=nch; j++) 
  398:     m[nrl][j]=m[nrl][j-1]+nlay;
  399:   
  400:   for (i=nrl+1; i<=nrh; i++) {
  401:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  402:     for (j=ncl+1; j<=nch; j++) 
  403:       m[i][j]=m[i][j-1]+nlay;
  404:   }
  405:   return m;
  406: }
  407: 
  408: /*************************free ma3x ************************/
  409: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  410: {
  411:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  412:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  413:   free((FREE_ARG)(m+nrl-NR_END));
  414: }
  415: 
  416: /***************** f1dim *************************/
  417: extern int ncom; 
  418: extern double *pcom,*xicom;
  419: extern double (*nrfunc)(double []); 
  420:  
  421: double f1dim(double x) 
  422: { 
  423:   int j; 
  424:   double f;
  425:   double *xt; 
  426:  
  427:   xt=vector(1,ncom); 
  428:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  429:   f=(*nrfunc)(xt); 
  430:   free_vector(xt,1,ncom); 
  431:   return f; 
  432: } 
  433: 
  434: /*****************brent *************************/
  435: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  436: { 
  437:   int iter; 
  438:   double a,b,d,etemp;
  439:   double fu,fv,fw,fx;
  440:   double ftemp;
  441:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  442:   double e=0.0; 
  443:  
  444:   a=(ax < cx ? ax : cx); 
  445:   b=(ax > cx ? ax : cx); 
  446:   x=w=v=bx; 
  447:   fw=fv=fx=(*f)(x); 
  448:   for (iter=1;iter<=ITMAX;iter++) { 
  449:     xm=0.5*(a+b); 
  450:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  451:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  452:     printf(".");fflush(stdout);
  453:     fprintf(ficlog,".");fflush(ficlog);
  454: #ifdef DEBUG
  455:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  456:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  457:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  458: #endif
  459:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  460:       *xmin=x; 
  461:       return fx; 
  462:     } 
  463:     ftemp=fu;
  464:     if (fabs(e) > tol1) { 
  465:       r=(x-w)*(fx-fv); 
  466:       q=(x-v)*(fx-fw); 
  467:       p=(x-v)*q-(x-w)*r; 
  468:       q=2.0*(q-r); 
  469:       if (q > 0.0) p = -p; 
  470:       q=fabs(q); 
  471:       etemp=e; 
  472:       e=d; 
  473:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  474: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  475:       else { 
  476: 	d=p/q; 
  477: 	u=x+d; 
  478: 	if (u-a < tol2 || b-u < tol2) 
  479: 	  d=SIGN(tol1,xm-x); 
  480:       } 
  481:     } else { 
  482:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  483:     } 
  484:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  485:     fu=(*f)(u); 
  486:     if (fu <= fx) { 
  487:       if (u >= x) a=x; else b=x; 
  488:       SHFT(v,w,x,u) 
  489: 	SHFT(fv,fw,fx,fu) 
  490: 	} else { 
  491: 	  if (u < x) a=u; else b=u; 
  492: 	  if (fu <= fw || w == x) { 
  493: 	    v=w; 
  494: 	    w=u; 
  495: 	    fv=fw; 
  496: 	    fw=fu; 
  497: 	  } else if (fu <= fv || v == x || v == w) { 
  498: 	    v=u; 
  499: 	    fv=fu; 
  500: 	  } 
  501: 	} 
  502:   } 
  503:   nrerror("Too many iterations in brent"); 
  504:   *xmin=x; 
  505:   return fx; 
  506: } 
  507: 
  508: /****************** mnbrak ***********************/
  509: 
  510: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  511: 	    double (*func)(double)) 
  512: { 
  513:   double ulim,u,r,q, dum;
  514:   double fu; 
  515:  
  516:   *fa=(*func)(*ax); 
  517:   *fb=(*func)(*bx); 
  518:   if (*fb > *fa) { 
  519:     SHFT(dum,*ax,*bx,dum) 
  520:       SHFT(dum,*fb,*fa,dum) 
  521:       } 
  522:   *cx=(*bx)+GOLD*(*bx-*ax); 
  523:   *fc=(*func)(*cx); 
  524:   while (*fb > *fc) { 
  525:     r=(*bx-*ax)*(*fb-*fc); 
  526:     q=(*bx-*cx)*(*fb-*fa); 
  527:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  528:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  529:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  530:     if ((*bx-u)*(u-*cx) > 0.0) { 
  531:       fu=(*func)(u); 
  532:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  533:       fu=(*func)(u); 
  534:       if (fu < *fc) { 
  535: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  536: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  537: 	  } 
  538:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  539:       u=ulim; 
  540:       fu=(*func)(u); 
  541:     } else { 
  542:       u=(*cx)+GOLD*(*cx-*bx); 
  543:       fu=(*func)(u); 
  544:     } 
  545:     SHFT(*ax,*bx,*cx,u) 
  546:       SHFT(*fa,*fb,*fc,fu) 
  547:       } 
  548: } 
  549: 
  550: /*************** linmin ************************/
  551: 
  552: int ncom; 
  553: double *pcom,*xicom;
  554: double (*nrfunc)(double []); 
  555:  
  556: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  557: { 
  558:   double brent(double ax, double bx, double cx, 
  559: 	       double (*f)(double), double tol, double *xmin); 
  560:   double f1dim(double x); 
  561:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  562: 	      double *fc, double (*func)(double)); 
  563:   int j; 
  564:   double xx,xmin,bx,ax; 
  565:   double fx,fb,fa;
  566:  
  567:   ncom=n; 
  568:   pcom=vector(1,n); 
  569:   xicom=vector(1,n); 
  570:   nrfunc=func; 
  571:   for (j=1;j<=n;j++) { 
  572:     pcom[j]=p[j]; 
  573:     xicom[j]=xi[j]; 
  574:   } 
  575:   ax=0.0; 
  576:   xx=1.0; 
  577:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  578:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  579: #ifdef DEBUG
  580:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  581:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  582: #endif
  583:   for (j=1;j<=n;j++) { 
  584:     xi[j] *= xmin; 
  585:     p[j] += xi[j]; 
  586:   } 
  587:   free_vector(xicom,1,n); 
  588:   free_vector(pcom,1,n); 
  589: } 
  590: 
  591: /*************** powell ************************/
  592: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  593: 	    double (*func)(double [])) 
  594: { 
  595:   void linmin(double p[], double xi[], int n, double *fret, 
  596: 	      double (*func)(double [])); 
  597:   int i,ibig,j; 
  598:   double del,t,*pt,*ptt,*xit;
  599:   double fp,fptt;
  600:   double *xits;
  601:   pt=vector(1,n); 
  602:   ptt=vector(1,n); 
  603:   xit=vector(1,n); 
  604:   xits=vector(1,n); 
  605:   *fret=(*func)(p); 
  606:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  607:   for (*iter=1;;++(*iter)) { 
  608:     fp=(*fret); 
  609:     ibig=0; 
  610:     del=0.0; 
  611:     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  612:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  613:     for (i=1;i<=n;i++) 
  614:       printf(" %d %.12f",i, p[i]);
  615:     fprintf(ficlog," %d %.12f",i, p[i]);
  616:     printf("\n");
  617:     fprintf(ficlog,"\n");
  618:     for (i=1;i<=n;i++) { 
  619:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  620:       fptt=(*fret); 
  621: #ifdef DEBUG
  622:       printf("fret=%lf \n",*fret);
  623:       fprintf(ficlog,"fret=%lf \n",*fret);
  624: #endif
  625:       printf("%d",i);fflush(stdout);
  626:       fprintf(ficlog,"%d",i);fflush(ficlog);
  627:       linmin(p,xit,n,fret,func); 
  628:       if (fabs(fptt-(*fret)) > del) { 
  629: 	del=fabs(fptt-(*fret)); 
  630: 	ibig=i; 
  631:       } 
  632: #ifdef DEBUG
  633:       printf("%d %.12e",i,(*fret));
  634:       fprintf(ficlog,"%d %.12e",i,(*fret));
  635:       for (j=1;j<=n;j++) {
  636: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  637: 	printf(" x(%d)=%.12e",j,xit[j]);
  638: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  639:       }
  640:       for(j=1;j<=n;j++) {
  641: 	printf(" p=%.12e",p[j]);
  642: 	fprintf(ficlog," p=%.12e",p[j]);
  643:       }
  644:       printf("\n");
  645:       fprintf(ficlog,"\n");
  646: #endif
  647:     } 
  648:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  649: #ifdef DEBUG
  650:       int k[2],l;
  651:       k[0]=1;
  652:       k[1]=-1;
  653:       printf("Max: %.12e",(*func)(p));
  654:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  655:       for (j=1;j<=n;j++) {
  656: 	printf(" %.12e",p[j]);
  657: 	fprintf(ficlog," %.12e",p[j]);
  658:       }
  659:       printf("\n");
  660:       fprintf(ficlog,"\n");
  661:       for(l=0;l<=1;l++) {
  662: 	for (j=1;j<=n;j++) {
  663: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  664: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  665: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  666: 	}
  667: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  668: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  669:       }
  670: #endif
  671: 
  672: 
  673:       free_vector(xit,1,n); 
  674:       free_vector(xits,1,n); 
  675:       free_vector(ptt,1,n); 
  676:       free_vector(pt,1,n); 
  677:       return; 
  678:     } 
  679:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  680:     for (j=1;j<=n;j++) { 
  681:       ptt[j]=2.0*p[j]-pt[j]; 
  682:       xit[j]=p[j]-pt[j]; 
  683:       pt[j]=p[j]; 
  684:     } 
  685:     fptt=(*func)(ptt); 
  686:     if (fptt < fp) { 
  687:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  688:       if (t < 0.0) { 
  689: 	linmin(p,xit,n,fret,func); 
  690: 	for (j=1;j<=n;j++) { 
  691: 	  xi[j][ibig]=xi[j][n]; 
  692: 	  xi[j][n]=xit[j]; 
  693: 	}
  694: #ifdef DEBUG
  695: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  696: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  697: 	for(j=1;j<=n;j++){
  698: 	  printf(" %.12e",xit[j]);
  699: 	  fprintf(ficlog," %.12e",xit[j]);
  700: 	}
  701: 	printf("\n");
  702: 	fprintf(ficlog,"\n");
  703: #endif
  704:       }
  705:     } 
  706:   } 
  707: } 
  708: 
  709: /**** Prevalence limit (stable prevalence)  ****************/
  710: 
  711: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  712: {
  713:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  714:      matrix by transitions matrix until convergence is reached */
  715: 
  716:   int i, ii,j,k;
  717:   double min, max, maxmin, maxmax,sumnew=0.;
  718:   double **matprod2();
  719:   double **out, cov[NCOVMAX], **pmij();
  720:   double **newm;
  721:   double agefin, delaymax=50 ; /* Max number of years to converge */
  722: 
  723:   for (ii=1;ii<=nlstate+ndeath;ii++)
  724:     for (j=1;j<=nlstate+ndeath;j++){
  725:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  726:     }
  727: 
  728:    cov[1]=1.;
  729:  
  730:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  731:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  732:     newm=savm;
  733:     /* Covariates have to be included here again */
  734:      cov[2]=agefin;
  735:   
  736:       for (k=1; k<=cptcovn;k++) {
  737: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  738: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  739:       }
  740:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  741:       for (k=1; k<=cptcovprod;k++)
  742: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  743: 
  744:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  745:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  746:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  747:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  748: 
  749:     savm=oldm;
  750:     oldm=newm;
  751:     maxmax=0.;
  752:     for(j=1;j<=nlstate;j++){
  753:       min=1.;
  754:       max=0.;
  755:       for(i=1; i<=nlstate; i++) {
  756: 	sumnew=0;
  757: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  758: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  759: 	max=FMAX(max,prlim[i][j]);
  760: 	min=FMIN(min,prlim[i][j]);
  761:       }
  762:       maxmin=max-min;
  763:       maxmax=FMAX(maxmax,maxmin);
  764:     }
  765:     if(maxmax < ftolpl){
  766:       return prlim;
  767:     }
  768:   }
  769: }
  770: 
  771: /*************** transition probabilities ***************/ 
  772: 
  773: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  774: {
  775:   double s1, s2;
  776:   /*double t34;*/
  777:   int i,j,j1, nc, ii, jj;
  778: 
  779:     for(i=1; i<= nlstate; i++){
  780:     for(j=1; j<i;j++){
  781:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  782: 	/*s2 += param[i][j][nc]*cov[nc];*/
  783: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  784: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  785:       }
  786:       ps[i][j]=s2;
  787:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  788:     }
  789:     for(j=i+1; j<=nlstate+ndeath;j++){
  790:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  791: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  792: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  793:       }
  794:       ps[i][j]=s2;
  795:     }
  796:   }
  797:     /*ps[3][2]=1;*/
  798: 
  799:   for(i=1; i<= nlstate; i++){
  800:      s1=0;
  801:     for(j=1; j<i; j++)
  802:       s1+=exp(ps[i][j]);
  803:     for(j=i+1; j<=nlstate+ndeath; j++)
  804:       s1+=exp(ps[i][j]);
  805:     ps[i][i]=1./(s1+1.);
  806:     for(j=1; j<i; j++)
  807:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  808:     for(j=i+1; j<=nlstate+ndeath; j++)
  809:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  810:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  811:   } /* end i */
  812: 
  813:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
  814:     for(jj=1; jj<= nlstate+ndeath; jj++){
  815:       ps[ii][jj]=0;
  816:       ps[ii][ii]=1;
  817:     }
  818:   }
  819: 
  820: 
  821:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
  822:     for(jj=1; jj<= nlstate+ndeath; jj++){
  823:      printf("%lf ",ps[ii][jj]);
  824:    }
  825:     printf("\n ");
  826:     }
  827:     printf("\n ");printf("%lf ",cov[2]);*/
  828: /*
  829:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
  830:   goto end;*/
  831:     return ps;
  832: }
  833: 
  834: /**************** Product of 2 matrices ******************/
  835: 
  836: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
  837: {
  838:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  839:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  840:   /* in, b, out are matrice of pointers which should have been initialized 
  841:      before: only the contents of out is modified. The function returns
  842:      a pointer to pointers identical to out */
  843:   long i, j, k;
  844:   for(i=nrl; i<= nrh; i++)
  845:     for(k=ncolol; k<=ncoloh; k++)
  846:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
  847: 	out[i][k] +=in[i][j]*b[j][k];
  848: 
  849:   return out;
  850: }
  851: 
  852: 
  853: /************* Higher Matrix Product ***************/
  854: 
  855: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  856: {
  857:   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
  858:      duration (i.e. until
  859:      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
  860:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  861:      (typically every 2 years instead of every month which is too big).
  862:      Model is determined by parameters x and covariates have to be 
  863:      included manually here. 
  864: 
  865:      */
  866: 
  867:   int i, j, d, h, k;
  868:   double **out, cov[NCOVMAX];
  869:   double **newm;
  870: 
  871:   /* Hstepm could be zero and should return the unit matrix */
  872:   for (i=1;i<=nlstate+ndeath;i++)
  873:     for (j=1;j<=nlstate+ndeath;j++){
  874:       oldm[i][j]=(i==j ? 1.0 : 0.0);
  875:       po[i][j][0]=(i==j ? 1.0 : 0.0);
  876:     }
  877:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  878:   for(h=1; h <=nhstepm; h++){
  879:     for(d=1; d <=hstepm; d++){
  880:       newm=savm;
  881:       /* Covariates have to be included here again */
  882:       cov[1]=1.;
  883:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  884:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  885:       for (k=1; k<=cptcovage;k++)
  886: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  887:       for (k=1; k<=cptcovprod;k++)
  888: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  889: 
  890: 
  891:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  892:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  893:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  894: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
  895:       savm=oldm;
  896:       oldm=newm;
  897:     }
  898:     for(i=1; i<=nlstate+ndeath; i++)
  899:       for(j=1;j<=nlstate+ndeath;j++) {
  900: 	po[i][j][h]=newm[i][j];
  901: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  902: 	 */
  903:       }
  904:   } /* end h */
  905:   return po;
  906: }
  907: 
  908: 
  909: /*************** log-likelihood *************/
  910: double func( double *x)
  911: {
  912:   int i, ii, j, k, mi, d, kk;
  913:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
  914:   double **out;
  915:   double sw; /* Sum of weights */
  916:   double lli; /* Individual log likelihood */
  917:   long ipmx;
  918:   /*extern weight */
  919:   /* We are differentiating ll according to initial status */
  920:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  921:   /*for(i=1;i<imx;i++) 
  922:     printf(" %d\n",s[4][i]);
  923:   */
  924:   cov[1]=1.;
  925: 
  926:   for(k=1; k<=nlstate; k++) ll[k]=0.;
  927:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  928:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  929:     for(mi=1; mi<= wav[i]-1; mi++){
  930:       for (ii=1;ii<=nlstate+ndeath;ii++)
  931: 	for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  932:       for(d=0; d<dh[mi][i]; d++){
  933: 	newm=savm;
  934: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  935: 	for (kk=1; kk<=cptcovage;kk++) {
  936: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  937: 	}
  938: 	
  939: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  940: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  941: 	savm=oldm;
  942: 	oldm=newm;
  943: 	
  944: 	
  945:       } /* end mult */
  946:       
  947:       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
  948:       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
  949:       ipmx +=1;
  950:       sw += weight[i];
  951:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  952:     } /* end of wave */
  953:   } /* end of individual */
  954: 
  955:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
  956:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  957:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  958:   return -l;
  959: }
  960: 
  961: 
  962: /*********** Maximum Likelihood Estimation ***************/
  963: 
  964: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  965: {
  966:   int i,j, iter;
  967:   double **xi,*delti;
  968:   double fret;
  969:   xi=matrix(1,npar,1,npar);
  970:   for (i=1;i<=npar;i++)
  971:     for (j=1;j<=npar;j++)
  972:       xi[i][j]=(i==j ? 1.0 : 0.0);
  973:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
  974:   powell(p,xi,npar,ftol,&iter,&fret,func);
  975: 
  976:    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
  977:   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  978:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  979: 
  980: }
  981: 
  982: /**** Computes Hessian and covariance matrix ***/
  983: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
  984: {
  985:   double  **a,**y,*x,pd;
  986:   double **hess;
  987:   int i, j,jk;
  988:   int *indx;
  989: 
  990:   double hessii(double p[], double delta, int theta, double delti[]);
  991:   double hessij(double p[], double delti[], int i, int j);
  992:   void lubksb(double **a, int npar, int *indx, double b[]) ;
  993:   void ludcmp(double **a, int npar, int *indx, double *d) ;
  994: 
  995:   hess=matrix(1,npar,1,npar);
  996: 
  997:   printf("\nCalculation of the hessian matrix. Wait...\n");
  998:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
  999:   for (i=1;i<=npar;i++){
 1000:     printf("%d",i);fflush(stdout);
 1001:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1002:     hess[i][i]=hessii(p,ftolhess,i,delti);
 1003:     /*printf(" %f ",p[i]);*/
 1004:     /*printf(" %lf ",hess[i][i]);*/
 1005:   }
 1006:   
 1007:   for (i=1;i<=npar;i++) {
 1008:     for (j=1;j<=npar;j++)  {
 1009:       if (j>i) { 
 1010: 	printf(".%d%d",i,j);fflush(stdout);
 1011: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1012: 	hess[i][j]=hessij(p,delti,i,j);
 1013: 	hess[j][i]=hess[i][j];    
 1014: 	/*printf(" %lf ",hess[i][j]);*/
 1015:       }
 1016:     }
 1017:   }
 1018:   printf("\n");
 1019:   fprintf(ficlog,"\n");
 1020: 
 1021:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1022:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1023:   
 1024:   a=matrix(1,npar,1,npar);
 1025:   y=matrix(1,npar,1,npar);
 1026:   x=vector(1,npar);
 1027:   indx=ivector(1,npar);
 1028:   for (i=1;i<=npar;i++)
 1029:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1030:   ludcmp(a,npar,indx,&pd);
 1031: 
 1032:   for (j=1;j<=npar;j++) {
 1033:     for (i=1;i<=npar;i++) x[i]=0;
 1034:     x[j]=1;
 1035:     lubksb(a,npar,indx,x);
 1036:     for (i=1;i<=npar;i++){ 
 1037:       matcov[i][j]=x[i];
 1038:     }
 1039:   }
 1040: 
 1041:   printf("\n#Hessian matrix#\n");
 1042:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1043:   for (i=1;i<=npar;i++) { 
 1044:     for (j=1;j<=npar;j++) { 
 1045:       printf("%.3e ",hess[i][j]);
 1046:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1047:     }
 1048:     printf("\n");
 1049:     fprintf(ficlog,"\n");
 1050:   }
 1051: 
 1052:   /* Recompute Inverse */
 1053:   for (i=1;i<=npar;i++)
 1054:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1055:   ludcmp(a,npar,indx,&pd);
 1056: 
 1057:   /*  printf("\n#Hessian matrix recomputed#\n");
 1058: 
 1059:   for (j=1;j<=npar;j++) {
 1060:     for (i=1;i<=npar;i++) x[i]=0;
 1061:     x[j]=1;
 1062:     lubksb(a,npar,indx,x);
 1063:     for (i=1;i<=npar;i++){ 
 1064:       y[i][j]=x[i];
 1065:       printf("%.3e ",y[i][j]);
 1066:       fprintf(ficlog,"%.3e ",y[i][j]);
 1067:     }
 1068:     printf("\n");
 1069:     fprintf(ficlog,"\n");
 1070:   }
 1071:   */
 1072: 
 1073:   free_matrix(a,1,npar,1,npar);
 1074:   free_matrix(y,1,npar,1,npar);
 1075:   free_vector(x,1,npar);
 1076:   free_ivector(indx,1,npar);
 1077:   free_matrix(hess,1,npar,1,npar);
 1078: 
 1079: 
 1080: }
 1081: 
 1082: /*************** hessian matrix ****************/
 1083: double hessii( double x[], double delta, int theta, double delti[])
 1084: {
 1085:   int i;
 1086:   int l=1, lmax=20;
 1087:   double k1,k2;
 1088:   double p2[NPARMAX+1];
 1089:   double res;
 1090:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1091:   double fx;
 1092:   int k=0,kmax=10;
 1093:   double l1;
 1094: 
 1095:   fx=func(x);
 1096:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1097:   for(l=0 ; l <=lmax; l++){
 1098:     l1=pow(10,l);
 1099:     delts=delt;
 1100:     for(k=1 ; k <kmax; k=k+1){
 1101:       delt = delta*(l1*k);
 1102:       p2[theta]=x[theta] +delt;
 1103:       k1=func(p2)-fx;
 1104:       p2[theta]=x[theta]-delt;
 1105:       k2=func(p2)-fx;
 1106:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1107:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1108:       
 1109: #ifdef DEBUG
 1110:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1111:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1112: #endif
 1113:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1114:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1115: 	k=kmax;
 1116:       }
 1117:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1118: 	k=kmax; l=lmax*10.;
 1119:       }
 1120:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1121: 	delts=delt;
 1122:       }
 1123:     }
 1124:   }
 1125:   delti[theta]=delts;
 1126:   return res; 
 1127:   
 1128: }
 1129: 
 1130: double hessij( double x[], double delti[], int thetai,int thetaj)
 1131: {
 1132:   int i;
 1133:   int l=1, l1, lmax=20;
 1134:   double k1,k2,k3,k4,res,fx;
 1135:   double p2[NPARMAX+1];
 1136:   int k;
 1137: 
 1138:   fx=func(x);
 1139:   for (k=1; k<=2; k++) {
 1140:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1141:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1142:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1143:     k1=func(p2)-fx;
 1144:   
 1145:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1146:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1147:     k2=func(p2)-fx;
 1148:   
 1149:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1150:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1151:     k3=func(p2)-fx;
 1152:   
 1153:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1154:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1155:     k4=func(p2)-fx;
 1156:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1157: #ifdef DEBUG
 1158:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1159:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1160: #endif
 1161:   }
 1162:   return res;
 1163: }
 1164: 
 1165: /************** Inverse of matrix **************/
 1166: void ludcmp(double **a, int n, int *indx, double *d) 
 1167: { 
 1168:   int i,imax,j,k; 
 1169:   double big,dum,sum,temp; 
 1170:   double *vv; 
 1171:  
 1172:   vv=vector(1,n); 
 1173:   *d=1.0; 
 1174:   for (i=1;i<=n;i++) { 
 1175:     big=0.0; 
 1176:     for (j=1;j<=n;j++) 
 1177:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1178:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1179:     vv[i]=1.0/big; 
 1180:   } 
 1181:   for (j=1;j<=n;j++) { 
 1182:     for (i=1;i<j;i++) { 
 1183:       sum=a[i][j]; 
 1184:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1185:       a[i][j]=sum; 
 1186:     } 
 1187:     big=0.0; 
 1188:     for (i=j;i<=n;i++) { 
 1189:       sum=a[i][j]; 
 1190:       for (k=1;k<j;k++) 
 1191: 	sum -= a[i][k]*a[k][j]; 
 1192:       a[i][j]=sum; 
 1193:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1194: 	big=dum; 
 1195: 	imax=i; 
 1196:       } 
 1197:     } 
 1198:     if (j != imax) { 
 1199:       for (k=1;k<=n;k++) { 
 1200: 	dum=a[imax][k]; 
 1201: 	a[imax][k]=a[j][k]; 
 1202: 	a[j][k]=dum; 
 1203:       } 
 1204:       *d = -(*d); 
 1205:       vv[imax]=vv[j]; 
 1206:     } 
 1207:     indx[j]=imax; 
 1208:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1209:     if (j != n) { 
 1210:       dum=1.0/(a[j][j]); 
 1211:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1212:     } 
 1213:   } 
 1214:   free_vector(vv,1,n);  /* Doesn't work */
 1215: ;
 1216: } 
 1217: 
 1218: void lubksb(double **a, int n, int *indx, double b[]) 
 1219: { 
 1220:   int i,ii=0,ip,j; 
 1221:   double sum; 
 1222:  
 1223:   for (i=1;i<=n;i++) { 
 1224:     ip=indx[i]; 
 1225:     sum=b[ip]; 
 1226:     b[ip]=b[i]; 
 1227:     if (ii) 
 1228:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1229:     else if (sum) ii=i; 
 1230:     b[i]=sum; 
 1231:   } 
 1232:   for (i=n;i>=1;i--) { 
 1233:     sum=b[i]; 
 1234:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1235:     b[i]=sum/a[i][i]; 
 1236:   } 
 1237: } 
 1238: 
 1239: /************ Frequencies ********************/
 1240: void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 1241: {  /* Some frequencies */
 1242:   
 1243:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1244:   int first;
 1245:   double ***freq; /* Frequencies */
 1246:   double *pp;
 1247:   double pos, k2, dateintsum=0,k2cpt=0;
 1248:   FILE *ficresp;
 1249:   char fileresp[FILENAMELENGTH];
 1250:   
 1251:   pp=vector(1,nlstate);
 1252:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 1253:   strcpy(fileresp,"p");
 1254:   strcat(fileresp,fileres);
 1255:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1256:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1257:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1258:     exit(0);
 1259:   }
 1260:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1261:   j1=0;
 1262:   
 1263:   j=cptcoveff;
 1264:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1265: 
 1266:   first=1;
 1267: 
 1268:   for(k1=1; k1<=j;k1++){
 1269:     for(i1=1; i1<=ncodemax[k1];i1++){
 1270:       j1++;
 1271:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1272: 	scanf("%d", i);*/
 1273:       for (i=-1; i<=nlstate+ndeath; i++)  
 1274: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1275: 	  for(m=agemin; m <= agemax+3; m++)
 1276: 	    freq[i][jk][m]=0;
 1277:       
 1278:       dateintsum=0;
 1279:       k2cpt=0;
 1280:       for (i=1; i<=imx; i++) {
 1281: 	bool=1;
 1282: 	if  (cptcovn>0) {
 1283: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1284: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1285: 	      bool=0;
 1286: 	}
 1287: 	if (bool==1){
 1288: 	  for(m=firstpass; m<=lastpass; m++){
 1289: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1290: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1291: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1292: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1293: 	      if (m<lastpass) {
 1294: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1295: 		freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
 1296: 	      }
 1297: 	      
 1298: 	      if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
 1299: 		dateintsum=dateintsum+k2;
 1300: 		k2cpt++;
 1301: 	      }
 1302: 	    }
 1303: 	  }
 1304: 	}
 1305:       }
 1306:        
 1307:       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 1308: 
 1309:       if  (cptcovn>0) {
 1310: 	fprintf(ficresp, "\n#********** Variable "); 
 1311: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1312: 	fprintf(ficresp, "**********\n#");
 1313:       }
 1314:       for(i=1; i<=nlstate;i++) 
 1315: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1316:       fprintf(ficresp, "\n");
 1317:       
 1318:       for(i=(int)agemin; i <= (int)agemax+3; i++){
 1319: 	if(i==(int)agemax+3){
 1320: 	  fprintf(ficlog,"Total");
 1321: 	}else{
 1322: 	  if(first==1){
 1323: 	    first=0;
 1324: 	    printf("See log file for details...\n");
 1325: 	  }
 1326: 	  fprintf(ficlog,"Age %d", i);
 1327: 	}
 1328: 	for(jk=1; jk <=nlstate ; jk++){
 1329: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1330: 	    pp[jk] += freq[jk][m][i]; 
 1331: 	}
 1332: 	for(jk=1; jk <=nlstate ; jk++){
 1333: 	  for(m=-1, pos=0; m <=0 ; m++)
 1334: 	    pos += freq[jk][m][i];
 1335: 	  if(pp[jk]>=1.e-10){
 1336: 	    if(first==1){
 1337: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1338: 	    }
 1339: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1340: 	  }else{
 1341: 	    if(first==1)
 1342: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1343: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1344: 	  }
 1345: 	}
 1346: 
 1347: 	for(jk=1; jk <=nlstate ; jk++){
 1348: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1349: 	    pp[jk] += freq[jk][m][i];
 1350: 	}
 1351: 
 1352: 	for(jk=1,pos=0; jk <=nlstate ; jk++)
 1353: 	  pos += pp[jk];
 1354: 	for(jk=1; jk <=nlstate ; jk++){
 1355: 	  if(pos>=1.e-5){
 1356: 	    if(first==1)
 1357: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1358: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1359: 	  }else{
 1360: 	    if(first==1)
 1361: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1362: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1363: 	  }
 1364: 	  if( i <= (int) agemax){
 1365: 	    if(pos>=1.e-5){
 1366: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
 1367: 	      probs[i][jk][j1]= pp[jk]/pos;
 1368: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1369: 	    }
 1370: 	    else
 1371: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
 1372: 	  }
 1373: 	}
 1374: 	
 1375: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1376: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1377: 	    if(freq[jk][m][i] !=0 ) {
 1378: 	    if(first==1)
 1379: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1380: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 1381: 	    }
 1382: 	if(i <= (int) agemax)
 1383: 	  fprintf(ficresp,"\n");
 1384: 	if(first==1)
 1385: 	  printf("Others in log...\n");
 1386: 	fprintf(ficlog,"\n");
 1387:       }
 1388:     }
 1389:   }
 1390:   dateintmean=dateintsum/k2cpt; 
 1391:  
 1392:   fclose(ficresp);
 1393:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1394:   free_vector(pp,1,nlstate);
 1395:   
 1396:   /* End of Freq */
 1397: }
 1398: 
 1399: /************ Prevalence ********************/
 1400: void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 1401: {  /* Some frequencies */
 1402:  
 1403:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1404:   double ***freq; /* Frequencies */
 1405:   double *pp;
 1406:   double pos, k2;
 1407: 
 1408:   pp=vector(1,nlstate);
 1409:   
 1410:   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1411:   j1=0;
 1412:   
 1413:   j=cptcoveff;
 1414:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1415:   
 1416:   for(k1=1; k1<=j;k1++){
 1417:     for(i1=1; i1<=ncodemax[k1];i1++){
 1418:       j1++;
 1419:       
 1420:       for (i=-1; i<=nlstate+ndeath; i++)  
 1421: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1422: 	  for(m=agemin; m <= agemax+3; m++)
 1423: 	    freq[i][jk][m]=0;
 1424:      
 1425:       for (i=1; i<=imx; i++) {
 1426: 	bool=1;
 1427: 	if  (cptcovn>0) {
 1428: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1429: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1430: 	      bool=0;
 1431: 	} 
 1432: 	if (bool==1) { 
 1433: 	  for(m=firstpass; m<=lastpass; m++){
 1434: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1435: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1436: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1437: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1438: 	      if (m<lastpass) {
 1439: 	      	if (calagedate>0) 
 1440: 		  freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
 1441: 		else
 1442: 		  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1443: 		freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
 1444: 	      }
 1445: 	    }
 1446: 	  }
 1447: 	}
 1448:       }
 1449:       for(i=(int)agemin; i <= (int)agemax+3; i++){ 
 1450: 	for(jk=1; jk <=nlstate ; jk++){
 1451: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1452: 	    pp[jk] += freq[jk][m][i]; 
 1453: 	}
 1454: 	for(jk=1; jk <=nlstate ; jk++){
 1455: 	  for(m=-1, pos=0; m <=0 ; m++)
 1456: 	    pos += freq[jk][m][i];
 1457: 	}
 1458: 	
 1459: 	for(jk=1; jk <=nlstate ; jk++){
 1460: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1461: 	    pp[jk] += freq[jk][m][i];
 1462: 	}
 1463: 	
 1464: 	for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
 1465: 	
 1466: 	for(jk=1; jk <=nlstate ; jk++){	   
 1467: 	  if( i <= (int) agemax){
 1468: 	    if(pos>=1.e-5){
 1469: 	      probs[i][jk][j1]= pp[jk]/pos;
 1470: 	    }
 1471: 	  }
 1472: 	}/* end jk */
 1473:       }/* end i */
 1474:     } /* end i1 */
 1475:   } /* end k1 */
 1476: 
 1477:   
 1478:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1479:   free_vector(pp,1,nlstate);
 1480:   
 1481: }  /* End of Freq */
 1482: 
 1483: /************* Waves Concatenation ***************/
 1484: 
 1485: void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 1486: {
 1487:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 1488:      Death is a valid wave (if date is known).
 1489:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 1490:      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
 1491:      and mw[mi+1][i]. dh depends on stepm.
 1492:      */
 1493: 
 1494:   int i, mi, m;
 1495:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 1496:      double sum=0., jmean=0.;*/
 1497:   int first;
 1498:   int j, k=0,jk, ju, jl;
 1499:   double sum=0.;
 1500:   first=0;
 1501:   jmin=1e+5;
 1502:   jmax=-1;
 1503:   jmean=0.;
 1504:   for(i=1; i<=imx; i++){
 1505:     mi=0;
 1506:     m=firstpass;
 1507:     while(s[m][i] <= nlstate){
 1508:       if(s[m][i]>=1)
 1509: 	mw[++mi][i]=m;
 1510:       if(m >=lastpass)
 1511: 	break;
 1512:       else
 1513: 	m++;
 1514:     }/* end while */
 1515:     if (s[m][i] > nlstate){
 1516:       mi++;	/* Death is another wave */
 1517:       /* if(mi==0)  never been interviewed correctly before death */
 1518: 	 /* Only death is a correct wave */
 1519:       mw[mi][i]=m;
 1520:     }
 1521: 
 1522:     wav[i]=mi;
 1523:     if(mi==0){
 1524:       if(first==0){
 1525: 	printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
 1526: 	first=1;
 1527:       }
 1528:       if(first==1){
 1529: 	fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
 1530:       }
 1531:     } /* end mi==0 */
 1532:   }
 1533: 
 1534:   for(i=1; i<=imx; i++){
 1535:     for(mi=1; mi<wav[i];mi++){
 1536:       if (stepm <=0)
 1537: 	dh[mi][i]=1;
 1538:       else{
 1539: 	if (s[mw[mi+1][i]][i] > nlstate) {
 1540: 	  if (agedc[i] < 2*AGESUP) {
 1541: 	  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 1542: 	  if(j==0) j=1;  /* Survives at least one month after exam */
 1543: 	  k=k+1;
 1544: 	  if (j >= jmax) jmax=j;
 1545: 	  if (j <= jmin) jmin=j;
 1546: 	  sum=sum+j;
 1547: 	  /*if (j<0) printf("j=%d num=%d \n",j,i); */
 1548: 	  }
 1549: 	}
 1550: 	else{
 1551: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 1552: 	  k=k+1;
 1553: 	  if (j >= jmax) jmax=j;
 1554: 	  else if (j <= jmin)jmin=j;
 1555: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 1556: 	  sum=sum+j;
 1557: 	}
 1558: 	jk= j/stepm;
 1559: 	jl= j -jk*stepm;
 1560: 	ju= j -(jk+1)*stepm;
 1561: 	if(jl <= -ju)
 1562: 	  dh[mi][i]=jk;
 1563: 	else
 1564: 	  dh[mi][i]=jk+1;
 1565: 	if(dh[mi][i]==0)
 1566: 	  dh[mi][i]=1; /* At least one step */
 1567:       }
 1568:     }
 1569:   }
 1570:   jmean=sum/k;
 1571:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 1572:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 1573:  }
 1574: 
 1575: /*********** Tricode ****************************/
 1576: void tricode(int *Tvar, int **nbcode, int imx)
 1577: {
 1578:   
 1579:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 1580:   int cptcode=0;
 1581:   cptcoveff=0; 
 1582:  
 1583:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 1584:   for (k=1; k<=7; k++) ncodemax[k]=0;
 1585: 
 1586:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 1587:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 1588: 			       modality*/ 
 1589:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 1590:       Ndum[ij]++; /*store the modality */
 1591:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 1592:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 1593: 				       Tvar[j]. If V=sex and male is 0 and 
 1594: 				       female is 1, then  cptcode=1.*/
 1595:     }
 1596: 
 1597:     for (i=0; i<=cptcode; i++) {
 1598:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 1599:     }
 1600: 
 1601:     ij=1; 
 1602:     for (i=1; i<=ncodemax[j]; i++) {
 1603:       for (k=0; k<= maxncov; k++) {
 1604: 	if (Ndum[k] != 0) {
 1605: 	  nbcode[Tvar[j]][ij]=k; 
 1606: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 1607: 	  
 1608: 	  ij++;
 1609: 	}
 1610: 	if (ij > ncodemax[j]) break; 
 1611:       }  
 1612:     } 
 1613:   }  
 1614: 
 1615:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 1616: 
 1617:  for (i=1; i<=ncovmodel-2; i++) { 
 1618:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 1619:    ij=Tvar[i];
 1620:    Ndum[ij]++;
 1621:  }
 1622: 
 1623:  ij=1;
 1624:  for (i=1; i<= maxncov; i++) {
 1625:    if((Ndum[i]!=0) && (i<=ncovcol)){
 1626:      Tvaraff[ij]=i; /*For printing */
 1627:      ij++;
 1628:    }
 1629:  }
 1630:  
 1631:  cptcoveff=ij-1; /*Number of simple covariates*/
 1632: }
 1633: 
 1634: /*********** Health Expectancies ****************/
 1635: 
 1636: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 1637: 
 1638: {
 1639:   /* Health expectancies */
 1640:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 1641:   double age, agelim, hf;
 1642:   double ***p3mat,***varhe;
 1643:   double **dnewm,**doldm;
 1644:   double *xp;
 1645:   double **gp, **gm;
 1646:   double ***gradg, ***trgradg;
 1647:   int theta;
 1648: 
 1649:   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
 1650:   xp=vector(1,npar);
 1651:   dnewm=matrix(1,nlstate*2,1,npar);
 1652:   doldm=matrix(1,nlstate*2,1,nlstate*2);
 1653:   
 1654:   fprintf(ficreseij,"# Health expectancies\n");
 1655:   fprintf(ficreseij,"# Age");
 1656:   for(i=1; i<=nlstate;i++)
 1657:     for(j=1; j<=nlstate;j++)
 1658:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 1659:   fprintf(ficreseij,"\n");
 1660: 
 1661:   if(estepm < stepm){
 1662:     printf ("Problem %d lower than %d\n",estepm, stepm);
 1663:   }
 1664:   else  hstepm=estepm;   
 1665:   /* We compute the life expectancy from trapezoids spaced every estepm months
 1666:    * This is mainly to measure the difference between two models: for example
 1667:    * if stepm=24 months pijx are given only every 2 years and by summing them
 1668:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 1669:    * progression inbetween and thus overestimating or underestimating according
 1670:    * to the curvature of the survival function. If, for the same date, we 
 1671:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 1672:    * to compare the new estimate of Life expectancy with the same linear 
 1673:    * hypothesis. A more precise result, taking into account a more precise
 1674:    * curvature will be obtained if estepm is as small as stepm. */
 1675: 
 1676:   /* For example we decided to compute the life expectancy with the smallest unit */
 1677:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 1678:      nhstepm is the number of hstepm from age to agelim 
 1679:      nstepm is the number of stepm from age to agelin. 
 1680:      Look at hpijx to understand the reason of that which relies in memory size
 1681:      and note for a fixed period like estepm months */
 1682:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 1683:      survival function given by stepm (the optimization length). Unfortunately it
 1684:      means that if the survival funtion is printed only each two years of age and if
 1685:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 1686:      results. So we changed our mind and took the option of the best precision.
 1687:   */
 1688:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 1689: 
 1690:   agelim=AGESUP;
 1691:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1692:     /* nhstepm age range expressed in number of stepm */
 1693:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 1694:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 1695:     /* if (stepm >= YEARM) hstepm=1;*/
 1696:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 1697:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1698:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
 1699:     gp=matrix(0,nhstepm,1,nlstate*2);
 1700:     gm=matrix(0,nhstepm,1,nlstate*2);
 1701: 
 1702:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 1703:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 1704:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 1705:  
 1706: 
 1707:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 1708: 
 1709:     /* Computing Variances of health expectancies */
 1710: 
 1711:      for(theta=1; theta <=npar; theta++){
 1712:       for(i=1; i<=npar; i++){ 
 1713: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1714:       }
 1715:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1716:   
 1717:       cptj=0;
 1718:       for(j=1; j<= nlstate; j++){
 1719: 	for(i=1; i<=nlstate; i++){
 1720: 	  cptj=cptj+1;
 1721: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 1722: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 1723: 	  }
 1724: 	}
 1725:       }
 1726:      
 1727:      
 1728:       for(i=1; i<=npar; i++) 
 1729: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1730:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1731:       
 1732:       cptj=0;
 1733:       for(j=1; j<= nlstate; j++){
 1734: 	for(i=1;i<=nlstate;i++){
 1735: 	  cptj=cptj+1;
 1736: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 1737: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 1738: 	  }
 1739: 	}
 1740:       }
 1741:       for(j=1; j<= nlstate*2; j++)
 1742: 	for(h=0; h<=nhstepm-1; h++){
 1743: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 1744: 	}
 1745:      } 
 1746:    
 1747: /* End theta */
 1748: 
 1749:      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
 1750: 
 1751:      for(h=0; h<=nhstepm-1; h++)
 1752:       for(j=1; j<=nlstate*2;j++)
 1753: 	for(theta=1; theta <=npar; theta++)
 1754: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 1755:      
 1756: 
 1757:      for(i=1;i<=nlstate*2;i++)
 1758:       for(j=1;j<=nlstate*2;j++)
 1759: 	varhe[i][j][(int)age] =0.;
 1760: 
 1761:      printf("%d|",(int)age);fflush(stdout);
 1762:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 1763:      for(h=0;h<=nhstepm-1;h++){
 1764:       for(k=0;k<=nhstepm-1;k++){
 1765: 	matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
 1766: 	matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
 1767: 	for(i=1;i<=nlstate*2;i++)
 1768: 	  for(j=1;j<=nlstate*2;j++)
 1769: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 1770:       }
 1771:     }
 1772:     /* Computing expectancies */
 1773:     for(i=1; i<=nlstate;i++)
 1774:       for(j=1; j<=nlstate;j++)
 1775: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 1776: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 1777: 	  
 1778: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 1779: 
 1780: 	}
 1781: 
 1782:     fprintf(ficreseij,"%3.0f",age );
 1783:     cptj=0;
 1784:     for(i=1; i<=nlstate;i++)
 1785:       for(j=1; j<=nlstate;j++){
 1786: 	cptj++;
 1787: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 1788:       }
 1789:     fprintf(ficreseij,"\n");
 1790:    
 1791:     free_matrix(gm,0,nhstepm,1,nlstate*2);
 1792:     free_matrix(gp,0,nhstepm,1,nlstate*2);
 1793:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
 1794:     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
 1795:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1796:   }
 1797:   printf("\n");
 1798:   fprintf(ficlog,"\n");
 1799: 
 1800:   free_vector(xp,1,npar);
 1801:   free_matrix(dnewm,1,nlstate*2,1,npar);
 1802:   free_matrix(doldm,1,nlstate*2,1,nlstate*2);
 1803:   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
 1804: }
 1805: 
 1806: /************ Variance ******************/
 1807: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 1808: {
 1809:   /* Variance of health expectancies */
 1810:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1811:   /* double **newm;*/
 1812:   double **dnewm,**doldm;
 1813:   double **dnewmp,**doldmp;
 1814:   int i, j, nhstepm, hstepm, h, nstepm ;
 1815:   int k, cptcode;
 1816:   double *xp;
 1817:   double **gp, **gm;  /* for var eij */
 1818:   double ***gradg, ***trgradg; /*for var eij */
 1819:   double **gradgp, **trgradgp; /* for var p point j */
 1820:   double *gpp, *gmp; /* for var p point j */
 1821:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 1822:   double ***p3mat;
 1823:   double age,agelim, hf;
 1824:   double ***mobaverage;
 1825:   int theta;
 1826:   char digit[4];
 1827:   char digitp[25];
 1828: 
 1829:   char fileresprobmorprev[FILENAMELENGTH];
 1830: 
 1831:   if(popbased==1){
 1832:     if(mobilav!=0)
 1833:       strcpy(digitp,"-populbased-mobilav-");
 1834:     else strcpy(digitp,"-populbased-nomobil-");
 1835:   }
 1836:   else 
 1837:     strcpy(digitp,"-stablbased-");
 1838: 
 1839:   if (mobilav!=0) {
 1840:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 1841:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 1842:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 1843:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 1844:     }
 1845:   }
 1846: 
 1847:   strcpy(fileresprobmorprev,"prmorprev"); 
 1848:   sprintf(digit,"%-d",ij);
 1849:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 1850:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 1851:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 1852:   strcat(fileresprobmorprev,fileres);
 1853:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 1854:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 1855:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 1856:   }
 1857:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 1858:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 1859:   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");
 1860:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 1861:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 1862:     fprintf(ficresprobmorprev," p.%-d SE",j);
 1863:     for(i=1; i<=nlstate;i++)
 1864:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 1865:   }  
 1866:   fprintf(ficresprobmorprev,"\n");
 1867:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 1868:     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 1869:     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 1870:     exit(0);
 1871:   }
 1872:   else{
 1873:     fprintf(ficgp,"\n# Routine varevsij");
 1874:   }
 1875:   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 1876:     printf("Problem with html file: %s\n", optionfilehtm);
 1877:     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 1878:     exit(0);
 1879:   }
 1880:   else{
 1881:     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 1882:     fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
 1883:   }
 1884:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 1885: 
 1886:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 1887:   fprintf(ficresvij,"# Age");
 1888:   for(i=1; i<=nlstate;i++)
 1889:     for(j=1; j<=nlstate;j++)
 1890:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 1891:   fprintf(ficresvij,"\n");
 1892: 
 1893:   xp=vector(1,npar);
 1894:   dnewm=matrix(1,nlstate,1,npar);
 1895:   doldm=matrix(1,nlstate,1,nlstate);
 1896:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 1897:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 1898: 
 1899:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 1900:   gpp=vector(nlstate+1,nlstate+ndeath);
 1901:   gmp=vector(nlstate+1,nlstate+ndeath);
 1902:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 1903:   
 1904:   if(estepm < stepm){
 1905:     printf ("Problem %d lower than %d\n",estepm, stepm);
 1906:   }
 1907:   else  hstepm=estepm;   
 1908:   /* For example we decided to compute the life expectancy with the smallest unit */
 1909:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 1910:      nhstepm is the number of hstepm from age to agelim 
 1911:      nstepm is the number of stepm from age to agelin. 
 1912:      Look at hpijx to understand the reason of that which relies in memory size
 1913:      and note for a fixed period like k years */
 1914:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 1915:      survival function given by stepm (the optimization length). Unfortunately it
 1916:      means that if the survival funtion is printed only each two years of age and if
 1917:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 1918:      results. So we changed our mind and took the option of the best precision.
 1919:   */
 1920:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 1921:   agelim = AGESUP;
 1922:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1923:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 1924:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 1925:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1926:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 1927:     gp=matrix(0,nhstepm,1,nlstate);
 1928:     gm=matrix(0,nhstepm,1,nlstate);
 1929: 
 1930: 
 1931:     for(theta=1; theta <=npar; theta++){
 1932:       for(i=1; i<=npar; i++){ /* Computes gradient */
 1933: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1934:       }
 1935:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1936:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1937: 
 1938:       if (popbased==1) {
 1939: 	if(mobilav ==0){
 1940: 	  for(i=1; i<=nlstate;i++)
 1941: 	    prlim[i][i]=probs[(int)age][i][ij];
 1942: 	}else{ /* mobilav */ 
 1943: 	  for(i=1; i<=nlstate;i++)
 1944: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 1945: 	}
 1946:       }
 1947:   
 1948:       for(j=1; j<= nlstate; j++){
 1949: 	for(h=0; h<=nhstepm; h++){
 1950: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 1951: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 1952: 	}
 1953:       }
 1954:       /* This for computing forces of mortality (h=1)as a weighted average */
 1955:       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
 1956: 	for(i=1; i<= nlstate; i++)
 1957: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 1958:       }    
 1959:       /* end force of mortality */
 1960: 
 1961:       for(i=1; i<=npar; i++) /* Computes gradient */
 1962: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1963:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1964:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 1965:  
 1966:       if (popbased==1) {
 1967: 	if(mobilav ==0){
 1968: 	  for(i=1; i<=nlstate;i++)
 1969: 	    prlim[i][i]=probs[(int)age][i][ij];
 1970: 	}else{ /* mobilav */ 
 1971: 	  for(i=1; i<=nlstate;i++)
 1972: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 1973: 	}
 1974:       }
 1975: 
 1976:       for(j=1; j<= nlstate; j++){
 1977: 	for(h=0; h<=nhstepm; h++){
 1978: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 1979: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 1980: 	}
 1981:       }
 1982:       /* This for computing force of mortality (h=1)as a weighted average */
 1983:       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
 1984: 	for(i=1; i<= nlstate; i++)
 1985: 	  gmp[j] += prlim[i][i]*p3mat[i][j][1];
 1986:       }    
 1987:       /* end force of mortality */
 1988: 
 1989:       for(j=1; j<= nlstate; j++) /* vareij */
 1990: 	for(h=0; h<=nhstepm; h++){
 1991: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 1992: 	}
 1993:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 1994: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 1995:       }
 1996: 
 1997:     } /* End theta */
 1998: 
 1999:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2000: 
 2001:     for(h=0; h<=nhstepm; h++) /* veij */
 2002:       for(j=1; j<=nlstate;j++)
 2003: 	for(theta=1; theta <=npar; theta++)
 2004: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2005: 
 2006:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2007:       for(theta=1; theta <=npar; theta++)
 2008: 	trgradgp[j][theta]=gradgp[theta][j];
 2009: 
 2010:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2011:     for(i=1;i<=nlstate;i++)
 2012:       for(j=1;j<=nlstate;j++)
 2013: 	vareij[i][j][(int)age] =0.;
 2014: 
 2015:     for(h=0;h<=nhstepm;h++){
 2016:       for(k=0;k<=nhstepm;k++){
 2017: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2018: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2019: 	for(i=1;i<=nlstate;i++)
 2020: 	  for(j=1;j<=nlstate;j++)
 2021: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2022:       }
 2023:     }
 2024: 
 2025:     /* pptj */
 2026:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2027:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2028:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2029:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2030: 	varppt[j][i]=doldmp[j][i];
 2031:     /* end ppptj */
 2032:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2033:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2034:  
 2035:     if (popbased==1) {
 2036:       if(mobilav ==0){
 2037: 	for(i=1; i<=nlstate;i++)
 2038: 	  prlim[i][i]=probs[(int)age][i][ij];
 2039:       }else{ /* mobilav */ 
 2040: 	for(i=1; i<=nlstate;i++)
 2041: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2042:       }
 2043:     }
 2044:     
 2045:     /* This for computing force of mortality (h=1)as a weighted average */
 2046:     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
 2047:       for(i=1; i<= nlstate; i++)
 2048: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2049:     }    
 2050:     /* end force of mortality */
 2051: 
 2052:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2053:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2054:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2055:       for(i=1; i<=nlstate;i++){
 2056: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2057:       }
 2058:     } 
 2059:     fprintf(ficresprobmorprev,"\n");
 2060: 
 2061:     fprintf(ficresvij,"%.0f ",age );
 2062:     for(i=1; i<=nlstate;i++)
 2063:       for(j=1; j<=nlstate;j++){
 2064: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2065:       }
 2066:     fprintf(ficresvij,"\n");
 2067:     free_matrix(gp,0,nhstepm,1,nlstate);
 2068:     free_matrix(gm,0,nhstepm,1,nlstate);
 2069:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2070:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2071:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2072:   } /* End age */
 2073:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2074:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2075:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2076:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2077:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2078:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2079:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2080:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
 2081:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
 2082:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
 2083:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
 2084:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);
 2085:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2086: */
 2087:   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
 2088: 
 2089:   free_vector(xp,1,npar);
 2090:   free_matrix(doldm,1,nlstate,1,nlstate);
 2091:   free_matrix(dnewm,1,nlstate,1,npar);
 2092:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2093:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2094:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2095:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2096:   fclose(ficresprobmorprev);
 2097:   fclose(ficgp);
 2098:   fclose(fichtm);
 2099: }
 2100: 
 2101: /************ Variance of prevlim ******************/
 2102: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2103: {
 2104:   /* Variance of prevalence limit */
 2105:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2106:   double **newm;
 2107:   double **dnewm,**doldm;
 2108:   int i, j, nhstepm, hstepm;
 2109:   int k, cptcode;
 2110:   double *xp;
 2111:   double *gp, *gm;
 2112:   double **gradg, **trgradg;
 2113:   double age,agelim;
 2114:   int theta;
 2115:    
 2116:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2117:   fprintf(ficresvpl,"# Age");
 2118:   for(i=1; i<=nlstate;i++)
 2119:       fprintf(ficresvpl," %1d-%1d",i,i);
 2120:   fprintf(ficresvpl,"\n");
 2121: 
 2122:   xp=vector(1,npar);
 2123:   dnewm=matrix(1,nlstate,1,npar);
 2124:   doldm=matrix(1,nlstate,1,nlstate);
 2125:   
 2126:   hstepm=1*YEARM; /* Every year of age */
 2127:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2128:   agelim = AGESUP;
 2129:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2130:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2131:     if (stepm >= YEARM) hstepm=1;
 2132:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2133:     gradg=matrix(1,npar,1,nlstate);
 2134:     gp=vector(1,nlstate);
 2135:     gm=vector(1,nlstate);
 2136: 
 2137:     for(theta=1; theta <=npar; theta++){
 2138:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2139: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2140:       }
 2141:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2142:       for(i=1;i<=nlstate;i++)
 2143: 	gp[i] = prlim[i][i];
 2144:     
 2145:       for(i=1; i<=npar; i++) /* Computes gradient */
 2146: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2147:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2148:       for(i=1;i<=nlstate;i++)
 2149: 	gm[i] = prlim[i][i];
 2150: 
 2151:       for(i=1;i<=nlstate;i++)
 2152: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2153:     } /* End theta */
 2154: 
 2155:     trgradg =matrix(1,nlstate,1,npar);
 2156: 
 2157:     for(j=1; j<=nlstate;j++)
 2158:       for(theta=1; theta <=npar; theta++)
 2159: 	trgradg[j][theta]=gradg[theta][j];
 2160: 
 2161:     for(i=1;i<=nlstate;i++)
 2162:       varpl[i][(int)age] =0.;
 2163:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2164:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2165:     for(i=1;i<=nlstate;i++)
 2166:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2167: 
 2168:     fprintf(ficresvpl,"%.0f ",age );
 2169:     for(i=1; i<=nlstate;i++)
 2170:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2171:     fprintf(ficresvpl,"\n");
 2172:     free_vector(gp,1,nlstate);
 2173:     free_vector(gm,1,nlstate);
 2174:     free_matrix(gradg,1,npar,1,nlstate);
 2175:     free_matrix(trgradg,1,nlstate,1,npar);
 2176:   } /* End age */
 2177: 
 2178:   free_vector(xp,1,npar);
 2179:   free_matrix(doldm,1,nlstate,1,npar);
 2180:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2181: 
 2182: }
 2183: 
 2184: /************ Variance of one-step probabilities  ******************/
 2185: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2186: {
 2187:   int i, j=0,  i1, k1, l1, t, tj;
 2188:   int k2, l2, j1,  z1;
 2189:   int k=0,l, cptcode;
 2190:   int first=1, first1;
 2191:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2192:   double **dnewm,**doldm;
 2193:   double *xp;
 2194:   double *gp, *gm;
 2195:   double **gradg, **trgradg;
 2196:   double **mu;
 2197:   double age,agelim, cov[NCOVMAX];
 2198:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2199:   int theta;
 2200:   char fileresprob[FILENAMELENGTH];
 2201:   char fileresprobcov[FILENAMELENGTH];
 2202:   char fileresprobcor[FILENAMELENGTH];
 2203: 
 2204:   double ***varpij;
 2205: 
 2206:   strcpy(fileresprob,"prob"); 
 2207:   strcat(fileresprob,fileres);
 2208:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2209:     printf("Problem with resultfile: %s\n", fileresprob);
 2210:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2211:   }
 2212:   strcpy(fileresprobcov,"probcov"); 
 2213:   strcat(fileresprobcov,fileres);
 2214:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2215:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2216:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2217:   }
 2218:   strcpy(fileresprobcor,"probcor"); 
 2219:   strcat(fileresprobcor,fileres);
 2220:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2221:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2222:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2223:   }
 2224:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2225:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2226:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2227:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2228:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2229:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2230:   
 2231:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2232:   fprintf(ficresprob,"# Age");
 2233:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2234:   fprintf(ficresprobcov,"# Age");
 2235:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2236:   fprintf(ficresprobcov,"# Age");
 2237: 
 2238: 
 2239:   for(i=1; i<=nlstate;i++)
 2240:     for(j=1; j<=(nlstate+ndeath);j++){
 2241:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2242:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2243:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2244:     }  
 2245:   fprintf(ficresprob,"\n");
 2246:   fprintf(ficresprobcov,"\n");
 2247:   fprintf(ficresprobcor,"\n");
 2248:   xp=vector(1,npar);
 2249:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2250:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2251:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2252:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2253:   first=1;
 2254:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 2255:     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 2256:     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 2257:     exit(0);
 2258:   }
 2259:   else{
 2260:     fprintf(ficgp,"\n# Routine varprob");
 2261:   }
 2262:   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 2263:     printf("Problem with html file: %s\n", optionfilehtm);
 2264:     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 2265:     exit(0);
 2266:   }
 2267:   else{
 2268:     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2269:     fprintf(fichtm,"\n");
 2270: 
 2271:     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 2272:     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2273:     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
 2274: 
 2275:   }
 2276: 
 2277:  
 2278:   cov[1]=1;
 2279:   tj=cptcoveff;
 2280:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2281:   j1=0;
 2282:   for(t=1; t<=tj;t++){
 2283:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2284:       j1++;
 2285:       
 2286:       if  (cptcovn>0) {
 2287: 	fprintf(ficresprob, "\n#********** Variable "); 
 2288: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2289: 	fprintf(ficresprob, "**********\n#");
 2290: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2291: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2292: 	fprintf(ficresprobcov, "**********\n#");
 2293: 	
 2294: 	fprintf(ficgp, "\n#********** Variable "); 
 2295: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2296: 	fprintf(ficgp, "**********\n#");
 2297: 	
 2298: 	
 2299: 	fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2300: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2301: 	fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2302: 	
 2303: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2304: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2305: 	fprintf(ficgp, "**********\n#");    
 2306:       }
 2307:       
 2308:       for (age=bage; age<=fage; age ++){ 
 2309: 	cov[2]=age;
 2310: 	for (k=1; k<=cptcovn;k++) {
 2311: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2312: 	}
 2313: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2314: 	for (k=1; k<=cptcovprod;k++)
 2315: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2316: 	
 2317: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2318: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2319: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2320: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2321:     
 2322: 	for(theta=1; theta <=npar; theta++){
 2323: 	  for(i=1; i<=npar; i++)
 2324: 	    xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2325: 	  
 2326: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2327: 	  
 2328: 	  k=0;
 2329: 	  for(i=1; i<= (nlstate); i++){
 2330: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2331: 	      k=k+1;
 2332: 	      gp[k]=pmmij[i][j];
 2333: 	    }
 2334: 	  }
 2335: 	  
 2336: 	  for(i=1; i<=npar; i++)
 2337: 	    xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2338:     
 2339: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2340: 	  k=0;
 2341: 	  for(i=1; i<=(nlstate); i++){
 2342: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2343: 	      k=k+1;
 2344: 	      gm[k]=pmmij[i][j];
 2345: 	    }
 2346: 	  }
 2347:      
 2348: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 2349: 	    gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
 2350: 	}
 2351: 
 2352: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 2353: 	  for(theta=1; theta <=npar; theta++)
 2354: 	    trgradg[j][theta]=gradg[theta][j];
 2355: 	
 2356: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 2357: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 2358: 	
 2359: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 2360: 	
 2361: 	k=0;
 2362: 	for(i=1; i<=(nlstate); i++){
 2363: 	  for(j=1; j<=(nlstate+ndeath);j++){
 2364: 	    k=k+1;
 2365: 	    mu[k][(int) age]=pmmij[i][j];
 2366: 	  }
 2367: 	}
 2368:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 2369: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 2370: 	    varpij[i][j][(int)age] = doldm[i][j];
 2371: 
 2372: 	/*printf("\n%d ",(int)age);
 2373:      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2374:        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2375:        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2376:      }*/
 2377: 
 2378: 	fprintf(ficresprob,"\n%d ",(int)age);
 2379: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 2380: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 2381: 
 2382: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 2383: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 2384: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2385: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 2386: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 2387: 	}
 2388: 	i=0;
 2389: 	for (k=1; k<=(nlstate);k++){
 2390:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 2391:  	    i=i++;
 2392: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 2393: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 2394: 	    for (j=1; j<=i;j++){
 2395: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 2396: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 2397: 	    }
 2398: 	  }
 2399: 	}/* end of loop for state */
 2400:       } /* end of loop for age */
 2401: 
 2402:       /* Confidence intervalle of pij  */
 2403:       /*
 2404:       fprintf(ficgp,"\nset noparametric;unset label");
 2405:       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 2406:       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 2407:       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 2408:       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 2409:       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 2410:       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 2411:       */
 2412: 
 2413:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 2414:       first1=1;
 2415:       for (k2=1; k2<=(nlstate);k2++){
 2416: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 2417: 	  if(l2==k2) continue;
 2418: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 2419: 	  for (k1=1; k1<=(nlstate);k1++){
 2420: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 2421: 	      if(l1==k1) continue;
 2422: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 2423: 	      if(i<=j) continue;
 2424: 	      for (age=bage; age<=fage; age ++){ 
 2425: 		if ((int)age %5==0){
 2426: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 2427: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 2428: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 2429: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 2430: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 2431: 		  c12=cv12/sqrt(v1*v2);
 2432: 		  /* Computing eigen value of matrix of covariance */
 2433: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 2434: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 2435: 		  /* Eigen vectors */
 2436: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 2437: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 2438: 		  v21=(lc1-v1)/cv12*v11;
 2439: 		  v12=-v21;
 2440: 		  v22=v11;
 2441: 		  tnalp=v21/v11;
 2442: 		  if(first1==1){
 2443: 		    first1=0;
 2444: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 2445: 		  }
 2446: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 2447: 		  /*printf(fignu*/
 2448: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 2449: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 2450: 		  if(first==1){
 2451: 		    first=0;
 2452:  		    fprintf(ficgp,"\nset parametric;unset label");
 2453: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 2454: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 2455: 		    fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
 2456: 		    fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
 2457: 		    fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 2458: 		    fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
 2459: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 2460: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 2461: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 2462: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 2463: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 2464: 		  }else{
 2465: 		    first=0;
 2466: 		    fprintf(fichtm," %d (%.3f),",(int) age, c12);
 2467: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 2468: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 2469: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 2470: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 2471: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 2472: 		  }/* if first */
 2473: 		} /* age mod 5 */
 2474: 	      } /* end loop age */
 2475: 	      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
 2476: 	      first=1;
 2477: 	    } /*l12 */
 2478: 	  } /* k12 */
 2479: 	} /*l1 */
 2480:       }/* k1 */
 2481:     } /* loop covariates */
 2482:     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 2483:     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 2484:     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 2485:     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 2486:     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2487:     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2488:   }
 2489:   free_vector(xp,1,npar);
 2490:   fclose(ficresprob);
 2491:   fclose(ficresprobcov);
 2492:   fclose(ficresprobcor);
 2493:   fclose(ficgp);
 2494:   fclose(fichtm);
 2495: }
 2496: 
 2497: 
 2498: /******************* Printing html file ***********/
 2499: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 2500: 		  int lastpass, int stepm, int weightopt, char model[],\
 2501: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 2502: 		  int popforecast, int estepm ,\
 2503: 		  double jprev1, double mprev1,double anprev1, \
 2504: 		  double jprev2, double mprev2,double anprev2){
 2505:   int jj1, k1, i1, cpt;
 2506:   /*char optionfilehtm[FILENAMELENGTH];*/
 2507:   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
 2508:     printf("Problem with %s \n",optionfilehtm), exit(0);
 2509:     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
 2510:   }
 2511: 
 2512:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
 2513:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
 2514:  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
 2515:  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
 2516:  - Life expectancies by age and initial health status (estepm=%2d months): 
 2517:    <a href=\"e%s\">e%s</a> <br>\n</li>", \
 2518:   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
 2519: 
 2520: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 2521: 
 2522:  m=cptcoveff;
 2523:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 2524: 
 2525:  jj1=0;
 2526:  for(k1=1; k1<=m;k1++){
 2527:    for(i1=1; i1<=ncodemax[k1];i1++){
 2528:      jj1++;
 2529:      if (cptcovn > 0) {
 2530:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 2531:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 2532: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 2533:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 2534:      }
 2535:      /* Pij */
 2536:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
 2537: <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
 2538:      /* Quasi-incidences */
 2539:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
 2540: <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
 2541:        /* Stable prevalence in each health state */
 2542:        for(cpt=1; cpt<nlstate;cpt++){
 2543: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
 2544: <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 2545:        }
 2546:      for(cpt=1; cpt<=nlstate;cpt++) {
 2547:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
 2548: <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 2549:      }
 2550:      fprintf(fichtm,"\n<br>- Total life expectancy by age and
 2551: health expectancies in states (1) and (2): e%s%d.png<br>
 2552: <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
 2553:    } /* end i1 */
 2554:  }/* End k1 */
 2555:  fprintf(fichtm,"</ul>");
 2556: 
 2557: 
 2558:  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
 2559:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
 2560:  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
 2561:  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
 2562:  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
 2563:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
 2564:  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
 2565:  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
 2566: 
 2567:  if(popforecast==1) fprintf(fichtm,"\n
 2568:  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
 2569:  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
 2570: 	<br>",fileres,fileres,fileres,fileres);
 2571:  else 
 2572:    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
 2573: fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 2574: 
 2575:  m=cptcoveff;
 2576:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 2577: 
 2578:  jj1=0;
 2579:  for(k1=1; k1<=m;k1++){
 2580:    for(i1=1; i1<=ncodemax[k1];i1++){
 2581:      jj1++;
 2582:      if (cptcovn > 0) {
 2583:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 2584:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 2585: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 2586:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 2587:      }
 2588:      for(cpt=1; cpt<=nlstate;cpt++) {
 2589:        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
 2590: interval) in state (%d): v%s%d%d.png <br>
 2591: <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
 2592:      }
 2593:    } /* end i1 */
 2594:  }/* End k1 */
 2595:  fprintf(fichtm,"</ul>");
 2596: fclose(fichtm);
 2597: }
 2598: 
 2599: /******************* Gnuplot file **************/
 2600: void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 2601: 
 2602:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 2603:   int ng;
 2604:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 2605:     printf("Problem with file %s",optionfilegnuplot);
 2606:     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
 2607:   }
 2608: 
 2609:   /*#ifdef windows */
 2610:     fprintf(ficgp,"cd \"%s\" \n",pathc);
 2611:     /*#endif */
 2612: m=pow(2,cptcoveff);
 2613:   
 2614:  /* 1eme*/
 2615:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 2616:    for (k1=1; k1<= m ; k1 ++) {
 2617:      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2618:      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
 2619: 
 2620:      for (i=1; i<= nlstate ; i ++) {
 2621:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2622:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2623:      }
 2624:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
 2625:      for (i=1; i<= nlstate ; i ++) {
 2626:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2627:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2628:      } 
 2629:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 2630:      for (i=1; i<= nlstate ; i ++) {
 2631:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2632:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2633:      }  
 2634:      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 2635:    }
 2636:   }
 2637:   /*2 eme*/
 2638:   
 2639:   for (k1=1; k1<= m ; k1 ++) { 
 2640:     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
 2641:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 2642:     
 2643:     for (i=1; i<= nlstate+1 ; i ++) {
 2644:       k=2*i;
 2645:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
 2646:       for (j=1; j<= nlstate+1 ; j ++) {
 2647: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2648: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2649:       }   
 2650:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 2651:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 2652:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2653:       for (j=1; j<= nlstate+1 ; j ++) {
 2654: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2655: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2656:       }   
 2657:       fprintf(ficgp,"\" t\"\" w l 0,");
 2658:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2659:       for (j=1; j<= nlstate+1 ; j ++) {
 2660: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2661: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2662:       }   
 2663:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 2664:       else fprintf(ficgp,"\" t\"\" w l 0,");
 2665:     }
 2666:   }
 2667:   
 2668:   /*3eme*/
 2669:   
 2670:   for (k1=1; k1<= m ; k1 ++) { 
 2671:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 2672:       k=2+nlstate*(2*cpt-2);
 2673:       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2674:       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
 2675:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 2676: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 2677: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 2678: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 2679: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 2680: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 2681: 	
 2682:       */
 2683:       for (i=1; i< nlstate ; i ++) {
 2684: 	fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
 2685: 	
 2686:       } 
 2687:     }
 2688:   }
 2689:   
 2690:   /* CV preval stat */
 2691:   for (k1=1; k1<= m ; k1 ++) { 
 2692:     for (cpt=1; cpt<nlstate ; cpt ++) {
 2693:       k=3;
 2694:       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2695:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
 2696:       
 2697:       for (i=1; i< nlstate ; i ++)
 2698: 	fprintf(ficgp,"+$%d",k+i+1);
 2699:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 2700:       
 2701:       l=3+(nlstate+ndeath)*cpt;
 2702:       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
 2703:       for (i=1; i< nlstate ; i ++) {
 2704: 	l=3+(nlstate+ndeath)*cpt;
 2705: 	fprintf(ficgp,"+$%d",l+i+1);
 2706:       }
 2707:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 2708:     } 
 2709:   }  
 2710:   
 2711:   /* proba elementaires */
 2712:   for(i=1,jk=1; i <=nlstate; i++){
 2713:     for(k=1; k <=(nlstate+ndeath); k++){
 2714:       if (k != i) {
 2715: 	for(j=1; j <=ncovmodel; j++){
 2716: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 2717: 	  jk++; 
 2718: 	  fprintf(ficgp,"\n");
 2719: 	}
 2720:       }
 2721:     }
 2722:    }
 2723: 
 2724:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 2725:      for(jk=1; jk <=m; jk++) {
 2726:        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
 2727:        if (ng==2)
 2728: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 2729:        else
 2730: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 2731:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 2732:        i=1;
 2733:        for(k2=1; k2<=nlstate; k2++) {
 2734: 	 k3=i;
 2735: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 2736: 	   if (k != k2){
 2737: 	     if(ng==2)
 2738: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 2739: 	     else
 2740: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 2741: 	     ij=1;
 2742: 	     for(j=3; j <=ncovmodel; j++) {
 2743: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2744: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2745: 		 ij++;
 2746: 	       }
 2747: 	       else
 2748: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2749: 	     }
 2750: 	     fprintf(ficgp,")/(1");
 2751: 	     
 2752: 	     for(k1=1; k1 <=nlstate; k1++){   
 2753: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 2754: 	       ij=1;
 2755: 	       for(j=3; j <=ncovmodel; j++){
 2756: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2757: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2758: 		   ij++;
 2759: 		 }
 2760: 		 else
 2761: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2762: 	       }
 2763: 	       fprintf(ficgp,")");
 2764: 	     }
 2765: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 2766: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 2767: 	     i=i+ncovmodel;
 2768: 	   }
 2769: 	 } /* end k */
 2770:        } /* end k2 */
 2771:      } /* end jk */
 2772:    } /* end ng */
 2773:    fclose(ficgp); 
 2774: }  /* end gnuplot */
 2775: 
 2776: 
 2777: /*************** Moving average **************/
 2778: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 2779: 
 2780:   int i, cpt, cptcod;
 2781:   int modcovmax =1;
 2782:   int mobilavrange, mob;
 2783:   double age;
 2784: 
 2785:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 2786: 			   a covariate has 2 modalities */
 2787:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 2788: 
 2789:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 2790:     if(mobilav==1) mobilavrange=5; /* default */
 2791:     else mobilavrange=mobilav;
 2792:     for (age=bage; age<=fage; age++)
 2793:       for (i=1; i<=nlstate;i++)
 2794: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 2795: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 2796:     /* We keep the original values on the extreme ages bage, fage and for 
 2797:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 2798:        we use a 5 terms etc. until the borders are no more concerned. 
 2799:     */ 
 2800:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 2801:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 2802: 	for (i=1; i<=nlstate;i++){
 2803: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 2804: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 2805: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 2806: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 2807: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 2808: 	      }
 2809: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 2810: 	  }
 2811: 	}
 2812:       }/* end age */
 2813:     }/* end mob */
 2814:   }else return -1;
 2815:   return 0;
 2816: }/* End movingaverage */
 2817: 
 2818: 
 2819: /************** Forecasting ******************/
 2820: prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
 2821:   
 2822:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 2823:   int *popage;
 2824:   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 2825:   double *popeffectif,*popcount;
 2826:   double ***p3mat;
 2827:   double ***mobaverage;
 2828:   char fileresf[FILENAMELENGTH];
 2829: 
 2830:  agelim=AGESUP;
 2831:  calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
 2832: 
 2833:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 2834:  
 2835:  
 2836:   strcpy(fileresf,"f"); 
 2837:   strcat(fileresf,fileres);
 2838:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 2839:     printf("Problem with forecast resultfile: %s\n", fileresf);
 2840:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 2841:   }
 2842:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 2843:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 2844: 
 2845:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 2846: 
 2847:   if (mobilav!=0) {
 2848:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2849:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 2850:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2851:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2852:     }
 2853:   }
 2854: 
 2855:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 2856:   if (stepm<=12) stepsize=1;
 2857:   
 2858:   agelim=AGESUP;
 2859:   
 2860:   hstepm=1;
 2861:   hstepm=hstepm/stepm; 
 2862:   yp1=modf(dateintmean,&yp);
 2863:   anprojmean=yp;
 2864:   yp2=modf((yp1*12),&yp);
 2865:   mprojmean=yp;
 2866:   yp1=modf((yp2*30.5),&yp);
 2867:   jprojmean=yp;
 2868:   if(jprojmean==0) jprojmean=1;
 2869:   if(mprojmean==0) jprojmean=1;
 2870:   
 2871:   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
 2872:   
 2873:   for(cptcov=1;cptcov<=i2;cptcov++){
 2874:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 2875:       k=k+1;
 2876:       fprintf(ficresf,"\n#******");
 2877:       for(j=1;j<=cptcoveff;j++) {
 2878: 	fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 2879:       }
 2880:       fprintf(ficresf,"******\n");
 2881:       fprintf(ficresf,"# StartingAge FinalAge");
 2882:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
 2883:       
 2884:       
 2885:       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
 2886: 	fprintf(ficresf,"\n");
 2887: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
 2888: 
 2889:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 2890: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 2891: 	  nhstepm = nhstepm/hstepm; 
 2892: 	  
 2893: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2894: 	  oldm=oldms;savm=savms;
 2895: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 2896: 	
 2897: 	  for (h=0; h<=nhstepm; h++){
 2898: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 2899: 	      fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
 2900: 	    } 
 2901: 	    for(j=1; j<=nlstate+ndeath;j++) {
 2902: 	      kk1=0.;kk2=0;
 2903: 	      for(i=1; i<=nlstate;i++) {	      
 2904: 		if (mobilav==1) 
 2905: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 2906: 		else {
 2907: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 2908: 		}
 2909: 		
 2910: 	      }
 2911: 	      if (h==(int)(calagedate+12*cpt)){
 2912: 		fprintf(ficresf," %.3f", kk1);
 2913: 	     		
 2914: 	      }
 2915: 	    }
 2916: 	  }
 2917: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2918: 	}
 2919:       }
 2920:     }
 2921:   }
 2922:        
 2923:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2924: 
 2925:   fclose(ficresf);
 2926: }
 2927: /************** Forecasting ******************/
 2928: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 2929:   
 2930:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 2931:   int *popage;
 2932:   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 2933:   double *popeffectif,*popcount;
 2934:   double ***p3mat,***tabpop,***tabpopprev;
 2935:   double ***mobaverage;
 2936:   char filerespop[FILENAMELENGTH];
 2937: 
 2938:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2939:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2940:   agelim=AGESUP;
 2941:   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 2942:   
 2943:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 2944:   
 2945:   
 2946:   strcpy(filerespop,"pop"); 
 2947:   strcat(filerespop,fileres);
 2948:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 2949:     printf("Problem with forecast resultfile: %s\n", filerespop);
 2950:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 2951:   }
 2952:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 2953:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 2954: 
 2955:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 2956: 
 2957:   if (mobilav!=0) {
 2958:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2959:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 2960:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2961:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2962:     }
 2963:   }
 2964: 
 2965:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 2966:   if (stepm<=12) stepsize=1;
 2967:   
 2968:   agelim=AGESUP;
 2969:   
 2970:   hstepm=1;
 2971:   hstepm=hstepm/stepm; 
 2972:   
 2973:   if (popforecast==1) {
 2974:     if((ficpop=fopen(popfile,"r"))==NULL) {
 2975:       printf("Problem with population file : %s\n",popfile);exit(0);
 2976:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 2977:     } 
 2978:     popage=ivector(0,AGESUP);
 2979:     popeffectif=vector(0,AGESUP);
 2980:     popcount=vector(0,AGESUP);
 2981:     
 2982:     i=1;   
 2983:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 2984:    
 2985:     imx=i;
 2986:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 2987:   }
 2988: 
 2989:   for(cptcov=1;cptcov<=i2;cptcov++){
 2990:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 2991:       k=k+1;
 2992:       fprintf(ficrespop,"\n#******");
 2993:       for(j=1;j<=cptcoveff;j++) {
 2994: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 2995:       }
 2996:       fprintf(ficrespop,"******\n");
 2997:       fprintf(ficrespop,"# Age");
 2998:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 2999:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3000:       
 3001:       for (cpt=0; cpt<=0;cpt++) { 
 3002: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3003: 	
 3004:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 3005: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3006: 	  nhstepm = nhstepm/hstepm; 
 3007: 	  
 3008: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3009: 	  oldm=oldms;savm=savms;
 3010: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3011: 	
 3012: 	  for (h=0; h<=nhstepm; h++){
 3013: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 3014: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3015: 	    } 
 3016: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3017: 	      kk1=0.;kk2=0;
 3018: 	      for(i=1; i<=nlstate;i++) {	      
 3019: 		if (mobilav==1) 
 3020: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3021: 		else {
 3022: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3023: 		}
 3024: 	      }
 3025: 	      if (h==(int)(calagedate+12*cpt)){
 3026: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3027: 		  /*fprintf(ficrespop," %.3f", kk1);
 3028: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3029: 	      }
 3030: 	    }
 3031: 	    for(i=1; i<=nlstate;i++){
 3032: 	      kk1=0.;
 3033: 		for(j=1; j<=nlstate;j++){
 3034: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3035: 		}
 3036: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
 3037: 	    }
 3038: 
 3039: 	    if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
 3040: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3041: 	  }
 3042: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3043: 	}
 3044:       }
 3045:  
 3046:   /******/
 3047: 
 3048:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3049: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3050: 	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 3051: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3052: 	  nhstepm = nhstepm/hstepm; 
 3053: 	  
 3054: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3055: 	  oldm=oldms;savm=savms;
 3056: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3057: 	  for (h=0; h<=nhstepm; h++){
 3058: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 3059: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3060: 	    } 
 3061: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3062: 	      kk1=0.;kk2=0;
 3063: 	      for(i=1; i<=nlstate;i++) {	      
 3064: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3065: 	      }
 3066: 	      if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3067: 	    }
 3068: 	  }
 3069: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3070: 	}
 3071:       }
 3072:    } 
 3073:   }
 3074:  
 3075:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3076: 
 3077:   if (popforecast==1) {
 3078:     free_ivector(popage,0,AGESUP);
 3079:     free_vector(popeffectif,0,AGESUP);
 3080:     free_vector(popcount,0,AGESUP);
 3081:   }
 3082:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3083:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3084:   fclose(ficrespop);
 3085: }
 3086: 
 3087: /***********************************************/
 3088: /**************** Main Program *****************/
 3089: /***********************************************/
 3090: 
 3091: int main(int argc, char *argv[])
 3092: {
 3093: 
 3094:   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
 3095:   double agedeb, agefin,hf;
 3096:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 3097: 
 3098:   double fret;
 3099:   double **xi,tmp,delta;
 3100: 
 3101:   double dum; /* Dummy variable */
 3102:   double ***p3mat;
 3103:   double ***mobaverage;
 3104:   int *indx;
 3105:   char line[MAXLINE], linepar[MAXLINE];
 3106:   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
 3107:   int firstobs=1, lastobs=10;
 3108:   int sdeb, sfin; /* Status at beginning and end */
 3109:   int c,  h , cpt,l;
 3110:   int ju,jl, mi;
 3111:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 3112:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; 
 3113:   int mobilav=0,popforecast=0;
 3114:   int hstepm, nhstepm;
 3115:   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
 3116: 
 3117:   double bage, fage, age, agelim, agebase;
 3118:   double ftolpl=FTOL;
 3119:   double **prlim;
 3120:   double *severity;
 3121:   double ***param; /* Matrix of parameters */
 3122:   double  *p;
 3123:   double **matcov; /* Matrix of covariance */
 3124:   double ***delti3; /* Scale */
 3125:   double *delti; /* Scale */
 3126:   double ***eij, ***vareij;
 3127:   double **varpl; /* Variances of prevalence limits by age */
 3128:   double *epj, vepp;
 3129:   double kk1, kk2;
 3130:   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
 3131:   
 3132: 
 3133:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 3134: 
 3135: 
 3136:   char z[1]="c", occ;
 3137: #include <sys/time.h>
 3138: #include <time.h>
 3139:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 3140:  
 3141:   /* long total_usecs;
 3142:   struct timeval start_time, end_time;
 3143:   
 3144:   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 3145:   getcwd(pathcd, size);
 3146: 
 3147:   printf("\n%s",version);
 3148:   if(argc <=1){
 3149:     printf("\nEnter the parameter file name: ");
 3150:     scanf("%s",pathtot);
 3151:   }
 3152:   else{
 3153:     strcpy(pathtot,argv[1]);
 3154:   }
 3155:   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
 3156:   /*cygwin_split_path(pathtot,path,optionfile);
 3157:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 3158:   /* cutv(path,optionfile,pathtot,'\\');*/
 3159: 
 3160:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 3161:    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3162:   chdir(path);
 3163:   replace(pathc,path);
 3164: 
 3165: /*-------- arguments in the command line --------*/
 3166: 
 3167:   /* Log file */
 3168:   strcat(filelog, optionfilefiname);
 3169:   strcat(filelog,".log");    /* */
 3170:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 3171:     printf("Problem with logfile %s\n",filelog);
 3172:     goto end;
 3173:   }
 3174:   fprintf(ficlog,"Log filename:%s\n",filelog);
 3175:   fprintf(ficlog,"\n%s",version);
 3176:   fprintf(ficlog,"\nEnter the parameter file name: ");
 3177:   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3178:   fflush(ficlog);
 3179: 
 3180:   /* */
 3181:   strcpy(fileres,"r");
 3182:   strcat(fileres, optionfilefiname);
 3183:   strcat(fileres,".txt");    /* Other files have txt extension */
 3184: 
 3185:   /*---------arguments file --------*/
 3186: 
 3187:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 3188:     printf("Problem with optionfile %s\n",optionfile);
 3189:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 3190:     goto end;
 3191:   }
 3192: 
 3193:   strcpy(filereso,"o");
 3194:   strcat(filereso,fileres);
 3195:   if((ficparo=fopen(filereso,"w"))==NULL) {
 3196:     printf("Problem with Output resultfile: %s\n", filereso);
 3197:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 3198:     goto end;
 3199:   }
 3200: 
 3201:   /* Reads comments: lines beginning with '#' */
 3202:   while((c=getc(ficpar))=='#' && c!= EOF){
 3203:     ungetc(c,ficpar);
 3204:     fgets(line, MAXLINE, ficpar);
 3205:     puts(line);
 3206:     fputs(line,ficparo);
 3207:   }
 3208:   ungetc(c,ficpar);
 3209: 
 3210:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 3211:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 3212:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 3213: while((c=getc(ficpar))=='#' && c!= EOF){
 3214:     ungetc(c,ficpar);
 3215:     fgets(line, MAXLINE, ficpar);
 3216:     puts(line);
 3217:     fputs(line,ficparo);
 3218:   }
 3219:   ungetc(c,ficpar);
 3220:   
 3221:    
 3222:   covar=matrix(0,NCOVMAX,1,n); 
 3223:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 3224:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 3225: 
 3226:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 3227:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 3228:   
 3229:   /* Read guess parameters */
 3230:   /* Reads comments: lines beginning with '#' */
 3231:   while((c=getc(ficpar))=='#' && c!= EOF){
 3232:     ungetc(c,ficpar);
 3233:     fgets(line, MAXLINE, ficpar);
 3234:     puts(line);
 3235:     fputs(line,ficparo);
 3236:   }
 3237:   ungetc(c,ficpar);
 3238:   
 3239:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 3240:     for(i=1; i <=nlstate; i++)
 3241:     for(j=1; j <=nlstate+ndeath-1; j++){
 3242:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 3243:       fprintf(ficparo,"%1d%1d",i1,j1);
 3244:       if(mle==1)
 3245: 	printf("%1d%1d",i,j);
 3246:       fprintf(ficlog,"%1d%1d",i,j);
 3247:       for(k=1; k<=ncovmodel;k++){
 3248: 	fscanf(ficpar," %lf",&param[i][j][k]);
 3249: 	if(mle==1){
 3250: 	  printf(" %lf",param[i][j][k]);
 3251: 	  fprintf(ficlog," %lf",param[i][j][k]);
 3252: 	}
 3253: 	else
 3254: 	  fprintf(ficlog," %lf",param[i][j][k]);
 3255: 	fprintf(ficparo," %lf",param[i][j][k]);
 3256:       }
 3257:       fscanf(ficpar,"\n");
 3258:       if(mle==1)
 3259: 	printf("\n");
 3260:       fprintf(ficlog,"\n");
 3261:       fprintf(ficparo,"\n");
 3262:     }
 3263:   
 3264:     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 3265: 
 3266:   p=param[1][1];
 3267:   
 3268:   /* Reads comments: lines beginning with '#' */
 3269:   while((c=getc(ficpar))=='#' && c!= EOF){
 3270:     ungetc(c,ficpar);
 3271:     fgets(line, MAXLINE, ficpar);
 3272:     puts(line);
 3273:     fputs(line,ficparo);
 3274:   }
 3275:   ungetc(c,ficpar);
 3276: 
 3277:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 3278:   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
 3279:   for(i=1; i <=nlstate; i++){
 3280:     for(j=1; j <=nlstate+ndeath-1; j++){
 3281:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 3282:       printf("%1d%1d",i,j);
 3283:       fprintf(ficparo,"%1d%1d",i1,j1);
 3284:       for(k=1; k<=ncovmodel;k++){
 3285: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 3286: 	printf(" %le",delti3[i][j][k]);
 3287: 	fprintf(ficparo," %le",delti3[i][j][k]);
 3288:       }
 3289:       fscanf(ficpar,"\n");
 3290:       printf("\n");
 3291:       fprintf(ficparo,"\n");
 3292:     }
 3293:   }
 3294:   delti=delti3[1][1];
 3295:   
 3296:   /* Reads comments: lines beginning with '#' */
 3297:   while((c=getc(ficpar))=='#' && c!= EOF){
 3298:     ungetc(c,ficpar);
 3299:     fgets(line, MAXLINE, ficpar);
 3300:     puts(line);
 3301:     fputs(line,ficparo);
 3302:   }
 3303:   ungetc(c,ficpar);
 3304:   
 3305:   matcov=matrix(1,npar,1,npar);
 3306:   for(i=1; i <=npar; i++){
 3307:     fscanf(ficpar,"%s",&str);
 3308:     if(mle==1)
 3309:       printf("%s",str);
 3310:     fprintf(ficlog,"%s",str);
 3311:     fprintf(ficparo,"%s",str);
 3312:     for(j=1; j <=i; j++){
 3313:       fscanf(ficpar," %le",&matcov[i][j]);
 3314:       if(mle==1){
 3315: 	printf(" %.5le",matcov[i][j]);
 3316: 	fprintf(ficlog," %.5le",matcov[i][j]);
 3317:       }
 3318:       else
 3319: 	fprintf(ficlog," %.5le",matcov[i][j]);
 3320:       fprintf(ficparo," %.5le",matcov[i][j]);
 3321:     }
 3322:     fscanf(ficpar,"\n");
 3323:     if(mle==1)
 3324:       printf("\n");
 3325:     fprintf(ficlog,"\n");
 3326:     fprintf(ficparo,"\n");
 3327:   }
 3328:   for(i=1; i <=npar; i++)
 3329:     for(j=i+1;j<=npar;j++)
 3330:       matcov[i][j]=matcov[j][i];
 3331:    
 3332:   if(mle==1)
 3333:     printf("\n");
 3334:   fprintf(ficlog,"\n");
 3335: 
 3336: 
 3337:     /*-------- Rewriting paramater file ----------*/
 3338:      strcpy(rfileres,"r");    /* "Rparameterfile */
 3339:      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 3340:      strcat(rfileres,".");    /* */
 3341:      strcat(rfileres,optionfilext);    /* Other files have txt extension */
 3342:     if((ficres =fopen(rfileres,"w"))==NULL) {
 3343:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
 3344:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 3345:     }
 3346:     fprintf(ficres,"#%s\n",version);
 3347:     
 3348:     /*-------- data file ----------*/
 3349:     if((fic=fopen(datafile,"r"))==NULL)    {
 3350:       printf("Problem with datafile: %s\n", datafile);goto end;
 3351:       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 3352:     }
 3353: 
 3354:     n= lastobs;
 3355:     severity = vector(1,maxwav);
 3356:     outcome=imatrix(1,maxwav+1,1,n);
 3357:     num=ivector(1,n);
 3358:     moisnais=vector(1,n);
 3359:     annais=vector(1,n);
 3360:     moisdc=vector(1,n);
 3361:     andc=vector(1,n);
 3362:     agedc=vector(1,n);
 3363:     cod=ivector(1,n);
 3364:     weight=vector(1,n);
 3365:     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 3366:     mint=matrix(1,maxwav,1,n);
 3367:     anint=matrix(1,maxwav,1,n);
 3368:     s=imatrix(1,maxwav+1,1,n);
 3369:     adl=imatrix(1,maxwav+1,1,n);    
 3370:     tab=ivector(1,NCOVMAX);
 3371:     ncodemax=ivector(1,8);
 3372: 
 3373:     i=1;
 3374:     while (fgets(line, MAXLINE, fic) != NULL)    {
 3375:       if ((i >= firstobs) && (i <=lastobs)) {
 3376: 	
 3377: 	for (j=maxwav;j>=1;j--){
 3378: 	  cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 3379: 	  strcpy(line,stra);
 3380: 	  cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3381: 	  cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3382: 	}
 3383: 	
 3384: 	cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 3385: 	cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 3386: 
 3387: 	cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 3388: 	cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 3389: 
 3390: 	cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 3391: 	for (j=ncovcol;j>=1;j--){
 3392: 	  cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3393: 	} 
 3394: 	num[i]=atol(stra);
 3395: 	
 3396: 	/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 3397: 	  printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 3398: 
 3399: 	i=i+1;
 3400:       }
 3401:     } 
 3402:     /* printf("ii=%d", ij);
 3403:        scanf("%d",i);*/
 3404:   imx=i-1; /* Number of individuals */
 3405: 
 3406:   /* for (i=1; i<=imx; i++){
 3407:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 3408:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 3409:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 3410:     }*/
 3411:    /*  for (i=1; i<=imx; i++){
 3412:      if (s[4][i]==9)  s[4][i]=-1; 
 3413:      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 3414:   
 3415:  
 3416:   /* Calculation of the number of parameter from char model*/
 3417:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 3418:   Tprod=ivector(1,15); 
 3419:   Tvaraff=ivector(1,15); 
 3420:   Tvard=imatrix(1,15,1,2);
 3421:   Tage=ivector(1,15);      
 3422:    
 3423:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 3424:     j=0, j1=0, k1=1, k2=1;
 3425:     j=nbocc(model,'+'); /* j=Number of '+' */
 3426:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 3427:     cptcovn=j+1; 
 3428:     cptcovprod=j1; /*Number of products */
 3429:     
 3430:     strcpy(modelsav,model); 
 3431:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 3432:       printf("Error. Non available option model=%s ",model);
 3433:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 3434:       goto end;
 3435:     }
 3436:     
 3437:     /* This loop fill the array Tvar from the string 'model'.*/
 3438: 
 3439:     for(i=(j+1); i>=1;i--){
 3440:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 3441:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */
 3442:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 3443:       /*scanf("%d",i);*/
 3444:       if (strchr(strb,'*')) {  /* Model includes a product */
 3445: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 3446: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 3447: 	  cptcovprod--;
 3448: 	  cutv(strb,stre,strd,'V');
 3449: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 3450: 	  cptcovage++;
 3451: 	    Tage[cptcovage]=i;
 3452: 	    /*printf("stre=%s ", stre);*/
 3453: 	}
 3454: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 3455: 	  cptcovprod--;
 3456: 	  cutv(strb,stre,strc,'V');
 3457: 	  Tvar[i]=atoi(stre);
 3458: 	  cptcovage++;
 3459: 	  Tage[cptcovage]=i;
 3460: 	}
 3461: 	else {  /* Age is not in the model */
 3462: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 3463: 	  Tvar[i]=ncovcol+k1;
 3464: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 3465: 	  Tprod[k1]=i;
 3466: 	  Tvard[k1][1]=atoi(strc); /* m*/
 3467: 	  Tvard[k1][2]=atoi(stre); /* n */
 3468: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 3469: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 3470: 	  for (k=1; k<=lastobs;k++) 
 3471: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 3472: 	  k1++;
 3473: 	  k2=k2+2;
 3474: 	}
 3475:       }
 3476:       else { /* no more sum */
 3477: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 3478:        /*  scanf("%d",i);*/
 3479:       cutv(strd,strc,strb,'V');
 3480:       Tvar[i]=atoi(strc);
 3481:       }
 3482:       strcpy(modelsav,stra);  
 3483:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 3484: 	scanf("%d",i);*/
 3485:     } /* end of loop + */
 3486:   } /* end model */
 3487:   
 3488:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 3489:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 3490: 
 3491:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 3492:   printf("cptcovprod=%d ", cptcovprod);
 3493:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 3494: 
 3495:   scanf("%d ",i);
 3496:   fclose(fic);*/
 3497: 
 3498:     /*  if(mle==1){*/
 3499:     if (weightopt != 1) { /* Maximisation without weights*/
 3500:       for(i=1;i<=n;i++) weight[i]=1.0;
 3501:     }
 3502:     /*-calculation of age at interview from date of interview and age at death -*/
 3503:     agev=matrix(1,maxwav,1,imx);
 3504: 
 3505:     for (i=1; i<=imx; i++) {
 3506:       for(m=2; (m<= maxwav); m++) {
 3507:        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
 3508: 	 anint[m][i]=9999;
 3509: 	 s[m][i]=-1;
 3510:        }
 3511:      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
 3512:       }
 3513:     }
 3514: 
 3515:     for (i=1; i<=imx; i++)  {
 3516:       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 3517:       for(m=1; (m<= maxwav); m++){
 3518: 	if(s[m][i] >0){
 3519: 	  if (s[m][i] >= nlstate+1) {
 3520: 	    if(agedc[i]>0)
 3521: 	      if(moisdc[i]!=99 && andc[i]!=9999)
 3522: 		agev[m][i]=agedc[i];
 3523: 	    /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 3524: 	   else {
 3525: 	      if (andc[i]!=9999){
 3526: 	      printf("Warning negative age at death: %d line:%d\n",num[i],i);
 3527: 	      fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
 3528: 	      agev[m][i]=-1;
 3529: 	      }
 3530: 	    }
 3531: 	  }
 3532: 	  else if(s[m][i] !=9){ /* Should no more exist */
 3533: 	    agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 3534: 	    if(mint[m][i]==99 || anint[m][i]==9999)
 3535: 	      agev[m][i]=1;
 3536: 	    else if(agev[m][i] <agemin){ 
 3537: 	      agemin=agev[m][i];
 3538: 	      /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 3539: 	    }
 3540: 	    else if(agev[m][i] >agemax){
 3541: 	      agemax=agev[m][i];
 3542: 	     /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 3543: 	    }
 3544: 	    /*agev[m][i]=anint[m][i]-annais[i];*/
 3545: 	    /*	 agev[m][i] = age[i]+2*m;*/
 3546: 	  }
 3547: 	  else { /* =9 */
 3548: 	    agev[m][i]=1;
 3549: 	    s[m][i]=-1;
 3550: 	  }
 3551: 	}
 3552: 	else /*= 0 Unknown */
 3553: 	  agev[m][i]=1;
 3554:       }
 3555:     
 3556:     }
 3557:     for (i=1; i<=imx; i++)  {
 3558:       for(m=1; (m<= maxwav); m++){
 3559: 	if (s[m][i] > (nlstate+ndeath)) {
 3560: 	  printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 3561: 	  fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 3562: 	  goto end;
 3563: 	}
 3564:       }
 3565:     }
 3566: 
 3567:     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 3568:     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 3569: 
 3570:     free_vector(severity,1,maxwav);
 3571:     free_imatrix(outcome,1,maxwav+1,1,n);
 3572:     free_vector(moisnais,1,n);
 3573:     free_vector(annais,1,n);
 3574:     /* free_matrix(mint,1,maxwav,1,n);
 3575:        free_matrix(anint,1,maxwav,1,n);*/
 3576:     free_vector(moisdc,1,n);
 3577:     free_vector(andc,1,n);
 3578: 
 3579:    
 3580:     wav=ivector(1,imx);
 3581:     dh=imatrix(1,lastpass-firstpass+1,1,imx);
 3582:     mw=imatrix(1,lastpass-firstpass+1,1,imx);
 3583:    
 3584:     /* Concatenates waves */
 3585:       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 3586: 
 3587:       /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 3588: 
 3589:       Tcode=ivector(1,100);
 3590:       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 3591:       ncodemax[1]=1;
 3592:       if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 3593:       
 3594:       codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 3595: 				     the estimations*/
 3596:    h=0;
 3597:    m=pow(2,cptcoveff);
 3598:  
 3599:    for(k=1;k<=cptcoveff; k++){
 3600:      for(i=1; i <=(m/pow(2,k));i++){
 3601:        for(j=1; j <= ncodemax[k]; j++){
 3602: 	 for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 3603: 	   h++;
 3604: 	   if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 3605: 	   /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 3606: 	 } 
 3607:        }
 3608:      }
 3609:    } 
 3610:    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 3611:       codtab[1][2]=1;codtab[2][2]=2; */
 3612:    /* for(i=1; i <=m ;i++){ 
 3613:       for(k=1; k <=cptcovn; k++){
 3614:       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 3615:       }
 3616:       printf("\n");
 3617:       }
 3618:       scanf("%d",i);*/
 3619:     
 3620:    /* Calculates basic frequencies. Computes observed prevalence at single age
 3621:        and prints on file fileres'p'. */
 3622: 
 3623:     
 3624:    
 3625:     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3626:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3627:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3628:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3629:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 3630:      
 3631:     /* For Powell, parameters are in a vector p[] starting at p[1]
 3632:        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 3633:     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 3634: 
 3635:     if(mle==1){
 3636:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 3637:     }
 3638:     
 3639:     /*--------- results files --------------*/
 3640:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 3641:   
 3642: 
 3643:    jk=1;
 3644:    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3645:    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3646:    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3647:    for(i=1,jk=1; i <=nlstate; i++){
 3648:      for(k=1; k <=(nlstate+ndeath); k++){
 3649:        if (k != i) 
 3650: 	 {
 3651: 	   printf("%d%d ",i,k);
 3652: 	   fprintf(ficlog,"%d%d ",i,k);
 3653: 	   fprintf(ficres,"%1d%1d ",i,k);
 3654: 	   for(j=1; j <=ncovmodel; j++){
 3655: 	     printf("%f ",p[jk]);
 3656: 	     fprintf(ficlog,"%f ",p[jk]);
 3657: 	     fprintf(ficres,"%f ",p[jk]);
 3658: 	     jk++; 
 3659: 	   }
 3660: 	   printf("\n");
 3661: 	   fprintf(ficlog,"\n");
 3662: 	   fprintf(ficres,"\n");
 3663: 	 }
 3664:      }
 3665:    }
 3666:    if(mle==1){
 3667:      /* Computing hessian and covariance matrix */
 3668:      ftolhess=ftol; /* Usually correct */
 3669:      hesscov(matcov, p, npar, delti, ftolhess, func);
 3670:    }
 3671:    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 3672:    printf("# Scales (for hessian or gradient estimation)\n");
 3673:    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 3674:    for(i=1,jk=1; i <=nlstate; i++){
 3675:      for(j=1; j <=nlstate+ndeath; j++){
 3676:        if (j!=i) {
 3677: 	 fprintf(ficres,"%1d%1d",i,j);
 3678: 	 printf("%1d%1d",i,j);
 3679: 	 fprintf(ficlog,"%1d%1d",i,j);
 3680: 	 for(k=1; k<=ncovmodel;k++){
 3681: 	   printf(" %.5e",delti[jk]);
 3682: 	   fprintf(ficlog," %.5e",delti[jk]);
 3683: 	   fprintf(ficres," %.5e",delti[jk]);
 3684: 	   jk++;
 3685: 	 }
 3686: 	 printf("\n");
 3687: 	 fprintf(ficlog,"\n");
 3688: 	 fprintf(ficres,"\n");
 3689:        }
 3690:      }
 3691:    }
 3692:    
 3693:    k=1;
 3694:    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3695:    if(mle==1)
 3696:      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3697:    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3698:    for(i=1;i<=npar;i++){
 3699:      /*  if (k>nlstate) k=1;
 3700: 	 i1=(i-1)/(ncovmodel*nlstate)+1; 
 3701: 	 fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 3702: 	 printf("%s%d%d",alph[k],i1,tab[i]);*/
 3703:      fprintf(ficres,"%3d",i);
 3704:      if(mle==1)
 3705:        printf("%3d",i);
 3706:      fprintf(ficlog,"%3d",i);
 3707:      for(j=1; j<=i;j++){
 3708:        fprintf(ficres," %.5e",matcov[i][j]);
 3709:        if(mle==1)
 3710: 	 printf(" %.5e",matcov[i][j]);
 3711:        fprintf(ficlog," %.5e",matcov[i][j]);
 3712:      }
 3713:      fprintf(ficres,"\n");
 3714:      if(mle==1)
 3715:        printf("\n");
 3716:      fprintf(ficlog,"\n");
 3717:      k++;
 3718:    }
 3719:    
 3720:    while((c=getc(ficpar))=='#' && c!= EOF){
 3721:      ungetc(c,ficpar);
 3722:      fgets(line, MAXLINE, ficpar);
 3723:      puts(line);
 3724:      fputs(line,ficparo);
 3725:    }
 3726:    ungetc(c,ficpar);
 3727:    estepm=0;
 3728:    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 3729:    if (estepm==0 || estepm < stepm) estepm=stepm;
 3730:    if (fage <= 2) {
 3731:      bage = ageminpar;
 3732:      fage = agemaxpar;
 3733:    }
 3734:    
 3735:    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 3736:    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 3737:    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 3738:    
 3739:    while((c=getc(ficpar))=='#' && c!= EOF){
 3740:      ungetc(c,ficpar);
 3741:      fgets(line, MAXLINE, ficpar);
 3742:      puts(line);
 3743:      fputs(line,ficparo);
 3744:    }
 3745:    ungetc(c,ficpar);
 3746:   
 3747:    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 3748:    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 3749:    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 3750:    
 3751:    while((c=getc(ficpar))=='#' && c!= EOF){
 3752:      ungetc(c,ficpar);
 3753:      fgets(line, MAXLINE, ficpar);
 3754:      puts(line);
 3755:      fputs(line,ficparo);
 3756:    }
 3757:    ungetc(c,ficpar);
 3758:  
 3759: 
 3760:    dateprev1=anprev1+mprev1/12.+jprev1/365.;
 3761:    dateprev2=anprev2+mprev2/12.+jprev2/365.;
 3762: 
 3763:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 3764:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 3765:   fprintf(ficres,"pop_based=%d\n",popbased);   
 3766:   
 3767:   while((c=getc(ficpar))=='#' && c!= EOF){
 3768:     ungetc(c,ficpar);
 3769:     fgets(line, MAXLINE, ficpar);
 3770:     puts(line);
 3771:     fputs(line,ficparo);
 3772:   }
 3773:   ungetc(c,ficpar);
 3774: 
 3775:   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
 3776: fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
 3777: fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
 3778: 
 3779: 
 3780: while((c=getc(ficpar))=='#' && c!= EOF){
 3781:     ungetc(c,ficpar);
 3782:     fgets(line, MAXLINE, ficpar);
 3783:     puts(line);
 3784:     fputs(line,ficparo);
 3785:   }
 3786:   ungetc(c,ficpar);
 3787: 
 3788:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 3789:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3790:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3791: 
 3792:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 3793: 
 3794: /*------------ gnuplot -------------*/
 3795:  strcpy(optionfilegnuplot,optionfilefiname);
 3796:  strcat(optionfilegnuplot,".gp");
 3797:  if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 3798:    printf("Problem with file %s",optionfilegnuplot);
 3799:  }
 3800:  else{
 3801:    fprintf(ficgp,"\n# %s\n", version); 
 3802:    fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 3803:    fprintf(ficgp,"set missing 'NaNq'\n");
 3804: }
 3805:  fclose(ficgp);
 3806:  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
 3807: /*--------- index.htm --------*/
 3808: 
 3809:   strcpy(optionfilehtm,optionfile);
 3810:   strcat(optionfilehtm,".htm");
 3811:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 3812:     printf("Problem with %s \n",optionfilehtm), exit(0);
 3813:   }
 3814: 
 3815:   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
 3816: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
 3817: \n
 3818: Total number of observations=%d <br>\n
 3819: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
 3820: <hr  size=\"2\" color=\"#EC5E5E\">
 3821:  <ul><li><h4>Parameter files</h4>\n
 3822:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
 3823:  - Log file of the run: <a href=\"%s\">%s</a><br>\n
 3824:  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
 3825:   fclose(fichtm);
 3826: 
 3827:  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 3828:  
 3829: /*------------ free_vector  -------------*/
 3830:  chdir(path);
 3831:  
 3832:  free_ivector(wav,1,imx);
 3833:  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 3834:  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 3835:  free_ivector(num,1,n);
 3836:  free_vector(agedc,1,n);
 3837:  /*free_matrix(covar,1,NCOVMAX,1,n);*/
 3838:  fclose(ficparo);
 3839:  fclose(ficres);
 3840: 
 3841: 
 3842:   /*--------------- Prevalence limit  (stable prevalence) --------------*/
 3843:   
 3844:   strcpy(filerespl,"pl");
 3845:   strcat(filerespl,fileres);
 3846:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 3847:     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 3848:     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 3849:   }
 3850:   printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 3851:   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 3852:   fprintf(ficrespl,"#Stable prevalence \n");
 3853:   fprintf(ficrespl,"#Age ");
 3854:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 3855:   fprintf(ficrespl,"\n");
 3856:   
 3857:   prlim=matrix(1,nlstate,1,nlstate);
 3858:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3859:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3860:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3861:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3862:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 3863:   k=0;
 3864:   agebase=ageminpar;
 3865:   agelim=agemaxpar;
 3866:   ftolpl=1.e-10;
 3867:   i1=cptcoveff;
 3868:   if (cptcovn < 1){i1=1;}
 3869: 
 3870:   for(cptcov=1;cptcov<=i1;cptcov++){
 3871:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3872: 	k=k+1;
 3873: 	/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 3874: 	fprintf(ficrespl,"\n#******");
 3875: 	printf("\n#******");
 3876: 	fprintf(ficlog,"\n#******");
 3877: 	for(j=1;j<=cptcoveff;j++) {
 3878: 	  fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3879: 	  printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3880: 	  fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3881: 	}
 3882: 	fprintf(ficrespl,"******\n");
 3883: 	printf("******\n");
 3884: 	fprintf(ficlog,"******\n");
 3885: 	
 3886: 	for (age=agebase; age<=agelim; age++){
 3887: 	  prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 3888: 	  fprintf(ficrespl,"%.0f",age );
 3889: 	  for(i=1; i<=nlstate;i++)
 3890: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 3891: 	  fprintf(ficrespl,"\n");
 3892: 	}
 3893:       }
 3894:     }
 3895:   fclose(ficrespl);
 3896: 
 3897:   /*------------- h Pij x at various ages ------------*/
 3898:   
 3899:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 3900:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 3901:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 3902:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 3903:   }
 3904:   printf("Computing pij: result on file '%s' \n", filerespij);
 3905:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 3906:   
 3907:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3908:   /*if (stepm<=24) stepsize=2;*/
 3909: 
 3910:   agelim=AGESUP;
 3911:   hstepm=stepsize*YEARM; /* Every year of age */
 3912:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 3913: 
 3914:   /* hstepm=1;   aff par mois*/
 3915: 
 3916:   k=0;
 3917:   for(cptcov=1;cptcov<=i1;cptcov++){
 3918:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 3919:       k=k+1;
 3920: 	fprintf(ficrespij,"\n#****** ");
 3921: 	for(j=1;j<=cptcoveff;j++) 
 3922: 	  fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3923: 	fprintf(ficrespij,"******\n");
 3924: 	
 3925: 	for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 3926: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 3927: 	  nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 3928: 
 3929: 	  /*	  nhstepm=nhstepm*YEARM; aff par mois*/
 3930: 
 3931: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3932: 	  oldm=oldms;savm=savms;
 3933: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3934: 	  fprintf(ficrespij,"# Age");
 3935: 	  for(i=1; i<=nlstate;i++)
 3936: 	    for(j=1; j<=nlstate+ndeath;j++)
 3937: 	      fprintf(ficrespij," %1d-%1d",i,j);
 3938: 	  fprintf(ficrespij,"\n");
 3939: 	   for (h=0; h<=nhstepm; h++){
 3940: 	    fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 3941: 	    for(i=1; i<=nlstate;i++)
 3942: 	      for(j=1; j<=nlstate+ndeath;j++)
 3943: 		fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 3944: 	    fprintf(ficrespij,"\n");
 3945: 	     }
 3946: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3947: 	  fprintf(ficrespij,"\n");
 3948: 	}
 3949:     }
 3950:   }
 3951: 
 3952:   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
 3953: 
 3954:   fclose(ficrespij);
 3955: 
 3956: 
 3957:   /*---------- Forecasting ------------------*/
 3958:   if((stepm == 1) && (strcmp(model,".")==0)){
 3959:     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
 3960:     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
 3961:   } 
 3962:   else{
 3963:     erreur=108;
 3964:     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
 3965:     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
 3966:   }
 3967:   
 3968: 
 3969:   /*---------- Health expectancies and variances ------------*/
 3970: 
 3971:   strcpy(filerest,"t");
 3972:   strcat(filerest,fileres);
 3973:   if((ficrest=fopen(filerest,"w"))==NULL) {
 3974:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 3975:     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 3976:   }
 3977:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 3978:   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 3979: 
 3980: 
 3981:   strcpy(filerese,"e");
 3982:   strcat(filerese,fileres);
 3983:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 3984:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 3985:     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 3986:   }
 3987:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 3988:   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 3989: 
 3990:   strcpy(fileresv,"v");
 3991:   strcat(fileresv,fileres);
 3992:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 3993:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 3994:     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 3995:   }
 3996:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 3997:   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 3998: 
 3999:   calagedate=-1;
 4000: 
 4001:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 4002: 
 4003:   if (mobilav!=0) {
 4004:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4005:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 4006:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4007:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4008:     }
 4009:   }
 4010: 
 4011:   k=0;
 4012:   for(cptcov=1;cptcov<=i1;cptcov++){
 4013:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4014:       k=k+1; 
 4015:       fprintf(ficrest,"\n#****** ");
 4016:       for(j=1;j<=cptcoveff;j++) 
 4017: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4018:       fprintf(ficrest,"******\n");
 4019: 
 4020:       fprintf(ficreseij,"\n#****** ");
 4021:       for(j=1;j<=cptcoveff;j++) 
 4022: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4023:       fprintf(ficreseij,"******\n");
 4024: 
 4025:       fprintf(ficresvij,"\n#****** ");
 4026:       for(j=1;j<=cptcoveff;j++) 
 4027: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4028:       fprintf(ficresvij,"******\n");
 4029: 
 4030:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4031:       oldm=oldms;savm=savms;
 4032:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 4033:  
 4034:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4035:       oldm=oldms;savm=savms;
 4036:       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 4037:       if(popbased==1){
 4038: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 4039:        }
 4040: 
 4041:  
 4042:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 4043:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 4044:       fprintf(ficrest,"\n");
 4045: 
 4046:       epj=vector(1,nlstate+1);
 4047:       for(age=bage; age <=fage ;age++){
 4048: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4049: 	if (popbased==1) {
 4050: 	  if(mobilav ==0){
 4051: 	    for(i=1; i<=nlstate;i++)
 4052: 	      prlim[i][i]=probs[(int)age][i][k];
 4053: 	  }else{ /* mobilav */ 
 4054: 	    for(i=1; i<=nlstate;i++)
 4055: 	      prlim[i][i]=mobaverage[(int)age][i][k];
 4056: 	  }
 4057: 	}
 4058: 	
 4059: 	fprintf(ficrest," %4.0f",age);
 4060: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 4061: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 4062: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 4063: 	    /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 4064: 	  }
 4065: 	  epj[nlstate+1] +=epj[j];
 4066: 	}
 4067: 
 4068: 	for(i=1, vepp=0.;i <=nlstate;i++)
 4069: 	  for(j=1;j <=nlstate;j++)
 4070: 	    vepp += vareij[i][j][(int)age];
 4071: 	fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 4072: 	for(j=1;j <=nlstate;j++){
 4073: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 4074: 	}
 4075: 	fprintf(ficrest,"\n");
 4076:       }
 4077:     }
 4078:   }
 4079: free_matrix(mint,1,maxwav,1,n);
 4080:     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
 4081:     free_vector(weight,1,n);
 4082:   fclose(ficreseij);
 4083:   fclose(ficresvij);
 4084:   fclose(ficrest);
 4085:   fclose(ficpar);
 4086:   free_vector(epj,1,nlstate+1);
 4087:   
 4088:   /*------- Variance of stable prevalence------*/   
 4089: 
 4090:   strcpy(fileresvpl,"vpl");
 4091:   strcat(fileresvpl,fileres);
 4092:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 4093:     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 4094:     exit(0);
 4095:   }
 4096:   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 4097: 
 4098:   k=0;
 4099:   for(cptcov=1;cptcov<=i1;cptcov++){
 4100:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4101:       k=k+1;
 4102:       fprintf(ficresvpl,"\n#****** ");
 4103:       for(j=1;j<=cptcoveff;j++) 
 4104: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4105:       fprintf(ficresvpl,"******\n");
 4106:       
 4107:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 4108:       oldm=oldms;savm=savms;
 4109:      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 4110:     }
 4111:  }
 4112: 
 4113:   fclose(ficresvpl);
 4114: 
 4115:   /*---------- End : free ----------------*/
 4116:   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 4117:   
 4118:   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 4119:   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 4120:   
 4121:   
 4122:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 4123:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4124:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4125:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4126:  
 4127:   free_matrix(matcov,1,npar,1,npar);
 4128:   free_vector(delti,1,npar);
 4129:   free_matrix(agev,1,maxwav,1,imx);
 4130:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 4131:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4132: 
 4133:   fprintf(fichtm,"\n</body>");
 4134:   fclose(fichtm);
 4135:   fclose(ficgp);
 4136:   
 4137: 
 4138:   if(erreur >0){
 4139:     printf("End of Imach with error or warning %d\n",erreur);
 4140:     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
 4141:   }else{
 4142:    printf("End of Imach\n");
 4143:    fprintf(ficlog,"End of Imach\n");
 4144:   }
 4145:   printf("See log file on %s\n",filelog);
 4146:   fclose(ficlog);
 4147:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 4148:   
 4149:   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
 4150:   /*printf("Total time was %d uSec.\n", total_usecs);*/
 4151:   /*------ End -----------*/
 4152: 
 4153: 
 4154:  end:
 4155: #ifdef windows
 4156:   /* chdir(pathcd);*/
 4157: #endif 
 4158:  /*system("wgnuplot graph.plt");*/
 4159:  /*system("../gp37mgw/wgnuplot graph.plt");*/
 4160:  /*system("cd ../gp37mgw");*/
 4161:  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
 4162:  strcpy(plotcmd,GNUPLOTPROGRAM);
 4163:  strcat(plotcmd," ");
 4164:  strcat(plotcmd,optionfilegnuplot);
 4165:  printf("Starting: %s\n",plotcmd);fflush(stdout);
 4166:  system(plotcmd);
 4167: 
 4168:  /*#ifdef windows*/
 4169:   while (z[0] != 'q') {
 4170:     /* chdir(path); */
 4171:     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
 4172:     scanf("%s",z);
 4173:     if (z[0] == 'c') system("./imach");
 4174:     else if (z[0] == 'e') system(optionfilehtm);
 4175:     else if (z[0] == 'g') system(plotcmd);
 4176:     else if (z[0] == 'q') exit(0);
 4177:   }
 4178:   /*#endif */
 4179: }
 4180: 
 4181: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>