File:  [Local Repository] / imach / src / imach.c
Revision 1.66: download - view: text, annotated - select for diffs
Tue Jan 28 17:23:35 2003 UTC (21 years, 4 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
I changed some comments

    1: /* $Id: imach.c,v 1.66 2003/01/28 17:23:35 brouard Exp $
    2:    Interpolated Markov Chain
    3: 
    4:   Short summary of the programme:
    5:   
    6:   This program computes Healthy Life Expectancies from
    7:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    8:   first survey ("cross") where individuals from different ages are
    9:   interviewed on their health status or degree of disability (in the
   10:   case of a health survey which is our main interest) -2- at least a
   11:   second wave of interviews ("longitudinal") which measure each change
   12:   (if any) in individual health status.  Health expectancies are
   13:   computed from the time spent in each health state according to a
   14:   model. More health states you consider, more time is necessary to reach the
   15:   Maximum Likelihood of the parameters involved in the model.  The
   16:   simplest model is the multinomial logistic model where pij is the
   17:   probability to be observed in state j at the second wave
   18:   conditional to be observed in state i at the first wave. Therefore
   19:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   20:   'age' is age and 'sex' is a covariate. If you want to have a more
   21:   complex model than "constant and age", you should modify the program
   22:   where the markup *Covariates have to be included here again* invites
   23:   you to do it.  More covariates you add, slower the
   24:   convergence.
   25: 
   26:   The advantage of this computer programme, compared to a simple
   27:   multinomial logistic model, is clear when the delay between waves is not
   28:   identical for each individual. Also, if a individual missed an
   29:   intermediate interview, the information is lost, but taken into
   30:   account using an interpolation or extrapolation.  
   31: 
   32:   hPijx is the probability to be observed in state i at age x+h
   33:   conditional to the observed state i at age x. The delay 'h' can be
   34:   split into an exact number (nh*stepm) of unobserved intermediate
   35:   states. This elementary transition (by month, quarter,
   36:   semester or year) is modelled as a multinomial logistic.  The hPx
   37:   matrix is simply the matrix product of nh*stepm elementary matrices
   38:   and the contribution of each individual to the likelihood is simply
   39:   hPijx.
   40: 
   41:   Also this programme outputs the covariance matrix of the parameters but also
   42:   of the life expectancies. It also computes the stable prevalence. 
   43:   
   44:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   45:            Institut national d'études démographiques, Paris.
   46:   This software have been partly granted by Euro-REVES, a concerted action
   47:   from the European Union.
   48:   It is copyrighted identically to a GNU software product, ie programme and
   49:   software can be distributed freely for non commercial use. Latest version
   50:   can be accessed at http://euroreves.ined.fr/imach .
   51:   **********************************************************************/
   52:  
   53: #include <math.h>
   54: #include <stdio.h>
   55: #include <stdlib.h>
   56: #include <unistd.h>
   57: 
   58: #define MAXLINE 256
   59: #define GNUPLOTPROGRAM "gnuplot"
   60: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   61: #define FILENAMELENGTH 80
   62: /*#define DEBUG*/
   63: #define windows
   64: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
   65: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
   66: 
   67: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   68: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   69: 
   70: #define NINTERVMAX 8
   71: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   72: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   73: #define NCOVMAX 8 /* Maximum number of covariates */
   74: #define MAXN 20000
   75: #define YEARM 12. /* Number of months per year */
   76: #define AGESUP 130
   77: #define AGEBASE 40
   78: #ifdef windows
   79: #define DIRSEPARATOR '\\'
   80: #define ODIRSEPARATOR '/'
   81: #else
   82: #define DIRSEPARATOR '/'
   83: #define ODIRSEPARATOR '\\'
   84: #endif
   85: 
   86: char version[80]="Imach version 0.91, November 2002, INED-EUROREVES ";
   87: int erreur; /* Error number */
   88: int nvar;
   89: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   90: int npar=NPARMAX;
   91: int nlstate=2; /* Number of live states */
   92: int ndeath=1; /* Number of dead states */
   93: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   94: int popbased=0;
   95: 
   96: int *wav; /* Number of waves for this individuual 0 is possible */
   97: int maxwav; /* Maxim number of waves */
   98: int jmin, jmax; /* min, max spacing between 2 waves */
   99: int mle, weightopt;
  100: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  101: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  102: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  103: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  104: double jmean; /* Mean space between 2 waves */
  105: double **oldm, **newm, **savm; /* Working pointers to matrices */
  106: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  107: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  108: FILE *ficlog;
  109: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  110: FILE *ficresprobmorprev;
  111: FILE *fichtm; /* Html File */
  112: FILE *ficreseij;
  113: char filerese[FILENAMELENGTH];
  114: FILE  *ficresvij;
  115: char fileresv[FILENAMELENGTH];
  116: FILE  *ficresvpl;
  117: char fileresvpl[FILENAMELENGTH];
  118: char title[MAXLINE];
  119: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  120: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  121: 
  122: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  123: char filelog[FILENAMELENGTH]; /* Log file */
  124: char filerest[FILENAMELENGTH];
  125: char fileregp[FILENAMELENGTH];
  126: char popfile[FILENAMELENGTH];
  127: 
  128: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
  129: 
  130: #define NR_END 1
  131: #define FREE_ARG char*
  132: #define FTOL 1.0e-10
  133: 
  134: #define NRANSI 
  135: #define ITMAX 200 
  136: 
  137: #define TOL 2.0e-4 
  138: 
  139: #define CGOLD 0.3819660 
  140: #define ZEPS 1.0e-10 
  141: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  142: 
  143: #define GOLD 1.618034 
  144: #define GLIMIT 100.0 
  145: #define TINY 1.0e-20 
  146: 
  147: static double maxarg1,maxarg2;
  148: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  149: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  150:   
  151: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  152: #define rint(a) floor(a+0.5)
  153: 
  154: static double sqrarg;
  155: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  156: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  157: 
  158: int imx; 
  159: int stepm;
  160: /* Stepm, step in month: minimum step interpolation*/
  161: 
  162: int estepm;
  163: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  164: 
  165: int m,nb;
  166: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  167: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  168: double **pmmij, ***probs;
  169: double dateintmean=0;
  170: 
  171: double *weight;
  172: int **s; /* Status */
  173: double *agedc, **covar, idx;
  174: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  175: 
  176: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  177: double ftolhess; /* Tolerance for computing hessian */
  178: 
  179: /**************** split *************************/
  180: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  181: {
  182:   char	*ss;				/* pointer */
  183:   int	l1, l2;				/* length counters */
  184: 
  185:   l1 = strlen(path );			/* length of path */
  186:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  187:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  188:   if ( ss == NULL ) {			/* no directory, so use current */
  189:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  190:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  191: #if	defined(__bsd__)		/* get current working directory */
  192:     extern char	*getwd( );
  193: 
  194:     if ( getwd( dirc ) == NULL ) {
  195: #else
  196:     extern char	*getcwd( );
  197: 
  198:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  199: #endif
  200:       return( GLOCK_ERROR_GETCWD );
  201:     }
  202:     strcpy( name, path );		/* we've got it */
  203:   } else {				/* strip direcotry from path */
  204:     ss++;				/* after this, the filename */
  205:     l2 = strlen( ss );			/* length of filename */
  206:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  207:     strcpy( name, ss );		/* save file name */
  208:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  209:     dirc[l1-l2] = 0;			/* add zero */
  210:   }
  211:   l1 = strlen( dirc );			/* length of directory */
  212: #ifdef windows
  213:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  214: #else
  215:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  216: #endif
  217:   ss = strrchr( name, '.' );		/* find last / */
  218:   ss++;
  219:   strcpy(ext,ss);			/* save extension */
  220:   l1= strlen( name);
  221:   l2= strlen(ss)+1;
  222:   strncpy( finame, name, l1-l2);
  223:   finame[l1-l2]= 0;
  224:   return( 0 );				/* we're done */
  225: }
  226: 
  227: 
  228: /******************************************/
  229: 
  230: void replace(char *s, char*t)
  231: {
  232:   int i;
  233:   int lg=20;
  234:   i=0;
  235:   lg=strlen(t);
  236:   for(i=0; i<= lg; i++) {
  237:     (s[i] = t[i]);
  238:     if (t[i]== '\\') s[i]='/';
  239:   }
  240: }
  241: 
  242: int nbocc(char *s, char occ)
  243: {
  244:   int i,j=0;
  245:   int lg=20;
  246:   i=0;
  247:   lg=strlen(s);
  248:   for(i=0; i<= lg; i++) {
  249:   if  (s[i] == occ ) j++;
  250:   }
  251:   return j;
  252: }
  253: 
  254: void cutv(char *u,char *v, char*t, char occ)
  255: {
  256:   /* cuts string t into u and v where u is ended by char occ excluding it
  257:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
  258:      gives u="abcedf" and v="ghi2j" */
  259:   int i,lg,j,p=0;
  260:   i=0;
  261:   for(j=0; j<=strlen(t)-1; j++) {
  262:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  263:   }
  264: 
  265:   lg=strlen(t);
  266:   for(j=0; j<p; j++) {
  267:     (u[j] = t[j]);
  268:   }
  269:      u[p]='\0';
  270: 
  271:    for(j=0; j<= lg; j++) {
  272:     if (j>=(p+1))(v[j-p-1] = t[j]);
  273:   }
  274: }
  275: 
  276: /********************** nrerror ********************/
  277: 
  278: void nrerror(char error_text[])
  279: {
  280:   fprintf(stderr,"ERREUR ...\n");
  281:   fprintf(stderr,"%s\n",error_text);
  282:   exit(EXIT_FAILURE);
  283: }
  284: /*********************** vector *******************/
  285: double *vector(int nl, int nh)
  286: {
  287:   double *v;
  288:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  289:   if (!v) nrerror("allocation failure in vector");
  290:   return v-nl+NR_END;
  291: }
  292: 
  293: /************************ free vector ******************/
  294: void free_vector(double*v, int nl, int nh)
  295: {
  296:   free((FREE_ARG)(v+nl-NR_END));
  297: }
  298: 
  299: /************************ivector *******************************/
  300: int *ivector(long nl,long nh)
  301: {
  302:   int *v;
  303:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  304:   if (!v) nrerror("allocation failure in ivector");
  305:   return v-nl+NR_END;
  306: }
  307: 
  308: /******************free ivector **************************/
  309: void free_ivector(int *v, long nl, long nh)
  310: {
  311:   free((FREE_ARG)(v+nl-NR_END));
  312: }
  313: 
  314: /******************* imatrix *******************************/
  315: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  316:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  317: { 
  318:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  319:   int **m; 
  320:   
  321:   /* allocate pointers to rows */ 
  322:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  323:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  324:   m += NR_END; 
  325:   m -= nrl; 
  326:   
  327:   
  328:   /* allocate rows and set pointers to them */ 
  329:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  330:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  331:   m[nrl] += NR_END; 
  332:   m[nrl] -= ncl; 
  333:   
  334:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  335:   
  336:   /* return pointer to array of pointers to rows */ 
  337:   return m; 
  338: } 
  339: 
  340: /****************** free_imatrix *************************/
  341: void free_imatrix(m,nrl,nrh,ncl,nch)
  342:       int **m;
  343:       long nch,ncl,nrh,nrl; 
  344:      /* free an int matrix allocated by imatrix() */ 
  345: { 
  346:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  347:   free((FREE_ARG) (m+nrl-NR_END)); 
  348: } 
  349: 
  350: /******************* matrix *******************************/
  351: double **matrix(long nrl, long nrh, long ncl, long nch)
  352: {
  353:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  354:   double **m;
  355: 
  356:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  357:   if (!m) nrerror("allocation failure 1 in matrix()");
  358:   m += NR_END;
  359:   m -= nrl;
  360: 
  361:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  362:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  363:   m[nrl] += NR_END;
  364:   m[nrl] -= ncl;
  365: 
  366:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  367:   return m;
  368: }
  369: 
  370: /*************************free matrix ************************/
  371: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  372: {
  373:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  374:   free((FREE_ARG)(m+nrl-NR_END));
  375: }
  376: 
  377: /******************* ma3x *******************************/
  378: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  379: {
  380:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  381:   double ***m;
  382: 
  383:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  384:   if (!m) nrerror("allocation failure 1 in matrix()");
  385:   m += NR_END;
  386:   m -= nrl;
  387: 
  388:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  389:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  390:   m[nrl] += NR_END;
  391:   m[nrl] -= ncl;
  392: 
  393:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  394: 
  395:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  396:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  397:   m[nrl][ncl] += NR_END;
  398:   m[nrl][ncl] -= nll;
  399:   for (j=ncl+1; j<=nch; j++) 
  400:     m[nrl][j]=m[nrl][j-1]+nlay;
  401:   
  402:   for (i=nrl+1; i<=nrh; i++) {
  403:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  404:     for (j=ncl+1; j<=nch; j++) 
  405:       m[i][j]=m[i][j-1]+nlay;
  406:   }
  407:   return m;
  408: }
  409: 
  410: /*************************free ma3x ************************/
  411: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  412: {
  413:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  414:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  415:   free((FREE_ARG)(m+nrl-NR_END));
  416: }
  417: 
  418: /***************** f1dim *************************/
  419: extern int ncom; 
  420: extern double *pcom,*xicom;
  421: extern double (*nrfunc)(double []); 
  422:  
  423: double f1dim(double x) 
  424: { 
  425:   int j; 
  426:   double f;
  427:   double *xt; 
  428:  
  429:   xt=vector(1,ncom); 
  430:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  431:   f=(*nrfunc)(xt); 
  432:   free_vector(xt,1,ncom); 
  433:   return f; 
  434: } 
  435: 
  436: /*****************brent *************************/
  437: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  438: { 
  439:   int iter; 
  440:   double a,b,d,etemp;
  441:   double fu,fv,fw,fx;
  442:   double ftemp;
  443:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  444:   double e=0.0; 
  445:  
  446:   a=(ax < cx ? ax : cx); 
  447:   b=(ax > cx ? ax : cx); 
  448:   x=w=v=bx; 
  449:   fw=fv=fx=(*f)(x); 
  450:   for (iter=1;iter<=ITMAX;iter++) { 
  451:     xm=0.5*(a+b); 
  452:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  453:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  454:     printf(".");fflush(stdout);
  455:     fprintf(ficlog,".");fflush(ficlog);
  456: #ifdef DEBUG
  457:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  458:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  459:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  460: #endif
  461:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  462:       *xmin=x; 
  463:       return fx; 
  464:     } 
  465:     ftemp=fu;
  466:     if (fabs(e) > tol1) { 
  467:       r=(x-w)*(fx-fv); 
  468:       q=(x-v)*(fx-fw); 
  469:       p=(x-v)*q-(x-w)*r; 
  470:       q=2.0*(q-r); 
  471:       if (q > 0.0) p = -p; 
  472:       q=fabs(q); 
  473:       etemp=e; 
  474:       e=d; 
  475:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  476: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  477:       else { 
  478: 	d=p/q; 
  479: 	u=x+d; 
  480: 	if (u-a < tol2 || b-u < tol2) 
  481: 	  d=SIGN(tol1,xm-x); 
  482:       } 
  483:     } else { 
  484:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  485:     } 
  486:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  487:     fu=(*f)(u); 
  488:     if (fu <= fx) { 
  489:       if (u >= x) a=x; else b=x; 
  490:       SHFT(v,w,x,u) 
  491: 	SHFT(fv,fw,fx,fu) 
  492: 	} else { 
  493: 	  if (u < x) a=u; else b=u; 
  494: 	  if (fu <= fw || w == x) { 
  495: 	    v=w; 
  496: 	    w=u; 
  497: 	    fv=fw; 
  498: 	    fw=fu; 
  499: 	  } else if (fu <= fv || v == x || v == w) { 
  500: 	    v=u; 
  501: 	    fv=fu; 
  502: 	  } 
  503: 	} 
  504:   } 
  505:   nrerror("Too many iterations in brent"); 
  506:   *xmin=x; 
  507:   return fx; 
  508: } 
  509: 
  510: /****************** mnbrak ***********************/
  511: 
  512: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  513: 	    double (*func)(double)) 
  514: { 
  515:   double ulim,u,r,q, dum;
  516:   double fu; 
  517:  
  518:   *fa=(*func)(*ax); 
  519:   *fb=(*func)(*bx); 
  520:   if (*fb > *fa) { 
  521:     SHFT(dum,*ax,*bx,dum) 
  522:       SHFT(dum,*fb,*fa,dum) 
  523:       } 
  524:   *cx=(*bx)+GOLD*(*bx-*ax); 
  525:   *fc=(*func)(*cx); 
  526:   while (*fb > *fc) { 
  527:     r=(*bx-*ax)*(*fb-*fc); 
  528:     q=(*bx-*cx)*(*fb-*fa); 
  529:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  530:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  531:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  532:     if ((*bx-u)*(u-*cx) > 0.0) { 
  533:       fu=(*func)(u); 
  534:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  535:       fu=(*func)(u); 
  536:       if (fu < *fc) { 
  537: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  538: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  539: 	  } 
  540:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  541:       u=ulim; 
  542:       fu=(*func)(u); 
  543:     } else { 
  544:       u=(*cx)+GOLD*(*cx-*bx); 
  545:       fu=(*func)(u); 
  546:     } 
  547:     SHFT(*ax,*bx,*cx,u) 
  548:       SHFT(*fa,*fb,*fc,fu) 
  549:       } 
  550: } 
  551: 
  552: /*************** linmin ************************/
  553: 
  554: int ncom; 
  555: double *pcom,*xicom;
  556: double (*nrfunc)(double []); 
  557:  
  558: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  559: { 
  560:   double brent(double ax, double bx, double cx, 
  561: 	       double (*f)(double), double tol, double *xmin); 
  562:   double f1dim(double x); 
  563:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  564: 	      double *fc, double (*func)(double)); 
  565:   int j; 
  566:   double xx,xmin,bx,ax; 
  567:   double fx,fb,fa;
  568:  
  569:   ncom=n; 
  570:   pcom=vector(1,n); 
  571:   xicom=vector(1,n); 
  572:   nrfunc=func; 
  573:   for (j=1;j<=n;j++) { 
  574:     pcom[j]=p[j]; 
  575:     xicom[j]=xi[j]; 
  576:   } 
  577:   ax=0.0; 
  578:   xx=1.0; 
  579:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  580:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  581: #ifdef DEBUG
  582:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  583:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  584: #endif
  585:   for (j=1;j<=n;j++) { 
  586:     xi[j] *= xmin; 
  587:     p[j] += xi[j]; 
  588:   } 
  589:   free_vector(xicom,1,n); 
  590:   free_vector(pcom,1,n); 
  591: } 
  592: 
  593: /*************** powell ************************/
  594: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  595: 	    double (*func)(double [])) 
  596: { 
  597:   void linmin(double p[], double xi[], int n, double *fret, 
  598: 	      double (*func)(double [])); 
  599:   int i,ibig,j; 
  600:   double del,t,*pt,*ptt,*xit;
  601:   double fp,fptt;
  602:   double *xits;
  603:   pt=vector(1,n); 
  604:   ptt=vector(1,n); 
  605:   xit=vector(1,n); 
  606:   xits=vector(1,n); 
  607:   *fret=(*func)(p); 
  608:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  609:   for (*iter=1;;++(*iter)) { 
  610:     fp=(*fret); 
  611:     ibig=0; 
  612:     del=0.0; 
  613:     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  614:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  615:     for (i=1;i<=n;i++) 
  616:       printf(" %d %.12f",i, p[i]);
  617:     fprintf(ficlog," %d %.12f",i, p[i]);
  618:     printf("\n");
  619:     fprintf(ficlog,"\n");
  620:     for (i=1;i<=n;i++) { 
  621:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  622:       fptt=(*fret); 
  623: #ifdef DEBUG
  624:       printf("fret=%lf \n",*fret);
  625:       fprintf(ficlog,"fret=%lf \n",*fret);
  626: #endif
  627:       printf("%d",i);fflush(stdout);
  628:       fprintf(ficlog,"%d",i);fflush(ficlog);
  629:       linmin(p,xit,n,fret,func); 
  630:       if (fabs(fptt-(*fret)) > del) { 
  631: 	del=fabs(fptt-(*fret)); 
  632: 	ibig=i; 
  633:       } 
  634: #ifdef DEBUG
  635:       printf("%d %.12e",i,(*fret));
  636:       fprintf(ficlog,"%d %.12e",i,(*fret));
  637:       for (j=1;j<=n;j++) {
  638: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  639: 	printf(" x(%d)=%.12e",j,xit[j]);
  640: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  641:       }
  642:       for(j=1;j<=n;j++) {
  643: 	printf(" p=%.12e",p[j]);
  644: 	fprintf(ficlog," p=%.12e",p[j]);
  645:       }
  646:       printf("\n");
  647:       fprintf(ficlog,"\n");
  648: #endif
  649:     } 
  650:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  651: #ifdef DEBUG
  652:       int k[2],l;
  653:       k[0]=1;
  654:       k[1]=-1;
  655:       printf("Max: %.12e",(*func)(p));
  656:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  657:       for (j=1;j<=n;j++) {
  658: 	printf(" %.12e",p[j]);
  659: 	fprintf(ficlog," %.12e",p[j]);
  660:       }
  661:       printf("\n");
  662:       fprintf(ficlog,"\n");
  663:       for(l=0;l<=1;l++) {
  664: 	for (j=1;j<=n;j++) {
  665: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  666: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  667: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  668: 	}
  669: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  670: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  671:       }
  672: #endif
  673: 
  674: 
  675:       free_vector(xit,1,n); 
  676:       free_vector(xits,1,n); 
  677:       free_vector(ptt,1,n); 
  678:       free_vector(pt,1,n); 
  679:       return; 
  680:     } 
  681:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  682:     for (j=1;j<=n;j++) { 
  683:       ptt[j]=2.0*p[j]-pt[j]; 
  684:       xit[j]=p[j]-pt[j]; 
  685:       pt[j]=p[j]; 
  686:     } 
  687:     fptt=(*func)(ptt); 
  688:     if (fptt < fp) { 
  689:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  690:       if (t < 0.0) { 
  691: 	linmin(p,xit,n,fret,func); 
  692: 	for (j=1;j<=n;j++) { 
  693: 	  xi[j][ibig]=xi[j][n]; 
  694: 	  xi[j][n]=xit[j]; 
  695: 	}
  696: #ifdef DEBUG
  697: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  698: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  699: 	for(j=1;j<=n;j++){
  700: 	  printf(" %.12e",xit[j]);
  701: 	  fprintf(ficlog," %.12e",xit[j]);
  702: 	}
  703: 	printf("\n");
  704: 	fprintf(ficlog,"\n");
  705: #endif
  706:       }
  707:     } 
  708:   } 
  709: } 
  710: 
  711: /**** Prevalence limit (stable prevalence)  ****************/
  712: 
  713: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  714: {
  715:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  716:      matrix by transitions matrix until convergence is reached */
  717: 
  718:   int i, ii,j,k;
  719:   double min, max, maxmin, maxmax,sumnew=0.;
  720:   double **matprod2();
  721:   double **out, cov[NCOVMAX], **pmij();
  722:   double **newm;
  723:   double agefin, delaymax=50 ; /* Max number of years to converge */
  724: 
  725:   for (ii=1;ii<=nlstate+ndeath;ii++)
  726:     for (j=1;j<=nlstate+ndeath;j++){
  727:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  728:     }
  729: 
  730:    cov[1]=1.;
  731:  
  732:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  733:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  734:     newm=savm;
  735:     /* Covariates have to be included here again */
  736:      cov[2]=agefin;
  737:   
  738:       for (k=1; k<=cptcovn;k++) {
  739: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  740: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  741:       }
  742:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  743:       for (k=1; k<=cptcovprod;k++)
  744: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  745: 
  746:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  747:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  748:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  749:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  750: 
  751:     savm=oldm;
  752:     oldm=newm;
  753:     maxmax=0.;
  754:     for(j=1;j<=nlstate;j++){
  755:       min=1.;
  756:       max=0.;
  757:       for(i=1; i<=nlstate; i++) {
  758: 	sumnew=0;
  759: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  760: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  761: 	max=FMAX(max,prlim[i][j]);
  762: 	min=FMIN(min,prlim[i][j]);
  763:       }
  764:       maxmin=max-min;
  765:       maxmax=FMAX(maxmax,maxmin);
  766:     }
  767:     if(maxmax < ftolpl){
  768:       return prlim;
  769:     }
  770:   }
  771: }
  772: 
  773: /*************** transition probabilities ***************/ 
  774: 
  775: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  776: {
  777:   double s1, s2;
  778:   /*double t34;*/
  779:   int i,j,j1, nc, ii, jj;
  780: 
  781:     for(i=1; i<= nlstate; i++){
  782:     for(j=1; j<i;j++){
  783:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  784: 	/*s2 += param[i][j][nc]*cov[nc];*/
  785: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  786: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  787:       }
  788:       ps[i][j]=s2;
  789:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  790:     }
  791:     for(j=i+1; j<=nlstate+ndeath;j++){
  792:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  793: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  794: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  795:       }
  796:       ps[i][j]=s2;
  797:     }
  798:   }
  799:     /*ps[3][2]=1;*/
  800: 
  801:   for(i=1; i<= nlstate; i++){
  802:      s1=0;
  803:     for(j=1; j<i; j++)
  804:       s1+=exp(ps[i][j]);
  805:     for(j=i+1; j<=nlstate+ndeath; j++)
  806:       s1+=exp(ps[i][j]);
  807:     ps[i][i]=1./(s1+1.);
  808:     for(j=1; j<i; j++)
  809:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  810:     for(j=i+1; j<=nlstate+ndeath; j++)
  811:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  812:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  813:   } /* end i */
  814: 
  815:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
  816:     for(jj=1; jj<= nlstate+ndeath; jj++){
  817:       ps[ii][jj]=0;
  818:       ps[ii][ii]=1;
  819:     }
  820:   }
  821: 
  822: 
  823:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
  824:     for(jj=1; jj<= nlstate+ndeath; jj++){
  825:      printf("%lf ",ps[ii][jj]);
  826:    }
  827:     printf("\n ");
  828:     }
  829:     printf("\n ");printf("%lf ",cov[2]);*/
  830: /*
  831:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
  832:   goto end;*/
  833:     return ps;
  834: }
  835: 
  836: /**************** Product of 2 matrices ******************/
  837: 
  838: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
  839: {
  840:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  841:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  842:   /* in, b, out are matrice of pointers which should have been initialized 
  843:      before: only the contents of out is modified. The function returns
  844:      a pointer to pointers identical to out */
  845:   long i, j, k;
  846:   for(i=nrl; i<= nrh; i++)
  847:     for(k=ncolol; k<=ncoloh; k++)
  848:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
  849: 	out[i][k] +=in[i][j]*b[j][k];
  850: 
  851:   return out;
  852: }
  853: 
  854: 
  855: /************* Higher Matrix Product ***************/
  856: 
  857: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  858: {
  859:   /* Computes the transition matrix starting at age 'age' over 
  860:      'nhstepm*hstepm*stepm' months (i.e. until
  861:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
  862:      nhstepm*hstepm matrices. 
  863:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
  864:      (typically every 2 years instead of every month which is too big 
  865:      for the memory).
  866:      Model is determined by parameters x and covariates have to be 
  867:      included manually here. 
  868: 
  869:      */
  870: 
  871:   int i, j, d, h, k;
  872:   double **out, cov[NCOVMAX];
  873:   double **newm;
  874: 
  875:   /* Hstepm could be zero and should return the unit matrix */
  876:   for (i=1;i<=nlstate+ndeath;i++)
  877:     for (j=1;j<=nlstate+ndeath;j++){
  878:       oldm[i][j]=(i==j ? 1.0 : 0.0);
  879:       po[i][j][0]=(i==j ? 1.0 : 0.0);
  880:     }
  881:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  882:   for(h=1; h <=nhstepm; h++){
  883:     for(d=1; d <=hstepm; d++){
  884:       newm=savm;
  885:       /* Covariates have to be included here again */
  886:       cov[1]=1.;
  887:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
  888:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  889:       for (k=1; k<=cptcovage;k++)
  890: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  891:       for (k=1; k<=cptcovprod;k++)
  892: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  893: 
  894: 
  895:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  896:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  897:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  898: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
  899:       savm=oldm;
  900:       oldm=newm;
  901:     }
  902:     for(i=1; i<=nlstate+ndeath; i++)
  903:       for(j=1;j<=nlstate+ndeath;j++) {
  904: 	po[i][j][h]=newm[i][j];
  905: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  906: 	 */
  907:       }
  908:   } /* end h */
  909:   return po;
  910: }
  911: 
  912: 
  913: /*************** log-likelihood *************/
  914: double func( double *x)
  915: {
  916:   int i, ii, j, k, mi, d, kk;
  917:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
  918:   double **out;
  919:   double sw; /* Sum of weights */
  920:   double lli; /* Individual log likelihood */
  921:   int s1, s2;
  922:   double bbh;
  923:   long ipmx;
  924:   /*extern weight */
  925:   /* We are differentiating ll according to initial status */
  926:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  927:   /*for(i=1;i<imx;i++) 
  928:     printf(" %d\n",s[4][i]);
  929:   */
  930:   cov[1]=1.;
  931: 
  932:   for(k=1; k<=nlstate; k++) ll[k]=0.;
  933: 
  934:   if(mle==1){
  935:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  936:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  937:       for(mi=1; mi<= wav[i]-1; mi++){
  938: 	for (ii=1;ii<=nlstate+ndeath;ii++)
  939: 	  for (j=1;j<=nlstate+ndeath;j++){
  940: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  941: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
  942: 	  }
  943: 	for(d=0; d<dh[mi][i]; d++){
  944: 	  newm=savm;
  945: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  946: 	  for (kk=1; kk<=cptcovage;kk++) {
  947: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  948: 	  }
  949: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  950: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  951: 	  savm=oldm;
  952: 	  oldm=newm;
  953: 	} /* end mult */
  954:       
  955: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
  956: 	/* But now since version 0.9 we anticipate for bias and large stepm.
  957: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
  958: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
  959: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
  960: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
  961: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
  962: 	 * probability in order to take into account the bias as a fraction of the way
  963: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
  964: 	 * -stepm/2 to stepm/2 .
  965: 	 * For stepm=1 the results are the same as for previous versions of Imach.
  966: 	 * For stepm > 1 the results are less biased than in previous versions. 
  967: 	 */
  968: 	s1=s[mw[mi][i]][i];
  969: 	s2=s[mw[mi+1][i]][i];
  970: 	bbh=(double)bh[mi][i]/(double)stepm; 
  971: 	/* bias is positive if real duration
  972: 	 * is higher than the multiple of stepm and negative otherwise.
  973: 	 */
  974: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
  975: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));  /* linear interpolation */
  976: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
  977: 	/*if(lli ==000.0)*/
  978: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
  979: 	ipmx +=1;
  980: 	sw += weight[i];
  981: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  982:       } /* end of wave */
  983:     } /* end of individual */
  984:   }  else if(mle==2){
  985:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  986:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  987:       for(mi=1; mi<= wav[i]-1; mi++){
  988: 	for (ii=1;ii<=nlstate+ndeath;ii++)
  989: 	  for (j=1;j<=nlstate+ndeath;j++){
  990: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  991: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
  992: 	  }
  993: 	for(d=0; d<=dh[mi][i]; d++){
  994: 	  newm=savm;
  995: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  996: 	  for (kk=1; kk<=cptcovage;kk++) {
  997: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  998: 	  }
  999: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1000: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1001: 	  savm=oldm;
 1002: 	  oldm=newm;
 1003: 	} /* end mult */
 1004:       
 1005: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1006: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1007: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1008: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1009: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1010: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1011: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1012: 	 * probability in order to take into account the bias as a fraction of the way
 1013: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1014: 	 * -stepm/2 to stepm/2 .
 1015: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1016: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1017: 	 */
 1018: 	s1=s[mw[mi][i]][i];
 1019: 	s2=s[mw[mi+1][i]][i];
 1020: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1021: 	/* bias is positive if real duration
 1022: 	 * is higher than the multiple of stepm and negative otherwise.
 1023: 	 */
 1024: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1025: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1026: 	/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 1027: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1028: 	/*if(lli ==000.0)*/
 1029: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1030: 	ipmx +=1;
 1031: 	sw += weight[i];
 1032: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1033:       } /* end of wave */
 1034:     } /* end of individual */
 1035:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1036:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1037:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1038:       for(mi=1; mi<= wav[i]-1; mi++){
 1039: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1040: 	  for (j=1;j<=nlstate+ndeath;j++){
 1041: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1042: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1043: 	  }
 1044: 	for(d=0; d<dh[mi][i]; d++){
 1045: 	  newm=savm;
 1046: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1047: 	  for (kk=1; kk<=cptcovage;kk++) {
 1048: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1049: 	  }
 1050: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1051: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1052: 	  savm=oldm;
 1053: 	  oldm=newm;
 1054: 	} /* end mult */
 1055:       
 1056: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1057: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1058: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1059: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1060: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1061: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1062: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1063: 	 * probability in order to take into account the bias as a fraction of the way
 1064: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1065: 	 * -stepm/2 to stepm/2 .
 1066: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1067: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1068: 	 */
 1069: 	s1=s[mw[mi][i]][i];
 1070: 	s2=s[mw[mi+1][i]][i];
 1071: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1072: 	/* bias is positive if real duration
 1073: 	 * is higher than the multiple of stepm and negative otherwise.
 1074: 	 */
 1075: 	/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 1076: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1077: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1078: 	/*if(lli ==000.0)*/
 1079: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1080: 	ipmx +=1;
 1081: 	sw += weight[i];
 1082: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1083:       } /* end of wave */
 1084:     } /* end of individual */
 1085:   }else{  /* ml=4 no inter-extrapolation */
 1086:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1087:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1088:       for(mi=1; mi<= wav[i]-1; mi++){
 1089: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1090: 	  for (j=1;j<=nlstate+ndeath;j++){
 1091: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1092: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1093: 	  }
 1094: 	for(d=0; d<dh[mi][i]; d++){
 1095: 	  newm=savm;
 1096: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1097: 	  for (kk=1; kk<=cptcovage;kk++) {
 1098: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1099: 	  }
 1100: 	
 1101: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1102: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1103: 	  savm=oldm;
 1104: 	  oldm=newm;
 1105: 	} /* end mult */
 1106:       
 1107: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1108: 	ipmx +=1;
 1109: 	sw += weight[i];
 1110: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1111:       } /* end of wave */
 1112:     } /* end of individual */
 1113:   } /* End of if */
 1114:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1115:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1116:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1117:   return -l;
 1118: }
 1119: 
 1120: 
 1121: /*********** Maximum Likelihood Estimation ***************/
 1122: 
 1123: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1124: {
 1125:   int i,j, iter;
 1126:   double **xi,*delti;
 1127:   double fret;
 1128:   xi=matrix(1,npar,1,npar);
 1129:   for (i=1;i<=npar;i++)
 1130:     for (j=1;j<=npar;j++)
 1131:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1132:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1133:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1134: 
 1135:    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1136:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1137:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1138: 
 1139: }
 1140: 
 1141: /**** Computes Hessian and covariance matrix ***/
 1142: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1143: {
 1144:   double  **a,**y,*x,pd;
 1145:   double **hess;
 1146:   int i, j,jk;
 1147:   int *indx;
 1148: 
 1149:   double hessii(double p[], double delta, int theta, double delti[]);
 1150:   double hessij(double p[], double delti[], int i, int j);
 1151:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1152:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1153: 
 1154:   hess=matrix(1,npar,1,npar);
 1155: 
 1156:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1157:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1158:   for (i=1;i<=npar;i++){
 1159:     printf("%d",i);fflush(stdout);
 1160:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1161:     hess[i][i]=hessii(p,ftolhess,i,delti);
 1162:     /*printf(" %f ",p[i]);*/
 1163:     /*printf(" %lf ",hess[i][i]);*/
 1164:   }
 1165:   
 1166:   for (i=1;i<=npar;i++) {
 1167:     for (j=1;j<=npar;j++)  {
 1168:       if (j>i) { 
 1169: 	printf(".%d%d",i,j);fflush(stdout);
 1170: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1171: 	hess[i][j]=hessij(p,delti,i,j);
 1172: 	hess[j][i]=hess[i][j];    
 1173: 	/*printf(" %lf ",hess[i][j]);*/
 1174:       }
 1175:     }
 1176:   }
 1177:   printf("\n");
 1178:   fprintf(ficlog,"\n");
 1179: 
 1180:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1181:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1182:   
 1183:   a=matrix(1,npar,1,npar);
 1184:   y=matrix(1,npar,1,npar);
 1185:   x=vector(1,npar);
 1186:   indx=ivector(1,npar);
 1187:   for (i=1;i<=npar;i++)
 1188:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1189:   ludcmp(a,npar,indx,&pd);
 1190: 
 1191:   for (j=1;j<=npar;j++) {
 1192:     for (i=1;i<=npar;i++) x[i]=0;
 1193:     x[j]=1;
 1194:     lubksb(a,npar,indx,x);
 1195:     for (i=1;i<=npar;i++){ 
 1196:       matcov[i][j]=x[i];
 1197:     }
 1198:   }
 1199: 
 1200:   printf("\n#Hessian matrix#\n");
 1201:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1202:   for (i=1;i<=npar;i++) { 
 1203:     for (j=1;j<=npar;j++) { 
 1204:       printf("%.3e ",hess[i][j]);
 1205:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1206:     }
 1207:     printf("\n");
 1208:     fprintf(ficlog,"\n");
 1209:   }
 1210: 
 1211:   /* Recompute Inverse */
 1212:   for (i=1;i<=npar;i++)
 1213:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1214:   ludcmp(a,npar,indx,&pd);
 1215: 
 1216:   /*  printf("\n#Hessian matrix recomputed#\n");
 1217: 
 1218:   for (j=1;j<=npar;j++) {
 1219:     for (i=1;i<=npar;i++) x[i]=0;
 1220:     x[j]=1;
 1221:     lubksb(a,npar,indx,x);
 1222:     for (i=1;i<=npar;i++){ 
 1223:       y[i][j]=x[i];
 1224:       printf("%.3e ",y[i][j]);
 1225:       fprintf(ficlog,"%.3e ",y[i][j]);
 1226:     }
 1227:     printf("\n");
 1228:     fprintf(ficlog,"\n");
 1229:   }
 1230:   */
 1231: 
 1232:   free_matrix(a,1,npar,1,npar);
 1233:   free_matrix(y,1,npar,1,npar);
 1234:   free_vector(x,1,npar);
 1235:   free_ivector(indx,1,npar);
 1236:   free_matrix(hess,1,npar,1,npar);
 1237: 
 1238: 
 1239: }
 1240: 
 1241: /*************** hessian matrix ****************/
 1242: double hessii( double x[], double delta, int theta, double delti[])
 1243: {
 1244:   int i;
 1245:   int l=1, lmax=20;
 1246:   double k1,k2;
 1247:   double p2[NPARMAX+1];
 1248:   double res;
 1249:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1250:   double fx;
 1251:   int k=0,kmax=10;
 1252:   double l1;
 1253: 
 1254:   fx=func(x);
 1255:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1256:   for(l=0 ; l <=lmax; l++){
 1257:     l1=pow(10,l);
 1258:     delts=delt;
 1259:     for(k=1 ; k <kmax; k=k+1){
 1260:       delt = delta*(l1*k);
 1261:       p2[theta]=x[theta] +delt;
 1262:       k1=func(p2)-fx;
 1263:       p2[theta]=x[theta]-delt;
 1264:       k2=func(p2)-fx;
 1265:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1266:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1267:       
 1268: #ifdef DEBUG
 1269:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1270:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1271: #endif
 1272:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1273:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1274: 	k=kmax;
 1275:       }
 1276:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1277: 	k=kmax; l=lmax*10.;
 1278:       }
 1279:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1280: 	delts=delt;
 1281:       }
 1282:     }
 1283:   }
 1284:   delti[theta]=delts;
 1285:   return res; 
 1286:   
 1287: }
 1288: 
 1289: double hessij( double x[], double delti[], int thetai,int thetaj)
 1290: {
 1291:   int i;
 1292:   int l=1, l1, lmax=20;
 1293:   double k1,k2,k3,k4,res,fx;
 1294:   double p2[NPARMAX+1];
 1295:   int k;
 1296: 
 1297:   fx=func(x);
 1298:   for (k=1; k<=2; k++) {
 1299:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1300:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1301:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1302:     k1=func(p2)-fx;
 1303:   
 1304:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1305:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1306:     k2=func(p2)-fx;
 1307:   
 1308:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1309:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1310:     k3=func(p2)-fx;
 1311:   
 1312:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1313:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1314:     k4=func(p2)-fx;
 1315:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1316: #ifdef DEBUG
 1317:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1318:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1319: #endif
 1320:   }
 1321:   return res;
 1322: }
 1323: 
 1324: /************** Inverse of matrix **************/
 1325: void ludcmp(double **a, int n, int *indx, double *d) 
 1326: { 
 1327:   int i,imax,j,k; 
 1328:   double big,dum,sum,temp; 
 1329:   double *vv; 
 1330:  
 1331:   vv=vector(1,n); 
 1332:   *d=1.0; 
 1333:   for (i=1;i<=n;i++) { 
 1334:     big=0.0; 
 1335:     for (j=1;j<=n;j++) 
 1336:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1337:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1338:     vv[i]=1.0/big; 
 1339:   } 
 1340:   for (j=1;j<=n;j++) { 
 1341:     for (i=1;i<j;i++) { 
 1342:       sum=a[i][j]; 
 1343:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1344:       a[i][j]=sum; 
 1345:     } 
 1346:     big=0.0; 
 1347:     for (i=j;i<=n;i++) { 
 1348:       sum=a[i][j]; 
 1349:       for (k=1;k<j;k++) 
 1350: 	sum -= a[i][k]*a[k][j]; 
 1351:       a[i][j]=sum; 
 1352:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1353: 	big=dum; 
 1354: 	imax=i; 
 1355:       } 
 1356:     } 
 1357:     if (j != imax) { 
 1358:       for (k=1;k<=n;k++) { 
 1359: 	dum=a[imax][k]; 
 1360: 	a[imax][k]=a[j][k]; 
 1361: 	a[j][k]=dum; 
 1362:       } 
 1363:       *d = -(*d); 
 1364:       vv[imax]=vv[j]; 
 1365:     } 
 1366:     indx[j]=imax; 
 1367:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1368:     if (j != n) { 
 1369:       dum=1.0/(a[j][j]); 
 1370:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1371:     } 
 1372:   } 
 1373:   free_vector(vv,1,n);  /* Doesn't work */
 1374: ;
 1375: } 
 1376: 
 1377: void lubksb(double **a, int n, int *indx, double b[]) 
 1378: { 
 1379:   int i,ii=0,ip,j; 
 1380:   double sum; 
 1381:  
 1382:   for (i=1;i<=n;i++) { 
 1383:     ip=indx[i]; 
 1384:     sum=b[ip]; 
 1385:     b[ip]=b[i]; 
 1386:     if (ii) 
 1387:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1388:     else if (sum) ii=i; 
 1389:     b[i]=sum; 
 1390:   } 
 1391:   for (i=n;i>=1;i--) { 
 1392:     sum=b[i]; 
 1393:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1394:     b[i]=sum/a[i][i]; 
 1395:   } 
 1396: } 
 1397: 
 1398: /************ Frequencies ********************/
 1399: void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 1400: {  /* Some frequencies */
 1401:   
 1402:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1403:   int first;
 1404:   double ***freq; /* Frequencies */
 1405:   double *pp;
 1406:   double pos, k2, dateintsum=0,k2cpt=0;
 1407:   FILE *ficresp;
 1408:   char fileresp[FILENAMELENGTH];
 1409:   
 1410:   pp=vector(1,nlstate);
 1411:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 1412:   strcpy(fileresp,"p");
 1413:   strcat(fileresp,fileres);
 1414:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1415:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1416:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1417:     exit(0);
 1418:   }
 1419:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1420:   j1=0;
 1421:   
 1422:   j=cptcoveff;
 1423:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1424: 
 1425:   first=1;
 1426: 
 1427:   for(k1=1; k1<=j;k1++){
 1428:     for(i1=1; i1<=ncodemax[k1];i1++){
 1429:       j1++;
 1430:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1431: 	scanf("%d", i);*/
 1432:       for (i=-1; i<=nlstate+ndeath; i++)  
 1433: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1434: 	  for(m=agemin; m <= agemax+3; m++)
 1435: 	    freq[i][jk][m]=0;
 1436:       
 1437:       dateintsum=0;
 1438:       k2cpt=0;
 1439:       for (i=1; i<=imx; i++) {
 1440: 	bool=1;
 1441: 	if  (cptcovn>0) {
 1442: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1443: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1444: 	      bool=0;
 1445: 	}
 1446: 	if (bool==1){
 1447: 	  for(m=firstpass; m<=lastpass; m++){
 1448: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1449: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1450: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1451: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1452: 	      if (m<lastpass) {
 1453: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1454: 		freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
 1455: 	      }
 1456: 	      
 1457: 	      if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
 1458: 		dateintsum=dateintsum+k2;
 1459: 		k2cpt++;
 1460: 	      }
 1461: 	    }
 1462: 	  }
 1463: 	}
 1464:       }
 1465:        
 1466:       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 1467: 
 1468:       if  (cptcovn>0) {
 1469: 	fprintf(ficresp, "\n#********** Variable "); 
 1470: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1471: 	fprintf(ficresp, "**********\n#");
 1472:       }
 1473:       for(i=1; i<=nlstate;i++) 
 1474: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1475:       fprintf(ficresp, "\n");
 1476:       
 1477:       for(i=(int)agemin; i <= (int)agemax+3; i++){
 1478: 	if(i==(int)agemax+3){
 1479: 	  fprintf(ficlog,"Total");
 1480: 	}else{
 1481: 	  if(first==1){
 1482: 	    first=0;
 1483: 	    printf("See log file for details...\n");
 1484: 	  }
 1485: 	  fprintf(ficlog,"Age %d", i);
 1486: 	}
 1487: 	for(jk=1; jk <=nlstate ; jk++){
 1488: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1489: 	    pp[jk] += freq[jk][m][i]; 
 1490: 	}
 1491: 	for(jk=1; jk <=nlstate ; jk++){
 1492: 	  for(m=-1, pos=0; m <=0 ; m++)
 1493: 	    pos += freq[jk][m][i];
 1494: 	  if(pp[jk]>=1.e-10){
 1495: 	    if(first==1){
 1496: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1497: 	    }
 1498: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1499: 	  }else{
 1500: 	    if(first==1)
 1501: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1502: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1503: 	  }
 1504: 	}
 1505: 
 1506: 	for(jk=1; jk <=nlstate ; jk++){
 1507: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1508: 	    pp[jk] += freq[jk][m][i];
 1509: 	}
 1510: 
 1511: 	for(jk=1,pos=0; jk <=nlstate ; jk++)
 1512: 	  pos += pp[jk];
 1513: 	for(jk=1; jk <=nlstate ; jk++){
 1514: 	  if(pos>=1.e-5){
 1515: 	    if(first==1)
 1516: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1517: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1518: 	  }else{
 1519: 	    if(first==1)
 1520: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1521: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1522: 	  }
 1523: 	  if( i <= (int) agemax){
 1524: 	    if(pos>=1.e-5){
 1525: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
 1526: 	      probs[i][jk][j1]= pp[jk]/pos;
 1527: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1528: 	    }
 1529: 	    else
 1530: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
 1531: 	  }
 1532: 	}
 1533: 	
 1534: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1535: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1536: 	    if(freq[jk][m][i] !=0 ) {
 1537: 	    if(first==1)
 1538: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1539: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 1540: 	    }
 1541: 	if(i <= (int) agemax)
 1542: 	  fprintf(ficresp,"\n");
 1543: 	if(first==1)
 1544: 	  printf("Others in log...\n");
 1545: 	fprintf(ficlog,"\n");
 1546:       }
 1547:     }
 1548:   }
 1549:   dateintmean=dateintsum/k2cpt; 
 1550:  
 1551:   fclose(ficresp);
 1552:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1553:   free_vector(pp,1,nlstate);
 1554:   
 1555:   /* End of Freq */
 1556: }
 1557: 
 1558: /************ Prevalence ********************/
 1559: void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 1560: {  /* Some frequencies */
 1561:  
 1562:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1563:   double ***freq; /* Frequencies */
 1564:   double *pp;
 1565:   double pos, k2;
 1566: 
 1567:   pp=vector(1,nlstate);
 1568:   
 1569:   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
 1570:   j1=0;
 1571:   
 1572:   j=cptcoveff;
 1573:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1574:   
 1575:   for(k1=1; k1<=j;k1++){
 1576:     for(i1=1; i1<=ncodemax[k1];i1++){
 1577:       j1++;
 1578:       
 1579:       for (i=-1; i<=nlstate+ndeath; i++)  
 1580: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1581: 	  for(m=agemin; m <= agemax+3; m++)
 1582: 	    freq[i][jk][m]=0;
 1583:      
 1584:       for (i=1; i<=imx; i++) {
 1585: 	bool=1;
 1586: 	if  (cptcovn>0) {
 1587: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1588: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1589: 	      bool=0;
 1590: 	} 
 1591: 	if (bool==1) { 
 1592: 	  for(m=firstpass; m<=lastpass; m++){
 1593: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1594: 	    if ((k2>=dateprev1) && (k2<=dateprev2)) {
 1595: 	      if(agev[m][i]==0) agev[m][i]=agemax+1;
 1596: 	      if(agev[m][i]==1) agev[m][i]=agemax+2;
 1597: 	      if (m<lastpass) {
 1598: 	      	if (calagedate>0) 
 1599: 		  freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
 1600: 		else
 1601: 		  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1602: 		freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
 1603: 	      }
 1604: 	    }
 1605: 	  }
 1606: 	}
 1607:       }
 1608:       for(i=(int)agemin; i <= (int)agemax+3; i++){ 
 1609: 	for(jk=1; jk <=nlstate ; jk++){
 1610: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1611: 	    pp[jk] += freq[jk][m][i]; 
 1612: 	}
 1613: 	for(jk=1; jk <=nlstate ; jk++){
 1614: 	  for(m=-1, pos=0; m <=0 ; m++)
 1615: 	    pos += freq[jk][m][i];
 1616: 	}
 1617: 	
 1618: 	for(jk=1; jk <=nlstate ; jk++){
 1619: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1620: 	    pp[jk] += freq[jk][m][i];
 1621: 	}
 1622: 	
 1623: 	for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
 1624: 	
 1625: 	for(jk=1; jk <=nlstate ; jk++){	   
 1626: 	  if( i <= (int) agemax){
 1627: 	    if(pos>=1.e-5){
 1628: 	      probs[i][jk][j1]= pp[jk]/pos;
 1629: 	    }
 1630: 	  }
 1631: 	}/* end jk */
 1632:       }/* end i */
 1633:     } /* end i1 */
 1634:   } /* end k1 */
 1635: 
 1636:   
 1637:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
 1638:   free_vector(pp,1,nlstate);
 1639:   
 1640: }  /* End of Freq */
 1641: 
 1642: /************* Waves Concatenation ***************/
 1643: 
 1644: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 1645: {
 1646:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 1647:      Death is a valid wave (if date is known).
 1648:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 1649:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 1650:      and mw[mi+1][i]. dh depends on stepm.
 1651:      */
 1652: 
 1653:   int i, mi, m;
 1654:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 1655:      double sum=0., jmean=0.;*/
 1656:   int first;
 1657:   int j, k=0,jk, ju, jl;
 1658:   double sum=0.;
 1659:   first=0;
 1660:   jmin=1e+5;
 1661:   jmax=-1;
 1662:   jmean=0.;
 1663:   for(i=1; i<=imx; i++){
 1664:     mi=0;
 1665:     m=firstpass;
 1666:     while(s[m][i] <= nlstate){
 1667:       if(s[m][i]>=1)
 1668: 	mw[++mi][i]=m;
 1669:       if(m >=lastpass)
 1670: 	break;
 1671:       else
 1672: 	m++;
 1673:     }/* end while */
 1674:     if (s[m][i] > nlstate){
 1675:       mi++;	/* Death is another wave */
 1676:       /* if(mi==0)  never been interviewed correctly before death */
 1677: 	 /* Only death is a correct wave */
 1678:       mw[mi][i]=m;
 1679:     }
 1680: 
 1681:     wav[i]=mi;
 1682:     if(mi==0){
 1683:       if(first==0){
 1684: 	printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
 1685: 	first=1;
 1686:       }
 1687:       if(first==1){
 1688: 	fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
 1689:       }
 1690:     } /* end mi==0 */
 1691:   }
 1692: 
 1693:   for(i=1; i<=imx; i++){
 1694:     for(mi=1; mi<wav[i];mi++){
 1695:       if (stepm <=0)
 1696: 	dh[mi][i]=1;
 1697:       else{
 1698: 	if (s[mw[mi+1][i]][i] > nlstate) {
 1699: 	  if (agedc[i] < 2*AGESUP) {
 1700: 	  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 1701: 	  if(j==0) j=1;  /* Survives at least one month after exam */
 1702: 	  k=k+1;
 1703: 	  if (j >= jmax) jmax=j;
 1704: 	  if (j <= jmin) jmin=j;
 1705: 	  sum=sum+j;
 1706: 	  /*if (j<0) printf("j=%d num=%d \n",j,i); */
 1707: 	  }
 1708: 	}
 1709: 	else{
 1710: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 1711: 	  k=k+1;
 1712: 	  if (j >= jmax) jmax=j;
 1713: 	  else if (j <= jmin)jmin=j;
 1714: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 1715: 	  sum=sum+j;
 1716: 	}
 1717: 	jk= j/stepm;
 1718: 	jl= j -jk*stepm;
 1719: 	ju= j -(jk+1)*stepm;
 1720: 	if(mle <=1){ 
 1721: 	  if(jl==0){
 1722: 	    dh[mi][i]=jk;
 1723: 	    bh[mi][i]=0;
 1724: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 1725: 		  * at the price of an extra matrix product in likelihood */
 1726: 	    dh[mi][i]=jk+1;
 1727: 	    bh[mi][i]=ju;
 1728: 	  }
 1729: 	}else{
 1730: 	  if(jl <= -ju){
 1731: 	    dh[mi][i]=jk;
 1732: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 1733: 				 * is higher than the multiple of stepm and negative otherwise.
 1734: 				 */
 1735: 	  }
 1736: 	  else{
 1737: 	    dh[mi][i]=jk+1;
 1738: 	    bh[mi][i]=ju;
 1739: 	  }
 1740: 	  if(dh[mi][i]==0){
 1741: 	    dh[mi][i]=1; /* At least one step */
 1742: 	    bh[mi][i]=ju; /* At least one step */
 1743: 	    printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
 1744: 	  }
 1745: 	  if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
 1746: 	}
 1747:       } /* end if mle */
 1748:     } /* end wave */
 1749:   }
 1750:   jmean=sum/k;
 1751:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 1752:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 1753:  }
 1754: 
 1755: /*********** Tricode ****************************/
 1756: void tricode(int *Tvar, int **nbcode, int imx)
 1757: {
 1758:   
 1759:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 1760:   int cptcode=0;
 1761:   cptcoveff=0; 
 1762:  
 1763:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 1764:   for (k=1; k<=7; k++) ncodemax[k]=0;
 1765: 
 1766:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 1767:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 1768: 			       modality*/ 
 1769:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 1770:       Ndum[ij]++; /*store the modality */
 1771:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 1772:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 1773: 				       Tvar[j]. If V=sex and male is 0 and 
 1774: 				       female is 1, then  cptcode=1.*/
 1775:     }
 1776: 
 1777:     for (i=0; i<=cptcode; i++) {
 1778:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 1779:     }
 1780: 
 1781:     ij=1; 
 1782:     for (i=1; i<=ncodemax[j]; i++) {
 1783:       for (k=0; k<= maxncov; k++) {
 1784: 	if (Ndum[k] != 0) {
 1785: 	  nbcode[Tvar[j]][ij]=k; 
 1786: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 1787: 	  
 1788: 	  ij++;
 1789: 	}
 1790: 	if (ij > ncodemax[j]) break; 
 1791:       }  
 1792:     } 
 1793:   }  
 1794: 
 1795:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 1796: 
 1797:  for (i=1; i<=ncovmodel-2; i++) { 
 1798:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 1799:    ij=Tvar[i];
 1800:    Ndum[ij]++;
 1801:  }
 1802: 
 1803:  ij=1;
 1804:  for (i=1; i<= maxncov; i++) {
 1805:    if((Ndum[i]!=0) && (i<=ncovcol)){
 1806:      Tvaraff[ij]=i; /*For printing */
 1807:      ij++;
 1808:    }
 1809:  }
 1810:  
 1811:  cptcoveff=ij-1; /*Number of simple covariates*/
 1812: }
 1813: 
 1814: /*********** Health Expectancies ****************/
 1815: 
 1816: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 1817: 
 1818: {
 1819:   /* Health expectancies */
 1820:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 1821:   double age, agelim, hf;
 1822:   double ***p3mat,***varhe;
 1823:   double **dnewm,**doldm;
 1824:   double *xp;
 1825:   double **gp, **gm;
 1826:   double ***gradg, ***trgradg;
 1827:   int theta;
 1828: 
 1829:   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
 1830:   xp=vector(1,npar);
 1831:   dnewm=matrix(1,nlstate*2,1,npar);
 1832:   doldm=matrix(1,nlstate*2,1,nlstate*2);
 1833:   
 1834:   fprintf(ficreseij,"# Health expectancies\n");
 1835:   fprintf(ficreseij,"# Age");
 1836:   for(i=1; i<=nlstate;i++)
 1837:     for(j=1; j<=nlstate;j++)
 1838:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 1839:   fprintf(ficreseij,"\n");
 1840: 
 1841:   if(estepm < stepm){
 1842:     printf ("Problem %d lower than %d\n",estepm, stepm);
 1843:   }
 1844:   else  hstepm=estepm;   
 1845:   /* We compute the life expectancy from trapezoids spaced every estepm months
 1846:    * This is mainly to measure the difference between two models: for example
 1847:    * if stepm=24 months pijx are given only every 2 years and by summing them
 1848:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 1849:    * progression in between and thus overestimating or underestimating according
 1850:    * to the curvature of the survival function. If, for the same date, we 
 1851:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 1852:    * to compare the new estimate of Life expectancy with the same linear 
 1853:    * hypothesis. A more precise result, taking into account a more precise
 1854:    * curvature will be obtained if estepm is as small as stepm. */
 1855: 
 1856:   /* For example we decided to compute the life expectancy with the smallest unit */
 1857:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 1858:      nhstepm is the number of hstepm from age to agelim 
 1859:      nstepm is the number of stepm from age to agelin. 
 1860:      Look at hpijx to understand the reason of that which relies in memory size
 1861:      and note for a fixed period like estepm months */
 1862:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 1863:      survival function given by stepm (the optimization length). Unfortunately it
 1864:      means that if the survival funtion is printed only each two years of age and if
 1865:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 1866:      results. So we changed our mind and took the option of the best precision.
 1867:   */
 1868:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 1869: 
 1870:   agelim=AGESUP;
 1871:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 1872:     /* nhstepm age range expressed in number of stepm */
 1873:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 1874:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 1875:     /* if (stepm >= YEARM) hstepm=1;*/
 1876:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 1877:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1878:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
 1879:     gp=matrix(0,nhstepm,1,nlstate*2);
 1880:     gm=matrix(0,nhstepm,1,nlstate*2);
 1881: 
 1882:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 1883:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 1884:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 1885:  
 1886: 
 1887:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 1888: 
 1889:     /* Computing Variances of health expectancies */
 1890: 
 1891:      for(theta=1; theta <=npar; theta++){
 1892:       for(i=1; i<=npar; i++){ 
 1893: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 1894:       }
 1895:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1896:   
 1897:       cptj=0;
 1898:       for(j=1; j<= nlstate; j++){
 1899: 	for(i=1; i<=nlstate; i++){
 1900: 	  cptj=cptj+1;
 1901: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 1902: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 1903: 	  }
 1904: 	}
 1905:       }
 1906:      
 1907:      
 1908:       for(i=1; i<=npar; i++) 
 1909: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 1910:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 1911:       
 1912:       cptj=0;
 1913:       for(j=1; j<= nlstate; j++){
 1914: 	for(i=1;i<=nlstate;i++){
 1915: 	  cptj=cptj+1;
 1916: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 1917: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 1918: 	  }
 1919: 	}
 1920:       }
 1921:       for(j=1; j<= nlstate*2; j++)
 1922: 	for(h=0; h<=nhstepm-1; h++){
 1923: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 1924: 	}
 1925:      } 
 1926:    
 1927: /* End theta */
 1928: 
 1929:      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
 1930: 
 1931:      for(h=0; h<=nhstepm-1; h++)
 1932:       for(j=1; j<=nlstate*2;j++)
 1933: 	for(theta=1; theta <=npar; theta++)
 1934: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 1935:      
 1936: 
 1937:      for(i=1;i<=nlstate*2;i++)
 1938:       for(j=1;j<=nlstate*2;j++)
 1939: 	varhe[i][j][(int)age] =0.;
 1940: 
 1941:      printf("%d|",(int)age);fflush(stdout);
 1942:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 1943:      for(h=0;h<=nhstepm-1;h++){
 1944:       for(k=0;k<=nhstepm-1;k++){
 1945: 	matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
 1946: 	matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
 1947: 	for(i=1;i<=nlstate*2;i++)
 1948: 	  for(j=1;j<=nlstate*2;j++)
 1949: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 1950:       }
 1951:     }
 1952:     /* Computing expectancies */
 1953:     for(i=1; i<=nlstate;i++)
 1954:       for(j=1; j<=nlstate;j++)
 1955: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 1956: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 1957: 	  
 1958: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 1959: 
 1960: 	}
 1961: 
 1962:     fprintf(ficreseij,"%3.0f",age );
 1963:     cptj=0;
 1964:     for(i=1; i<=nlstate;i++)
 1965:       for(j=1; j<=nlstate;j++){
 1966: 	cptj++;
 1967: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 1968:       }
 1969:     fprintf(ficreseij,"\n");
 1970:    
 1971:     free_matrix(gm,0,nhstepm,1,nlstate*2);
 1972:     free_matrix(gp,0,nhstepm,1,nlstate*2);
 1973:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
 1974:     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
 1975:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 1976:   }
 1977:   printf("\n");
 1978:   fprintf(ficlog,"\n");
 1979: 
 1980:   free_vector(xp,1,npar);
 1981:   free_matrix(dnewm,1,nlstate*2,1,npar);
 1982:   free_matrix(doldm,1,nlstate*2,1,nlstate*2);
 1983:   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
 1984: }
 1985: 
 1986: /************ Variance ******************/
 1987: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 1988: {
 1989:   /* Variance of health expectancies */
 1990:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 1991:   /* double **newm;*/
 1992:   double **dnewm,**doldm;
 1993:   double **dnewmp,**doldmp;
 1994:   int i, j, nhstepm, hstepm, h, nstepm ;
 1995:   int k, cptcode;
 1996:   double *xp;
 1997:   double **gp, **gm;  /* for var eij */
 1998:   double ***gradg, ***trgradg; /*for var eij */
 1999:   double **gradgp, **trgradgp; /* for var p point j */
 2000:   double *gpp, *gmp; /* for var p point j */
 2001:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2002:   double ***p3mat;
 2003:   double age,agelim, hf;
 2004:   double ***mobaverage;
 2005:   int theta;
 2006:   char digit[4];
 2007:   char digitp[25];
 2008: 
 2009:   char fileresprobmorprev[FILENAMELENGTH];
 2010: 
 2011:   if(popbased==1){
 2012:     if(mobilav!=0)
 2013:       strcpy(digitp,"-populbased-mobilav-");
 2014:     else strcpy(digitp,"-populbased-nomobil-");
 2015:   }
 2016:   else 
 2017:     strcpy(digitp,"-stablbased-");
 2018: 
 2019:   if (mobilav!=0) {
 2020:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2021:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2022:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2023:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2024:     }
 2025:   }
 2026: 
 2027:   strcpy(fileresprobmorprev,"prmorprev"); 
 2028:   sprintf(digit,"%-d",ij);
 2029:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2030:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2031:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2032:   strcat(fileresprobmorprev,fileres);
 2033:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2034:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2035:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2036:   }
 2037:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2038:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2039:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2040:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2041:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2042:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2043:     for(i=1; i<=nlstate;i++)
 2044:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2045:   }  
 2046:   fprintf(ficresprobmorprev,"\n");
 2047:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 2048:     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 2049:     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 2050:     exit(0);
 2051:   }
 2052:   else{
 2053:     fprintf(ficgp,"\n# Routine varevsij");
 2054:   }
 2055:   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 2056:     printf("Problem with html file: %s\n", optionfilehtm);
 2057:     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 2058:     exit(0);
 2059:   }
 2060:   else{
 2061:     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2062:     fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
 2063:   }
 2064:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2065: 
 2066:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2067:   fprintf(ficresvij,"# Age");
 2068:   for(i=1; i<=nlstate;i++)
 2069:     for(j=1; j<=nlstate;j++)
 2070:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2071:   fprintf(ficresvij,"\n");
 2072: 
 2073:   xp=vector(1,npar);
 2074:   dnewm=matrix(1,nlstate,1,npar);
 2075:   doldm=matrix(1,nlstate,1,nlstate);
 2076:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2077:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2078: 
 2079:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2080:   gpp=vector(nlstate+1,nlstate+ndeath);
 2081:   gmp=vector(nlstate+1,nlstate+ndeath);
 2082:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2083:   
 2084:   if(estepm < stepm){
 2085:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2086:   }
 2087:   else  hstepm=estepm;   
 2088:   /* For example we decided to compute the life expectancy with the smallest unit */
 2089:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2090:      nhstepm is the number of hstepm from age to agelim 
 2091:      nstepm is the number of stepm from age to agelin. 
 2092:      Look at hpijx to understand the reason of that which relies in memory size
 2093:      and note for a fixed period like k years */
 2094:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2095:      survival function given by stepm (the optimization length). Unfortunately it
 2096:      means that if the survival funtion is printed every two years of age and if
 2097:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2098:      results. So we changed our mind and took the option of the best precision.
 2099:   */
 2100:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2101:   agelim = AGESUP;
 2102:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2103:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2104:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2105:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2106:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2107:     gp=matrix(0,nhstepm,1,nlstate);
 2108:     gm=matrix(0,nhstepm,1,nlstate);
 2109: 
 2110: 
 2111:     for(theta=1; theta <=npar; theta++){
 2112:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2113: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2114:       }
 2115:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2116:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2117: 
 2118:       if (popbased==1) {
 2119: 	if(mobilav ==0){
 2120: 	  for(i=1; i<=nlstate;i++)
 2121: 	    prlim[i][i]=probs[(int)age][i][ij];
 2122: 	}else{ /* mobilav */ 
 2123: 	  for(i=1; i<=nlstate;i++)
 2124: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2125: 	}
 2126:       }
 2127:   
 2128:       for(j=1; j<= nlstate; j++){
 2129: 	for(h=0; h<=nhstepm; h++){
 2130: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2131: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2132: 	}
 2133:       }
 2134:       /* This for computing probability of death (h=1 means
 2135:          computed over hstepm matrices product = hstepm*stepm months) 
 2136:          as a weighted average of prlim.
 2137:       */
 2138:       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
 2139: 	for(i=1; i<= nlstate; i++)
 2140: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2141:       }    
 2142:       /* end probability of death */
 2143: 
 2144:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2145: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2146:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2147:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2148:  
 2149:       if (popbased==1) {
 2150: 	if(mobilav ==0){
 2151: 	  for(i=1; i<=nlstate;i++)
 2152: 	    prlim[i][i]=probs[(int)age][i][ij];
 2153: 	}else{ /* mobilav */ 
 2154: 	  for(i=1; i<=nlstate;i++)
 2155: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2156: 	}
 2157:       }
 2158: 
 2159:       for(j=1; j<= nlstate; j++){
 2160: 	for(h=0; h<=nhstepm; h++){
 2161: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2162: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2163: 	}
 2164:       }
 2165:       /* This for computing probability of death (h=1 means
 2166:          computed over hstepm matrices product = hstepm*stepm months) 
 2167:          as a weighted average of prlim.
 2168:       */
 2169:       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
 2170: 	for(i=1; i<= nlstate; i++)
 2171: 	  gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2172:       }    
 2173:       /* end probability of death */
 2174: 
 2175:       for(j=1; j<= nlstate; j++) /* vareij */
 2176: 	for(h=0; h<=nhstepm; h++){
 2177: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2178: 	}
 2179:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2180: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2181:       }
 2182: 
 2183:     } /* End theta */
 2184: 
 2185:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2186: 
 2187:     for(h=0; h<=nhstepm; h++) /* veij */
 2188:       for(j=1; j<=nlstate;j++)
 2189: 	for(theta=1; theta <=npar; theta++)
 2190: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2191: 
 2192:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2193:       for(theta=1; theta <=npar; theta++)
 2194: 	trgradgp[j][theta]=gradgp[theta][j];
 2195: 
 2196:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2197:     for(i=1;i<=nlstate;i++)
 2198:       for(j=1;j<=nlstate;j++)
 2199: 	vareij[i][j][(int)age] =0.;
 2200: 
 2201:     for(h=0;h<=nhstepm;h++){
 2202:       for(k=0;k<=nhstepm;k++){
 2203: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2204: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2205: 	for(i=1;i<=nlstate;i++)
 2206: 	  for(j=1;j<=nlstate;j++)
 2207: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2208:       }
 2209:     }
 2210: 
 2211:     /* pptj */
 2212:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2213:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2214:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2215:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2216: 	varppt[j][i]=doldmp[j][i];
 2217:     /* end ppptj */
 2218:     /*  x centered again */
 2219:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2220:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2221:  
 2222:     if (popbased==1) {
 2223:       if(mobilav ==0){
 2224: 	for(i=1; i<=nlstate;i++)
 2225: 	  prlim[i][i]=probs[(int)age][i][ij];
 2226:       }else{ /* mobilav */ 
 2227: 	for(i=1; i<=nlstate;i++)
 2228: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2229:       }
 2230:     }
 2231:     
 2232:     /* This for computing probability of death (h=1 means
 2233:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2234:        as a weighted average of prlim.
 2235:     */
 2236:     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
 2237:       for(i=1; i<= nlstate; i++)
 2238: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2239:     }    
 2240:     /* end probability of death */
 2241: 
 2242:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2243:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2244:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2245:       for(i=1; i<=nlstate;i++){
 2246: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2247:       }
 2248:     } 
 2249:     fprintf(ficresprobmorprev,"\n");
 2250: 
 2251:     fprintf(ficresvij,"%.0f ",age );
 2252:     for(i=1; i<=nlstate;i++)
 2253:       for(j=1; j<=nlstate;j++){
 2254: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2255:       }
 2256:     fprintf(ficresvij,"\n");
 2257:     free_matrix(gp,0,nhstepm,1,nlstate);
 2258:     free_matrix(gm,0,nhstepm,1,nlstate);
 2259:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2260:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2261:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2262:   } /* End age */
 2263:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2264:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2265:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2266:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2267:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2268:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2269:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2270:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
 2271:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
 2272:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
 2273:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
 2274:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", estepm,digitp,digit);
 2275:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2276: */
 2277:   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
 2278: 
 2279:   free_vector(xp,1,npar);
 2280:   free_matrix(doldm,1,nlstate,1,nlstate);
 2281:   free_matrix(dnewm,1,nlstate,1,npar);
 2282:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2283:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2284:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2285:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2286:   fclose(ficresprobmorprev);
 2287:   fclose(ficgp);
 2288:   fclose(fichtm);
 2289: }
 2290: 
 2291: /************ Variance of prevlim ******************/
 2292: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2293: {
 2294:   /* Variance of prevalence limit */
 2295:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2296:   double **newm;
 2297:   double **dnewm,**doldm;
 2298:   int i, j, nhstepm, hstepm;
 2299:   int k, cptcode;
 2300:   double *xp;
 2301:   double *gp, *gm;
 2302:   double **gradg, **trgradg;
 2303:   double age,agelim;
 2304:   int theta;
 2305:    
 2306:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2307:   fprintf(ficresvpl,"# Age");
 2308:   for(i=1; i<=nlstate;i++)
 2309:       fprintf(ficresvpl," %1d-%1d",i,i);
 2310:   fprintf(ficresvpl,"\n");
 2311: 
 2312:   xp=vector(1,npar);
 2313:   dnewm=matrix(1,nlstate,1,npar);
 2314:   doldm=matrix(1,nlstate,1,nlstate);
 2315:   
 2316:   hstepm=1*YEARM; /* Every year of age */
 2317:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2318:   agelim = AGESUP;
 2319:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2320:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2321:     if (stepm >= YEARM) hstepm=1;
 2322:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2323:     gradg=matrix(1,npar,1,nlstate);
 2324:     gp=vector(1,nlstate);
 2325:     gm=vector(1,nlstate);
 2326: 
 2327:     for(theta=1; theta <=npar; theta++){
 2328:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2329: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2330:       }
 2331:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2332:       for(i=1;i<=nlstate;i++)
 2333: 	gp[i] = prlim[i][i];
 2334:     
 2335:       for(i=1; i<=npar; i++) /* Computes gradient */
 2336: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2337:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2338:       for(i=1;i<=nlstate;i++)
 2339: 	gm[i] = prlim[i][i];
 2340: 
 2341:       for(i=1;i<=nlstate;i++)
 2342: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2343:     } /* End theta */
 2344: 
 2345:     trgradg =matrix(1,nlstate,1,npar);
 2346: 
 2347:     for(j=1; j<=nlstate;j++)
 2348:       for(theta=1; theta <=npar; theta++)
 2349: 	trgradg[j][theta]=gradg[theta][j];
 2350: 
 2351:     for(i=1;i<=nlstate;i++)
 2352:       varpl[i][(int)age] =0.;
 2353:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2354:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2355:     for(i=1;i<=nlstate;i++)
 2356:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2357: 
 2358:     fprintf(ficresvpl,"%.0f ",age );
 2359:     for(i=1; i<=nlstate;i++)
 2360:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2361:     fprintf(ficresvpl,"\n");
 2362:     free_vector(gp,1,nlstate);
 2363:     free_vector(gm,1,nlstate);
 2364:     free_matrix(gradg,1,npar,1,nlstate);
 2365:     free_matrix(trgradg,1,nlstate,1,npar);
 2366:   } /* End age */
 2367: 
 2368:   free_vector(xp,1,npar);
 2369:   free_matrix(doldm,1,nlstate,1,npar);
 2370:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2371: 
 2372: }
 2373: 
 2374: /************ Variance of one-step probabilities  ******************/
 2375: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2376: {
 2377:   int i, j=0,  i1, k1, l1, t, tj;
 2378:   int k2, l2, j1,  z1;
 2379:   int k=0,l, cptcode;
 2380:   int first=1, first1;
 2381:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2382:   double **dnewm,**doldm;
 2383:   double *xp;
 2384:   double *gp, *gm;
 2385:   double **gradg, **trgradg;
 2386:   double **mu;
 2387:   double age,agelim, cov[NCOVMAX];
 2388:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2389:   int theta;
 2390:   char fileresprob[FILENAMELENGTH];
 2391:   char fileresprobcov[FILENAMELENGTH];
 2392:   char fileresprobcor[FILENAMELENGTH];
 2393: 
 2394:   double ***varpij;
 2395: 
 2396:   strcpy(fileresprob,"prob"); 
 2397:   strcat(fileresprob,fileres);
 2398:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2399:     printf("Problem with resultfile: %s\n", fileresprob);
 2400:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2401:   }
 2402:   strcpy(fileresprobcov,"probcov"); 
 2403:   strcat(fileresprobcov,fileres);
 2404:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2405:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2406:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2407:   }
 2408:   strcpy(fileresprobcor,"probcor"); 
 2409:   strcat(fileresprobcor,fileres);
 2410:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2411:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2412:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2413:   }
 2414:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2415:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2416:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2417:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2418:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2419:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2420:   
 2421:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2422:   fprintf(ficresprob,"# Age");
 2423:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2424:   fprintf(ficresprobcov,"# Age");
 2425:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2426:   fprintf(ficresprobcov,"# Age");
 2427: 
 2428: 
 2429:   for(i=1; i<=nlstate;i++)
 2430:     for(j=1; j<=(nlstate+ndeath);j++){
 2431:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2432:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2433:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2434:     }  
 2435:   fprintf(ficresprob,"\n");
 2436:   fprintf(ficresprobcov,"\n");
 2437:   fprintf(ficresprobcor,"\n");
 2438:   xp=vector(1,npar);
 2439:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2440:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2441:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2442:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2443:   first=1;
 2444:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 2445:     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 2446:     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 2447:     exit(0);
 2448:   }
 2449:   else{
 2450:     fprintf(ficgp,"\n# Routine varprob");
 2451:   }
 2452:   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 2453:     printf("Problem with html file: %s\n", optionfilehtm);
 2454:     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 2455:     exit(0);
 2456:   }
 2457:   else{
 2458:     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2459:     fprintf(fichtm,"\n");
 2460: 
 2461:     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 2462:     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2463:     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
 2464: 
 2465:   }
 2466: 
 2467:   cov[1]=1;
 2468:   tj=cptcoveff;
 2469:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2470:   j1=0;
 2471:   for(t=1; t<=tj;t++){
 2472:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2473:       j1++;
 2474:       if  (cptcovn>0) {
 2475: 	fprintf(ficresprob, "\n#********** Variable "); 
 2476: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2477: 	fprintf(ficresprob, "**********\n#");
 2478: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2479: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2480: 	fprintf(ficresprobcov, "**********\n#");
 2481: 	
 2482: 	fprintf(ficgp, "\n#********** Variable "); 
 2483: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2484: 	fprintf(ficgp, "**********\n#");
 2485: 	
 2486: 	
 2487: 	fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2488: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2489: 	fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2490: 	
 2491: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2492: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2493: 	fprintf(ficgp, "**********\n#");    
 2494:       }
 2495:       
 2496:       for (age=bage; age<=fage; age ++){ 
 2497: 	cov[2]=age;
 2498: 	for (k=1; k<=cptcovn;k++) {
 2499: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2500: 	}
 2501: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2502: 	for (k=1; k<=cptcovprod;k++)
 2503: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2504: 	
 2505: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2506: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2507: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2508: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2509:     
 2510: 	for(theta=1; theta <=npar; theta++){
 2511: 	  for(i=1; i<=npar; i++)
 2512: 	    xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2513: 	  
 2514: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2515: 	  
 2516: 	  k=0;
 2517: 	  for(i=1; i<= (nlstate); i++){
 2518: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2519: 	      k=k+1;
 2520: 	      gp[k]=pmmij[i][j];
 2521: 	    }
 2522: 	  }
 2523: 	  
 2524: 	  for(i=1; i<=npar; i++)
 2525: 	    xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2526:     
 2527: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2528: 	  k=0;
 2529: 	  for(i=1; i<=(nlstate); i++){
 2530: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2531: 	      k=k+1;
 2532: 	      gm[k]=pmmij[i][j];
 2533: 	    }
 2534: 	  }
 2535:      
 2536: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 2537: 	    gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
 2538: 	}
 2539: 
 2540: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 2541: 	  for(theta=1; theta <=npar; theta++)
 2542: 	    trgradg[j][theta]=gradg[theta][j];
 2543: 	
 2544: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 2545: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 2546: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 2547: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 2548: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2549: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2550: 
 2551: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 2552: 	
 2553: 	k=0;
 2554: 	for(i=1; i<=(nlstate); i++){
 2555: 	  for(j=1; j<=(nlstate+ndeath);j++){
 2556: 	    k=k+1;
 2557: 	    mu[k][(int) age]=pmmij[i][j];
 2558: 	  }
 2559: 	}
 2560:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 2561: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 2562: 	    varpij[i][j][(int)age] = doldm[i][j];
 2563: 
 2564: 	/*printf("\n%d ",(int)age);
 2565: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2566: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2567: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2568: 	  }*/
 2569: 
 2570: 	fprintf(ficresprob,"\n%d ",(int)age);
 2571: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 2572: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 2573: 
 2574: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 2575: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 2576: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2577: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 2578: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 2579: 	}
 2580: 	i=0;
 2581: 	for (k=1; k<=(nlstate);k++){
 2582:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 2583:  	    i=i++;
 2584: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 2585: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 2586: 	    for (j=1; j<=i;j++){
 2587: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 2588: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 2589: 	    }
 2590: 	  }
 2591: 	}/* end of loop for state */
 2592:       } /* end of loop for age */
 2593: 
 2594:       /* Confidence intervalle of pij  */
 2595:       /*
 2596: 	fprintf(ficgp,"\nset noparametric;unset label");
 2597: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 2598: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 2599: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 2600: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 2601: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 2602: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 2603:       */
 2604: 
 2605:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 2606:       first1=1;
 2607:       for (k2=1; k2<=(nlstate);k2++){
 2608: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 2609: 	  if(l2==k2) continue;
 2610: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 2611: 	  for (k1=1; k1<=(nlstate);k1++){
 2612: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 2613: 	      if(l1==k1) continue;
 2614: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 2615: 	      if(i<=j) continue;
 2616: 	      for (age=bage; age<=fage; age ++){ 
 2617: 		if ((int)age %5==0){
 2618: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 2619: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 2620: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 2621: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 2622: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 2623: 		  c12=cv12/sqrt(v1*v2);
 2624: 		  /* Computing eigen value of matrix of covariance */
 2625: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 2626: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 2627: 		  /* Eigen vectors */
 2628: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 2629: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 2630: 		  v21=(lc1-v1)/cv12*v11;
 2631: 		  v12=-v21;
 2632: 		  v22=v11;
 2633: 		  tnalp=v21/v11;
 2634: 		  if(first1==1){
 2635: 		    first1=0;
 2636: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 2637: 		  }
 2638: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 2639: 		  /*printf(fignu*/
 2640: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 2641: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 2642: 		  if(first==1){
 2643: 		    first=0;
 2644:  		    fprintf(ficgp,"\nset parametric;unset label");
 2645: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 2646: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 2647: 		    fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
 2648: 		    fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
 2649: 		    fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 2650: 		    fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
 2651: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 2652: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 2653: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 2654: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 2655: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 2656: 		  }else{
 2657: 		    first=0;
 2658: 		    fprintf(fichtm," %d (%.3f),",(int) age, c12);
 2659: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 2660: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 2661: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 2662: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 2663: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 2664: 		  }/* if first */
 2665: 		} /* age mod 5 */
 2666: 	      } /* end loop age */
 2667: 	      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
 2668: 	      first=1;
 2669: 	    } /*l12 */
 2670: 	  } /* k12 */
 2671: 	} /*l1 */
 2672:       }/* k1 */
 2673:     } /* loop covariates */
 2674:   }
 2675:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 2676:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 2677:   free_vector(xp,1,npar);
 2678:   fclose(ficresprob);
 2679:   fclose(ficresprobcov);
 2680:   fclose(ficresprobcor);
 2681:   fclose(ficgp);
 2682:   fclose(fichtm);
 2683: }
 2684: 
 2685: 
 2686: /******************* Printing html file ***********/
 2687: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 2688: 		  int lastpass, int stepm, int weightopt, char model[],\
 2689: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 2690: 		  int popforecast, int estepm ,\
 2691: 		  double jprev1, double mprev1,double anprev1, \
 2692: 		  double jprev2, double mprev2,double anprev2){
 2693:   int jj1, k1, i1, cpt;
 2694:   /*char optionfilehtm[FILENAMELENGTH];*/
 2695:   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
 2696:     printf("Problem with %s \n",optionfilehtm), exit(0);
 2697:     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
 2698:   }
 2699: 
 2700:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
 2701:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
 2702:  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
 2703:  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
 2704:  - Life expectancies by age and initial health status (estepm=%2d months): 
 2705:    <a href=\"e%s\">e%s</a> <br>\n</li>", \
 2706:   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
 2707: 
 2708: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 2709: 
 2710:  m=cptcoveff;
 2711:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 2712: 
 2713:  jj1=0;
 2714:  for(k1=1; k1<=m;k1++){
 2715:    for(i1=1; i1<=ncodemax[k1];i1++){
 2716:      jj1++;
 2717:      if (cptcovn > 0) {
 2718:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 2719:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 2720: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 2721:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 2722:      }
 2723:      /* Pij */
 2724:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
 2725: <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
 2726:      /* Quasi-incidences */
 2727:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
 2728: <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
 2729:        /* Stable prevalence in each health state */
 2730:        for(cpt=1; cpt<nlstate;cpt++){
 2731: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
 2732: <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 2733:        }
 2734:      for(cpt=1; cpt<=nlstate;cpt++) {
 2735:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
 2736: <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 2737:      }
 2738:      fprintf(fichtm,"\n<br>- Total life expectancy by age and
 2739: health expectancies in states (1) and (2): e%s%d.png<br>
 2740: <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
 2741:    } /* end i1 */
 2742:  }/* End k1 */
 2743:  fprintf(fichtm,"</ul>");
 2744: 
 2745: 
 2746:  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
 2747:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
 2748:  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
 2749:  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
 2750:  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
 2751:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
 2752:  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
 2753:  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
 2754: 
 2755:  if(popforecast==1) fprintf(fichtm,"\n
 2756:  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
 2757:  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
 2758: 	<br>",fileres,fileres,fileres,fileres);
 2759:  else 
 2760:    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
 2761: fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 2762: 
 2763:  m=cptcoveff;
 2764:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 2765: 
 2766:  jj1=0;
 2767:  for(k1=1; k1<=m;k1++){
 2768:    for(i1=1; i1<=ncodemax[k1];i1++){
 2769:      jj1++;
 2770:      if (cptcovn > 0) {
 2771:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 2772:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 2773: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 2774:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 2775:      }
 2776:      for(cpt=1; cpt<=nlstate;cpt++) {
 2777:        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
 2778: interval) in state (%d): v%s%d%d.png <br>
 2779: <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
 2780:      }
 2781:    } /* end i1 */
 2782:  }/* End k1 */
 2783:  fprintf(fichtm,"</ul>");
 2784: fclose(fichtm);
 2785: }
 2786: 
 2787: /******************* Gnuplot file **************/
 2788: void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 2789: 
 2790:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 2791:   int ng;
 2792:   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 2793:     printf("Problem with file %s",optionfilegnuplot);
 2794:     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
 2795:   }
 2796: 
 2797:   /*#ifdef windows */
 2798:     fprintf(ficgp,"cd \"%s\" \n",pathc);
 2799:     /*#endif */
 2800: m=pow(2,cptcoveff);
 2801:   
 2802:  /* 1eme*/
 2803:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 2804:    for (k1=1; k1<= m ; k1 ++) {
 2805:      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2806:      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
 2807: 
 2808:      for (i=1; i<= nlstate ; i ++) {
 2809:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2810:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2811:      }
 2812:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
 2813:      for (i=1; i<= nlstate ; i ++) {
 2814:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2815:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2816:      } 
 2817:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 2818:      for (i=1; i<= nlstate ; i ++) {
 2819:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 2820:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 2821:      }  
 2822:      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 2823:    }
 2824:   }
 2825:   /*2 eme*/
 2826:   
 2827:   for (k1=1; k1<= m ; k1 ++) { 
 2828:     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
 2829:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 2830:     
 2831:     for (i=1; i<= nlstate+1 ; i ++) {
 2832:       k=2*i;
 2833:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
 2834:       for (j=1; j<= nlstate+1 ; j ++) {
 2835: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2836: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2837:       }   
 2838:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 2839:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 2840:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2841:       for (j=1; j<= nlstate+1 ; j ++) {
 2842: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2843: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2844:       }   
 2845:       fprintf(ficgp,"\" t\"\" w l 0,");
 2846:       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
 2847:       for (j=1; j<= nlstate+1 ; j ++) {
 2848: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 2849: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 2850:       }   
 2851:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 2852:       else fprintf(ficgp,"\" t\"\" w l 0,");
 2853:     }
 2854:   }
 2855:   
 2856:   /*3eme*/
 2857:   
 2858:   for (k1=1; k1<= m ; k1 ++) { 
 2859:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 2860:       k=2+nlstate*(2*cpt-2);
 2861:       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2862:       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
 2863:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 2864: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 2865: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 2866: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 2867: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 2868: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 2869: 	
 2870:       */
 2871:       for (i=1; i< nlstate ; i ++) {
 2872: 	fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
 2873: 	
 2874:       } 
 2875:     }
 2876:   }
 2877:   
 2878:   /* CV preval stat */
 2879:   for (k1=1; k1<= m ; k1 ++) { 
 2880:     for (cpt=1; cpt<nlstate ; cpt ++) {
 2881:       k=3;
 2882:       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
 2883:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
 2884:       
 2885:       for (i=1; i< nlstate ; i ++)
 2886: 	fprintf(ficgp,"+$%d",k+i+1);
 2887:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 2888:       
 2889:       l=3+(nlstate+ndeath)*cpt;
 2890:       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
 2891:       for (i=1; i< nlstate ; i ++) {
 2892: 	l=3+(nlstate+ndeath)*cpt;
 2893: 	fprintf(ficgp,"+$%d",l+i+1);
 2894:       }
 2895:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 2896:     } 
 2897:   }  
 2898:   
 2899:   /* proba elementaires */
 2900:   for(i=1,jk=1; i <=nlstate; i++){
 2901:     for(k=1; k <=(nlstate+ndeath); k++){
 2902:       if (k != i) {
 2903: 	for(j=1; j <=ncovmodel; j++){
 2904: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 2905: 	  jk++; 
 2906: 	  fprintf(ficgp,"\n");
 2907: 	}
 2908:       }
 2909:     }
 2910:    }
 2911: 
 2912:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 2913:      for(jk=1; jk <=m; jk++) {
 2914:        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
 2915:        if (ng==2)
 2916: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 2917:        else
 2918: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 2919:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 2920:        i=1;
 2921:        for(k2=1; k2<=nlstate; k2++) {
 2922: 	 k3=i;
 2923: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 2924: 	   if (k != k2){
 2925: 	     if(ng==2)
 2926: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 2927: 	     else
 2928: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 2929: 	     ij=1;
 2930: 	     for(j=3; j <=ncovmodel; j++) {
 2931: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2932: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2933: 		 ij++;
 2934: 	       }
 2935: 	       else
 2936: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2937: 	     }
 2938: 	     fprintf(ficgp,")/(1");
 2939: 	     
 2940: 	     for(k1=1; k1 <=nlstate; k1++){   
 2941: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 2942: 	       ij=1;
 2943: 	       for(j=3; j <=ncovmodel; j++){
 2944: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 2945: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 2946: 		   ij++;
 2947: 		 }
 2948: 		 else
 2949: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 2950: 	       }
 2951: 	       fprintf(ficgp,")");
 2952: 	     }
 2953: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 2954: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 2955: 	     i=i+ncovmodel;
 2956: 	   }
 2957: 	 } /* end k */
 2958:        } /* end k2 */
 2959:      } /* end jk */
 2960:    } /* end ng */
 2961:    fclose(ficgp); 
 2962: }  /* end gnuplot */
 2963: 
 2964: 
 2965: /*************** Moving average **************/
 2966: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 2967: 
 2968:   int i, cpt, cptcod;
 2969:   int modcovmax =1;
 2970:   int mobilavrange, mob;
 2971:   double age;
 2972: 
 2973:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 2974: 			   a covariate has 2 modalities */
 2975:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 2976: 
 2977:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 2978:     if(mobilav==1) mobilavrange=5; /* default */
 2979:     else mobilavrange=mobilav;
 2980:     for (age=bage; age<=fage; age++)
 2981:       for (i=1; i<=nlstate;i++)
 2982: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 2983: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 2984:     /* We keep the original values on the extreme ages bage, fage and for 
 2985:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 2986:        we use a 5 terms etc. until the borders are no more concerned. 
 2987:     */ 
 2988:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 2989:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 2990: 	for (i=1; i<=nlstate;i++){
 2991: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 2992: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 2993: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 2994: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 2995: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 2996: 	      }
 2997: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 2998: 	  }
 2999: 	}
 3000:       }/* end age */
 3001:     }/* end mob */
 3002:   }else return -1;
 3003:   return 0;
 3004: }/* End movingaverage */
 3005: 
 3006: 
 3007: /************** Forecasting ******************/
 3008: prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
 3009:   
 3010:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3011:   int *popage;
 3012:   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3013:   double *popeffectif,*popcount;
 3014:   double ***p3mat;
 3015:   double ***mobaverage;
 3016:   char fileresf[FILENAMELENGTH];
 3017: 
 3018:  agelim=AGESUP;
 3019:  calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
 3020: 
 3021:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 3022:  
 3023:  
 3024:   strcpy(fileresf,"f"); 
 3025:   strcat(fileresf,fileres);
 3026:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3027:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3028:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3029:   }
 3030:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3031:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3032: 
 3033:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3034: 
 3035:   if (mobilav!=0) {
 3036:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3037:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3038:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3039:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3040:     }
 3041:   }
 3042: 
 3043:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3044:   if (stepm<=12) stepsize=1;
 3045:   
 3046:   agelim=AGESUP;
 3047:   
 3048:   hstepm=1;
 3049:   hstepm=hstepm/stepm; 
 3050:   yp1=modf(dateintmean,&yp);
 3051:   anprojmean=yp;
 3052:   yp2=modf((yp1*12),&yp);
 3053:   mprojmean=yp;
 3054:   yp1=modf((yp2*30.5),&yp);
 3055:   jprojmean=yp;
 3056:   if(jprojmean==0) jprojmean=1;
 3057:   if(mprojmean==0) jprojmean=1;
 3058:   
 3059:   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
 3060:   
 3061:   for(cptcov=1;cptcov<=i2;cptcov++){
 3062:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3063:       k=k+1;
 3064:       fprintf(ficresf,"\n#******");
 3065:       for(j=1;j<=cptcoveff;j++) {
 3066: 	fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3067:       }
 3068:       fprintf(ficresf,"******\n");
 3069:       fprintf(ficresf,"# StartingAge FinalAge");
 3070:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
 3071:       
 3072:       
 3073:       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
 3074: 	fprintf(ficresf,"\n");
 3075: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
 3076: 
 3077:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 3078: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3079: 	  nhstepm = nhstepm/hstepm; 
 3080: 	  
 3081: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3082: 	  oldm=oldms;savm=savms;
 3083: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3084: 	
 3085: 	  for (h=0; h<=nhstepm; h++){
 3086: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 3087: 	      fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
 3088: 	    } 
 3089: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3090: 	      kk1=0.;kk2=0;
 3091: 	      for(i=1; i<=nlstate;i++) {	      
 3092: 		if (mobilav==1) 
 3093: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3094: 		else {
 3095: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3096: 		}
 3097: 		
 3098: 	      }
 3099: 	      if (h==(int)(calagedate+12*cpt)){
 3100: 		fprintf(ficresf," %.3f", kk1);
 3101: 	     		
 3102: 	      }
 3103: 	    }
 3104: 	  }
 3105: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3106: 	}
 3107:       }
 3108:     }
 3109:   }
 3110:        
 3111:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3112: 
 3113:   fclose(ficresf);
 3114: }
 3115: /************** Forecasting ******************/
 3116: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3117:   
 3118:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3119:   int *popage;
 3120:   double calagedate, agelim, kk1, kk2;
 3121:   double *popeffectif,*popcount;
 3122:   double ***p3mat,***tabpop,***tabpopprev;
 3123:   double ***mobaverage;
 3124:   char filerespop[FILENAMELENGTH];
 3125: 
 3126:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3127:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3128:   agelim=AGESUP;
 3129:   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3130:   
 3131:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 3132:   
 3133:   
 3134:   strcpy(filerespop,"pop"); 
 3135:   strcat(filerespop,fileres);
 3136:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3137:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3138:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3139:   }
 3140:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3141:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3142: 
 3143:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3144: 
 3145:   if (mobilav!=0) {
 3146:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3147:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3148:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3149:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3150:     }
 3151:   }
 3152: 
 3153:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3154:   if (stepm<=12) stepsize=1;
 3155:   
 3156:   agelim=AGESUP;
 3157:   
 3158:   hstepm=1;
 3159:   hstepm=hstepm/stepm; 
 3160:   
 3161:   if (popforecast==1) {
 3162:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3163:       printf("Problem with population file : %s\n",popfile);exit(0);
 3164:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3165:     } 
 3166:     popage=ivector(0,AGESUP);
 3167:     popeffectif=vector(0,AGESUP);
 3168:     popcount=vector(0,AGESUP);
 3169:     
 3170:     i=1;   
 3171:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3172:    
 3173:     imx=i;
 3174:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3175:   }
 3176: 
 3177:   for(cptcov=1;cptcov<=i2;cptcov++){
 3178:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3179:       k=k+1;
 3180:       fprintf(ficrespop,"\n#******");
 3181:       for(j=1;j<=cptcoveff;j++) {
 3182: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3183:       }
 3184:       fprintf(ficrespop,"******\n");
 3185:       fprintf(ficrespop,"# Age");
 3186:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3187:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3188:       
 3189:       for (cpt=0; cpt<=0;cpt++) { 
 3190: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3191: 	
 3192:      	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 3193: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3194: 	  nhstepm = nhstepm/hstepm; 
 3195: 	  
 3196: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3197: 	  oldm=oldms;savm=savms;
 3198: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3199: 	
 3200: 	  for (h=0; h<=nhstepm; h++){
 3201: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 3202: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3203: 	    } 
 3204: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3205: 	      kk1=0.;kk2=0;
 3206: 	      for(i=1; i<=nlstate;i++) {	      
 3207: 		if (mobilav==1) 
 3208: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3209: 		else {
 3210: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3211: 		}
 3212: 	      }
 3213: 	      if (h==(int)(calagedate+12*cpt)){
 3214: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3215: 		  /*fprintf(ficrespop," %.3f", kk1);
 3216: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3217: 	      }
 3218: 	    }
 3219: 	    for(i=1; i<=nlstate;i++){
 3220: 	      kk1=0.;
 3221: 		for(j=1; j<=nlstate;j++){
 3222: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3223: 		}
 3224: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
 3225: 	    }
 3226: 
 3227: 	    if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
 3228: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3229: 	  }
 3230: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3231: 	}
 3232:       }
 3233:  
 3234:   /******/
 3235: 
 3236:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3237: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3238: 	for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
 3239: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3240: 	  nhstepm = nhstepm/hstepm; 
 3241: 	  
 3242: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3243: 	  oldm=oldms;savm=savms;
 3244: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3245: 	  for (h=0; h<=nhstepm; h++){
 3246: 	    if (h==(int) (calagedate+YEARM*cpt)) {
 3247: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3248: 	    } 
 3249: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3250: 	      kk1=0.;kk2=0;
 3251: 	      for(i=1; i<=nlstate;i++) {	      
 3252: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3253: 	      }
 3254: 	      if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3255: 	    }
 3256: 	  }
 3257: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3258: 	}
 3259:       }
 3260:    } 
 3261:   }
 3262:  
 3263:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3264: 
 3265:   if (popforecast==1) {
 3266:     free_ivector(popage,0,AGESUP);
 3267:     free_vector(popeffectif,0,AGESUP);
 3268:     free_vector(popcount,0,AGESUP);
 3269:   }
 3270:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3271:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3272:   fclose(ficrespop);
 3273: }
 3274: 
 3275: /***********************************************/
 3276: /**************** Main Program *****************/
 3277: /***********************************************/
 3278: 
 3279: int main(int argc, char *argv[])
 3280: {
 3281:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 3282:   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
 3283:   double agedeb, agefin,hf;
 3284:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 3285: 
 3286:   double fret;
 3287:   double **xi,tmp,delta;
 3288: 
 3289:   double dum; /* Dummy variable */
 3290:   double ***p3mat;
 3291:   double ***mobaverage;
 3292:   int *indx;
 3293:   char line[MAXLINE], linepar[MAXLINE];
 3294:   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
 3295:   int firstobs=1, lastobs=10;
 3296:   int sdeb, sfin; /* Status at beginning and end */
 3297:   int c,  h , cpt,l;
 3298:   int ju,jl, mi;
 3299:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 3300:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 3301:   int mobilav=0,popforecast=0;
 3302:   int hstepm, nhstepm;
 3303:   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
 3304: 
 3305:   double bage, fage, age, agelim, agebase;
 3306:   double ftolpl=FTOL;
 3307:   double **prlim;
 3308:   double *severity;
 3309:   double ***param; /* Matrix of parameters */
 3310:   double  *p;
 3311:   double **matcov; /* Matrix of covariance */
 3312:   double ***delti3; /* Scale */
 3313:   double *delti; /* Scale */
 3314:   double ***eij, ***vareij;
 3315:   double **varpl; /* Variances of prevalence limits by age */
 3316:   double *epj, vepp;
 3317:   double kk1, kk2;
 3318:   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
 3319: 
 3320:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 3321: 
 3322: 
 3323:   char z[1]="c", occ;
 3324: #include <sys/time.h>
 3325: #include <time.h>
 3326:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 3327:  
 3328:   /* long total_usecs;
 3329:      struct timeval start_time, end_time;
 3330:   
 3331:      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 3332:   getcwd(pathcd, size);
 3333: 
 3334:   printf("\n%s",version);
 3335:   if(argc <=1){
 3336:     printf("\nEnter the parameter file name: ");
 3337:     scanf("%s",pathtot);
 3338:   }
 3339:   else{
 3340:     strcpy(pathtot,argv[1]);
 3341:   }
 3342:   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
 3343:   /*cygwin_split_path(pathtot,path,optionfile);
 3344:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 3345:   /* cutv(path,optionfile,pathtot,'\\');*/
 3346: 
 3347:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 3348:   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3349:   chdir(path);
 3350:   replace(pathc,path);
 3351: 
 3352:   /*-------- arguments in the command line --------*/
 3353: 
 3354:   /* Log file */
 3355:   strcat(filelog, optionfilefiname);
 3356:   strcat(filelog,".log");    /* */
 3357:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 3358:     printf("Problem with logfile %s\n",filelog);
 3359:     goto end;
 3360:   }
 3361:   fprintf(ficlog,"Log filename:%s\n",filelog);
 3362:   fprintf(ficlog,"\n%s",version);
 3363:   fprintf(ficlog,"\nEnter the parameter file name: ");
 3364:   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3365:   fflush(ficlog);
 3366: 
 3367:   /* */
 3368:   strcpy(fileres,"r");
 3369:   strcat(fileres, optionfilefiname);
 3370:   strcat(fileres,".txt");    /* Other files have txt extension */
 3371: 
 3372:   /*---------arguments file --------*/
 3373: 
 3374:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 3375:     printf("Problem with optionfile %s\n",optionfile);
 3376:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 3377:     goto end;
 3378:   }
 3379: 
 3380:   strcpy(filereso,"o");
 3381:   strcat(filereso,fileres);
 3382:   if((ficparo=fopen(filereso,"w"))==NULL) {
 3383:     printf("Problem with Output resultfile: %s\n", filereso);
 3384:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 3385:     goto end;
 3386:   }
 3387: 
 3388:   /* Reads comments: lines beginning with '#' */
 3389:   while((c=getc(ficpar))=='#' && c!= EOF){
 3390:     ungetc(c,ficpar);
 3391:     fgets(line, MAXLINE, ficpar);
 3392:     puts(line);
 3393:     fputs(line,ficparo);
 3394:   }
 3395:   ungetc(c,ficpar);
 3396: 
 3397:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 3398:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 3399:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 3400:   while((c=getc(ficpar))=='#' && c!= EOF){
 3401:     ungetc(c,ficpar);
 3402:     fgets(line, MAXLINE, ficpar);
 3403:     puts(line);
 3404:     fputs(line,ficparo);
 3405:   }
 3406:   ungetc(c,ficpar);
 3407:   
 3408:    
 3409:   covar=matrix(0,NCOVMAX,1,n); 
 3410:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 3411:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 3412: 
 3413:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 3414:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 3415:   
 3416:   /* Read guess parameters */
 3417:   /* Reads comments: lines beginning with '#' */
 3418:   while((c=getc(ficpar))=='#' && c!= EOF){
 3419:     ungetc(c,ficpar);
 3420:     fgets(line, MAXLINE, ficpar);
 3421:     puts(line);
 3422:     fputs(line,ficparo);
 3423:   }
 3424:   ungetc(c,ficpar);
 3425:   
 3426:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 3427:   for(i=1; i <=nlstate; i++)
 3428:     for(j=1; j <=nlstate+ndeath-1; j++){
 3429:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 3430:       fprintf(ficparo,"%1d%1d",i1,j1);
 3431:       if(mle==1)
 3432: 	printf("%1d%1d",i,j);
 3433:       fprintf(ficlog,"%1d%1d",i,j);
 3434:       for(k=1; k<=ncovmodel;k++){
 3435: 	fscanf(ficpar," %lf",&param[i][j][k]);
 3436: 	if(mle==1){
 3437: 	  printf(" %lf",param[i][j][k]);
 3438: 	  fprintf(ficlog," %lf",param[i][j][k]);
 3439: 	}
 3440: 	else
 3441: 	  fprintf(ficlog," %lf",param[i][j][k]);
 3442: 	fprintf(ficparo," %lf",param[i][j][k]);
 3443:       }
 3444:       fscanf(ficpar,"\n");
 3445:       if(mle==1)
 3446: 	printf("\n");
 3447:       fprintf(ficlog,"\n");
 3448:       fprintf(ficparo,"\n");
 3449:     }
 3450:   
 3451:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 3452: 
 3453:   p=param[1][1];
 3454:   
 3455:   /* Reads comments: lines beginning with '#' */
 3456:   while((c=getc(ficpar))=='#' && c!= EOF){
 3457:     ungetc(c,ficpar);
 3458:     fgets(line, MAXLINE, ficpar);
 3459:     puts(line);
 3460:     fputs(line,ficparo);
 3461:   }
 3462:   ungetc(c,ficpar);
 3463: 
 3464:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 3465:   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
 3466:   for(i=1; i <=nlstate; i++){
 3467:     for(j=1; j <=nlstate+ndeath-1; j++){
 3468:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 3469:       printf("%1d%1d",i,j);
 3470:       fprintf(ficparo,"%1d%1d",i1,j1);
 3471:       for(k=1; k<=ncovmodel;k++){
 3472: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 3473: 	printf(" %le",delti3[i][j][k]);
 3474: 	fprintf(ficparo," %le",delti3[i][j][k]);
 3475:       }
 3476:       fscanf(ficpar,"\n");
 3477:       printf("\n");
 3478:       fprintf(ficparo,"\n");
 3479:     }
 3480:   }
 3481:   delti=delti3[1][1];
 3482:   
 3483:   /* Reads comments: lines beginning with '#' */
 3484:   while((c=getc(ficpar))=='#' && c!= EOF){
 3485:     ungetc(c,ficpar);
 3486:     fgets(line, MAXLINE, ficpar);
 3487:     puts(line);
 3488:     fputs(line,ficparo);
 3489:   }
 3490:   ungetc(c,ficpar);
 3491:   
 3492:   matcov=matrix(1,npar,1,npar);
 3493:   for(i=1; i <=npar; i++){
 3494:     fscanf(ficpar,"%s",&str);
 3495:     if(mle==1)
 3496:       printf("%s",str);
 3497:     fprintf(ficlog,"%s",str);
 3498:     fprintf(ficparo,"%s",str);
 3499:     for(j=1; j <=i; j++){
 3500:       fscanf(ficpar," %le",&matcov[i][j]);
 3501:       if(mle==1){
 3502: 	printf(" %.5le",matcov[i][j]);
 3503: 	fprintf(ficlog," %.5le",matcov[i][j]);
 3504:       }
 3505:       else
 3506: 	fprintf(ficlog," %.5le",matcov[i][j]);
 3507:       fprintf(ficparo," %.5le",matcov[i][j]);
 3508:     }
 3509:     fscanf(ficpar,"\n");
 3510:     if(mle==1)
 3511:       printf("\n");
 3512:     fprintf(ficlog,"\n");
 3513:     fprintf(ficparo,"\n");
 3514:   }
 3515:   for(i=1; i <=npar; i++)
 3516:     for(j=i+1;j<=npar;j++)
 3517:       matcov[i][j]=matcov[j][i];
 3518:    
 3519:   if(mle==1)
 3520:     printf("\n");
 3521:   fprintf(ficlog,"\n");
 3522: 
 3523: 
 3524:   /*-------- Rewriting paramater file ----------*/
 3525:   strcpy(rfileres,"r");    /* "Rparameterfile */
 3526:   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 3527:   strcat(rfileres,".");    /* */
 3528:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
 3529:   if((ficres =fopen(rfileres,"w"))==NULL) {
 3530:     printf("Problem writing new parameter file: %s\n", fileres);goto end;
 3531:     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 3532:   }
 3533:   fprintf(ficres,"#%s\n",version);
 3534:     
 3535:   /*-------- data file ----------*/
 3536:   if((fic=fopen(datafile,"r"))==NULL)    {
 3537:     printf("Problem with datafile: %s\n", datafile);goto end;
 3538:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 3539:   }
 3540: 
 3541:   n= lastobs;
 3542:   severity = vector(1,maxwav);
 3543:   outcome=imatrix(1,maxwav+1,1,n);
 3544:   num=ivector(1,n);
 3545:   moisnais=vector(1,n);
 3546:   annais=vector(1,n);
 3547:   moisdc=vector(1,n);
 3548:   andc=vector(1,n);
 3549:   agedc=vector(1,n);
 3550:   cod=ivector(1,n);
 3551:   weight=vector(1,n);
 3552:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 3553:   mint=matrix(1,maxwav,1,n);
 3554:   anint=matrix(1,maxwav,1,n);
 3555:   s=imatrix(1,maxwav+1,1,n);
 3556:   tab=ivector(1,NCOVMAX);
 3557:   ncodemax=ivector(1,8);
 3558: 
 3559:   i=1;
 3560:   while (fgets(line, MAXLINE, fic) != NULL)    {
 3561:     if ((i >= firstobs) && (i <=lastobs)) {
 3562: 	
 3563:       for (j=maxwav;j>=1;j--){
 3564: 	cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 3565: 	strcpy(line,stra);
 3566: 	cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3567: 	cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3568:       }
 3569: 	
 3570:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 3571:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 3572: 
 3573:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 3574:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 3575: 
 3576:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 3577:       for (j=ncovcol;j>=1;j--){
 3578: 	cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 3579:       } 
 3580:       num[i]=atol(stra);
 3581: 	
 3582:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 3583: 	printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 3584: 
 3585:       i=i+1;
 3586:     }
 3587:   }
 3588:   /* printf("ii=%d", ij);
 3589:      scanf("%d",i);*/
 3590:   imx=i-1; /* Number of individuals */
 3591: 
 3592:   /* for (i=1; i<=imx; i++){
 3593:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 3594:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 3595:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 3596:     }*/
 3597:    /*  for (i=1; i<=imx; i++){
 3598:      if (s[4][i]==9)  s[4][i]=-1; 
 3599:      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 3600:   
 3601:  
 3602:   /* Calculation of the number of parameter from char model*/
 3603:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 3604:   Tprod=ivector(1,15); 
 3605:   Tvaraff=ivector(1,15); 
 3606:   Tvard=imatrix(1,15,1,2);
 3607:   Tage=ivector(1,15);      
 3608:    
 3609:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 3610:     j=0, j1=0, k1=1, k2=1;
 3611:     j=nbocc(model,'+'); /* j=Number of '+' */
 3612:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 3613:     cptcovn=j+1; 
 3614:     cptcovprod=j1; /*Number of products */
 3615:     
 3616:     strcpy(modelsav,model); 
 3617:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 3618:       printf("Error. Non available option model=%s ",model);
 3619:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 3620:       goto end;
 3621:     }
 3622:     
 3623:     /* This loop fills the array Tvar from the string 'model'.*/
 3624: 
 3625:     for(i=(j+1); i>=1;i--){
 3626:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 3627:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 3628:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 3629:       /*scanf("%d",i);*/
 3630:       if (strchr(strb,'*')) {  /* Model includes a product */
 3631: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 3632: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 3633: 	  cptcovprod--;
 3634: 	  cutv(strb,stre,strd,'V');
 3635: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 3636: 	  cptcovage++;
 3637: 	    Tage[cptcovage]=i;
 3638: 	    /*printf("stre=%s ", stre);*/
 3639: 	}
 3640: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 3641: 	  cptcovprod--;
 3642: 	  cutv(strb,stre,strc,'V');
 3643: 	  Tvar[i]=atoi(stre);
 3644: 	  cptcovage++;
 3645: 	  Tage[cptcovage]=i;
 3646: 	}
 3647: 	else {  /* Age is not in the model */
 3648: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 3649: 	  Tvar[i]=ncovcol+k1;
 3650: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 3651: 	  Tprod[k1]=i;
 3652: 	  Tvard[k1][1]=atoi(strc); /* m*/
 3653: 	  Tvard[k1][2]=atoi(stre); /* n */
 3654: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 3655: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 3656: 	  for (k=1; k<=lastobs;k++) 
 3657: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 3658: 	  k1++;
 3659: 	  k2=k2+2;
 3660: 	}
 3661:       }
 3662:       else { /* no more sum */
 3663: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 3664:        /*  scanf("%d",i);*/
 3665:       cutv(strd,strc,strb,'V');
 3666:       Tvar[i]=atoi(strc);
 3667:       }
 3668:       strcpy(modelsav,stra);  
 3669:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 3670: 	scanf("%d",i);*/
 3671:     } /* end of loop + */
 3672:   } /* end model */
 3673:   
 3674:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 3675:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 3676: 
 3677:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 3678:   printf("cptcovprod=%d ", cptcovprod);
 3679:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 3680: 
 3681:   scanf("%d ",i);
 3682:   fclose(fic);*/
 3683: 
 3684:     /*  if(mle==1){*/
 3685:   if (weightopt != 1) { /* Maximisation without weights*/
 3686:     for(i=1;i<=n;i++) weight[i]=1.0;
 3687:   }
 3688:     /*-calculation of age at interview from date of interview and age at death -*/
 3689:   agev=matrix(1,maxwav,1,imx);
 3690: 
 3691:   for (i=1; i<=imx; i++) {
 3692:     for(m=2; (m<= maxwav); m++) {
 3693:       if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
 3694: 	anint[m][i]=9999;
 3695: 	s[m][i]=-1;
 3696:       }
 3697:       if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
 3698:     }
 3699:   }
 3700: 
 3701:   for (i=1; i<=imx; i++)  {
 3702:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 3703:     for(m=1; (m<= maxwav); m++){
 3704:       if(s[m][i] >0){
 3705: 	if (s[m][i] >= nlstate+1) {
 3706: 	  if(agedc[i]>0)
 3707: 	    if(moisdc[i]!=99 && andc[i]!=9999)
 3708: 	      agev[m][i]=agedc[i];
 3709: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 3710: 	    else {
 3711: 	      if (andc[i]!=9999){
 3712: 		printf("Warning negative age at death: %d line:%d\n",num[i],i);
 3713: 		fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
 3714: 		agev[m][i]=-1;
 3715: 	      }
 3716: 	    }
 3717: 	}
 3718: 	else if(s[m][i] !=9){ /* Should no more exist */
 3719: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 3720: 	  if(mint[m][i]==99 || anint[m][i]==9999)
 3721: 	    agev[m][i]=1;
 3722: 	  else if(agev[m][i] <agemin){ 
 3723: 	    agemin=agev[m][i];
 3724: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 3725: 	  }
 3726: 	  else if(agev[m][i] >agemax){
 3727: 	    agemax=agev[m][i];
 3728: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 3729: 	  }
 3730: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 3731: 	  /*	 agev[m][i] = age[i]+2*m;*/
 3732: 	}
 3733: 	else { /* =9 */
 3734: 	  agev[m][i]=1;
 3735: 	  s[m][i]=-1;
 3736: 	}
 3737:       }
 3738:       else /*= 0 Unknown */
 3739: 	agev[m][i]=1;
 3740:     }
 3741:     
 3742:   }
 3743:   for (i=1; i<=imx; i++)  {
 3744:     for(m=1; (m<= maxwav); m++){
 3745:       if (s[m][i] > (nlstate+ndeath)) {
 3746: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 3747: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 3748: 	goto end;
 3749:       }
 3750:     }
 3751:   }
 3752: 
 3753:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 3754:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 3755: 
 3756:   free_vector(severity,1,maxwav);
 3757:   free_imatrix(outcome,1,maxwav+1,1,n);
 3758:   free_vector(moisnais,1,n);
 3759:   free_vector(annais,1,n);
 3760:   /* free_matrix(mint,1,maxwav,1,n);
 3761:      free_matrix(anint,1,maxwav,1,n);*/
 3762:   free_vector(moisdc,1,n);
 3763:   free_vector(andc,1,n);
 3764: 
 3765:    
 3766:   wav=ivector(1,imx);
 3767:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 3768:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 3769:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 3770:    
 3771:   /* Concatenates waves */
 3772:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 3773: 
 3774:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 3775: 
 3776:   Tcode=ivector(1,100);
 3777:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 3778:   ncodemax[1]=1;
 3779:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 3780:       
 3781:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 3782: 				 the estimations*/
 3783:   h=0;
 3784:   m=pow(2,cptcoveff);
 3785:  
 3786:   for(k=1;k<=cptcoveff; k++){
 3787:     for(i=1; i <=(m/pow(2,k));i++){
 3788:       for(j=1; j <= ncodemax[k]; j++){
 3789: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 3790: 	  h++;
 3791: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 3792: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 3793: 	} 
 3794:       }
 3795:     }
 3796:   } 
 3797:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 3798:      codtab[1][2]=1;codtab[2][2]=2; */
 3799:   /* for(i=1; i <=m ;i++){ 
 3800:      for(k=1; k <=cptcovn; k++){
 3801:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 3802:      }
 3803:      printf("\n");
 3804:      }
 3805:      scanf("%d",i);*/
 3806:     
 3807:   /* Calculates basic frequencies. Computes observed prevalence at single age
 3808:      and prints on file fileres'p'. */
 3809: 
 3810:     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3811:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3812:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3813:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 3814:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 3815:     
 3816:    
 3817:   /* For Powell, parameters are in a vector p[] starting at p[1]
 3818:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 3819:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 3820: 
 3821:   if(mle>=1){ /* Could be 1 or 2 */
 3822:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 3823:   }
 3824:     
 3825:   /*--------- results files --------------*/
 3826:   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 3827:   
 3828: 
 3829:   jk=1;
 3830:   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3831:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3832:   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3833:   for(i=1,jk=1; i <=nlstate; i++){
 3834:     for(k=1; k <=(nlstate+ndeath); k++){
 3835:       if (k != i) 
 3836: 	{
 3837: 	  printf("%d%d ",i,k);
 3838: 	  fprintf(ficlog,"%d%d ",i,k);
 3839: 	  fprintf(ficres,"%1d%1d ",i,k);
 3840: 	  for(j=1; j <=ncovmodel; j++){
 3841: 	    printf("%f ",p[jk]);
 3842: 	    fprintf(ficlog,"%f ",p[jk]);
 3843: 	    fprintf(ficres,"%f ",p[jk]);
 3844: 	    jk++; 
 3845: 	  }
 3846: 	  printf("\n");
 3847: 	  fprintf(ficlog,"\n");
 3848: 	  fprintf(ficres,"\n");
 3849: 	}
 3850:     }
 3851:   }
 3852:   if(mle==1){
 3853:     /* Computing hessian and covariance matrix */
 3854:     ftolhess=ftol; /* Usually correct */
 3855:     hesscov(matcov, p, npar, delti, ftolhess, func);
 3856:   }
 3857:   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 3858:   printf("# Scales (for hessian or gradient estimation)\n");
 3859:   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 3860:   for(i=1,jk=1; i <=nlstate; i++){
 3861:     for(j=1; j <=nlstate+ndeath; j++){
 3862:       if (j!=i) {
 3863: 	fprintf(ficres,"%1d%1d",i,j);
 3864: 	printf("%1d%1d",i,j);
 3865: 	fprintf(ficlog,"%1d%1d",i,j);
 3866: 	for(k=1; k<=ncovmodel;k++){
 3867: 	  printf(" %.5e",delti[jk]);
 3868: 	  fprintf(ficlog," %.5e",delti[jk]);
 3869: 	  fprintf(ficres," %.5e",delti[jk]);
 3870: 	  jk++;
 3871: 	}
 3872: 	printf("\n");
 3873: 	fprintf(ficlog,"\n");
 3874: 	fprintf(ficres,"\n");
 3875:       }
 3876:     }
 3877:   }
 3878:    
 3879:   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3880:   if(mle==1)
 3881:     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3882:   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 3883:   for(i=1,k=1;i<=npar;i++){
 3884:     /*  if (k>nlstate) k=1;
 3885: 	i1=(i-1)/(ncovmodel*nlstate)+1; 
 3886: 	fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 3887: 	printf("%s%d%d",alph[k],i1,tab[i]);
 3888:     */
 3889:     fprintf(ficres,"%3d",i);
 3890:     if(mle==1)
 3891:       printf("%3d",i);
 3892:     fprintf(ficlog,"%3d",i);
 3893:     for(j=1; j<=i;j++){
 3894:       fprintf(ficres," %.5e",matcov[i][j]);
 3895:       if(mle==1)
 3896: 	printf(" %.5e",matcov[i][j]);
 3897:       fprintf(ficlog," %.5e",matcov[i][j]);
 3898:     }
 3899:     fprintf(ficres,"\n");
 3900:     if(mle==1)
 3901:       printf("\n");
 3902:     fprintf(ficlog,"\n");
 3903:     k++;
 3904:   }
 3905:    
 3906:   while((c=getc(ficpar))=='#' && c!= EOF){
 3907:     ungetc(c,ficpar);
 3908:     fgets(line, MAXLINE, ficpar);
 3909:     puts(line);
 3910:     fputs(line,ficparo);
 3911:   }
 3912:   ungetc(c,ficpar);
 3913: 
 3914:   estepm=0;
 3915:   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 3916:   if (estepm==0 || estepm < stepm) estepm=stepm;
 3917:   if (fage <= 2) {
 3918:     bage = ageminpar;
 3919:     fage = agemaxpar;
 3920:   }
 3921:    
 3922:   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 3923:   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 3924:   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 3925:    
 3926:   while((c=getc(ficpar))=='#' && c!= EOF){
 3927:     ungetc(c,ficpar);
 3928:     fgets(line, MAXLINE, ficpar);
 3929:     puts(line);
 3930:     fputs(line,ficparo);
 3931:   }
 3932:   ungetc(c,ficpar);
 3933:   
 3934:   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 3935:   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 3936:   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 3937:    
 3938:   while((c=getc(ficpar))=='#' && c!= EOF){
 3939:     ungetc(c,ficpar);
 3940:     fgets(line, MAXLINE, ficpar);
 3941:     puts(line);
 3942:     fputs(line,ficparo);
 3943:   }
 3944:   ungetc(c,ficpar);
 3945:  
 3946: 
 3947:   dateprev1=anprev1+mprev1/12.+jprev1/365.;
 3948:   dateprev2=anprev2+mprev2/12.+jprev2/365.;
 3949: 
 3950:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 3951:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 3952:   fprintf(ficres,"pop_based=%d\n",popbased);   
 3953:   
 3954:   while((c=getc(ficpar))=='#' && c!= EOF){
 3955:     ungetc(c,ficpar);
 3956:     fgets(line, MAXLINE, ficpar);
 3957:     puts(line);
 3958:     fputs(line,ficparo);
 3959:   }
 3960:   ungetc(c,ficpar);
 3961: 
 3962:   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
 3963:   fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
 3964:   fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
 3965: 
 3966: 
 3967:   while((c=getc(ficpar))=='#' && c!= EOF){
 3968:     ungetc(c,ficpar);
 3969:     fgets(line, MAXLINE, ficpar);
 3970:     puts(line);
 3971:     fputs(line,ficparo);
 3972:   }
 3973:   ungetc(c,ficpar);
 3974: 
 3975:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 3976:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3977:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 3978: 
 3979:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
 3980: 
 3981:   /*------------ gnuplot -------------*/
 3982:   strcpy(optionfilegnuplot,optionfilefiname);
 3983:   strcat(optionfilegnuplot,".gp");
 3984:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 3985:     printf("Problem with file %s",optionfilegnuplot);
 3986:   }
 3987:   else{
 3988:     fprintf(ficgp,"\n# %s\n", version); 
 3989:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 3990:     fprintf(ficgp,"set missing 'NaNq'\n");
 3991:   }
 3992:   fclose(ficgp);
 3993:   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
 3994:   /*--------- index.htm --------*/
 3995: 
 3996:   strcpy(optionfilehtm,optionfile);
 3997:   strcat(optionfilehtm,".htm");
 3998:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 3999:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4000:   }
 4001: 
 4002:   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
 4003: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
 4004: \n
 4005: Total number of observations=%d <br>\n
 4006: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
 4007: <hr  size=\"2\" color=\"#EC5E5E\">
 4008:  <ul><li><h4>Parameter files</h4>\n
 4009:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
 4010:  - Log file of the run: <a href=\"%s\">%s</a><br>\n
 4011:  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
 4012:   fclose(fichtm);
 4013: 
 4014:   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 4015:  
 4016:   /*------------ free_vector  -------------*/
 4017:   chdir(path);
 4018:  
 4019:   free_ivector(wav,1,imx);
 4020:   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 4021:   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 4022:   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 4023:   free_ivector(num,1,n);
 4024:   free_vector(agedc,1,n);
 4025:   /*free_matrix(covar,0,NCOVMAX,1,n);*/
 4026:   /*free_matrix(covar,1,NCOVMAX,1,n);*/
 4027:   fclose(ficparo);
 4028:   fclose(ficres);
 4029: 
 4030: 
 4031:   /*--------------- Prevalence limit  (stable prevalence) --------------*/
 4032:   
 4033:   strcpy(filerespl,"pl");
 4034:   strcat(filerespl,fileres);
 4035:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 4036:     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4037:     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4038:   }
 4039:   printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 4040:   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 4041:   fprintf(ficrespl,"#Stable prevalence \n");
 4042:   fprintf(ficrespl,"#Age ");
 4043:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 4044:   fprintf(ficrespl,"\n");
 4045:   
 4046:   prlim=matrix(1,nlstate,1,nlstate);
 4047: 
 4048:   agebase=ageminpar;
 4049:   agelim=agemaxpar;
 4050:   ftolpl=1.e-10;
 4051:   i1=cptcoveff;
 4052:   if (cptcovn < 1){i1=1;}
 4053: 
 4054:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4055:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4056:       k=k+1;
 4057:       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 4058:       fprintf(ficrespl,"\n#******");
 4059:       printf("\n#******");
 4060:       fprintf(ficlog,"\n#******");
 4061:       for(j=1;j<=cptcoveff;j++) {
 4062: 	fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4063: 	printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4064: 	fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4065:       }
 4066:       fprintf(ficrespl,"******\n");
 4067:       printf("******\n");
 4068:       fprintf(ficlog,"******\n");
 4069: 	
 4070:       for (age=agebase; age<=agelim; age++){
 4071: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4072: 	fprintf(ficrespl,"%.0f",age );
 4073: 	for(i=1; i<=nlstate;i++)
 4074: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 4075: 	fprintf(ficrespl,"\n");
 4076:       }
 4077:     }
 4078:   }
 4079:   fclose(ficrespl);
 4080: 
 4081:   /*------------- h Pij x at various ages ------------*/
 4082:   
 4083:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 4084:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 4085:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 4086:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 4087:   }
 4088:   printf("Computing pij: result on file '%s' \n", filerespij);
 4089:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 4090:   
 4091:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4092:   /*if (stepm<=24) stepsize=2;*/
 4093: 
 4094:   agelim=AGESUP;
 4095:   hstepm=stepsize*YEARM; /* Every year of age */
 4096:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 4097: 
 4098:   /* hstepm=1;   aff par mois*/
 4099: 
 4100:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4101:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4102:       k=k+1;
 4103:       fprintf(ficrespij,"\n#****** ");
 4104:       for(j=1;j<=cptcoveff;j++) 
 4105: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4106:       fprintf(ficrespij,"******\n");
 4107: 	
 4108:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 4109: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4110: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4111: 
 4112: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 4113: 
 4114: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4115: 	oldm=oldms;savm=savms;
 4116: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4117: 	fprintf(ficrespij,"# Age");
 4118: 	for(i=1; i<=nlstate;i++)
 4119: 	  for(j=1; j<=nlstate+ndeath;j++)
 4120: 	    fprintf(ficrespij," %1d-%1d",i,j);
 4121: 	fprintf(ficrespij,"\n");
 4122: 	for (h=0; h<=nhstepm; h++){
 4123: 	  fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 4124: 	  for(i=1; i<=nlstate;i++)
 4125: 	    for(j=1; j<=nlstate+ndeath;j++)
 4126: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 4127: 	  fprintf(ficrespij,"\n");
 4128: 	}
 4129: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4130: 	fprintf(ficrespij,"\n");
 4131:       }
 4132:     }
 4133:   }
 4134: 
 4135:   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
 4136: 
 4137:   fclose(ficrespij);
 4138: 
 4139: 
 4140:   /*---------- Forecasting ------------------*/
 4141:   if((stepm == 1) && (strcmp(model,".")==0)){
 4142:     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
 4143:     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
 4144:   } 
 4145:   else{
 4146:     erreur=108;
 4147:     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
 4148:     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
 4149:   }
 4150:   
 4151: 
 4152:   /*---------- Health expectancies and variances ------------*/
 4153: 
 4154:   strcpy(filerest,"t");
 4155:   strcat(filerest,fileres);
 4156:   if((ficrest=fopen(filerest,"w"))==NULL) {
 4157:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 4158:     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 4159:   }
 4160:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 4161:   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 4162: 
 4163: 
 4164:   strcpy(filerese,"e");
 4165:   strcat(filerese,fileres);
 4166:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 4167:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4168:     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4169:   }
 4170:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 4171:   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 4172: 
 4173:   strcpy(fileresv,"v");
 4174:   strcat(fileresv,fileres);
 4175:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 4176:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 4177:     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 4178:   }
 4179:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4180:   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4181: 
 4182:   calagedate=-1;
 4183: 
 4184:   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
 4185: 
 4186:   if (mobilav!=0) {
 4187:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4188:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 4189:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4190:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4191:     }
 4192:   }
 4193: 
 4194:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4195:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4196:       k=k+1; 
 4197:       fprintf(ficrest,"\n#****** ");
 4198:       for(j=1;j<=cptcoveff;j++) 
 4199: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4200:       fprintf(ficrest,"******\n");
 4201: 
 4202:       fprintf(ficreseij,"\n#****** ");
 4203:       for(j=1;j<=cptcoveff;j++) 
 4204: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4205:       fprintf(ficreseij,"******\n");
 4206: 
 4207:       fprintf(ficresvij,"\n#****** ");
 4208:       for(j=1;j<=cptcoveff;j++) 
 4209: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4210:       fprintf(ficresvij,"******\n");
 4211: 
 4212:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4213:       oldm=oldms;savm=savms;
 4214:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 4215:  
 4216:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4217:       oldm=oldms;savm=savms;
 4218:       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 4219:       if(popbased==1){
 4220: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 4221:       }
 4222: 
 4223:  
 4224:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 4225:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 4226:       fprintf(ficrest,"\n");
 4227: 
 4228:       epj=vector(1,nlstate+1);
 4229:       for(age=bage; age <=fage ;age++){
 4230: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4231: 	if (popbased==1) {
 4232: 	  if(mobilav ==0){
 4233: 	    for(i=1; i<=nlstate;i++)
 4234: 	      prlim[i][i]=probs[(int)age][i][k];
 4235: 	  }else{ /* mobilav */ 
 4236: 	    for(i=1; i<=nlstate;i++)
 4237: 	      prlim[i][i]=mobaverage[(int)age][i][k];
 4238: 	  }
 4239: 	}
 4240: 	
 4241: 	fprintf(ficrest," %4.0f",age);
 4242: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 4243: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 4244: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 4245: 	    /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 4246: 	  }
 4247: 	  epj[nlstate+1] +=epj[j];
 4248: 	}
 4249: 
 4250: 	for(i=1, vepp=0.;i <=nlstate;i++)
 4251: 	  for(j=1;j <=nlstate;j++)
 4252: 	    vepp += vareij[i][j][(int)age];
 4253: 	fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 4254: 	for(j=1;j <=nlstate;j++){
 4255: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 4256: 	}
 4257: 	fprintf(ficrest,"\n");
 4258:       }
 4259:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 4260:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 4261:       free_vector(epj,1,nlstate+1);
 4262:     }
 4263:   }
 4264:   free_vector(weight,1,n);
 4265:   free_imatrix(Tvard,1,15,1,2);
 4266:   free_imatrix(s,1,maxwav+1,1,n);
 4267:   free_matrix(anint,1,maxwav,1,n); 
 4268:   free_matrix(mint,1,maxwav,1,n);
 4269:   free_ivector(cod,1,n);
 4270:   free_ivector(tab,1,NCOVMAX);
 4271:   fclose(ficreseij);
 4272:   fclose(ficresvij);
 4273:   fclose(ficrest);
 4274:   fclose(ficpar);
 4275:   
 4276:   /*------- Variance of stable prevalence------*/   
 4277: 
 4278:   strcpy(fileresvpl,"vpl");
 4279:   strcat(fileresvpl,fileres);
 4280:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 4281:     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 4282:     exit(0);
 4283:   }
 4284:   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 4285: 
 4286:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4287:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4288:       k=k+1;
 4289:       fprintf(ficresvpl,"\n#****** ");
 4290:       for(j=1;j<=cptcoveff;j++) 
 4291: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4292:       fprintf(ficresvpl,"******\n");
 4293:       
 4294:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 4295:       oldm=oldms;savm=savms;
 4296:       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 4297:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 4298:     }
 4299:   }
 4300: 
 4301:   fclose(ficresvpl);
 4302: 
 4303:   /*---------- End : free ----------------*/
 4304:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 4305:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4306:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4307:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 4308:   
 4309:   free_matrix(covar,0,NCOVMAX,1,n);
 4310:   free_matrix(matcov,1,npar,1,npar);
 4311:   free_vector(delti,1,npar);
 4312:   free_matrix(agev,1,maxwav,1,imx);
 4313:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 4314:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4315:   free_ivector(ncodemax,1,8);
 4316:   free_ivector(Tvar,1,15);
 4317:   free_ivector(Tprod,1,15);
 4318:   free_ivector(Tvaraff,1,15);
 4319:   free_ivector(Tage,1,15);
 4320:   free_ivector(Tcode,1,100);
 4321: 
 4322:   fprintf(fichtm,"\n</body>");
 4323:   fclose(fichtm);
 4324:   fclose(ficgp);
 4325:   
 4326: 
 4327:   if(erreur >0){
 4328:     printf("End of Imach with error or warning %d\n",erreur);
 4329:     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
 4330:   }else{
 4331:    printf("End of Imach\n");
 4332:    fprintf(ficlog,"End of Imach\n");
 4333:   }
 4334:   printf("See log file on %s\n",filelog);
 4335:   fclose(ficlog);
 4336:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 4337:   
 4338:   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
 4339:   /*printf("Total time was %d uSec.\n", total_usecs);*/
 4340:   /*------ End -----------*/
 4341: 
 4342:   end:
 4343: #ifdef windows
 4344:   /* chdir(pathcd);*/
 4345: #endif 
 4346:  /*system("wgnuplot graph.plt");*/
 4347:  /*system("../gp37mgw/wgnuplot graph.plt");*/
 4348:  /*system("cd ../gp37mgw");*/
 4349:  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
 4350:   strcpy(plotcmd,GNUPLOTPROGRAM);
 4351:   strcat(plotcmd," ");
 4352:   strcat(plotcmd,optionfilegnuplot);
 4353:   printf("Starting: %s\n",plotcmd);fflush(stdout);
 4354:   system(plotcmd);
 4355: 
 4356:  /*#ifdef windows*/
 4357:   while (z[0] != 'q') {
 4358:     /* chdir(path); */
 4359:     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
 4360:     scanf("%s",z);
 4361:     if (z[0] == 'c') system("./imach");
 4362:     else if (z[0] == 'e') system(optionfilehtm);
 4363:     else if (z[0] == 'g') system(plotcmd);
 4364:     else if (z[0] == 'q') exit(0);
 4365:   }
 4366:   /*#endif */
 4367: }
 4368: 
 4369: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>