File:  [Local Repository] / imach / src / imach.c
Revision 1.92: download - view: text, annotated - select for diffs
Wed Jun 25 16:30:45 2003 UTC (20 years, 11 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
(Module): On windows (cygwin) function asctime_r doesn't
exist so I changed back to asctime which exists.

    1: /* $Id: imach.c,v 1.92 2003/06/25 16:30:45 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.92  2003/06/25 16:30:45  brouard
    5:   (Module): On windows (cygwin) function asctime_r doesn't
    6:   exist so I changed back to asctime which exists.
    7: 
    8:   Revision 1.91  2003/06/25 15:30:29  brouard
    9:   * imach.c (Repository): Duplicated warning errors corrected.
   10:   (Repository): Elapsed time after each iteration is now output. It
   11:   helps to forecast when convergence will be reached. Elapsed time
   12:   is stamped in powell.  We created a new html file for the graphs
   13:   concerning matrix of covariance. It has extension -cov.htm.
   14: 
   15:   Revision 1.90  2003/06/24 12:34:15  brouard
   16:   (Module): Some bugs corrected for windows. Also, when
   17:   mle=-1 a template is output in file "or"mypar.txt with the design
   18:   of the covariance matrix to be input.
   19: 
   20:   Revision 1.89  2003/06/24 12:30:52  brouard
   21:   (Module): Some bugs corrected for windows. Also, when
   22:   mle=-1 a template is output in file "or"mypar.txt with the design
   23:   of the covariance matrix to be input.
   24: 
   25:   Revision 1.88  2003/06/23 17:54:56  brouard
   26:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   27: 
   28:   Revision 1.87  2003/06/18 12:26:01  brouard
   29:   Version 0.96
   30: 
   31:   Revision 1.86  2003/06/17 20:04:08  brouard
   32:   (Module): Change position of html and gnuplot routines and added
   33:   routine fileappend.
   34: 
   35:   Revision 1.85  2003/06/17 13:12:43  brouard
   36:   * imach.c (Repository): Check when date of death was earlier that
   37:   current date of interview. It may happen when the death was just
   38:   prior to the death. In this case, dh was negative and likelihood
   39:   was wrong (infinity). We still send an "Error" but patch by
   40:   assuming that the date of death was just one stepm after the
   41:   interview.
   42:   (Repository): Because some people have very long ID (first column)
   43:   we changed int to long in num[] and we added a new lvector for
   44:   memory allocation. But we also truncated to 8 characters (left
   45:   truncation)
   46:   (Repository): No more line truncation errors.
   47: 
   48:   Revision 1.84  2003/06/13 21:44:43  brouard
   49:   * imach.c (Repository): Replace "freqsummary" at a correct
   50:   place. It differs from routine "prevalence" which may be called
   51:   many times. Probs is memory consuming and must be used with
   52:   parcimony.
   53:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   54: 
   55:   Revision 1.83  2003/06/10 13:39:11  lievre
   56:   *** empty log message ***
   57: 
   58:   Revision 1.82  2003/06/05 15:57:20  brouard
   59:   Add log in  imach.c and  fullversion number is now printed.
   60: 
   61: */
   62: /*
   63:    Interpolated Markov Chain
   64: 
   65:   Short summary of the programme:
   66:   
   67:   This program computes Healthy Life Expectancies from
   68:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   69:   first survey ("cross") where individuals from different ages are
   70:   interviewed on their health status or degree of disability (in the
   71:   case of a health survey which is our main interest) -2- at least a
   72:   second wave of interviews ("longitudinal") which measure each change
   73:   (if any) in individual health status.  Health expectancies are
   74:   computed from the time spent in each health state according to a
   75:   model. More health states you consider, more time is necessary to reach the
   76:   Maximum Likelihood of the parameters involved in the model.  The
   77:   simplest model is the multinomial logistic model where pij is the
   78:   probability to be observed in state j at the second wave
   79:   conditional to be observed in state i at the first wave. Therefore
   80:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   81:   'age' is age and 'sex' is a covariate. If you want to have a more
   82:   complex model than "constant and age", you should modify the program
   83:   where the markup *Covariates have to be included here again* invites
   84:   you to do it.  More covariates you add, slower the
   85:   convergence.
   86: 
   87:   The advantage of this computer programme, compared to a simple
   88:   multinomial logistic model, is clear when the delay between waves is not
   89:   identical for each individual. Also, if a individual missed an
   90:   intermediate interview, the information is lost, but taken into
   91:   account using an interpolation or extrapolation.  
   92: 
   93:   hPijx is the probability to be observed in state i at age x+h
   94:   conditional to the observed state i at age x. The delay 'h' can be
   95:   split into an exact number (nh*stepm) of unobserved intermediate
   96:   states. This elementary transition (by month, quarter,
   97:   semester or year) is modelled as a multinomial logistic.  The hPx
   98:   matrix is simply the matrix product of nh*stepm elementary matrices
   99:   and the contribution of each individual to the likelihood is simply
  100:   hPijx.
  101: 
  102:   Also this programme outputs the covariance matrix of the parameters but also
  103:   of the life expectancies. It also computes the stable prevalence. 
  104:   
  105:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  106:            Institut national d'études démographiques, Paris.
  107:   This software have been partly granted by Euro-REVES, a concerted action
  108:   from the European Union.
  109:   It is copyrighted identically to a GNU software product, ie programme and
  110:   software can be distributed freely for non commercial use. Latest version
  111:   can be accessed at http://euroreves.ined.fr/imach .
  112: 
  113:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  114:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  115:   
  116:   **********************************************************************/
  117: /*
  118:   main
  119:   read parameterfile
  120:   read datafile
  121:   concatwav
  122:   freqsummary
  123:   if (mle >= 1)
  124:     mlikeli
  125:   print results files
  126:   if mle==1 
  127:      computes hessian
  128:   read end of parameter file: agemin, agemax, bage, fage, estepm
  129:       begin-prev-date,...
  130:   open gnuplot file
  131:   open html file
  132:   stable prevalence
  133:    for age prevalim()
  134:   h Pij x
  135:   variance of p varprob
  136:   forecasting if prevfcast==1 prevforecast call prevalence()
  137:   health expectancies
  138:   Variance-covariance of DFLE
  139:   prevalence()
  140:    movingaverage()
  141:   varevsij() 
  142:   if popbased==1 varevsij(,popbased)
  143:   total life expectancies
  144:   Variance of stable prevalence
  145:  end
  146: */
  147: 
  148: 
  149: 
  150:  
  151: #include <math.h>
  152: #include <stdio.h>
  153: #include <stdlib.h>
  154: #include <unistd.h>
  155: 
  156: #include <sys/time.h>
  157: #include <time.h>
  158: #include "timeval.h"
  159: 
  160: #define MAXLINE 256
  161: #define GNUPLOTPROGRAM "gnuplot"
  162: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  163: #define FILENAMELENGTH 132
  164: /*#define DEBUG*/
  165: /*#define windows*/
  166: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  167: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  168: 
  169: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  170: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  171: 
  172: #define NINTERVMAX 8
  173: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  174: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  175: #define NCOVMAX 8 /* Maximum number of covariates */
  176: #define MAXN 20000
  177: #define YEARM 12. /* Number of months per year */
  178: #define AGESUP 130
  179: #define AGEBASE 40
  180: #ifdef unix
  181: #define DIRSEPARATOR '/'
  182: #define ODIRSEPARATOR '\\'
  183: #else
  184: #define DIRSEPARATOR '\\'
  185: #define ODIRSEPARATOR '/'
  186: #endif
  187: 
  188: /* $Id: imach.c,v 1.92 2003/06/25 16:30:45 brouard Exp $ */
  189: /* $State: Exp $ */
  190: 
  191: char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
  192: char fullversion[]="$Revision: 1.92 $ $Date: 2003/06/25 16:30:45 $"; 
  193: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  194: int nvar;
  195: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  196: int npar=NPARMAX;
  197: int nlstate=2; /* Number of live states */
  198: int ndeath=1; /* Number of dead states */
  199: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  200: int popbased=0;
  201: 
  202: int *wav; /* Number of waves for this individuual 0 is possible */
  203: int maxwav; /* Maxim number of waves */
  204: int jmin, jmax; /* min, max spacing between 2 waves */
  205: int gipmx, gsw; /* Global variables on the number of contributions 
  206: 		   to the likelihood and the sum of weights (done by funcone)*/
  207: int mle, weightopt;
  208: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  209: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  210: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  211: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  212: double jmean; /* Mean space between 2 waves */
  213: double **oldm, **newm, **savm; /* Working pointers to matrices */
  214: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  215: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  216: FILE *ficlog, *ficrespow;
  217: int globpr; /* Global variable for printing or not */
  218: double fretone; /* Only one call to likelihood */
  219: long ipmx; /* Number of contributions */
  220: double sw; /* Sum of weights */
  221: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  222: FILE *ficresilk;
  223: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  224: FILE *ficresprobmorprev;
  225: FILE *fichtm, *fichtmcov; /* Html File */
  226: FILE *ficreseij;
  227: char filerese[FILENAMELENGTH];
  228: FILE  *ficresvij;
  229: char fileresv[FILENAMELENGTH];
  230: FILE  *ficresvpl;
  231: char fileresvpl[FILENAMELENGTH];
  232: char title[MAXLINE];
  233: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  234: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  235: char tmpout[FILENAMELENGTH]; 
  236: char command[FILENAMELENGTH];
  237: int  outcmd=0;
  238: 
  239: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  240: char lfileres[FILENAMELENGTH];
  241: char filelog[FILENAMELENGTH]; /* Log file */
  242: char filerest[FILENAMELENGTH];
  243: char fileregp[FILENAMELENGTH];
  244: char popfile[FILENAMELENGTH];
  245: 
  246: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  247: 
  248: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  249: struct timezone tzp;
  250: extern int gettimeofday();
  251: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  252: long time_value;
  253: extern long time();
  254: char strcurr[80], strfor[80];
  255: 
  256: #define NR_END 1
  257: #define FREE_ARG char*
  258: #define FTOL 1.0e-10
  259: 
  260: #define NRANSI 
  261: #define ITMAX 200 
  262: 
  263: #define TOL 2.0e-4 
  264: 
  265: #define CGOLD 0.3819660 
  266: #define ZEPS 1.0e-10 
  267: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  268: 
  269: #define GOLD 1.618034 
  270: #define GLIMIT 100.0 
  271: #define TINY 1.0e-20 
  272: 
  273: static double maxarg1,maxarg2;
  274: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  275: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  276:   
  277: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  278: #define rint(a) floor(a+0.5)
  279: 
  280: static double sqrarg;
  281: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  282: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  283: 
  284: int imx; 
  285: int stepm;
  286: /* Stepm, step in month: minimum step interpolation*/
  287: 
  288: int estepm;
  289: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  290: 
  291: int m,nb;
  292: long *num;
  293: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  294: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  295: double **pmmij, ***probs;
  296: double dateintmean=0;
  297: 
  298: double *weight;
  299: int **s; /* Status */
  300: double *agedc, **covar, idx;
  301: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  302: 
  303: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  304: double ftolhess; /* Tolerance for computing hessian */
  305: 
  306: /**************** split *************************/
  307: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  308: {
  309:   char	*ss;				/* pointer */
  310:   int	l1, l2;				/* length counters */
  311: 
  312:   l1 = strlen(path );			/* length of path */
  313:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  314:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  315:   if ( ss == NULL ) {			/* no directory, so use current */
  316:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  317:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  318:     /* get current working directory */
  319:     /*    extern  char* getcwd ( char *buf , int len);*/
  320:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  321:       return( GLOCK_ERROR_GETCWD );
  322:     }
  323:     strcpy( name, path );		/* we've got it */
  324:   } else {				/* strip direcotry from path */
  325:     ss++;				/* after this, the filename */
  326:     l2 = strlen( ss );			/* length of filename */
  327:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  328:     strcpy( name, ss );		/* save file name */
  329:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  330:     dirc[l1-l2] = 0;			/* add zero */
  331:   }
  332:   l1 = strlen( dirc );			/* length of directory */
  333:   /*#ifdef windows
  334:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  335: #else
  336:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  337: #endif
  338:   */
  339:   ss = strrchr( name, '.' );		/* find last / */
  340:   ss++;
  341:   strcpy(ext,ss);			/* save extension */
  342:   l1= strlen( name);
  343:   l2= strlen(ss)+1;
  344:   strncpy( finame, name, l1-l2);
  345:   finame[l1-l2]= 0;
  346:   return( 0 );				/* we're done */
  347: }
  348: 
  349: 
  350: /******************************************/
  351: 
  352: void replace_back_to_slash(char *s, char*t)
  353: {
  354:   int i;
  355:   int lg=0;
  356:   i=0;
  357:   lg=strlen(t);
  358:   for(i=0; i<= lg; i++) {
  359:     (s[i] = t[i]);
  360:     if (t[i]== '\\') s[i]='/';
  361:   }
  362: }
  363: 
  364: int nbocc(char *s, char occ)
  365: {
  366:   int i,j=0;
  367:   int lg=20;
  368:   i=0;
  369:   lg=strlen(s);
  370:   for(i=0; i<= lg; i++) {
  371:   if  (s[i] == occ ) j++;
  372:   }
  373:   return j;
  374: }
  375: 
  376: void cutv(char *u,char *v, char*t, char occ)
  377: {
  378:   /* cuts string t into u and v where u is ended by char occ excluding it
  379:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
  380:      gives u="abcedf" and v="ghi2j" */
  381:   int i,lg,j,p=0;
  382:   i=0;
  383:   for(j=0; j<=strlen(t)-1; j++) {
  384:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  385:   }
  386: 
  387:   lg=strlen(t);
  388:   for(j=0; j<p; j++) {
  389:     (u[j] = t[j]);
  390:   }
  391:      u[p]='\0';
  392: 
  393:    for(j=0; j<= lg; j++) {
  394:     if (j>=(p+1))(v[j-p-1] = t[j]);
  395:   }
  396: }
  397: 
  398: /********************** nrerror ********************/
  399: 
  400: void nrerror(char error_text[])
  401: {
  402:   fprintf(stderr,"ERREUR ...\n");
  403:   fprintf(stderr,"%s\n",error_text);
  404:   exit(EXIT_FAILURE);
  405: }
  406: /*********************** vector *******************/
  407: double *vector(int nl, int nh)
  408: {
  409:   double *v;
  410:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  411:   if (!v) nrerror("allocation failure in vector");
  412:   return v-nl+NR_END;
  413: }
  414: 
  415: /************************ free vector ******************/
  416: void free_vector(double*v, int nl, int nh)
  417: {
  418:   free((FREE_ARG)(v+nl-NR_END));
  419: }
  420: 
  421: /************************ivector *******************************/
  422: int *ivector(long nl,long nh)
  423: {
  424:   int *v;
  425:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  426:   if (!v) nrerror("allocation failure in ivector");
  427:   return v-nl+NR_END;
  428: }
  429: 
  430: /******************free ivector **************************/
  431: void free_ivector(int *v, long nl, long nh)
  432: {
  433:   free((FREE_ARG)(v+nl-NR_END));
  434: }
  435: 
  436: /************************lvector *******************************/
  437: long *lvector(long nl,long nh)
  438: {
  439:   long *v;
  440:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  441:   if (!v) nrerror("allocation failure in ivector");
  442:   return v-nl+NR_END;
  443: }
  444: 
  445: /******************free lvector **************************/
  446: void free_lvector(long *v, long nl, long nh)
  447: {
  448:   free((FREE_ARG)(v+nl-NR_END));
  449: }
  450: 
  451: /******************* imatrix *******************************/
  452: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  453:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  454: { 
  455:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  456:   int **m; 
  457:   
  458:   /* allocate pointers to rows */ 
  459:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  460:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  461:   m += NR_END; 
  462:   m -= nrl; 
  463:   
  464:   
  465:   /* allocate rows and set pointers to them */ 
  466:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  467:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  468:   m[nrl] += NR_END; 
  469:   m[nrl] -= ncl; 
  470:   
  471:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  472:   
  473:   /* return pointer to array of pointers to rows */ 
  474:   return m; 
  475: } 
  476: 
  477: /****************** free_imatrix *************************/
  478: void free_imatrix(m,nrl,nrh,ncl,nch)
  479:       int **m;
  480:       long nch,ncl,nrh,nrl; 
  481:      /* free an int matrix allocated by imatrix() */ 
  482: { 
  483:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  484:   free((FREE_ARG) (m+nrl-NR_END)); 
  485: } 
  486: 
  487: /******************* matrix *******************************/
  488: double **matrix(long nrl, long nrh, long ncl, long nch)
  489: {
  490:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  491:   double **m;
  492: 
  493:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  494:   if (!m) nrerror("allocation failure 1 in matrix()");
  495:   m += NR_END;
  496:   m -= nrl;
  497: 
  498:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  499:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  500:   m[nrl] += NR_END;
  501:   m[nrl] -= ncl;
  502: 
  503:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  504:   return m;
  505:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  506:    */
  507: }
  508: 
  509: /*************************free matrix ************************/
  510: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  511: {
  512:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  513:   free((FREE_ARG)(m+nrl-NR_END));
  514: }
  515: 
  516: /******************* ma3x *******************************/
  517: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  518: {
  519:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  520:   double ***m;
  521: 
  522:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  523:   if (!m) nrerror("allocation failure 1 in matrix()");
  524:   m += NR_END;
  525:   m -= nrl;
  526: 
  527:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  528:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  529:   m[nrl] += NR_END;
  530:   m[nrl] -= ncl;
  531: 
  532:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  533: 
  534:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  535:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  536:   m[nrl][ncl] += NR_END;
  537:   m[nrl][ncl] -= nll;
  538:   for (j=ncl+1; j<=nch; j++) 
  539:     m[nrl][j]=m[nrl][j-1]+nlay;
  540:   
  541:   for (i=nrl+1; i<=nrh; i++) {
  542:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  543:     for (j=ncl+1; j<=nch; j++) 
  544:       m[i][j]=m[i][j-1]+nlay;
  545:   }
  546:   return m; 
  547:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  548:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  549:   */
  550: }
  551: 
  552: /*************************free ma3x ************************/
  553: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  554: {
  555:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  556:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  557:   free((FREE_ARG)(m+nrl-NR_END));
  558: }
  559: 
  560: /***************** f1dim *************************/
  561: extern int ncom; 
  562: extern double *pcom,*xicom;
  563: extern double (*nrfunc)(double []); 
  564:  
  565: double f1dim(double x) 
  566: { 
  567:   int j; 
  568:   double f;
  569:   double *xt; 
  570:  
  571:   xt=vector(1,ncom); 
  572:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  573:   f=(*nrfunc)(xt); 
  574:   free_vector(xt,1,ncom); 
  575:   return f; 
  576: } 
  577: 
  578: /*****************brent *************************/
  579: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  580: { 
  581:   int iter; 
  582:   double a,b,d,etemp;
  583:   double fu,fv,fw,fx;
  584:   double ftemp;
  585:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  586:   double e=0.0; 
  587:  
  588:   a=(ax < cx ? ax : cx); 
  589:   b=(ax > cx ? ax : cx); 
  590:   x=w=v=bx; 
  591:   fw=fv=fx=(*f)(x); 
  592:   for (iter=1;iter<=ITMAX;iter++) { 
  593:     xm=0.5*(a+b); 
  594:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  595:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  596:     printf(".");fflush(stdout);
  597:     fprintf(ficlog,".");fflush(ficlog);
  598: #ifdef DEBUG
  599:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  600:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  601:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  602: #endif
  603:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  604:       *xmin=x; 
  605:       return fx; 
  606:     } 
  607:     ftemp=fu;
  608:     if (fabs(e) > tol1) { 
  609:       r=(x-w)*(fx-fv); 
  610:       q=(x-v)*(fx-fw); 
  611:       p=(x-v)*q-(x-w)*r; 
  612:       q=2.0*(q-r); 
  613:       if (q > 0.0) p = -p; 
  614:       q=fabs(q); 
  615:       etemp=e; 
  616:       e=d; 
  617:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  618: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  619:       else { 
  620: 	d=p/q; 
  621: 	u=x+d; 
  622: 	if (u-a < tol2 || b-u < tol2) 
  623: 	  d=SIGN(tol1,xm-x); 
  624:       } 
  625:     } else { 
  626:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  627:     } 
  628:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  629:     fu=(*f)(u); 
  630:     if (fu <= fx) { 
  631:       if (u >= x) a=x; else b=x; 
  632:       SHFT(v,w,x,u) 
  633: 	SHFT(fv,fw,fx,fu) 
  634: 	} else { 
  635: 	  if (u < x) a=u; else b=u; 
  636: 	  if (fu <= fw || w == x) { 
  637: 	    v=w; 
  638: 	    w=u; 
  639: 	    fv=fw; 
  640: 	    fw=fu; 
  641: 	  } else if (fu <= fv || v == x || v == w) { 
  642: 	    v=u; 
  643: 	    fv=fu; 
  644: 	  } 
  645: 	} 
  646:   } 
  647:   nrerror("Too many iterations in brent"); 
  648:   *xmin=x; 
  649:   return fx; 
  650: } 
  651: 
  652: /****************** mnbrak ***********************/
  653: 
  654: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  655: 	    double (*func)(double)) 
  656: { 
  657:   double ulim,u,r,q, dum;
  658:   double fu; 
  659:  
  660:   *fa=(*func)(*ax); 
  661:   *fb=(*func)(*bx); 
  662:   if (*fb > *fa) { 
  663:     SHFT(dum,*ax,*bx,dum) 
  664:       SHFT(dum,*fb,*fa,dum) 
  665:       } 
  666:   *cx=(*bx)+GOLD*(*bx-*ax); 
  667:   *fc=(*func)(*cx); 
  668:   while (*fb > *fc) { 
  669:     r=(*bx-*ax)*(*fb-*fc); 
  670:     q=(*bx-*cx)*(*fb-*fa); 
  671:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  672:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  673:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  674:     if ((*bx-u)*(u-*cx) > 0.0) { 
  675:       fu=(*func)(u); 
  676:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  677:       fu=(*func)(u); 
  678:       if (fu < *fc) { 
  679: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  680: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  681: 	  } 
  682:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  683:       u=ulim; 
  684:       fu=(*func)(u); 
  685:     } else { 
  686:       u=(*cx)+GOLD*(*cx-*bx); 
  687:       fu=(*func)(u); 
  688:     } 
  689:     SHFT(*ax,*bx,*cx,u) 
  690:       SHFT(*fa,*fb,*fc,fu) 
  691:       } 
  692: } 
  693: 
  694: /*************** linmin ************************/
  695: 
  696: int ncom; 
  697: double *pcom,*xicom;
  698: double (*nrfunc)(double []); 
  699:  
  700: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  701: { 
  702:   double brent(double ax, double bx, double cx, 
  703: 	       double (*f)(double), double tol, double *xmin); 
  704:   double f1dim(double x); 
  705:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  706: 	      double *fc, double (*func)(double)); 
  707:   int j; 
  708:   double xx,xmin,bx,ax; 
  709:   double fx,fb,fa;
  710:  
  711:   ncom=n; 
  712:   pcom=vector(1,n); 
  713:   xicom=vector(1,n); 
  714:   nrfunc=func; 
  715:   for (j=1;j<=n;j++) { 
  716:     pcom[j]=p[j]; 
  717:     xicom[j]=xi[j]; 
  718:   } 
  719:   ax=0.0; 
  720:   xx=1.0; 
  721:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  722:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  723: #ifdef DEBUG
  724:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  725:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  726: #endif
  727:   for (j=1;j<=n;j++) { 
  728:     xi[j] *= xmin; 
  729:     p[j] += xi[j]; 
  730:   } 
  731:   free_vector(xicom,1,n); 
  732:   free_vector(pcom,1,n); 
  733: } 
  734: 
  735: char *asc_diff_time(long time_sec, char ascdiff[])
  736: {
  737:   long sec_left, days, hours, minutes;
  738:   days = (time_sec) / (60*60*24);
  739:   sec_left = (time_sec) % (60*60*24);
  740:   hours = (sec_left) / (60*60) ;
  741:   sec_left = (sec_left) %(60*60);
  742:   minutes = (sec_left) /60;
  743:   sec_left = (sec_left) % (60);
  744:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  745:   return ascdiff;
  746: }
  747: 
  748: /*************** powell ************************/
  749: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  750: 	    double (*func)(double [])) 
  751: { 
  752:   void linmin(double p[], double xi[], int n, double *fret, 
  753: 	      double (*func)(double [])); 
  754:   int i,ibig,j; 
  755:   double del,t,*pt,*ptt,*xit;
  756:   double fp,fptt;
  757:   double *xits;
  758:   int niterf, itmp;
  759: 
  760:   pt=vector(1,n); 
  761:   ptt=vector(1,n); 
  762:   xit=vector(1,n); 
  763:   xits=vector(1,n); 
  764:   *fret=(*func)(p); 
  765:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  766:   for (*iter=1;;++(*iter)) { 
  767:     fp=(*fret); 
  768:     ibig=0; 
  769:     del=0.0; 
  770:     last_time=curr_time;
  771:     (void) gettimeofday(&curr_time,&tzp);
  772:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  773:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  774:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  775:     for (i=1;i<=n;i++) {
  776:       printf(" %d %.12f",i, p[i]);
  777:       fprintf(ficlog," %d %.12lf",i, p[i]);
  778:       fprintf(ficrespow," %.12lf", p[i]);
  779:     }
  780:     printf("\n");
  781:     fprintf(ficlog,"\n");
  782:     fprintf(ficrespow,"\n");fflush(ficrespow);
  783:     if(*iter <=3){
  784:       tm = *localtime(&curr_time.tv_sec);
  785:       strcpy(strcurr,asctime(&tmf));
  786: /*       asctime_r(&tm,strcurr); */
  787:       forecast_time=curr_time;
  788:       itmp = strlen(strcurr);
  789:       if(strcurr[itmp-1]=='\n')
  790: 	strcurr[itmp-1]='\0';
  791:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  792:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  793:       for(niterf=10;niterf<=30;niterf+=10){
  794: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  795: 	tmf = *localtime(&forecast_time.tv_sec);
  796: /* 	asctime_r(&tmf,strfor); */
  797: 	strcpy(strfor,asctime(&tmf));
  798: 	itmp = strlen(strfor);
  799: 	if(strfor[itmp-1]=='\n')
  800: 	strfor[itmp-1]='\0';
  801: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  802: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  803:       }
  804:     }
  805:     for (i=1;i<=n;i++) { 
  806:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  807:       fptt=(*fret); 
  808: #ifdef DEBUG
  809:       printf("fret=%lf \n",*fret);
  810:       fprintf(ficlog,"fret=%lf \n",*fret);
  811: #endif
  812:       printf("%d",i);fflush(stdout);
  813:       fprintf(ficlog,"%d",i);fflush(ficlog);
  814:       linmin(p,xit,n,fret,func); 
  815:       if (fabs(fptt-(*fret)) > del) { 
  816: 	del=fabs(fptt-(*fret)); 
  817: 	ibig=i; 
  818:       } 
  819: #ifdef DEBUG
  820:       printf("%d %.12e",i,(*fret));
  821:       fprintf(ficlog,"%d %.12e",i,(*fret));
  822:       for (j=1;j<=n;j++) {
  823: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  824: 	printf(" x(%d)=%.12e",j,xit[j]);
  825: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  826:       }
  827:       for(j=1;j<=n;j++) {
  828: 	printf(" p=%.12e",p[j]);
  829: 	fprintf(ficlog," p=%.12e",p[j]);
  830:       }
  831:       printf("\n");
  832:       fprintf(ficlog,"\n");
  833: #endif
  834:     } 
  835:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  836: #ifdef DEBUG
  837:       int k[2],l;
  838:       k[0]=1;
  839:       k[1]=-1;
  840:       printf("Max: %.12e",(*func)(p));
  841:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  842:       for (j=1;j<=n;j++) {
  843: 	printf(" %.12e",p[j]);
  844: 	fprintf(ficlog," %.12e",p[j]);
  845:       }
  846:       printf("\n");
  847:       fprintf(ficlog,"\n");
  848:       for(l=0;l<=1;l++) {
  849: 	for (j=1;j<=n;j++) {
  850: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  851: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  852: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  853: 	}
  854: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  855: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  856:       }
  857: #endif
  858: 
  859: 
  860:       free_vector(xit,1,n); 
  861:       free_vector(xits,1,n); 
  862:       free_vector(ptt,1,n); 
  863:       free_vector(pt,1,n); 
  864:       return; 
  865:     } 
  866:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  867:     for (j=1;j<=n;j++) { 
  868:       ptt[j]=2.0*p[j]-pt[j]; 
  869:       xit[j]=p[j]-pt[j]; 
  870:       pt[j]=p[j]; 
  871:     } 
  872:     fptt=(*func)(ptt); 
  873:     if (fptt < fp) { 
  874:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  875:       if (t < 0.0) { 
  876: 	linmin(p,xit,n,fret,func); 
  877: 	for (j=1;j<=n;j++) { 
  878: 	  xi[j][ibig]=xi[j][n]; 
  879: 	  xi[j][n]=xit[j]; 
  880: 	}
  881: #ifdef DEBUG
  882: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  883: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  884: 	for(j=1;j<=n;j++){
  885: 	  printf(" %.12e",xit[j]);
  886: 	  fprintf(ficlog," %.12e",xit[j]);
  887: 	}
  888: 	printf("\n");
  889: 	fprintf(ficlog,"\n");
  890: #endif
  891:       }
  892:     } 
  893:   } 
  894: } 
  895: 
  896: /**** Prevalence limit (stable prevalence)  ****************/
  897: 
  898: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  899: {
  900:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  901:      matrix by transitions matrix until convergence is reached */
  902: 
  903:   int i, ii,j,k;
  904:   double min, max, maxmin, maxmax,sumnew=0.;
  905:   double **matprod2();
  906:   double **out, cov[NCOVMAX], **pmij();
  907:   double **newm;
  908:   double agefin, delaymax=50 ; /* Max number of years to converge */
  909: 
  910:   for (ii=1;ii<=nlstate+ndeath;ii++)
  911:     for (j=1;j<=nlstate+ndeath;j++){
  912:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  913:     }
  914: 
  915:    cov[1]=1.;
  916:  
  917:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  918:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  919:     newm=savm;
  920:     /* Covariates have to be included here again */
  921:      cov[2]=agefin;
  922:   
  923:       for (k=1; k<=cptcovn;k++) {
  924: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  925: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  926:       }
  927:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  928:       for (k=1; k<=cptcovprod;k++)
  929: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  930: 
  931:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  932:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  933:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  934:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  935: 
  936:     savm=oldm;
  937:     oldm=newm;
  938:     maxmax=0.;
  939:     for(j=1;j<=nlstate;j++){
  940:       min=1.;
  941:       max=0.;
  942:       for(i=1; i<=nlstate; i++) {
  943: 	sumnew=0;
  944: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  945: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  946: 	max=FMAX(max,prlim[i][j]);
  947: 	min=FMIN(min,prlim[i][j]);
  948:       }
  949:       maxmin=max-min;
  950:       maxmax=FMAX(maxmax,maxmin);
  951:     }
  952:     if(maxmax < ftolpl){
  953:       return prlim;
  954:     }
  955:   }
  956: }
  957: 
  958: /*************** transition probabilities ***************/ 
  959: 
  960: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  961: {
  962:   double s1, s2;
  963:   /*double t34;*/
  964:   int i,j,j1, nc, ii, jj;
  965: 
  966:     for(i=1; i<= nlstate; i++){
  967:     for(j=1; j<i;j++){
  968:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  969: 	/*s2 += param[i][j][nc]*cov[nc];*/
  970: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  971: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  972:       }
  973:       ps[i][j]=s2;
  974:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  975:     }
  976:     for(j=i+1; j<=nlstate+ndeath;j++){
  977:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  978: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  979: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  980:       }
  981:       ps[i][j]=s2;
  982:     }
  983:   }
  984:     /*ps[3][2]=1;*/
  985: 
  986:   for(i=1; i<= nlstate; i++){
  987:      s1=0;
  988:     for(j=1; j<i; j++)
  989:       s1+=exp(ps[i][j]);
  990:     for(j=i+1; j<=nlstate+ndeath; j++)
  991:       s1+=exp(ps[i][j]);
  992:     ps[i][i]=1./(s1+1.);
  993:     for(j=1; j<i; j++)
  994:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  995:     for(j=i+1; j<=nlstate+ndeath; j++)
  996:       ps[i][j]= exp(ps[i][j])*ps[i][i];
  997:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
  998:   } /* end i */
  999: 
 1000:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1001:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1002:       ps[ii][jj]=0;
 1003:       ps[ii][ii]=1;
 1004:     }
 1005:   }
 1006: 
 1007: 
 1008:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 1009:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1010:      printf("%lf ",ps[ii][jj]);
 1011:    }
 1012:     printf("\n ");
 1013:     }
 1014:     printf("\n ");printf("%lf ",cov[2]);*/
 1015: /*
 1016:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1017:   goto end;*/
 1018:     return ps;
 1019: }
 1020: 
 1021: /**************** Product of 2 matrices ******************/
 1022: 
 1023: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1024: {
 1025:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1026:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1027:   /* in, b, out are matrice of pointers which should have been initialized 
 1028:      before: only the contents of out is modified. The function returns
 1029:      a pointer to pointers identical to out */
 1030:   long i, j, k;
 1031:   for(i=nrl; i<= nrh; i++)
 1032:     for(k=ncolol; k<=ncoloh; k++)
 1033:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1034: 	out[i][k] +=in[i][j]*b[j][k];
 1035: 
 1036:   return out;
 1037: }
 1038: 
 1039: 
 1040: /************* Higher Matrix Product ***************/
 1041: 
 1042: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1043: {
 1044:   /* Computes the transition matrix starting at age 'age' over 
 1045:      'nhstepm*hstepm*stepm' months (i.e. until
 1046:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1047:      nhstepm*hstepm matrices. 
 1048:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1049:      (typically every 2 years instead of every month which is too big 
 1050:      for the memory).
 1051:      Model is determined by parameters x and covariates have to be 
 1052:      included manually here. 
 1053: 
 1054:      */
 1055: 
 1056:   int i, j, d, h, k;
 1057:   double **out, cov[NCOVMAX];
 1058:   double **newm;
 1059: 
 1060:   /* Hstepm could be zero and should return the unit matrix */
 1061:   for (i=1;i<=nlstate+ndeath;i++)
 1062:     for (j=1;j<=nlstate+ndeath;j++){
 1063:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1064:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1065:     }
 1066:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1067:   for(h=1; h <=nhstepm; h++){
 1068:     for(d=1; d <=hstepm; d++){
 1069:       newm=savm;
 1070:       /* Covariates have to be included here again */
 1071:       cov[1]=1.;
 1072:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1073:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1074:       for (k=1; k<=cptcovage;k++)
 1075: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1076:       for (k=1; k<=cptcovprod;k++)
 1077: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1078: 
 1079: 
 1080:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1081:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1082:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1083: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1084:       savm=oldm;
 1085:       oldm=newm;
 1086:     }
 1087:     for(i=1; i<=nlstate+ndeath; i++)
 1088:       for(j=1;j<=nlstate+ndeath;j++) {
 1089: 	po[i][j][h]=newm[i][j];
 1090: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1091: 	 */
 1092:       }
 1093:   } /* end h */
 1094:   return po;
 1095: }
 1096: 
 1097: 
 1098: /*************** log-likelihood *************/
 1099: double func( double *x)
 1100: {
 1101:   int i, ii, j, k, mi, d, kk;
 1102:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1103:   double **out;
 1104:   double sw; /* Sum of weights */
 1105:   double lli; /* Individual log likelihood */
 1106:   int s1, s2;
 1107:   double bbh, survp;
 1108:   long ipmx;
 1109:   /*extern weight */
 1110:   /* We are differentiating ll according to initial status */
 1111:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1112:   /*for(i=1;i<imx;i++) 
 1113:     printf(" %d\n",s[4][i]);
 1114:   */
 1115:   cov[1]=1.;
 1116: 
 1117:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1118: 
 1119:   if(mle==1){
 1120:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1121:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1122:       for(mi=1; mi<= wav[i]-1; mi++){
 1123: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1124: 	  for (j=1;j<=nlstate+ndeath;j++){
 1125: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1126: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1127: 	  }
 1128: 	for(d=0; d<dh[mi][i]; d++){
 1129: 	  newm=savm;
 1130: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1131: 	  for (kk=1; kk<=cptcovage;kk++) {
 1132: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1133: 	  }
 1134: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1135: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1136: 	  savm=oldm;
 1137: 	  oldm=newm;
 1138: 	} /* end mult */
 1139:       
 1140: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1141: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1142: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1143: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1144: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1145: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1146: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1147: 	 * probability in order to take into account the bias as a fraction of the way
 1148: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1149: 	 * -stepm/2 to stepm/2 .
 1150: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1151: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1152: 	 */
 1153: 	s1=s[mw[mi][i]][i];
 1154: 	s2=s[mw[mi+1][i]][i];
 1155: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1156: 	/* bias is positive if real duration
 1157: 	 * is higher than the multiple of stepm and negative otherwise.
 1158: 	 */
 1159: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1160: 	if( s2 > nlstate){ 
 1161: 	  /* i.e. if s2 is a death state and if the date of death is known then the contribution
 1162: 	     to the likelihood is the probability to die between last step unit time and current 
 1163: 	     step unit time, which is also the differences between probability to die before dh 
 1164: 	     and probability to die before dh-stepm . 
 1165: 	     In version up to 0.92 likelihood was computed
 1166: 	as if date of death was unknown. Death was treated as any other
 1167: 	health state: the date of the interview describes the actual state
 1168: 	and not the date of a change in health state. The former idea was
 1169: 	to consider that at each interview the state was recorded
 1170: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1171: 	introduced the exact date of death then we should have modified
 1172: 	the contribution of an exact death to the likelihood. This new
 1173: 	contribution is smaller and very dependent of the step unit
 1174: 	stepm. It is no more the probability to die between last interview
 1175: 	and month of death but the probability to survive from last
 1176: 	interview up to one month before death multiplied by the
 1177: 	probability to die within a month. Thanks to Chris
 1178: 	Jackson for correcting this bug.  Former versions increased
 1179: 	mortality artificially. The bad side is that we add another loop
 1180: 	which slows down the processing. The difference can be up to 10%
 1181: 	lower mortality.
 1182: 	  */
 1183: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1184: 	}else{
 1185: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1186: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1187: 	} 
 1188: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1189: 	/*if(lli ==000.0)*/
 1190: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1191:   	ipmx +=1;
 1192: 	sw += weight[i];
 1193: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1194:       } /* end of wave */
 1195:     } /* end of individual */
 1196:   }  else if(mle==2){
 1197:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1198:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1199:       for(mi=1; mi<= wav[i]-1; mi++){
 1200: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1201: 	  for (j=1;j<=nlstate+ndeath;j++){
 1202: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1203: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1204: 	  }
 1205: 	for(d=0; d<=dh[mi][i]; d++){
 1206: 	  newm=savm;
 1207: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1208: 	  for (kk=1; kk<=cptcovage;kk++) {
 1209: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1210: 	  }
 1211: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1212: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1213: 	  savm=oldm;
 1214: 	  oldm=newm;
 1215: 	} /* end mult */
 1216:       
 1217: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1218: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1219: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1220: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1221: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1222: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1223: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1224: 	 * probability in order to take into account the bias as a fraction of the way
 1225: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1226: 	 * -stepm/2 to stepm/2 .
 1227: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1228: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1229: 	 */
 1230: 	s1=s[mw[mi][i]][i];
 1231: 	s2=s[mw[mi+1][i]][i];
 1232: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1233: 	/* bias is positive if real duration
 1234: 	 * is higher than the multiple of stepm and negative otherwise.
 1235: 	 */
 1236: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1237: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1238: 	/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 1239: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1240: 	/*if(lli ==000.0)*/
 1241: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1242: 	ipmx +=1;
 1243: 	sw += weight[i];
 1244: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1245:       } /* end of wave */
 1246:     } /* end of individual */
 1247:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1248:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1249:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1250:       for(mi=1; mi<= wav[i]-1; mi++){
 1251: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1252: 	  for (j=1;j<=nlstate+ndeath;j++){
 1253: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1254: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1255: 	  }
 1256: 	for(d=0; d<dh[mi][i]; d++){
 1257: 	  newm=savm;
 1258: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1259: 	  for (kk=1; kk<=cptcovage;kk++) {
 1260: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1261: 	  }
 1262: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1263: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1264: 	  savm=oldm;
 1265: 	  oldm=newm;
 1266: 	} /* end mult */
 1267:       
 1268: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1269: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1270: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1271: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1272: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1273: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1274: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1275: 	 * probability in order to take into account the bias as a fraction of the way
 1276: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1277: 	 * -stepm/2 to stepm/2 .
 1278: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1279: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1280: 	 */
 1281: 	s1=s[mw[mi][i]][i];
 1282: 	s2=s[mw[mi+1][i]][i];
 1283: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1284: 	/* bias is positive if real duration
 1285: 	 * is higher than the multiple of stepm and negative otherwise.
 1286: 	 */
 1287: 	/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 1288: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1289: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1290: 	/*if(lli ==000.0)*/
 1291: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1292: 	ipmx +=1;
 1293: 	sw += weight[i];
 1294: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1295:       } /* end of wave */
 1296:     } /* end of individual */
 1297:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1298:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1299:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1300:       for(mi=1; mi<= wav[i]-1; mi++){
 1301: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1302: 	  for (j=1;j<=nlstate+ndeath;j++){
 1303: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1304: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1305: 	  }
 1306: 	for(d=0; d<dh[mi][i]; d++){
 1307: 	  newm=savm;
 1308: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1309: 	  for (kk=1; kk<=cptcovage;kk++) {
 1310: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1311: 	  }
 1312: 	
 1313: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1314: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1315: 	  savm=oldm;
 1316: 	  oldm=newm;
 1317: 	} /* end mult */
 1318:       
 1319: 	s1=s[mw[mi][i]][i];
 1320: 	s2=s[mw[mi+1][i]][i];
 1321: 	if( s2 > nlstate){ 
 1322: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1323: 	}else{
 1324: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1325: 	}
 1326: 	ipmx +=1;
 1327: 	sw += weight[i];
 1328: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1329: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1330:       } /* end of wave */
 1331:     } /* end of individual */
 1332:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1333:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1334:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1335:       for(mi=1; mi<= wav[i]-1; mi++){
 1336: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1337: 	  for (j=1;j<=nlstate+ndeath;j++){
 1338: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1339: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1340: 	  }
 1341: 	for(d=0; d<dh[mi][i]; d++){
 1342: 	  newm=savm;
 1343: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1344: 	  for (kk=1; kk<=cptcovage;kk++) {
 1345: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1346: 	  }
 1347: 	
 1348: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1349: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1350: 	  savm=oldm;
 1351: 	  oldm=newm;
 1352: 	} /* end mult */
 1353:       
 1354: 	s1=s[mw[mi][i]][i];
 1355: 	s2=s[mw[mi+1][i]][i];
 1356: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1357: 	ipmx +=1;
 1358: 	sw += weight[i];
 1359: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1360: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1361:       } /* end of wave */
 1362:     } /* end of individual */
 1363:   } /* End of if */
 1364:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1365:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1366:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1367:   return -l;
 1368: }
 1369: 
 1370: /*************** log-likelihood *************/
 1371: double funcone( double *x)
 1372: {
 1373:   /* Same as likeli but slower because of a lot of printf and if */
 1374:   int i, ii, j, k, mi, d, kk;
 1375:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1376:   double **out;
 1377:   double lli; /* Individual log likelihood */
 1378:   double llt;
 1379:   int s1, s2;
 1380:   double bbh, survp;
 1381:   /*extern weight */
 1382:   /* We are differentiating ll according to initial status */
 1383:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1384:   /*for(i=1;i<imx;i++) 
 1385:     printf(" %d\n",s[4][i]);
 1386:   */
 1387:   cov[1]=1.;
 1388: 
 1389:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1390: 
 1391:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1392:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1393:     for(mi=1; mi<= wav[i]-1; mi++){
 1394:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1395: 	for (j=1;j<=nlstate+ndeath;j++){
 1396: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1397: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1398: 	}
 1399:       for(d=0; d<dh[mi][i]; d++){
 1400: 	newm=savm;
 1401: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1402: 	for (kk=1; kk<=cptcovage;kk++) {
 1403: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1404: 	}
 1405: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1406: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1407: 	savm=oldm;
 1408: 	oldm=newm;
 1409:       } /* end mult */
 1410:       
 1411:       s1=s[mw[mi][i]][i];
 1412:       s2=s[mw[mi+1][i]][i];
 1413:       bbh=(double)bh[mi][i]/(double)stepm; 
 1414:       /* bias is positive if real duration
 1415:        * is higher than the multiple of stepm and negative otherwise.
 1416:        */
 1417:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1418: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1419:       } else if (mle==1){
 1420: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1421:       } else if(mle==2){
 1422: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1423:       } else if(mle==3){  /* exponential inter-extrapolation */
 1424: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1425:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1426: 	lli=log(out[s1][s2]); /* Original formula */
 1427:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1428: 	lli=log(out[s1][s2]); /* Original formula */
 1429:       } /* End of if */
 1430:       ipmx +=1;
 1431:       sw += weight[i];
 1432:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1433: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1434:       if(globpr){
 1435: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1436:  %10.6f %10.6f %10.6f ", \
 1437: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1438: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1439: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1440: 	  llt +=ll[k]*gipmx/gsw;
 1441: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1442: 	}
 1443: 	fprintf(ficresilk," %10.6f\n", -llt);
 1444:       }
 1445:     } /* end of wave */
 1446:   } /* end of individual */
 1447:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1448:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1449:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1450:   if(globpr==0){ /* First time we count the contributions and weights */
 1451:     gipmx=ipmx;
 1452:     gsw=sw;
 1453:   }
 1454:   return -l;
 1455: }
 1456: 
 1457: char *subdirf(char fileres[])
 1458: {
 1459:   /* Caution optionfilefiname is hidden */
 1460:   strcpy(tmpout,optionfilefiname);
 1461:   strcat(tmpout,"/"); /* Add to the right */
 1462:   strcat(tmpout,fileres);
 1463:   return tmpout;
 1464: }
 1465: 
 1466: char *subdirf2(char fileres[], char *preop)
 1467: {
 1468:   
 1469:   strcpy(tmpout,optionfilefiname);
 1470:   strcat(tmpout,"/");
 1471:   strcat(tmpout,preop);
 1472:   strcat(tmpout,fileres);
 1473:   return tmpout;
 1474: }
 1475: char *subdirf3(char fileres[], char *preop, char *preop2)
 1476: {
 1477:   
 1478:   strcpy(tmpout,optionfilefiname);
 1479:   strcat(tmpout,"/");
 1480:   strcat(tmpout,preop);
 1481:   strcat(tmpout,preop2);
 1482:   strcat(tmpout,fileres);
 1483:   return tmpout;
 1484: }
 1485: 
 1486: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1487: {
 1488:   /* This routine should help understanding what is done with 
 1489:      the selection of individuals/waves and
 1490:      to check the exact contribution to the likelihood.
 1491:      Plotting could be done.
 1492:    */
 1493:   int k;
 1494: 
 1495:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1496:     strcpy(fileresilk,"ilk"); 
 1497:     strcat(fileresilk,fileres);
 1498:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1499:       printf("Problem with resultfile: %s\n", fileresilk);
 1500:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1501:     }
 1502:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1503:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1504:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1505:     for(k=1; k<=nlstate; k++) 
 1506:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1507:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1508:   }
 1509: 
 1510:   *fretone=(*funcone)(p);
 1511:   if(*globpri !=0){
 1512:     fclose(ficresilk);
 1513:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1514:     fflush(fichtm); 
 1515:   } 
 1516:   return;
 1517: }
 1518: 
 1519: 
 1520: /*********** Maximum Likelihood Estimation ***************/
 1521: 
 1522: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1523: {
 1524:   int i,j, iter;
 1525:   double **xi;
 1526:   double fret;
 1527:   double fretone; /* Only one call to likelihood */
 1528:   char filerespow[FILENAMELENGTH];
 1529:   xi=matrix(1,npar,1,npar);
 1530:   for (i=1;i<=npar;i++)
 1531:     for (j=1;j<=npar;j++)
 1532:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1533:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1534:   strcpy(filerespow,"pow"); 
 1535:   strcat(filerespow,fileres);
 1536:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1537:     printf("Problem with resultfile: %s\n", filerespow);
 1538:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1539:   }
 1540:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1541:   for (i=1;i<=nlstate;i++)
 1542:     for(j=1;j<=nlstate+ndeath;j++)
 1543:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1544:   fprintf(ficrespow,"\n");
 1545: 
 1546:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1547: 
 1548:   fclose(ficrespow);
 1549:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1550:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1551:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1552: 
 1553: }
 1554: 
 1555: /**** Computes Hessian and covariance matrix ***/
 1556: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1557: {
 1558:   double  **a,**y,*x,pd;
 1559:   double **hess;
 1560:   int i, j,jk;
 1561:   int *indx;
 1562: 
 1563:   double hessii(double p[], double delta, int theta, double delti[]);
 1564:   double hessij(double p[], double delti[], int i, int j);
 1565:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1566:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1567: 
 1568:   hess=matrix(1,npar,1,npar);
 1569: 
 1570:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1571:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1572:   for (i=1;i<=npar;i++){
 1573:     printf("%d",i);fflush(stdout);
 1574:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1575:     hess[i][i]=hessii(p,ftolhess,i,delti);
 1576:     /*printf(" %f ",p[i]);*/
 1577:     /*printf(" %lf ",hess[i][i]);*/
 1578:   }
 1579:   
 1580:   for (i=1;i<=npar;i++) {
 1581:     for (j=1;j<=npar;j++)  {
 1582:       if (j>i) { 
 1583: 	printf(".%d%d",i,j);fflush(stdout);
 1584: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1585: 	hess[i][j]=hessij(p,delti,i,j);
 1586: 	hess[j][i]=hess[i][j];    
 1587: 	/*printf(" %lf ",hess[i][j]);*/
 1588:       }
 1589:     }
 1590:   }
 1591:   printf("\n");
 1592:   fprintf(ficlog,"\n");
 1593: 
 1594:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1595:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1596:   
 1597:   a=matrix(1,npar,1,npar);
 1598:   y=matrix(1,npar,1,npar);
 1599:   x=vector(1,npar);
 1600:   indx=ivector(1,npar);
 1601:   for (i=1;i<=npar;i++)
 1602:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1603:   ludcmp(a,npar,indx,&pd);
 1604: 
 1605:   for (j=1;j<=npar;j++) {
 1606:     for (i=1;i<=npar;i++) x[i]=0;
 1607:     x[j]=1;
 1608:     lubksb(a,npar,indx,x);
 1609:     for (i=1;i<=npar;i++){ 
 1610:       matcov[i][j]=x[i];
 1611:     }
 1612:   }
 1613: 
 1614:   printf("\n#Hessian matrix#\n");
 1615:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1616:   for (i=1;i<=npar;i++) { 
 1617:     for (j=1;j<=npar;j++) { 
 1618:       printf("%.3e ",hess[i][j]);
 1619:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1620:     }
 1621:     printf("\n");
 1622:     fprintf(ficlog,"\n");
 1623:   }
 1624: 
 1625:   /* Recompute Inverse */
 1626:   for (i=1;i<=npar;i++)
 1627:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1628:   ludcmp(a,npar,indx,&pd);
 1629: 
 1630:   /*  printf("\n#Hessian matrix recomputed#\n");
 1631: 
 1632:   for (j=1;j<=npar;j++) {
 1633:     for (i=1;i<=npar;i++) x[i]=0;
 1634:     x[j]=1;
 1635:     lubksb(a,npar,indx,x);
 1636:     for (i=1;i<=npar;i++){ 
 1637:       y[i][j]=x[i];
 1638:       printf("%.3e ",y[i][j]);
 1639:       fprintf(ficlog,"%.3e ",y[i][j]);
 1640:     }
 1641:     printf("\n");
 1642:     fprintf(ficlog,"\n");
 1643:   }
 1644:   */
 1645: 
 1646:   free_matrix(a,1,npar,1,npar);
 1647:   free_matrix(y,1,npar,1,npar);
 1648:   free_vector(x,1,npar);
 1649:   free_ivector(indx,1,npar);
 1650:   free_matrix(hess,1,npar,1,npar);
 1651: 
 1652: 
 1653: }
 1654: 
 1655: /*************** hessian matrix ****************/
 1656: double hessii( double x[], double delta, int theta, double delti[])
 1657: {
 1658:   int i;
 1659:   int l=1, lmax=20;
 1660:   double k1,k2;
 1661:   double p2[NPARMAX+1];
 1662:   double res;
 1663:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1664:   double fx;
 1665:   int k=0,kmax=10;
 1666:   double l1;
 1667: 
 1668:   fx=func(x);
 1669:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1670:   for(l=0 ; l <=lmax; l++){
 1671:     l1=pow(10,l);
 1672:     delts=delt;
 1673:     for(k=1 ; k <kmax; k=k+1){
 1674:       delt = delta*(l1*k);
 1675:       p2[theta]=x[theta] +delt;
 1676:       k1=func(p2)-fx;
 1677:       p2[theta]=x[theta]-delt;
 1678:       k2=func(p2)-fx;
 1679:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1680:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1681:       
 1682: #ifdef DEBUG
 1683:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1684:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1685: #endif
 1686:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1687:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1688: 	k=kmax;
 1689:       }
 1690:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1691: 	k=kmax; l=lmax*10.;
 1692:       }
 1693:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1694: 	delts=delt;
 1695:       }
 1696:     }
 1697:   }
 1698:   delti[theta]=delts;
 1699:   return res; 
 1700:   
 1701: }
 1702: 
 1703: double hessij( double x[], double delti[], int thetai,int thetaj)
 1704: {
 1705:   int i;
 1706:   int l=1, l1, lmax=20;
 1707:   double k1,k2,k3,k4,res,fx;
 1708:   double p2[NPARMAX+1];
 1709:   int k;
 1710: 
 1711:   fx=func(x);
 1712:   for (k=1; k<=2; k++) {
 1713:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1714:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1715:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1716:     k1=func(p2)-fx;
 1717:   
 1718:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1719:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1720:     k2=func(p2)-fx;
 1721:   
 1722:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1723:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1724:     k3=func(p2)-fx;
 1725:   
 1726:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1727:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1728:     k4=func(p2)-fx;
 1729:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1730: #ifdef DEBUG
 1731:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1732:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1733: #endif
 1734:   }
 1735:   return res;
 1736: }
 1737: 
 1738: /************** Inverse of matrix **************/
 1739: void ludcmp(double **a, int n, int *indx, double *d) 
 1740: { 
 1741:   int i,imax,j,k; 
 1742:   double big,dum,sum,temp; 
 1743:   double *vv; 
 1744:  
 1745:   vv=vector(1,n); 
 1746:   *d=1.0; 
 1747:   for (i=1;i<=n;i++) { 
 1748:     big=0.0; 
 1749:     for (j=1;j<=n;j++) 
 1750:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1751:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1752:     vv[i]=1.0/big; 
 1753:   } 
 1754:   for (j=1;j<=n;j++) { 
 1755:     for (i=1;i<j;i++) { 
 1756:       sum=a[i][j]; 
 1757:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1758:       a[i][j]=sum; 
 1759:     } 
 1760:     big=0.0; 
 1761:     for (i=j;i<=n;i++) { 
 1762:       sum=a[i][j]; 
 1763:       for (k=1;k<j;k++) 
 1764: 	sum -= a[i][k]*a[k][j]; 
 1765:       a[i][j]=sum; 
 1766:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1767: 	big=dum; 
 1768: 	imax=i; 
 1769:       } 
 1770:     } 
 1771:     if (j != imax) { 
 1772:       for (k=1;k<=n;k++) { 
 1773: 	dum=a[imax][k]; 
 1774: 	a[imax][k]=a[j][k]; 
 1775: 	a[j][k]=dum; 
 1776:       } 
 1777:       *d = -(*d); 
 1778:       vv[imax]=vv[j]; 
 1779:     } 
 1780:     indx[j]=imax; 
 1781:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1782:     if (j != n) { 
 1783:       dum=1.0/(a[j][j]); 
 1784:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1785:     } 
 1786:   } 
 1787:   free_vector(vv,1,n);  /* Doesn't work */
 1788: ;
 1789: } 
 1790: 
 1791: void lubksb(double **a, int n, int *indx, double b[]) 
 1792: { 
 1793:   int i,ii=0,ip,j; 
 1794:   double sum; 
 1795:  
 1796:   for (i=1;i<=n;i++) { 
 1797:     ip=indx[i]; 
 1798:     sum=b[ip]; 
 1799:     b[ip]=b[i]; 
 1800:     if (ii) 
 1801:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1802:     else if (sum) ii=i; 
 1803:     b[i]=sum; 
 1804:   } 
 1805:   for (i=n;i>=1;i--) { 
 1806:     sum=b[i]; 
 1807:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1808:     b[i]=sum/a[i][i]; 
 1809:   } 
 1810: } 
 1811: 
 1812: /************ Frequencies ********************/
 1813: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 1814: {  /* Some frequencies */
 1815:   
 1816:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1817:   int first;
 1818:   double ***freq; /* Frequencies */
 1819:   double *pp, **prop;
 1820:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1821:   FILE *ficresp;
 1822:   char fileresp[FILENAMELENGTH];
 1823:   
 1824:   pp=vector(1,nlstate);
 1825:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1826:   strcpy(fileresp,"p");
 1827:   strcat(fileresp,fileres);
 1828:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1829:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1830:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1831:     exit(0);
 1832:   }
 1833:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 1834:   j1=0;
 1835:   
 1836:   j=cptcoveff;
 1837:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1838: 
 1839:   first=1;
 1840: 
 1841:   for(k1=1; k1<=j;k1++){
 1842:     for(i1=1; i1<=ncodemax[k1];i1++){
 1843:       j1++;
 1844:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1845: 	scanf("%d", i);*/
 1846:       for (i=-1; i<=nlstate+ndeath; i++)  
 1847: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1848: 	  for(m=iagemin; m <= iagemax+3; m++)
 1849: 	    freq[i][jk][m]=0;
 1850: 
 1851:     for (i=1; i<=nlstate; i++)  
 1852:       for(m=iagemin; m <= iagemax+3; m++)
 1853: 	prop[i][m]=0;
 1854:       
 1855:       dateintsum=0;
 1856:       k2cpt=0;
 1857:       for (i=1; i<=imx; i++) {
 1858: 	bool=1;
 1859: 	if  (cptcovn>0) {
 1860: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1861: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1862: 	      bool=0;
 1863: 	}
 1864: 	if (bool==1){
 1865: 	  for(m=firstpass; m<=lastpass; m++){
 1866: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1867: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1868: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1869: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1870: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1871: 	      if (m<lastpass) {
 1872: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1873: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 1874: 	      }
 1875: 	      
 1876: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 1877: 		dateintsum=dateintsum+k2;
 1878: 		k2cpt++;
 1879: 	      }
 1880: 	      /*}*/
 1881: 	  }
 1882: 	}
 1883:       }
 1884:        
 1885:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 1886: 
 1887:       if  (cptcovn>0) {
 1888: 	fprintf(ficresp, "\n#********** Variable "); 
 1889: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1890: 	fprintf(ficresp, "**********\n#");
 1891:       }
 1892:       for(i=1; i<=nlstate;i++) 
 1893: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1894:       fprintf(ficresp, "\n");
 1895:       
 1896:       for(i=iagemin; i <= iagemax+3; i++){
 1897: 	if(i==iagemax+3){
 1898: 	  fprintf(ficlog,"Total");
 1899: 	}else{
 1900: 	  if(first==1){
 1901: 	    first=0;
 1902: 	    printf("See log file for details...\n");
 1903: 	  }
 1904: 	  fprintf(ficlog,"Age %d", i);
 1905: 	}
 1906: 	for(jk=1; jk <=nlstate ; jk++){
 1907: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1908: 	    pp[jk] += freq[jk][m][i]; 
 1909: 	}
 1910: 	for(jk=1; jk <=nlstate ; jk++){
 1911: 	  for(m=-1, pos=0; m <=0 ; m++)
 1912: 	    pos += freq[jk][m][i];
 1913: 	  if(pp[jk]>=1.e-10){
 1914: 	    if(first==1){
 1915: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1916: 	    }
 1917: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1918: 	  }else{
 1919: 	    if(first==1)
 1920: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1921: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1922: 	  }
 1923: 	}
 1924: 
 1925: 	for(jk=1; jk <=nlstate ; jk++){
 1926: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1927: 	    pp[jk] += freq[jk][m][i];
 1928: 	}	
 1929: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 1930: 	  pos += pp[jk];
 1931: 	  posprop += prop[jk][i];
 1932: 	}
 1933: 	for(jk=1; jk <=nlstate ; jk++){
 1934: 	  if(pos>=1.e-5){
 1935: 	    if(first==1)
 1936: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1937: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1938: 	  }else{
 1939: 	    if(first==1)
 1940: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1941: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1942: 	  }
 1943: 	  if( i <= iagemax){
 1944: 	    if(pos>=1.e-5){
 1945: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 1946: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 1947: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1948: 	    }
 1949: 	    else
 1950: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 1951: 	  }
 1952: 	}
 1953: 	
 1954: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1955: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1956: 	    if(freq[jk][m][i] !=0 ) {
 1957: 	    if(first==1)
 1958: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1959: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 1960: 	    }
 1961: 	if(i <= iagemax)
 1962: 	  fprintf(ficresp,"\n");
 1963: 	if(first==1)
 1964: 	  printf("Others in log...\n");
 1965: 	fprintf(ficlog,"\n");
 1966:       }
 1967:     }
 1968:   }
 1969:   dateintmean=dateintsum/k2cpt; 
 1970:  
 1971:   fclose(ficresp);
 1972:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
 1973:   free_vector(pp,1,nlstate);
 1974:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 1975:   /* End of Freq */
 1976: }
 1977: 
 1978: /************ Prevalence ********************/
 1979: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 1980: {  
 1981:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 1982:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 1983:      We still use firstpass and lastpass as another selection.
 1984:   */
 1985:  
 1986:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1987:   double ***freq; /* Frequencies */
 1988:   double *pp, **prop;
 1989:   double pos,posprop; 
 1990:   double  y2; /* in fractional years */
 1991:   int iagemin, iagemax;
 1992: 
 1993:   iagemin= (int) agemin;
 1994:   iagemax= (int) agemax;
 1995:   /*pp=vector(1,nlstate);*/
 1996:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 1997:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 1998:   j1=0;
 1999:   
 2000:   j=cptcoveff;
 2001:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2002:   
 2003:   for(k1=1; k1<=j;k1++){
 2004:     for(i1=1; i1<=ncodemax[k1];i1++){
 2005:       j1++;
 2006:       
 2007:       for (i=1; i<=nlstate; i++)  
 2008: 	for(m=iagemin; m <= iagemax+3; m++)
 2009: 	  prop[i][m]=0.0;
 2010:      
 2011:       for (i=1; i<=imx; i++) { /* Each individual */
 2012: 	bool=1;
 2013: 	if  (cptcovn>0) {
 2014: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2015: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2016: 	      bool=0;
 2017: 	} 
 2018: 	if (bool==1) { 
 2019: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2020: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2021: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2022: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2023: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2024: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2025:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2026: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2027:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2028:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2029:  	      } 
 2030: 	    }
 2031: 	  } /* end selection of waves */
 2032: 	}
 2033:       }
 2034:       for(i=iagemin; i <= iagemax+3; i++){  
 2035: 	
 2036:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2037:  	  posprop += prop[jk][i]; 
 2038:  	} 
 2039: 
 2040:  	for(jk=1; jk <=nlstate ; jk++){	    
 2041:  	  if( i <=  iagemax){ 
 2042:  	    if(posprop>=1.e-5){ 
 2043:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2044:  	    } 
 2045:  	  } 
 2046:  	}/* end jk */ 
 2047:       }/* end i */ 
 2048:     } /* end i1 */
 2049:   } /* end k1 */
 2050:   
 2051:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2052:   /*free_vector(pp,1,nlstate);*/
 2053:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2054: }  /* End of prevalence */
 2055: 
 2056: /************* Waves Concatenation ***************/
 2057: 
 2058: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2059: {
 2060:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2061:      Death is a valid wave (if date is known).
 2062:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2063:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2064:      and mw[mi+1][i]. dh depends on stepm.
 2065:      */
 2066: 
 2067:   int i, mi, m;
 2068:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2069:      double sum=0., jmean=0.;*/
 2070:   int first;
 2071:   int j, k=0,jk, ju, jl;
 2072:   double sum=0.;
 2073:   first=0;
 2074:   jmin=1e+5;
 2075:   jmax=-1;
 2076:   jmean=0.;
 2077:   for(i=1; i<=imx; i++){
 2078:     mi=0;
 2079:     m=firstpass;
 2080:     while(s[m][i] <= nlstate){
 2081:       if(s[m][i]>=1)
 2082: 	mw[++mi][i]=m;
 2083:       if(m >=lastpass)
 2084: 	break;
 2085:       else
 2086: 	m++;
 2087:     }/* end while */
 2088:     if (s[m][i] > nlstate){
 2089:       mi++;	/* Death is another wave */
 2090:       /* if(mi==0)  never been interviewed correctly before death */
 2091: 	 /* Only death is a correct wave */
 2092:       mw[mi][i]=m;
 2093:     }
 2094: 
 2095:     wav[i]=mi;
 2096:     if(mi==0){
 2097:       nbwarn++;
 2098:       if(first==0){
 2099: 	printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2100: 	first=1;
 2101:       }
 2102:       if(first==1){
 2103: 	fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 2104:       }
 2105:     } /* end mi==0 */
 2106:   } /* End individuals */
 2107: 
 2108:   for(i=1; i<=imx; i++){
 2109:     for(mi=1; mi<wav[i];mi++){
 2110:       if (stepm <=0)
 2111: 	dh[mi][i]=1;
 2112:       else{
 2113: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2114: 	  if (agedc[i] < 2*AGESUP) {
 2115: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2116: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2117: 	    else if(j<0){
 2118: 	      nberr++;
 2119: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2120: 	      j=1; /* Temporary Dangerous patch */
 2121: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2122: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2123: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2124: 	    }
 2125: 	    k=k+1;
 2126: 	    if (j >= jmax) jmax=j;
 2127: 	    if (j <= jmin) jmin=j;
 2128: 	    sum=sum+j;
 2129: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2130: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2131: 	  }
 2132: 	}
 2133: 	else{
 2134: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2135: 	  /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2136: 	  k=k+1;
 2137: 	  if (j >= jmax) jmax=j;
 2138: 	  else if (j <= jmin)jmin=j;
 2139: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2140: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2141: 	  if(j<0){
 2142: 	    nberr++;
 2143: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2144: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2145: 	  }
 2146: 	  sum=sum+j;
 2147: 	}
 2148: 	jk= j/stepm;
 2149: 	jl= j -jk*stepm;
 2150: 	ju= j -(jk+1)*stepm;
 2151: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2152: 	  if(jl==0){
 2153: 	    dh[mi][i]=jk;
 2154: 	    bh[mi][i]=0;
 2155: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2156: 		  * at the price of an extra matrix product in likelihood */
 2157: 	    dh[mi][i]=jk+1;
 2158: 	    bh[mi][i]=ju;
 2159: 	  }
 2160: 	}else{
 2161: 	  if(jl <= -ju){
 2162: 	    dh[mi][i]=jk;
 2163: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2164: 				 * is higher than the multiple of stepm and negative otherwise.
 2165: 				 */
 2166: 	  }
 2167: 	  else{
 2168: 	    dh[mi][i]=jk+1;
 2169: 	    bh[mi][i]=ju;
 2170: 	  }
 2171: 	  if(dh[mi][i]==0){
 2172: 	    dh[mi][i]=1; /* At least one step */
 2173: 	    bh[mi][i]=ju; /* At least one step */
 2174: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2175: 	  }
 2176: 	} /* end if mle */
 2177:       }
 2178:     } /* end wave */
 2179:   }
 2180:   jmean=sum/k;
 2181:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2182:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2183:  }
 2184: 
 2185: /*********** Tricode ****************************/
 2186: void tricode(int *Tvar, int **nbcode, int imx)
 2187: {
 2188:   
 2189:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2190:   int cptcode=0;
 2191:   cptcoveff=0; 
 2192:  
 2193:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2194:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2195: 
 2196:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2197:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2198: 			       modality*/ 
 2199:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2200:       Ndum[ij]++; /*store the modality */
 2201:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2202:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2203: 				       Tvar[j]. If V=sex and male is 0 and 
 2204: 				       female is 1, then  cptcode=1.*/
 2205:     }
 2206: 
 2207:     for (i=0; i<=cptcode; i++) {
 2208:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2209:     }
 2210: 
 2211:     ij=1; 
 2212:     for (i=1; i<=ncodemax[j]; i++) {
 2213:       for (k=0; k<= maxncov; k++) {
 2214: 	if (Ndum[k] != 0) {
 2215: 	  nbcode[Tvar[j]][ij]=k; 
 2216: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2217: 	  
 2218: 	  ij++;
 2219: 	}
 2220: 	if (ij > ncodemax[j]) break; 
 2221:       }  
 2222:     } 
 2223:   }  
 2224: 
 2225:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2226: 
 2227:  for (i=1; i<=ncovmodel-2; i++) { 
 2228:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2229:    ij=Tvar[i];
 2230:    Ndum[ij]++;
 2231:  }
 2232: 
 2233:  ij=1;
 2234:  for (i=1; i<= maxncov; i++) {
 2235:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2236:      Tvaraff[ij]=i; /*For printing */
 2237:      ij++;
 2238:    }
 2239:  }
 2240:  
 2241:  cptcoveff=ij-1; /*Number of simple covariates*/
 2242: }
 2243: 
 2244: /*********** Health Expectancies ****************/
 2245: 
 2246: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 2247: 
 2248: {
 2249:   /* Health expectancies */
 2250:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2251:   double age, agelim, hf;
 2252:   double ***p3mat,***varhe;
 2253:   double **dnewm,**doldm;
 2254:   double *xp;
 2255:   double **gp, **gm;
 2256:   double ***gradg, ***trgradg;
 2257:   int theta;
 2258: 
 2259:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2260:   xp=vector(1,npar);
 2261:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2262:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2263:   
 2264:   fprintf(ficreseij,"# Health expectancies\n");
 2265:   fprintf(ficreseij,"# Age");
 2266:   for(i=1; i<=nlstate;i++)
 2267:     for(j=1; j<=nlstate;j++)
 2268:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2269:   fprintf(ficreseij,"\n");
 2270: 
 2271:   if(estepm < stepm){
 2272:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2273:   }
 2274:   else  hstepm=estepm;   
 2275:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2276:    * This is mainly to measure the difference between two models: for example
 2277:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2278:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2279:    * progression in between and thus overestimating or underestimating according
 2280:    * to the curvature of the survival function. If, for the same date, we 
 2281:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2282:    * to compare the new estimate of Life expectancy with the same linear 
 2283:    * hypothesis. A more precise result, taking into account a more precise
 2284:    * curvature will be obtained if estepm is as small as stepm. */
 2285: 
 2286:   /* For example we decided to compute the life expectancy with the smallest unit */
 2287:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2288:      nhstepm is the number of hstepm from age to agelim 
 2289:      nstepm is the number of stepm from age to agelin. 
 2290:      Look at hpijx to understand the reason of that which relies in memory size
 2291:      and note for a fixed period like estepm months */
 2292:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2293:      survival function given by stepm (the optimization length). Unfortunately it
 2294:      means that if the survival funtion is printed only each two years of age and if
 2295:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2296:      results. So we changed our mind and took the option of the best precision.
 2297:   */
 2298:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2299: 
 2300:   agelim=AGESUP;
 2301:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2302:     /* nhstepm age range expressed in number of stepm */
 2303:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2304:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2305:     /* if (stepm >= YEARM) hstepm=1;*/
 2306:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2307:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2308:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2309:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2310:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2311: 
 2312:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2313:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2314:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2315:  
 2316: 
 2317:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2318: 
 2319:     /* Computing Variances of health expectancies */
 2320: 
 2321:      for(theta=1; theta <=npar; theta++){
 2322:       for(i=1; i<=npar; i++){ 
 2323: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2324:       }
 2325:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2326:   
 2327:       cptj=0;
 2328:       for(j=1; j<= nlstate; j++){
 2329: 	for(i=1; i<=nlstate; i++){
 2330: 	  cptj=cptj+1;
 2331: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2332: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2333: 	  }
 2334: 	}
 2335:       }
 2336:      
 2337:      
 2338:       for(i=1; i<=npar; i++) 
 2339: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2340:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2341:       
 2342:       cptj=0;
 2343:       for(j=1; j<= nlstate; j++){
 2344: 	for(i=1;i<=nlstate;i++){
 2345: 	  cptj=cptj+1;
 2346: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2347: 
 2348: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2349: 	  }
 2350: 	}
 2351:       }
 2352:       for(j=1; j<= nlstate*nlstate; j++)
 2353: 	for(h=0; h<=nhstepm-1; h++){
 2354: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2355: 	}
 2356:      } 
 2357:    
 2358: /* End theta */
 2359: 
 2360:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2361: 
 2362:      for(h=0; h<=nhstepm-1; h++)
 2363:       for(j=1; j<=nlstate*nlstate;j++)
 2364: 	for(theta=1; theta <=npar; theta++)
 2365: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2366:      
 2367: 
 2368:      for(i=1;i<=nlstate*nlstate;i++)
 2369:       for(j=1;j<=nlstate*nlstate;j++)
 2370: 	varhe[i][j][(int)age] =0.;
 2371: 
 2372:      printf("%d|",(int)age);fflush(stdout);
 2373:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2374:      for(h=0;h<=nhstepm-1;h++){
 2375:       for(k=0;k<=nhstepm-1;k++){
 2376: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2377: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2378: 	for(i=1;i<=nlstate*nlstate;i++)
 2379: 	  for(j=1;j<=nlstate*nlstate;j++)
 2380: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2381:       }
 2382:     }
 2383:     /* Computing expectancies */
 2384:     for(i=1; i<=nlstate;i++)
 2385:       for(j=1; j<=nlstate;j++)
 2386: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2387: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2388: 	  
 2389: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2390: 
 2391: 	}
 2392: 
 2393:     fprintf(ficreseij,"%3.0f",age );
 2394:     cptj=0;
 2395:     for(i=1; i<=nlstate;i++)
 2396:       for(j=1; j<=nlstate;j++){
 2397: 	cptj++;
 2398: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2399:       }
 2400:     fprintf(ficreseij,"\n");
 2401:    
 2402:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2403:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2404:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2405:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2406:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2407:   }
 2408:   printf("\n");
 2409:   fprintf(ficlog,"\n");
 2410: 
 2411:   free_vector(xp,1,npar);
 2412:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2413:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2414:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2415: }
 2416: 
 2417: /************ Variance ******************/
 2418: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 2419: {
 2420:   /* Variance of health expectancies */
 2421:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2422:   /* double **newm;*/
 2423:   double **dnewm,**doldm;
 2424:   double **dnewmp,**doldmp;
 2425:   int i, j, nhstepm, hstepm, h, nstepm ;
 2426:   int k, cptcode;
 2427:   double *xp;
 2428:   double **gp, **gm;  /* for var eij */
 2429:   double ***gradg, ***trgradg; /*for var eij */
 2430:   double **gradgp, **trgradgp; /* for var p point j */
 2431:   double *gpp, *gmp; /* for var p point j */
 2432:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2433:   double ***p3mat;
 2434:   double age,agelim, hf;
 2435:   double ***mobaverage;
 2436:   int theta;
 2437:   char digit[4];
 2438:   char digitp[25];
 2439: 
 2440:   char fileresprobmorprev[FILENAMELENGTH];
 2441: 
 2442:   if(popbased==1){
 2443:     if(mobilav!=0)
 2444:       strcpy(digitp,"-populbased-mobilav-");
 2445:     else strcpy(digitp,"-populbased-nomobil-");
 2446:   }
 2447:   else 
 2448:     strcpy(digitp,"-stablbased-");
 2449: 
 2450:   if (mobilav!=0) {
 2451:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2452:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2453:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2454:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2455:     }
 2456:   }
 2457: 
 2458:   strcpy(fileresprobmorprev,"prmorprev"); 
 2459:   sprintf(digit,"%-d",ij);
 2460:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2461:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2462:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2463:   strcat(fileresprobmorprev,fileres);
 2464:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2465:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2466:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2467:   }
 2468:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2469:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2470:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2471:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2472:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2473:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2474:     for(i=1; i<=nlstate;i++)
 2475:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2476:   }  
 2477:   fprintf(ficresprobmorprev,"\n");
 2478:   fprintf(ficgp,"\n# Routine varevsij");
 2479:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2480:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2481: /*   } */
 2482:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2483: 
 2484:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2485:   fprintf(ficresvij,"# Age");
 2486:   for(i=1; i<=nlstate;i++)
 2487:     for(j=1; j<=nlstate;j++)
 2488:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2489:   fprintf(ficresvij,"\n");
 2490: 
 2491:   xp=vector(1,npar);
 2492:   dnewm=matrix(1,nlstate,1,npar);
 2493:   doldm=matrix(1,nlstate,1,nlstate);
 2494:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2495:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2496: 
 2497:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2498:   gpp=vector(nlstate+1,nlstate+ndeath);
 2499:   gmp=vector(nlstate+1,nlstate+ndeath);
 2500:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2501:   
 2502:   if(estepm < stepm){
 2503:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2504:   }
 2505:   else  hstepm=estepm;   
 2506:   /* For example we decided to compute the life expectancy with the smallest unit */
 2507:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2508:      nhstepm is the number of hstepm from age to agelim 
 2509:      nstepm is the number of stepm from age to agelin. 
 2510:      Look at hpijx to understand the reason of that which relies in memory size
 2511:      and note for a fixed period like k years */
 2512:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2513:      survival function given by stepm (the optimization length). Unfortunately it
 2514:      means that if the survival funtion is printed every two years of age and if
 2515:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2516:      results. So we changed our mind and took the option of the best precision.
 2517:   */
 2518:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2519:   agelim = AGESUP;
 2520:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2521:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2522:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2523:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2524:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2525:     gp=matrix(0,nhstepm,1,nlstate);
 2526:     gm=matrix(0,nhstepm,1,nlstate);
 2527: 
 2528: 
 2529:     for(theta=1; theta <=npar; theta++){
 2530:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2531: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2532:       }
 2533:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2534:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2535: 
 2536:       if (popbased==1) {
 2537: 	if(mobilav ==0){
 2538: 	  for(i=1; i<=nlstate;i++)
 2539: 	    prlim[i][i]=probs[(int)age][i][ij];
 2540: 	}else{ /* mobilav */ 
 2541: 	  for(i=1; i<=nlstate;i++)
 2542: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2543: 	}
 2544:       }
 2545:   
 2546:       for(j=1; j<= nlstate; j++){
 2547: 	for(h=0; h<=nhstepm; h++){
 2548: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2549: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2550: 	}
 2551:       }
 2552:       /* This for computing probability of death (h=1 means
 2553:          computed over hstepm matrices product = hstepm*stepm months) 
 2554:          as a weighted average of prlim.
 2555:       */
 2556:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2557: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2558: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2559:       }    
 2560:       /* end probability of death */
 2561: 
 2562:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2563: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2564:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2565:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2566:  
 2567:       if (popbased==1) {
 2568: 	if(mobilav ==0){
 2569: 	  for(i=1; i<=nlstate;i++)
 2570: 	    prlim[i][i]=probs[(int)age][i][ij];
 2571: 	}else{ /* mobilav */ 
 2572: 	  for(i=1; i<=nlstate;i++)
 2573: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2574: 	}
 2575:       }
 2576: 
 2577:       for(j=1; j<= nlstate; j++){
 2578: 	for(h=0; h<=nhstepm; h++){
 2579: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2580: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2581: 	}
 2582:       }
 2583:       /* This for computing probability of death (h=1 means
 2584:          computed over hstepm matrices product = hstepm*stepm months) 
 2585:          as a weighted average of prlim.
 2586:       */
 2587:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2588: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2589:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2590:       }    
 2591:       /* end probability of death */
 2592: 
 2593:       for(j=1; j<= nlstate; j++) /* vareij */
 2594: 	for(h=0; h<=nhstepm; h++){
 2595: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2596: 	}
 2597: 
 2598:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2599: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2600:       }
 2601: 
 2602:     } /* End theta */
 2603: 
 2604:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2605: 
 2606:     for(h=0; h<=nhstepm; h++) /* veij */
 2607:       for(j=1; j<=nlstate;j++)
 2608: 	for(theta=1; theta <=npar; theta++)
 2609: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2610: 
 2611:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2612:       for(theta=1; theta <=npar; theta++)
 2613: 	trgradgp[j][theta]=gradgp[theta][j];
 2614:   
 2615: 
 2616:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2617:     for(i=1;i<=nlstate;i++)
 2618:       for(j=1;j<=nlstate;j++)
 2619: 	vareij[i][j][(int)age] =0.;
 2620: 
 2621:     for(h=0;h<=nhstepm;h++){
 2622:       for(k=0;k<=nhstepm;k++){
 2623: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2624: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2625: 	for(i=1;i<=nlstate;i++)
 2626: 	  for(j=1;j<=nlstate;j++)
 2627: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2628:       }
 2629:     }
 2630:   
 2631:     /* pptj */
 2632:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2633:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2634:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2635:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2636: 	varppt[j][i]=doldmp[j][i];
 2637:     /* end ppptj */
 2638:     /*  x centered again */
 2639:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2640:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2641:  
 2642:     if (popbased==1) {
 2643:       if(mobilav ==0){
 2644: 	for(i=1; i<=nlstate;i++)
 2645: 	  prlim[i][i]=probs[(int)age][i][ij];
 2646:       }else{ /* mobilav */ 
 2647: 	for(i=1; i<=nlstate;i++)
 2648: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2649:       }
 2650:     }
 2651:              
 2652:     /* This for computing probability of death (h=1 means
 2653:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2654:        as a weighted average of prlim.
 2655:     */
 2656:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2657:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2658: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2659:     }    
 2660:     /* end probability of death */
 2661: 
 2662:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2663:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2664:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2665:       for(i=1; i<=nlstate;i++){
 2666: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2667:       }
 2668:     } 
 2669:     fprintf(ficresprobmorprev,"\n");
 2670: 
 2671:     fprintf(ficresvij,"%.0f ",age );
 2672:     for(i=1; i<=nlstate;i++)
 2673:       for(j=1; j<=nlstate;j++){
 2674: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2675:       }
 2676:     fprintf(ficresvij,"\n");
 2677:     free_matrix(gp,0,nhstepm,1,nlstate);
 2678:     free_matrix(gm,0,nhstepm,1,nlstate);
 2679:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2680:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2681:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2682:   } /* End age */
 2683:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2684:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2685:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2686:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2687:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2688:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2689:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2690: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2691: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2692: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2693:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2694:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2695:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2696:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2697:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2698:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2699: */
 2700: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2701:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2702: 
 2703:   free_vector(xp,1,npar);
 2704:   free_matrix(doldm,1,nlstate,1,nlstate);
 2705:   free_matrix(dnewm,1,nlstate,1,npar);
 2706:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2707:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2708:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2709:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2710:   fclose(ficresprobmorprev);
 2711:   fflush(ficgp);
 2712:   fflush(fichtm); 
 2713: }  /* end varevsij */
 2714: 
 2715: /************ Variance of prevlim ******************/
 2716: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2717: {
 2718:   /* Variance of prevalence limit */
 2719:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2720:   double **newm;
 2721:   double **dnewm,**doldm;
 2722:   int i, j, nhstepm, hstepm;
 2723:   int k, cptcode;
 2724:   double *xp;
 2725:   double *gp, *gm;
 2726:   double **gradg, **trgradg;
 2727:   double age,agelim;
 2728:   int theta;
 2729:    
 2730:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2731:   fprintf(ficresvpl,"# Age");
 2732:   for(i=1; i<=nlstate;i++)
 2733:       fprintf(ficresvpl," %1d-%1d",i,i);
 2734:   fprintf(ficresvpl,"\n");
 2735: 
 2736:   xp=vector(1,npar);
 2737:   dnewm=matrix(1,nlstate,1,npar);
 2738:   doldm=matrix(1,nlstate,1,nlstate);
 2739:   
 2740:   hstepm=1*YEARM; /* Every year of age */
 2741:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2742:   agelim = AGESUP;
 2743:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2744:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2745:     if (stepm >= YEARM) hstepm=1;
 2746:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2747:     gradg=matrix(1,npar,1,nlstate);
 2748:     gp=vector(1,nlstate);
 2749:     gm=vector(1,nlstate);
 2750: 
 2751:     for(theta=1; theta <=npar; theta++){
 2752:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2753: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2754:       }
 2755:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2756:       for(i=1;i<=nlstate;i++)
 2757: 	gp[i] = prlim[i][i];
 2758:     
 2759:       for(i=1; i<=npar; i++) /* Computes gradient */
 2760: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2761:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2762:       for(i=1;i<=nlstate;i++)
 2763: 	gm[i] = prlim[i][i];
 2764: 
 2765:       for(i=1;i<=nlstate;i++)
 2766: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2767:     } /* End theta */
 2768: 
 2769:     trgradg =matrix(1,nlstate,1,npar);
 2770: 
 2771:     for(j=1; j<=nlstate;j++)
 2772:       for(theta=1; theta <=npar; theta++)
 2773: 	trgradg[j][theta]=gradg[theta][j];
 2774: 
 2775:     for(i=1;i<=nlstate;i++)
 2776:       varpl[i][(int)age] =0.;
 2777:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2778:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2779:     for(i=1;i<=nlstate;i++)
 2780:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2781: 
 2782:     fprintf(ficresvpl,"%.0f ",age );
 2783:     for(i=1; i<=nlstate;i++)
 2784:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2785:     fprintf(ficresvpl,"\n");
 2786:     free_vector(gp,1,nlstate);
 2787:     free_vector(gm,1,nlstate);
 2788:     free_matrix(gradg,1,npar,1,nlstate);
 2789:     free_matrix(trgradg,1,nlstate,1,npar);
 2790:   } /* End age */
 2791: 
 2792:   free_vector(xp,1,npar);
 2793:   free_matrix(doldm,1,nlstate,1,npar);
 2794:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2795: 
 2796: }
 2797: 
 2798: /************ Variance of one-step probabilities  ******************/
 2799: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2800: {
 2801:   int i, j=0,  i1, k1, l1, t, tj;
 2802:   int k2, l2, j1,  z1;
 2803:   int k=0,l, cptcode;
 2804:   int first=1, first1;
 2805:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2806:   double **dnewm,**doldm;
 2807:   double *xp;
 2808:   double *gp, *gm;
 2809:   double **gradg, **trgradg;
 2810:   double **mu;
 2811:   double age,agelim, cov[NCOVMAX];
 2812:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2813:   int theta;
 2814:   char fileresprob[FILENAMELENGTH];
 2815:   char fileresprobcov[FILENAMELENGTH];
 2816:   char fileresprobcor[FILENAMELENGTH];
 2817: 
 2818:   double ***varpij;
 2819: 
 2820:   strcpy(fileresprob,"prob"); 
 2821:   strcat(fileresprob,fileres);
 2822:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2823:     printf("Problem with resultfile: %s\n", fileresprob);
 2824:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2825:   }
 2826:   strcpy(fileresprobcov,"probcov"); 
 2827:   strcat(fileresprobcov,fileres);
 2828:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2829:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2830:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2831:   }
 2832:   strcpy(fileresprobcor,"probcor"); 
 2833:   strcat(fileresprobcor,fileres);
 2834:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2835:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2836:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2837:   }
 2838:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2839:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2840:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2841:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2842:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2843:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2844:   
 2845:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2846:   fprintf(ficresprob,"# Age");
 2847:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2848:   fprintf(ficresprobcov,"# Age");
 2849:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2850:   fprintf(ficresprobcov,"# Age");
 2851: 
 2852: 
 2853:   for(i=1; i<=nlstate;i++)
 2854:     for(j=1; j<=(nlstate+ndeath);j++){
 2855:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2856:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2857:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2858:     }  
 2859:  /* fprintf(ficresprob,"\n");
 2860:   fprintf(ficresprobcov,"\n");
 2861:   fprintf(ficresprobcor,"\n");
 2862:  */
 2863:  xp=vector(1,npar);
 2864:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2865:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2866:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2867:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2868:   first=1;
 2869:   fprintf(ficgp,"\n# Routine varprob");
 2870:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2871:   fprintf(fichtm,"\n");
 2872: 
 2873:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
 2874:   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
 2875:   file %s<br>\n",optionfilehtmcov);
 2876:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 2877: and drawn. It helps understanding how is the covariance between two incidences.\
 2878:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2879:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 2880: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 2881: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 2882: standard deviations wide on each axis. <br>\
 2883:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 2884:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 2885: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 2886: 
 2887:   cov[1]=1;
 2888:   tj=cptcoveff;
 2889:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2890:   j1=0;
 2891:   for(t=1; t<=tj;t++){
 2892:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2893:       j1++;
 2894:       if  (cptcovn>0) {
 2895: 	fprintf(ficresprob, "\n#********** Variable "); 
 2896: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2897: 	fprintf(ficresprob, "**********\n#\n");
 2898: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2899: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2900: 	fprintf(ficresprobcov, "**********\n#\n");
 2901: 	
 2902: 	fprintf(ficgp, "\n#********** Variable "); 
 2903: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2904: 	fprintf(ficgp, "**********\n#\n");
 2905: 	
 2906: 	
 2907: 	fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2908: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2909: 	fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2910: 	
 2911: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2912: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2913: 	fprintf(ficresprobcor, "**********\n#");    
 2914:       }
 2915:       
 2916:       for (age=bage; age<=fage; age ++){ 
 2917: 	cov[2]=age;
 2918: 	for (k=1; k<=cptcovn;k++) {
 2919: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2920: 	}
 2921: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2922: 	for (k=1; k<=cptcovprod;k++)
 2923: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2924: 	
 2925: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2926: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2927: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2928: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2929:     
 2930: 	for(theta=1; theta <=npar; theta++){
 2931: 	  for(i=1; i<=npar; i++)
 2932: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 2933: 	  
 2934: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2935: 	  
 2936: 	  k=0;
 2937: 	  for(i=1; i<= (nlstate); i++){
 2938: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2939: 	      k=k+1;
 2940: 	      gp[k]=pmmij[i][j];
 2941: 	    }
 2942: 	  }
 2943: 	  
 2944: 	  for(i=1; i<=npar; i++)
 2945: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 2946:     
 2947: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2948: 	  k=0;
 2949: 	  for(i=1; i<=(nlstate); i++){
 2950: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2951: 	      k=k+1;
 2952: 	      gm[k]=pmmij[i][j];
 2953: 	    }
 2954: 	  }
 2955:      
 2956: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 2957: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 2958: 	}
 2959: 
 2960: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 2961: 	  for(theta=1; theta <=npar; theta++)
 2962: 	    trgradg[j][theta]=gradg[theta][j];
 2963: 	
 2964: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 2965: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 2966: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 2967: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 2968: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2969: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2970: 
 2971: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 2972: 	
 2973: 	k=0;
 2974: 	for(i=1; i<=(nlstate); i++){
 2975: 	  for(j=1; j<=(nlstate+ndeath);j++){
 2976: 	    k=k+1;
 2977: 	    mu[k][(int) age]=pmmij[i][j];
 2978: 	  }
 2979: 	}
 2980:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 2981: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 2982: 	    varpij[i][j][(int)age] = doldm[i][j];
 2983: 
 2984: 	/*printf("\n%d ",(int)age);
 2985: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2986: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2987: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2988: 	  }*/
 2989: 
 2990: 	fprintf(ficresprob,"\n%d ",(int)age);
 2991: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 2992: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 2993: 
 2994: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 2995: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 2996: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2997: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 2998: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 2999: 	}
 3000: 	i=0;
 3001: 	for (k=1; k<=(nlstate);k++){
 3002:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3003:  	    i=i++;
 3004: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3005: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3006: 	    for (j=1; j<=i;j++){
 3007: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3008: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3009: 	    }
 3010: 	  }
 3011: 	}/* end of loop for state */
 3012:       } /* end of loop for age */
 3013: 
 3014:       /* Confidence intervalle of pij  */
 3015:       /*
 3016: 	fprintf(ficgp,"\nset noparametric;unset label");
 3017: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3018: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3019: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3020: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3021: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3022: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3023:       */
 3024: 
 3025:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3026:       first1=1;
 3027:       for (k2=1; k2<=(nlstate);k2++){
 3028: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3029: 	  if(l2==k2) continue;
 3030: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3031: 	  for (k1=1; k1<=(nlstate);k1++){
 3032: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3033: 	      if(l1==k1) continue;
 3034: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3035: 	      if(i<=j) continue;
 3036: 	      for (age=bage; age<=fage; age ++){ 
 3037: 		if ((int)age %5==0){
 3038: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3039: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3040: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3041: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3042: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3043: 		  c12=cv12/sqrt(v1*v2);
 3044: 		  /* Computing eigen value of matrix of covariance */
 3045: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3046: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3047: 		  /* Eigen vectors */
 3048: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3049: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3050: 		  v21=(lc1-v1)/cv12*v11;
 3051: 		  v12=-v21;
 3052: 		  v22=v11;
 3053: 		  tnalp=v21/v11;
 3054: 		  if(first1==1){
 3055: 		    first1=0;
 3056: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3057: 		  }
 3058: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3059: 		  /*printf(fignu*/
 3060: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3061: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3062: 		  if(first==1){
 3063: 		    first=0;
 3064:  		    fprintf(ficgp,"\nset parametric;unset label");
 3065: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3066: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3067: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3068:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3069: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3070: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3071: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3072: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3073: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3074: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3075: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3076: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3077: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3078: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3079: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3080: 		  }else{
 3081: 		    first=0;
 3082: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3083: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3084: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3085: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3086: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3087: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3088: 		  }/* if first */
 3089: 		} /* age mod 5 */
 3090: 	      } /* end loop age */
 3091: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3092: 	      first=1;
 3093: 	    } /*l12 */
 3094: 	  } /* k12 */
 3095: 	} /*l1 */
 3096:       }/* k1 */
 3097:     } /* loop covariates */
 3098:   }
 3099:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3100:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3101:   free_vector(xp,1,npar);
 3102:   fclose(ficresprob);
 3103:   fclose(ficresprobcov);
 3104:   fclose(ficresprobcor);
 3105:   fflush(ficgp);
 3106:   fflush(fichtmcov);
 3107: }
 3108: 
 3109: 
 3110: /******************* Printing html file ***********/
 3111: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3112: 		  int lastpass, int stepm, int weightopt, char model[],\
 3113: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3114: 		  int popforecast, int estepm ,\
 3115: 		  double jprev1, double mprev1,double anprev1, \
 3116: 		  double jprev2, double mprev2,double anprev2){
 3117:   int jj1, k1, i1, cpt;
 3118:   /*char optionfilehtm[FILENAMELENGTH];*/
 3119: /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
 3120: /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
 3121: /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
 3122: /*   } */
 3123: 
 3124:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
 3125:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
 3126:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
 3127:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
 3128:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3129:    <a href=\"%s\">%s</a> <br>\n</li>", \
 3130: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
 3131: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
 3132: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
 3133: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3134: 
 3135: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3136: 
 3137:  m=cptcoveff;
 3138:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3139: 
 3140:  jj1=0;
 3141:  for(k1=1; k1<=m;k1++){
 3142:    for(i1=1; i1<=ncodemax[k1];i1++){
 3143:      jj1++;
 3144:      if (cptcovn > 0) {
 3145:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3146:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3147: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3148:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3149:      }
 3150:      /* Pij */
 3151:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3152: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3153:      /* Quasi-incidences */
 3154:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3155:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3156: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3157:        /* Stable prevalence in each health state */
 3158:        for(cpt=1; cpt<nlstate;cpt++){
 3159: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3160: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3161:        }
 3162:      for(cpt=1; cpt<=nlstate;cpt++) {
 3163:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3164: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3165:      }
 3166:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3167: health expectancies in states (1) and (2): %s%d.png<br>\
 3168: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3169:    } /* end i1 */
 3170:  }/* End k1 */
 3171:  fprintf(fichtm,"</ul>");
 3172: 
 3173: 
 3174:  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
 3175:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
 3176:  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3177:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3178:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3179:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
 3180:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
 3181:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3182: 	 rfileres,rfileres,\
 3183: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
 3184: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
 3185: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
 3186: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
 3187: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
 3188: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3189: 
 3190: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3191: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3192: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3193: /* 	<br>",fileres,fileres,fileres,fileres); */
 3194: /*  else  */
 3195: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3196: fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3197: 
 3198:  m=cptcoveff;
 3199:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3200: 
 3201:  jj1=0;
 3202:  for(k1=1; k1<=m;k1++){
 3203:    for(i1=1; i1<=ncodemax[k1];i1++){
 3204:      jj1++;
 3205:      if (cptcovn > 0) {
 3206:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3207:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3208: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3209:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3210:      }
 3211:      for(cpt=1; cpt<=nlstate;cpt++) {
 3212:        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
 3213: interval) in state (%d): %s%d%d.png <br>\
 3214: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3215:      }
 3216:    } /* end i1 */
 3217:  }/* End k1 */
 3218:  fprintf(fichtm,"</ul>");
 3219:  fflush(fichtm);
 3220: }
 3221: 
 3222: /******************* Gnuplot file **************/
 3223: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3224: 
 3225:   char dirfileres[132],optfileres[132];
 3226:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3227:   int ng;
 3228: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3229: /*     printf("Problem with file %s",optionfilegnuplot); */
 3230: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3231: /*   } */
 3232: 
 3233:   /*#ifdef windows */
 3234:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3235:     /*#endif */
 3236:   m=pow(2,cptcoveff);
 3237: 
 3238:   strcpy(dirfileres,optionfilefiname);
 3239:   strcpy(optfileres,"vpl");
 3240:  /* 1eme*/
 3241:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3242:    for (k1=1; k1<= m ; k1 ++) {
 3243:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3244:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3245:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3246: set ylabel \"Probability\" \n\
 3247: set ter png small\n\
 3248: set size 0.65,0.65\n\
 3249: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3250: 
 3251:      for (i=1; i<= nlstate ; i ++) {
 3252:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3253:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3254:      }
 3255:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3256:      for (i=1; i<= nlstate ; i ++) {
 3257:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3258:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3259:      } 
 3260:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3261:      for (i=1; i<= nlstate ; i ++) {
 3262:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3263:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3264:      }  
 3265:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3266:    }
 3267:   }
 3268:   /*2 eme*/
 3269:   
 3270:   for (k1=1; k1<= m ; k1 ++) { 
 3271:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3272:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3273:     
 3274:     for (i=1; i<= nlstate+1 ; i ++) {
 3275:       k=2*i;
 3276:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3277:       for (j=1; j<= nlstate+1 ; j ++) {
 3278: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3279: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3280:       }   
 3281:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3282:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3283:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3284:       for (j=1; j<= nlstate+1 ; j ++) {
 3285: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3286: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3287:       }   
 3288:       fprintf(ficgp,"\" t\"\" w l 0,");
 3289:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3290:       for (j=1; j<= nlstate+1 ; j ++) {
 3291: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3292: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3293:       }   
 3294:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3295:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3296:     }
 3297:   }
 3298:   
 3299:   /*3eme*/
 3300:   
 3301:   for (k1=1; k1<= m ; k1 ++) { 
 3302:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3303:       k=2+nlstate*(2*cpt-2);
 3304:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3305:       fprintf(ficgp,"set ter png small\n\
 3306: set size 0.65,0.65\n\
 3307: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3308:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3309: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3310: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3311: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3312: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3313: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3314: 	
 3315:       */
 3316:       for (i=1; i< nlstate ; i ++) {
 3317: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3318: 	
 3319:       } 
 3320:     }
 3321:   }
 3322:   
 3323:   /* CV preval stable (period) */
 3324:   for (k1=1; k1<= m ; k1 ++) { 
 3325:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3326:       k=3;
 3327:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3328:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3329: set ter png small\nset size 0.65,0.65\n\
 3330: unset log y\n\
 3331: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3332:       
 3333:       for (i=1; i< nlstate ; i ++)
 3334: 	fprintf(ficgp,"+$%d",k+i+1);
 3335:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3336:       
 3337:       l=3+(nlstate+ndeath)*cpt;
 3338:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3339:       for (i=1; i< nlstate ; i ++) {
 3340: 	l=3+(nlstate+ndeath)*cpt;
 3341: 	fprintf(ficgp,"+$%d",l+i+1);
 3342:       }
 3343:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3344:     } 
 3345:   }  
 3346:   
 3347:   /* proba elementaires */
 3348:   for(i=1,jk=1; i <=nlstate; i++){
 3349:     for(k=1; k <=(nlstate+ndeath); k++){
 3350:       if (k != i) {
 3351: 	for(j=1; j <=ncovmodel; j++){
 3352: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3353: 	  jk++; 
 3354: 	  fprintf(ficgp,"\n");
 3355: 	}
 3356:       }
 3357:     }
 3358:    }
 3359: 
 3360:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3361:      for(jk=1; jk <=m; jk++) {
 3362:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3363:        if (ng==2)
 3364: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3365:        else
 3366: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3367:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3368:        i=1;
 3369:        for(k2=1; k2<=nlstate; k2++) {
 3370: 	 k3=i;
 3371: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3372: 	   if (k != k2){
 3373: 	     if(ng==2)
 3374: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3375: 	     else
 3376: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3377: 	     ij=1;
 3378: 	     for(j=3; j <=ncovmodel; j++) {
 3379: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3380: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3381: 		 ij++;
 3382: 	       }
 3383: 	       else
 3384: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3385: 	     }
 3386: 	     fprintf(ficgp,")/(1");
 3387: 	     
 3388: 	     for(k1=1; k1 <=nlstate; k1++){   
 3389: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3390: 	       ij=1;
 3391: 	       for(j=3; j <=ncovmodel; j++){
 3392: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3393: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3394: 		   ij++;
 3395: 		 }
 3396: 		 else
 3397: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3398: 	       }
 3399: 	       fprintf(ficgp,")");
 3400: 	     }
 3401: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3402: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3403: 	     i=i+ncovmodel;
 3404: 	   }
 3405: 	 } /* end k */
 3406:        } /* end k2 */
 3407:      } /* end jk */
 3408:    } /* end ng */
 3409:    fflush(ficgp); 
 3410: }  /* end gnuplot */
 3411: 
 3412: 
 3413: /*************** Moving average **************/
 3414: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3415: 
 3416:   int i, cpt, cptcod;
 3417:   int modcovmax =1;
 3418:   int mobilavrange, mob;
 3419:   double age;
 3420: 
 3421:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3422: 			   a covariate has 2 modalities */
 3423:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3424: 
 3425:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3426:     if(mobilav==1) mobilavrange=5; /* default */
 3427:     else mobilavrange=mobilav;
 3428:     for (age=bage; age<=fage; age++)
 3429:       for (i=1; i<=nlstate;i++)
 3430: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3431: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3432:     /* We keep the original values on the extreme ages bage, fage and for 
 3433:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3434:        we use a 5 terms etc. until the borders are no more concerned. 
 3435:     */ 
 3436:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3437:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3438: 	for (i=1; i<=nlstate;i++){
 3439: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3440: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3441: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3442: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3443: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3444: 	      }
 3445: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3446: 	  }
 3447: 	}
 3448:       }/* end age */
 3449:     }/* end mob */
 3450:   }else return -1;
 3451:   return 0;
 3452: }/* End movingaverage */
 3453: 
 3454: 
 3455: /************** Forecasting ******************/
 3456: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3457:   /* proj1, year, month, day of starting projection 
 3458:      agemin, agemax range of age
 3459:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3460:      anproj2 year of en of projection (same day and month as proj1).
 3461:   */
 3462:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3463:   int *popage;
 3464:   double agec; /* generic age */
 3465:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3466:   double *popeffectif,*popcount;
 3467:   double ***p3mat;
 3468:   double ***mobaverage;
 3469:   char fileresf[FILENAMELENGTH];
 3470: 
 3471:   agelim=AGESUP;
 3472:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3473:  
 3474:   strcpy(fileresf,"f"); 
 3475:   strcat(fileresf,fileres);
 3476:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3477:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3478:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3479:   }
 3480:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3481:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3482: 
 3483:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3484: 
 3485:   if (mobilav!=0) {
 3486:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3487:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3488:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3489:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3490:     }
 3491:   }
 3492: 
 3493:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3494:   if (stepm<=12) stepsize=1;
 3495:   if(estepm < stepm){
 3496:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3497:   }
 3498:   else  hstepm=estepm;   
 3499: 
 3500:   hstepm=hstepm/stepm; 
 3501:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3502:                                fractional in yp1 */
 3503:   anprojmean=yp;
 3504:   yp2=modf((yp1*12),&yp);
 3505:   mprojmean=yp;
 3506:   yp1=modf((yp2*30.5),&yp);
 3507:   jprojmean=yp;
 3508:   if(jprojmean==0) jprojmean=1;
 3509:   if(mprojmean==0) jprojmean=1;
 3510: 
 3511:   i1=cptcoveff;
 3512:   if (cptcovn < 1){i1=1;}
 3513:   
 3514:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3515:   
 3516:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3517: 
 3518: /* 	      if (h==(int)(YEARM*yearp)){ */
 3519:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3520:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3521:       k=k+1;
 3522:       fprintf(ficresf,"\n#******");
 3523:       for(j=1;j<=cptcoveff;j++) {
 3524: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3525:       }
 3526:       fprintf(ficresf,"******\n");
 3527:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3528:       for(j=1; j<=nlstate+ndeath;j++){ 
 3529: 	for(i=1; i<=nlstate;i++) 	      
 3530:           fprintf(ficresf," p%d%d",i,j);
 3531: 	fprintf(ficresf," p.%d",j);
 3532:       }
 3533:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3534: 	fprintf(ficresf,"\n");
 3535: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3536: 
 3537:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3538: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3539: 	  nhstepm = nhstepm/hstepm; 
 3540: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3541: 	  oldm=oldms;savm=savms;
 3542: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3543: 	
 3544: 	  for (h=0; h<=nhstepm; h++){
 3545: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3546:               fprintf(ficresf,"\n");
 3547:               for(j=1;j<=cptcoveff;j++) 
 3548:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3549: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3550: 	    } 
 3551: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3552: 	      ppij=0.;
 3553: 	      for(i=1; i<=nlstate;i++) {
 3554: 		if (mobilav==1) 
 3555: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3556: 		else {
 3557: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3558: 		}
 3559: 		if (h*hstepm/YEARM*stepm== yearp) {
 3560: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3561: 		}
 3562: 	      } /* end i */
 3563: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3564: 		fprintf(ficresf," %.3f", ppij);
 3565: 	      }
 3566: 	    }/* end j */
 3567: 	  } /* end h */
 3568: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3569: 	} /* end agec */
 3570:       } /* end yearp */
 3571:     } /* end cptcod */
 3572:   } /* end  cptcov */
 3573:        
 3574:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3575: 
 3576:   fclose(ficresf);
 3577: }
 3578: 
 3579: /************** Forecasting *****not tested NB*************/
 3580: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3581:   
 3582:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3583:   int *popage;
 3584:   double calagedatem, agelim, kk1, kk2;
 3585:   double *popeffectif,*popcount;
 3586:   double ***p3mat,***tabpop,***tabpopprev;
 3587:   double ***mobaverage;
 3588:   char filerespop[FILENAMELENGTH];
 3589: 
 3590:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3591:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3592:   agelim=AGESUP;
 3593:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3594:   
 3595:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3596:   
 3597:   
 3598:   strcpy(filerespop,"pop"); 
 3599:   strcat(filerespop,fileres);
 3600:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3601:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3602:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3603:   }
 3604:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3605:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3606: 
 3607:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3608: 
 3609:   if (mobilav!=0) {
 3610:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3611:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3612:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3613:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3614:     }
 3615:   }
 3616: 
 3617:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3618:   if (stepm<=12) stepsize=1;
 3619:   
 3620:   agelim=AGESUP;
 3621:   
 3622:   hstepm=1;
 3623:   hstepm=hstepm/stepm; 
 3624:   
 3625:   if (popforecast==1) {
 3626:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3627:       printf("Problem with population file : %s\n",popfile);exit(0);
 3628:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3629:     } 
 3630:     popage=ivector(0,AGESUP);
 3631:     popeffectif=vector(0,AGESUP);
 3632:     popcount=vector(0,AGESUP);
 3633:     
 3634:     i=1;   
 3635:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3636:    
 3637:     imx=i;
 3638:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3639:   }
 3640: 
 3641:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3642:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3643:       k=k+1;
 3644:       fprintf(ficrespop,"\n#******");
 3645:       for(j=1;j<=cptcoveff;j++) {
 3646: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3647:       }
 3648:       fprintf(ficrespop,"******\n");
 3649:       fprintf(ficrespop,"# Age");
 3650:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3651:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3652:       
 3653:       for (cpt=0; cpt<=0;cpt++) { 
 3654: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3655: 	
 3656:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3657: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3658: 	  nhstepm = nhstepm/hstepm; 
 3659: 	  
 3660: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3661: 	  oldm=oldms;savm=savms;
 3662: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3663: 	
 3664: 	  for (h=0; h<=nhstepm; h++){
 3665: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3666: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3667: 	    } 
 3668: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3669: 	      kk1=0.;kk2=0;
 3670: 	      for(i=1; i<=nlstate;i++) {	      
 3671: 		if (mobilav==1) 
 3672: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3673: 		else {
 3674: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3675: 		}
 3676: 	      }
 3677: 	      if (h==(int)(calagedatem+12*cpt)){
 3678: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3679: 		  /*fprintf(ficrespop," %.3f", kk1);
 3680: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3681: 	      }
 3682: 	    }
 3683: 	    for(i=1; i<=nlstate;i++){
 3684: 	      kk1=0.;
 3685: 		for(j=1; j<=nlstate;j++){
 3686: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3687: 		}
 3688: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3689: 	    }
 3690: 
 3691: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3692: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3693: 	  }
 3694: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3695: 	}
 3696:       }
 3697:  
 3698:   /******/
 3699: 
 3700:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3701: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3702: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3703: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3704: 	  nhstepm = nhstepm/hstepm; 
 3705: 	  
 3706: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3707: 	  oldm=oldms;savm=savms;
 3708: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3709: 	  for (h=0; h<=nhstepm; h++){
 3710: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3711: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3712: 	    } 
 3713: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3714: 	      kk1=0.;kk2=0;
 3715: 	      for(i=1; i<=nlstate;i++) {	      
 3716: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3717: 	      }
 3718: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3719: 	    }
 3720: 	  }
 3721: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3722: 	}
 3723:       }
 3724:    } 
 3725:   }
 3726:  
 3727:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3728: 
 3729:   if (popforecast==1) {
 3730:     free_ivector(popage,0,AGESUP);
 3731:     free_vector(popeffectif,0,AGESUP);
 3732:     free_vector(popcount,0,AGESUP);
 3733:   }
 3734:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3735:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3736:   fclose(ficrespop);
 3737: } /* End of popforecast */
 3738: 
 3739: int fileappend(FILE *fichier, char *optionfich)
 3740: {
 3741:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3742:     printf("Problem with file: %s\n", optionfich);
 3743:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3744:     return (0);
 3745:   }
 3746:   fflush(fichier);
 3747:   return (1);
 3748: }
 3749: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3750: {
 3751: 
 3752:   char ca[32], cb[32], cc[32];
 3753:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3754:   int numlinepar;
 3755: 
 3756:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3757:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3758:   for(i=1; i <=nlstate; i++){
 3759:     jj=0;
 3760:     for(j=1; j <=nlstate+ndeath; j++){
 3761:       if(j==i) continue;
 3762:       jj++;
 3763:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3764:       printf("%1d%1d",i,j);
 3765:       fprintf(ficparo,"%1d%1d",i,j);
 3766:       for(k=1; k<=ncovmodel;k++){
 3767: 	/* 	  printf(" %lf",param[i][j][k]); */
 3768: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3769: 	printf(" 0.");
 3770: 	fprintf(ficparo," 0.");
 3771:       }
 3772:       printf("\n");
 3773:       fprintf(ficparo,"\n");
 3774:     }
 3775:   }
 3776:   printf("# Scales (for hessian or gradient estimation)\n");
 3777:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3778:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3779:   for(i=1; i <=nlstate; i++){
 3780:     jj=0;
 3781:     for(j=1; j <=nlstate+ndeath; j++){
 3782:       if(j==i) continue;
 3783:       jj++;
 3784:       fprintf(ficparo,"%1d%1d",i,j);
 3785:       printf("%1d%1d",i,j);
 3786:       fflush(stdout);
 3787:       for(k=1; k<=ncovmodel;k++){
 3788: 	/* 	printf(" %le",delti3[i][j][k]); */
 3789: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3790: 	printf(" 0.");
 3791: 	fprintf(ficparo," 0.");
 3792:       }
 3793:       numlinepar++;
 3794:       printf("\n");
 3795:       fprintf(ficparo,"\n");
 3796:     }
 3797:   }
 3798:   printf("# Covariance matrix\n");
 3799: /* # 121 Var(a12)\n\ */
 3800: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3801: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3802: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3803: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3804: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3805: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3806: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3807:   fflush(stdout);
 3808:   fprintf(ficparo,"# Covariance matrix\n");
 3809:   /* # 121 Var(a12)\n\ */
 3810:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3811:   /* #   ...\n\ */
 3812:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3813:   
 3814:   for(itimes=1;itimes<=2;itimes++){
 3815:     jj=0;
 3816:     for(i=1; i <=nlstate; i++){
 3817:       for(j=1; j <=nlstate+ndeath; j++){
 3818: 	if(j==i) continue;
 3819: 	for(k=1; k<=ncovmodel;k++){
 3820: 	  jj++;
 3821: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3822: 	  if(itimes==1){
 3823: 	    printf("#%1d%1d%d",i,j,k);
 3824: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3825: 	  }else{
 3826: 	    printf("%1d%1d%d",i,j,k);
 3827: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3828: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3829: 	  }
 3830: 	  ll=0;
 3831: 	  for(li=1;li <=nlstate; li++){
 3832: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3833: 	      if(lj==li) continue;
 3834: 	      for(lk=1;lk<=ncovmodel;lk++){
 3835: 		ll++;
 3836: 		if(ll<=jj){
 3837: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3838: 		  if(ll<jj){
 3839: 		    if(itimes==1){
 3840: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3841: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3842: 		    }else{
 3843: 		      printf(" 0.");
 3844: 		      fprintf(ficparo," 0.");
 3845: 		    }
 3846: 		  }else{
 3847: 		    if(itimes==1){
 3848: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 3849: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 3850: 		    }else{
 3851: 		      printf(" 0.");
 3852: 		      fprintf(ficparo," 0.");
 3853: 		    }
 3854: 		  }
 3855: 		}
 3856: 	      } /* end lk */
 3857: 	    } /* end lj */
 3858: 	  } /* end li */
 3859: 	  printf("\n");
 3860: 	  fprintf(ficparo,"\n");
 3861: 	  numlinepar++;
 3862: 	} /* end k*/
 3863:       } /*end j */
 3864:     } /* end i */
 3865:   }
 3866: 
 3867: } /* end of prwizard */
 3868: 
 3869: 
 3870: /***********************************************/
 3871: /**************** Main Program *****************/
 3872: /***********************************************/
 3873: 
 3874: int main(int argc, char *argv[])
 3875: {
 3876:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 3877:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 3878:   int jj, imk;
 3879:   int numlinepar=0; /* Current linenumber of parameter file */
 3880:   /*  FILE *fichtm; *//* Html File */
 3881:   /* FILE *ficgp;*/ /*Gnuplot File */
 3882:   double agedeb, agefin,hf;
 3883:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 3884: 
 3885:   double fret;
 3886:   double **xi,tmp,delta;
 3887: 
 3888:   double dum; /* Dummy variable */
 3889:   double ***p3mat;
 3890:   double ***mobaverage;
 3891:   int *indx;
 3892:   char line[MAXLINE], linepar[MAXLINE];
 3893:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 3894:   char pathr[MAXLINE]; 
 3895:   int firstobs=1, lastobs=10;
 3896:   int sdeb, sfin; /* Status at beginning and end */
 3897:   int c,  h , cpt,l;
 3898:   int ju,jl, mi;
 3899:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 3900:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 3901:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 3902:   int mobilav=0,popforecast=0;
 3903:   int hstepm, nhstepm;
 3904:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 3905:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 3906: 
 3907:   double bage, fage, age, agelim, agebase;
 3908:   double ftolpl=FTOL;
 3909:   double **prlim;
 3910:   double *severity;
 3911:   double ***param; /* Matrix of parameters */
 3912:   double  *p;
 3913:   double **matcov; /* Matrix of covariance */
 3914:   double ***delti3; /* Scale */
 3915:   double *delti; /* Scale */
 3916:   double ***eij, ***vareij;
 3917:   double **varpl; /* Variances of prevalence limits by age */
 3918:   double *epj, vepp;
 3919:   double kk1, kk2;
 3920:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 3921: 
 3922:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 3923: 
 3924: 
 3925:   char z[1]="c", occ;
 3926: 
 3927:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 3928:   char strstart[80], *strt, strtend[80];
 3929:   char *stratrunc;
 3930:   int lstra;
 3931: 
 3932:   long total_usecs;
 3933:  
 3934:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 3935:   (void) gettimeofday(&start_time,&tzp);
 3936:   curr_time=start_time;
 3937:   tm = *localtime(&start_time.tv_sec);
 3938:   tmg = *gmtime(&start_time.tv_sec);
 3939:   strcpy(strstart,asctime(&tm));
 3940: 
 3941: /*  printf("Localtime (at start)=%s",strstart); */
 3942: /*  tp.tv_sec = tp.tv_sec +86400; */
 3943: /*  tm = *localtime(&start_time.tv_sec); */
 3944: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 3945: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 3946: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 3947: /*   tp.tv_sec = mktime(&tmg); */
 3948: /*   strt=asctime(&tmg); */
 3949: /*   printf("Time(after) =%s",strstart);  */
 3950: /*  (void) time (&time_value);
 3951: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 3952: *  tm = *localtime(&time_value);
 3953: *  strstart=asctime(&tm);
 3954: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 3955: */
 3956: 
 3957:   nberr=0; /* Number of errors and warnings */
 3958:   nbwarn=0;
 3959:   getcwd(pathcd, size);
 3960: 
 3961:   printf("\n%s\n%s",version,fullversion);
 3962:   if(argc <=1){
 3963:     printf("\nEnter the parameter file name: ");
 3964:     scanf("%s",pathtot);
 3965:   }
 3966:   else{
 3967:     strcpy(pathtot,argv[1]);
 3968:   }
 3969:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 3970:   /*cygwin_split_path(pathtot,path,optionfile);
 3971:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 3972:   /* cutv(path,optionfile,pathtot,'\\');*/
 3973: 
 3974:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 3975:   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3976:   chdir(path);
 3977:   strcpy(command,"mkdir ");
 3978:   strcat(command,optionfilefiname);
 3979:   if((outcmd=system(command)) != 0){
 3980:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 3981:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 3982:     /* fclose(ficlog); */
 3983: /*     exit(1); */
 3984:   }
 3985: /*   if((imk=mkdir(optionfilefiname))<0){ */
 3986: /*     perror("mkdir"); */
 3987: /*   } */
 3988: 
 3989:   /*-------- arguments in the command line --------*/
 3990: 
 3991:   /* Log file */
 3992:   strcat(filelog, optionfilefiname);
 3993:   strcat(filelog,".log");    /* */
 3994:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 3995:     printf("Problem with logfile %s\n",filelog);
 3996:     goto end;
 3997:   }
 3998:   fprintf(ficlog,"Log filename:%s\n",filelog);
 3999:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4000:   fprintf(ficlog,"\nEnter the parameter file name: ");
 4001:   fprintf(ficlog,"pathtot=%s\n\
 4002:  path=%s \n\
 4003:  optionfile=%s\n\
 4004:  optionfilext=%s\n\
 4005:  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 4006: 
 4007:   printf("Localtime (at start):%s",strstart);
 4008:   fprintf(ficlog,"Localtime (at start): %s",strstart);
 4009:   fflush(ficlog);
 4010: /*   (void) gettimeofday(&curr_time,&tzp); */
 4011: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4012: 
 4013:   /* */
 4014:   strcpy(fileres,"r");
 4015:   strcat(fileres, optionfilefiname);
 4016:   strcat(fileres,".txt");    /* Other files have txt extension */
 4017: 
 4018:   /*---------arguments file --------*/
 4019: 
 4020:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4021:     printf("Problem with optionfile %s\n",optionfile);
 4022:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4023:     fflush(ficlog);
 4024:     goto end;
 4025:   }
 4026: 
 4027: 
 4028: 
 4029:   strcpy(filereso,"o");
 4030:   strcat(filereso,fileres);
 4031:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4032:     printf("Problem with Output resultfile: %s\n", filereso);
 4033:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4034:     fflush(ficlog);
 4035:     goto end;
 4036:   }
 4037: 
 4038:   /* Reads comments: lines beginning with '#' */
 4039:   numlinepar=0;
 4040:   while((c=getc(ficpar))=='#' && c!= EOF){
 4041:     ungetc(c,ficpar);
 4042:     fgets(line, MAXLINE, ficpar);
 4043:     numlinepar++;
 4044:     puts(line);
 4045:     fputs(line,ficparo);
 4046:     fputs(line,ficlog);
 4047:   }
 4048:   ungetc(c,ficpar);
 4049: 
 4050:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4051:   numlinepar++;
 4052:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4053:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4054:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4055:   fflush(ficlog);
 4056:   while((c=getc(ficpar))=='#' && c!= EOF){
 4057:     ungetc(c,ficpar);
 4058:     fgets(line, MAXLINE, ficpar);
 4059:     numlinepar++;
 4060:     puts(line);
 4061:     fputs(line,ficparo);
 4062:     fputs(line,ficlog);
 4063:   }
 4064:   ungetc(c,ficpar);
 4065: 
 4066:    
 4067:   covar=matrix(0,NCOVMAX,1,n); 
 4068:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4069:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4070: 
 4071:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4072:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4073:  
 4074:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4075:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4076:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4077:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4078:     fclose (ficparo);
 4079:     fclose (ficlog);
 4080:     exit(0);
 4081:   }
 4082:   /* Read guess parameters */
 4083:   /* Reads comments: lines beginning with '#' */
 4084:   while((c=getc(ficpar))=='#' && c!= EOF){
 4085:     ungetc(c,ficpar);
 4086:     fgets(line, MAXLINE, ficpar);
 4087:     numlinepar++;
 4088:     puts(line);
 4089:     fputs(line,ficparo);
 4090:     fputs(line,ficlog);
 4091:   }
 4092:   ungetc(c,ficpar);
 4093: 
 4094:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4095:   for(i=1; i <=nlstate; i++){
 4096:     j=0;
 4097:     for(jj=1; jj <=nlstate+ndeath; jj++){
 4098:       if(jj==i) continue;
 4099:       j++;
 4100:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4101:       if ((i1 != i) && (j1 != j)){
 4102: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4103: 	exit(1);
 4104:       }
 4105:       fprintf(ficparo,"%1d%1d",i1,j1);
 4106:       if(mle==1)
 4107: 	printf("%1d%1d",i,j);
 4108:       fprintf(ficlog,"%1d%1d",i,j);
 4109:       for(k=1; k<=ncovmodel;k++){
 4110: 	fscanf(ficpar," %lf",&param[i][j][k]);
 4111: 	if(mle==1){
 4112: 	  printf(" %lf",param[i][j][k]);
 4113: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4114: 	}
 4115: 	else
 4116: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4117: 	fprintf(ficparo," %lf",param[i][j][k]);
 4118:       }
 4119:       fscanf(ficpar,"\n");
 4120:       numlinepar++;
 4121:       if(mle==1)
 4122: 	printf("\n");
 4123:       fprintf(ficlog,"\n");
 4124:       fprintf(ficparo,"\n");
 4125:     }
 4126:   }  
 4127:   fflush(ficlog);
 4128: 
 4129:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4130: 
 4131:   p=param[1][1];
 4132:   
 4133:   /* Reads comments: lines beginning with '#' */
 4134:   while((c=getc(ficpar))=='#' && c!= EOF){
 4135:     ungetc(c,ficpar);
 4136:     fgets(line, MAXLINE, ficpar);
 4137:     numlinepar++;
 4138:     puts(line);
 4139:     fputs(line,ficparo);
 4140:     fputs(line,ficlog);
 4141:   }
 4142:   ungetc(c,ficpar);
 4143: 
 4144:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4145:   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
 4146:   for(i=1; i <=nlstate; i++){
 4147:     for(j=1; j <=nlstate+ndeath-1; j++){
 4148:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4149:       if ((i1-i)*(j1-j)!=0){
 4150: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4151: 	exit(1);
 4152:       }
 4153:       printf("%1d%1d",i,j);
 4154:       fprintf(ficparo,"%1d%1d",i1,j1);
 4155:       fprintf(ficlog,"%1d%1d",i1,j1);
 4156:       for(k=1; k<=ncovmodel;k++){
 4157: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 4158: 	printf(" %le",delti3[i][j][k]);
 4159: 	fprintf(ficparo," %le",delti3[i][j][k]);
 4160: 	fprintf(ficlog," %le",delti3[i][j][k]);
 4161:       }
 4162:       fscanf(ficpar,"\n");
 4163:       numlinepar++;
 4164:       printf("\n");
 4165:       fprintf(ficparo,"\n");
 4166:       fprintf(ficlog,"\n");
 4167:     }
 4168:   }
 4169:   fflush(ficlog);
 4170: 
 4171:   delti=delti3[1][1];
 4172: 
 4173: 
 4174:   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4175:   
 4176:   /* Reads comments: lines beginning with '#' */
 4177:   while((c=getc(ficpar))=='#' && c!= EOF){
 4178:     ungetc(c,ficpar);
 4179:     fgets(line, MAXLINE, ficpar);
 4180:     numlinepar++;
 4181:     puts(line);
 4182:     fputs(line,ficparo);
 4183:     fputs(line,ficlog);
 4184:   }
 4185:   ungetc(c,ficpar);
 4186:   
 4187:   matcov=matrix(1,npar,1,npar);
 4188:   for(i=1; i <=npar; i++){
 4189:     fscanf(ficpar,"%s",&str);
 4190:     if(mle==1)
 4191:       printf("%s",str);
 4192:     fprintf(ficlog,"%s",str);
 4193:     fprintf(ficparo,"%s",str);
 4194:     for(j=1; j <=i; j++){
 4195:       fscanf(ficpar," %le",&matcov[i][j]);
 4196:       if(mle==1){
 4197: 	printf(" %.5le",matcov[i][j]);
 4198:       }
 4199:       fprintf(ficlog," %.5le",matcov[i][j]);
 4200:       fprintf(ficparo," %.5le",matcov[i][j]);
 4201:     }
 4202:     fscanf(ficpar,"\n");
 4203:     numlinepar++;
 4204:     if(mle==1)
 4205:       printf("\n");
 4206:     fprintf(ficlog,"\n");
 4207:     fprintf(ficparo,"\n");
 4208:   }
 4209:   for(i=1; i <=npar; i++)
 4210:     for(j=i+1;j<=npar;j++)
 4211:       matcov[i][j]=matcov[j][i];
 4212:    
 4213:   if(mle==1)
 4214:     printf("\n");
 4215:   fprintf(ficlog,"\n");
 4216: 
 4217:   fflush(ficlog);
 4218: 
 4219:   /*-------- Rewriting paramater file ----------*/
 4220:   strcpy(rfileres,"r");    /* "Rparameterfile */
 4221:   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4222:   strcat(rfileres,".");    /* */
 4223:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4224:   if((ficres =fopen(rfileres,"w"))==NULL) {
 4225:     printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4226:     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4227:   }
 4228:   fprintf(ficres,"#%s\n",version);
 4229:     
 4230:   /*-------- data file ----------*/
 4231:   if((fic=fopen(datafile,"r"))==NULL)    {
 4232:     printf("Problem with datafile: %s\n", datafile);goto end;
 4233:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4234:   }
 4235: 
 4236:   n= lastobs;
 4237:   severity = vector(1,maxwav);
 4238:   outcome=imatrix(1,maxwav+1,1,n);
 4239:   num=lvector(1,n);
 4240:   moisnais=vector(1,n);
 4241:   annais=vector(1,n);
 4242:   moisdc=vector(1,n);
 4243:   andc=vector(1,n);
 4244:   agedc=vector(1,n);
 4245:   cod=ivector(1,n);
 4246:   weight=vector(1,n);
 4247:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4248:   mint=matrix(1,maxwav,1,n);
 4249:   anint=matrix(1,maxwav,1,n);
 4250:   s=imatrix(1,maxwav+1,1,n);
 4251:   tab=ivector(1,NCOVMAX);
 4252:   ncodemax=ivector(1,8);
 4253: 
 4254:   i=1;
 4255:   while (fgets(line, MAXLINE, fic) != NULL)    {
 4256:     if ((i >= firstobs) && (i <=lastobs)) {
 4257: 	
 4258:       for (j=maxwav;j>=1;j--){
 4259: 	cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 4260: 	strcpy(line,stra);
 4261: 	cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4262: 	cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4263:       }
 4264: 	
 4265:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4266:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4267: 
 4268:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4269:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4270: 
 4271:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 4272:       for (j=ncovcol;j>=1;j--){
 4273: 	cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4274:       } 
 4275:       lstra=strlen(stra);
 4276:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4277: 	stratrunc = &(stra[lstra-9]);
 4278: 	num[i]=atol(stratrunc);
 4279:       }
 4280:       else
 4281: 	num[i]=atol(stra);
 4282: 	
 4283:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4284: 	printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4285: 
 4286:       i=i+1;
 4287:     }
 4288:   }
 4289:   /* printf("ii=%d", ij);
 4290:      scanf("%d",i);*/
 4291:   imx=i-1; /* Number of individuals */
 4292: 
 4293:   /* for (i=1; i<=imx; i++){
 4294:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4295:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4296:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4297:     }*/
 4298:    /*  for (i=1; i<=imx; i++){
 4299:      if (s[4][i]==9)  s[4][i]=-1; 
 4300:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4301:   
 4302:  for (i=1; i<=imx; i++)
 4303:  
 4304:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4305:      else weight[i]=1;*/
 4306: 
 4307:   /* Calculation of the number of parameter from char model*/
 4308:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4309:   Tprod=ivector(1,15); 
 4310:   Tvaraff=ivector(1,15); 
 4311:   Tvard=imatrix(1,15,1,2);
 4312:   Tage=ivector(1,15);      
 4313:    
 4314:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4315:     j=0, j1=0, k1=1, k2=1;
 4316:     j=nbocc(model,'+'); /* j=Number of '+' */
 4317:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4318:     cptcovn=j+1; 
 4319:     cptcovprod=j1; /*Number of products */
 4320:     
 4321:     strcpy(modelsav,model); 
 4322:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4323:       printf("Error. Non available option model=%s ",model);
 4324:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4325:       goto end;
 4326:     }
 4327:     
 4328:     /* This loop fills the array Tvar from the string 'model'.*/
 4329: 
 4330:     for(i=(j+1); i>=1;i--){
 4331:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4332:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4333:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4334:       /*scanf("%d",i);*/
 4335:       if (strchr(strb,'*')) {  /* Model includes a product */
 4336: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4337: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4338: 	  cptcovprod--;
 4339: 	  cutv(strb,stre,strd,'V');
 4340: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4341: 	  cptcovage++;
 4342: 	    Tage[cptcovage]=i;
 4343: 	    /*printf("stre=%s ", stre);*/
 4344: 	}
 4345: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4346: 	  cptcovprod--;
 4347: 	  cutv(strb,stre,strc,'V');
 4348: 	  Tvar[i]=atoi(stre);
 4349: 	  cptcovage++;
 4350: 	  Tage[cptcovage]=i;
 4351: 	}
 4352: 	else {  /* Age is not in the model */
 4353: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4354: 	  Tvar[i]=ncovcol+k1;
 4355: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4356: 	  Tprod[k1]=i;
 4357: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4358: 	  Tvard[k1][2]=atoi(stre); /* n */
 4359: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4360: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4361: 	  for (k=1; k<=lastobs;k++) 
 4362: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4363: 	  k1++;
 4364: 	  k2=k2+2;
 4365: 	}
 4366:       }
 4367:       else { /* no more sum */
 4368: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4369:        /*  scanf("%d",i);*/
 4370:       cutv(strd,strc,strb,'V');
 4371:       Tvar[i]=atoi(strc);
 4372:       }
 4373:       strcpy(modelsav,stra);  
 4374:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4375: 	scanf("%d",i);*/
 4376:     } /* end of loop + */
 4377:   } /* end model */
 4378:   
 4379:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4380:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4381: 
 4382:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4383:   printf("cptcovprod=%d ", cptcovprod);
 4384:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4385: 
 4386:   scanf("%d ",i);
 4387:   fclose(fic);*/
 4388: 
 4389:     /*  if(mle==1){*/
 4390:   if (weightopt != 1) { /* Maximisation without weights*/
 4391:     for(i=1;i<=n;i++) weight[i]=1.0;
 4392:   }
 4393:     /*-calculation of age at interview from date of interview and age at death -*/
 4394:   agev=matrix(1,maxwav,1,imx);
 4395: 
 4396:   for (i=1; i<=imx; i++) {
 4397:     for(m=2; (m<= maxwav); m++) {
 4398:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4399: 	anint[m][i]=9999;
 4400: 	s[m][i]=-1;
 4401:       }
 4402:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4403: 	nberr++;
 4404: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4405: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4406: 	s[m][i]=-1;
 4407:       }
 4408:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4409: 	nberr++;
 4410: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4411: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4412: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4413:       }
 4414:     }
 4415:   }
 4416: 
 4417:   for (i=1; i<=imx; i++)  {
 4418:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4419:     for(m=firstpass; (m<= lastpass); m++){
 4420:       if(s[m][i] >0){
 4421: 	if (s[m][i] >= nlstate+1) {
 4422: 	  if(agedc[i]>0)
 4423: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4424: 	      agev[m][i]=agedc[i];
 4425: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4426: 	    else {
 4427: 	      if ((int)andc[i]!=9999){
 4428: 		nbwarn++;
 4429: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4430: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4431: 		agev[m][i]=-1;
 4432: 	      }
 4433: 	    }
 4434: 	}
 4435: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4436: 				 years but with the precision of a
 4437: 				 month */
 4438: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4439: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4440: 	    agev[m][i]=1;
 4441: 	  else if(agev[m][i] <agemin){ 
 4442: 	    agemin=agev[m][i];
 4443: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4444: 	  }
 4445: 	  else if(agev[m][i] >agemax){
 4446: 	    agemax=agev[m][i];
 4447: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4448: 	  }
 4449: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4450: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4451: 	}
 4452: 	else { /* =9 */
 4453: 	  agev[m][i]=1;
 4454: 	  s[m][i]=-1;
 4455: 	}
 4456:       }
 4457:       else /*= 0 Unknown */
 4458: 	agev[m][i]=1;
 4459:     }
 4460:     
 4461:   }
 4462:   for (i=1; i<=imx; i++)  {
 4463:     for(m=firstpass; (m<=lastpass); m++){
 4464:       if (s[m][i] > (nlstate+ndeath)) {
 4465: 	nberr++;
 4466: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4467: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4468: 	goto end;
 4469:       }
 4470:     }
 4471:   }
 4472: 
 4473:   /*for (i=1; i<=imx; i++){
 4474:   for (m=firstpass; (m<lastpass); m++){
 4475:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4476: }
 4477: 
 4478: }*/
 4479: 
 4480:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4481:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4482: 
 4483:   free_vector(severity,1,maxwav);
 4484:   free_imatrix(outcome,1,maxwav+1,1,n);
 4485:   free_vector(moisnais,1,n);
 4486:   free_vector(annais,1,n);
 4487:   /* free_matrix(mint,1,maxwav,1,n);
 4488:      free_matrix(anint,1,maxwav,1,n);*/
 4489:   free_vector(moisdc,1,n);
 4490:   free_vector(andc,1,n);
 4491: 
 4492:    
 4493:   wav=ivector(1,imx);
 4494:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4495:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4496:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4497:    
 4498:   /* Concatenates waves */
 4499:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4500: 
 4501:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4502: 
 4503:   Tcode=ivector(1,100);
 4504:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4505:   ncodemax[1]=1;
 4506:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4507:       
 4508:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4509: 				 the estimations*/
 4510:   h=0;
 4511:   m=pow(2,cptcoveff);
 4512:  
 4513:   for(k=1;k<=cptcoveff; k++){
 4514:     for(i=1; i <=(m/pow(2,k));i++){
 4515:       for(j=1; j <= ncodemax[k]; j++){
 4516: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4517: 	  h++;
 4518: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4519: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4520: 	} 
 4521:       }
 4522:     }
 4523:   } 
 4524:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4525:      codtab[1][2]=1;codtab[2][2]=2; */
 4526:   /* for(i=1; i <=m ;i++){ 
 4527:      for(k=1; k <=cptcovn; k++){
 4528:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4529:      }
 4530:      printf("\n");
 4531:      }
 4532:      scanf("%d",i);*/
 4533:     
 4534:   /*------------ gnuplot -------------*/
 4535:   strcpy(optionfilegnuplot,optionfilefiname);
 4536:   strcat(optionfilegnuplot,".gp");
 4537:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4538:     printf("Problem with file %s",optionfilegnuplot);
 4539:   }
 4540:   else{
 4541:     fprintf(ficgp,"\n# %s\n", version); 
 4542:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4543:     fprintf(ficgp,"set missing 'NaNq'\n");
 4544:   }
 4545:   /*  fclose(ficgp);*/
 4546:   /*--------- index.htm --------*/
 4547: 
 4548:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4549:   strcat(optionfilehtm,".htm");
 4550:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4551:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4552:   }
 4553: 
 4554:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4555:   strcat(optionfilehtmcov,"-cov.htm");
 4556:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4557:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4558:   }
 4559:   else{
 4560:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4561: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4562: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4563: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4564:   }
 4565: 
 4566:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4567: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4568: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4569: \n\
 4570: <hr  size=\"2\" color=\"#EC5E5E\">\
 4571:  <ul><li><h4>Parameter files</h4>\n\
 4572:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4573:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4574:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4575:  - Date and time at start: %s</ul>\n",\
 4576: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4577: 	  fileres,fileres,\
 4578: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4579:   fflush(fichtm);
 4580: 
 4581:   strcpy(pathr,path);
 4582:   strcat(pathr,optionfilefiname);
 4583:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4584:   strcpy(lfileres,fileres);
 4585:   strcat(lfileres,"/");
 4586:   strcat(lfileres,optionfilefiname);
 4587:   
 4588:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4589:      and prints on file fileres'p'. */
 4590:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
 4591: 
 4592:   fprintf(fichtm,"\n");
 4593:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4594: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4595: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4596: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4597:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4598:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4599:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4600:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4601:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4602:     
 4603:    
 4604:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4605:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4606:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4607: 
 4608:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4609:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4610:   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4611:   for (k=1; k<=npar;k++)
 4612:     printf(" %d %8.5f",k,p[k]);
 4613:   printf("\n");
 4614:   globpr=1; /* to print the contributions */
 4615:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4616:   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4617:   for (k=1; k<=npar;k++)
 4618:     printf(" %d %8.5f",k,p[k]);
 4619:   printf("\n");
 4620:   if(mle>=1){ /* Could be 1 or 2 */
 4621:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 4622:   }
 4623:     
 4624:   /*--------- results files --------------*/
 4625:   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 4626:   
 4627: 
 4628:   jk=1;
 4629:   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4630:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4631:   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4632:   for(i=1,jk=1; i <=nlstate; i++){
 4633:     for(k=1; k <=(nlstate+ndeath); k++){
 4634:       if (k != i) 
 4635: 	{
 4636: 	  printf("%d%d ",i,k);
 4637: 	  fprintf(ficlog,"%d%d ",i,k);
 4638: 	  fprintf(ficres,"%1d%1d ",i,k);
 4639: 	  for(j=1; j <=ncovmodel; j++){
 4640: 	    printf("%f ",p[jk]);
 4641: 	    fprintf(ficlog,"%f ",p[jk]);
 4642: 	    fprintf(ficres,"%f ",p[jk]);
 4643: 	    jk++; 
 4644: 	  }
 4645: 	  printf("\n");
 4646: 	  fprintf(ficlog,"\n");
 4647: 	  fprintf(ficres,"\n");
 4648: 	}
 4649:     }
 4650:   }
 4651:   if(mle!=0){
 4652:     /* Computing hessian and covariance matrix */
 4653:     ftolhess=ftol; /* Usually correct */
 4654:     hesscov(matcov, p, npar, delti, ftolhess, func);
 4655:   }
 4656:   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 4657:   printf("# Scales (for hessian or gradient estimation)\n");
 4658:   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 4659:   for(i=1,jk=1; i <=nlstate; i++){
 4660:     for(j=1; j <=nlstate+ndeath; j++){
 4661:       if (j!=i) {
 4662: 	fprintf(ficres,"%1d%1d",i,j);
 4663: 	printf("%1d%1d",i,j);
 4664: 	fprintf(ficlog,"%1d%1d",i,j);
 4665: 	for(k=1; k<=ncovmodel;k++){
 4666: 	  printf(" %.5e",delti[jk]);
 4667: 	  fprintf(ficlog," %.5e",delti[jk]);
 4668: 	  fprintf(ficres," %.5e",delti[jk]);
 4669: 	  jk++;
 4670: 	}
 4671: 	printf("\n");
 4672: 	fprintf(ficlog,"\n");
 4673: 	fprintf(ficres,"\n");
 4674:       }
 4675:     }
 4676:   }
 4677:    
 4678:   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4679:   if(mle==1)
 4680:     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4681:   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4682:   for(i=1,k=1;i<=npar;i++){
 4683:     /*  if (k>nlstate) k=1;
 4684: 	i1=(i-1)/(ncovmodel*nlstate)+1; 
 4685: 	fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 4686: 	printf("%s%d%d",alph[k],i1,tab[i]);
 4687:     */
 4688:     fprintf(ficres,"%3d",i);
 4689:     if(mle==1)
 4690:       printf("%3d",i);
 4691:     fprintf(ficlog,"%3d",i);
 4692:     for(j=1; j<=i;j++){
 4693:       fprintf(ficres," %.5e",matcov[i][j]);
 4694:       if(mle==1)
 4695: 	printf(" %.5e",matcov[i][j]);
 4696:       fprintf(ficlog," %.5e",matcov[i][j]);
 4697:     }
 4698:     fprintf(ficres,"\n");
 4699:     if(mle==1)
 4700:       printf("\n");
 4701:     fprintf(ficlog,"\n");
 4702:     k++;
 4703:   }
 4704:    
 4705:   while((c=getc(ficpar))=='#' && c!= EOF){
 4706:     ungetc(c,ficpar);
 4707:     fgets(line, MAXLINE, ficpar);
 4708:     puts(line);
 4709:     fputs(line,ficparo);
 4710:   }
 4711:   ungetc(c,ficpar);
 4712: 
 4713:   estepm=0;
 4714:   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 4715:   if (estepm==0 || estepm < stepm) estepm=stepm;
 4716:   if (fage <= 2) {
 4717:     bage = ageminpar;
 4718:     fage = agemaxpar;
 4719:   }
 4720:    
 4721:   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 4722:   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4723:   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4724:    
 4725:   while((c=getc(ficpar))=='#' && c!= EOF){
 4726:     ungetc(c,ficpar);
 4727:     fgets(line, MAXLINE, ficpar);
 4728:     puts(line);
 4729:     fputs(line,ficparo);
 4730:   }
 4731:   ungetc(c,ficpar);
 4732:   
 4733:   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 4734:   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4735:   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4736:   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4737:   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4738:    
 4739:   while((c=getc(ficpar))=='#' && c!= EOF){
 4740:     ungetc(c,ficpar);
 4741:     fgets(line, MAXLINE, ficpar);
 4742:     puts(line);
 4743:     fputs(line,ficparo);
 4744:   }
 4745:   ungetc(c,ficpar);
 4746:  
 4747: 
 4748:   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 4749:   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 4750: 
 4751:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 4752:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 4753:   fprintf(ficres,"pop_based=%d\n",popbased);   
 4754:   
 4755:   while((c=getc(ficpar))=='#' && c!= EOF){
 4756:     ungetc(c,ficpar);
 4757:     fgets(line, MAXLINE, ficpar);
 4758:     puts(line);
 4759:     fputs(line,ficparo);
 4760:   }
 4761:   ungetc(c,ficpar);
 4762: 
 4763:   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 4764:   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4765:   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4766:   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4767:   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4768:   /* day and month of proj2 are not used but only year anproj2.*/
 4769: 
 4770:   while((c=getc(ficpar))=='#' && c!= EOF){
 4771:     ungetc(c,ficpar);
 4772:     fgets(line, MAXLINE, ficpar);
 4773:     puts(line);
 4774:     fputs(line,ficparo);
 4775:   }
 4776:   ungetc(c,ficpar);
 4777: 
 4778:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 4779:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4780:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4781: 
 4782:   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 4783:   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 4784: 
 4785:   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 4786:   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 4787: 
 4788:   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 4789: 	       model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 4790: 	       jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 4791:  
 4792:   /*------------ free_vector  -------------*/
 4793:   /*  chdir(path); */
 4794:  
 4795:   free_ivector(wav,1,imx);
 4796:   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 4797:   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 4798:   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 4799:   free_lvector(num,1,n);
 4800:   free_vector(agedc,1,n);
 4801:   /*free_matrix(covar,0,NCOVMAX,1,n);*/
 4802:   /*free_matrix(covar,1,NCOVMAX,1,n);*/
 4803:   fclose(ficparo);
 4804:   fclose(ficres);
 4805: 
 4806: 
 4807:   /*--------------- Prevalence limit  (stable prevalence) --------------*/
 4808:   
 4809:   strcpy(filerespl,"pl");
 4810:   strcat(filerespl,fileres);
 4811:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 4812:     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4813:     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4814:   }
 4815:   printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 4816:   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 4817:   fprintf(ficrespl,"#Stable prevalence \n");
 4818:   fprintf(ficrespl,"#Age ");
 4819:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 4820:   fprintf(ficrespl,"\n");
 4821:   
 4822:   prlim=matrix(1,nlstate,1,nlstate);
 4823: 
 4824:   agebase=ageminpar;
 4825:   agelim=agemaxpar;
 4826:   ftolpl=1.e-10;
 4827:   i1=cptcoveff;
 4828:   if (cptcovn < 1){i1=1;}
 4829: 
 4830:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4831:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4832:       k=k+1;
 4833:       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 4834:       fprintf(ficrespl,"\n#******");
 4835:       printf("\n#******");
 4836:       fprintf(ficlog,"\n#******");
 4837:       for(j=1;j<=cptcoveff;j++) {
 4838: 	fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4839: 	printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4840: 	fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4841:       }
 4842:       fprintf(ficrespl,"******\n");
 4843:       printf("******\n");
 4844:       fprintf(ficlog,"******\n");
 4845: 	
 4846:       for (age=agebase; age<=agelim; age++){
 4847: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4848: 	fprintf(ficrespl,"%.0f ",age );
 4849:         for(j=1;j<=cptcoveff;j++)
 4850:  	  fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4851: 	for(i=1; i<=nlstate;i++)
 4852: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 4853: 	fprintf(ficrespl,"\n");
 4854:       }
 4855:     }
 4856:   }
 4857:   fclose(ficrespl);
 4858: 
 4859:   /*------------- h Pij x at various ages ------------*/
 4860:   
 4861:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 4862:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 4863:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 4864:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 4865:   }
 4866:   printf("Computing pij: result on file '%s' \n", filerespij);
 4867:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 4868:   
 4869:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4870:   /*if (stepm<=24) stepsize=2;*/
 4871: 
 4872:   agelim=AGESUP;
 4873:   hstepm=stepsize*YEARM; /* Every year of age */
 4874:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 4875: 
 4876:   /* hstepm=1;   aff par mois*/
 4877: 
 4878:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 4879:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4880:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4881:       k=k+1;
 4882:       fprintf(ficrespij,"\n#****** ");
 4883:       for(j=1;j<=cptcoveff;j++) 
 4884: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4885:       fprintf(ficrespij,"******\n");
 4886: 	
 4887:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 4888: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4889: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4890: 
 4891: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 4892: 
 4893: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4894: 	oldm=oldms;savm=savms;
 4895: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4896: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 4897: 	for(i=1; i<=nlstate;i++)
 4898: 	  for(j=1; j<=nlstate+ndeath;j++)
 4899: 	    fprintf(ficrespij," %1d-%1d",i,j);
 4900: 	fprintf(ficrespij,"\n");
 4901: 	for (h=0; h<=nhstepm; h++){
 4902: 	  fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 4903: 	  for(i=1; i<=nlstate;i++)
 4904: 	    for(j=1; j<=nlstate+ndeath;j++)
 4905: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 4906: 	  fprintf(ficrespij,"\n");
 4907: 	}
 4908: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4909: 	fprintf(ficrespij,"\n");
 4910:       }
 4911:     }
 4912:   }
 4913: 
 4914:   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
 4915: 
 4916:   fclose(ficrespij);
 4917: 
 4918:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4919: 
 4920:   /*---------- Forecasting ------------------*/
 4921:   /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 4922:   if(prevfcast==1){
 4923:     /*    if(stepm ==1){*/
 4924:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 4925:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 4926: /*      }  */
 4927: /*      else{ */
 4928: /*        erreur=108; */
 4929: /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4930: /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4931: /*      } */
 4932:   }
 4933:   
 4934: 
 4935:   /*---------- Health expectancies and variances ------------*/
 4936: 
 4937:   strcpy(filerest,"t");
 4938:   strcat(filerest,fileres);
 4939:   if((ficrest=fopen(filerest,"w"))==NULL) {
 4940:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 4941:     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 4942:   }
 4943:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 4944:   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 4945: 
 4946: 
 4947:   strcpy(filerese,"e");
 4948:   strcat(filerese,fileres);
 4949:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 4950:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4951:     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4952:   }
 4953:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 4954:   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 4955: 
 4956:   strcpy(fileresv,"v");
 4957:   strcat(fileresv,fileres);
 4958:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 4959:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 4960:     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 4961:   }
 4962:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4963:   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4964: 
 4965:   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 4966:   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4967:   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 4968: ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 4969:   */
 4970: 
 4971:   if (mobilav!=0) {
 4972:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4973:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 4974:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4975:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4976:     }
 4977:   }
 4978: 
 4979:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4980:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4981:       k=k+1; 
 4982:       fprintf(ficrest,"\n#****** ");
 4983:       for(j=1;j<=cptcoveff;j++) 
 4984: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4985:       fprintf(ficrest,"******\n");
 4986: 
 4987:       fprintf(ficreseij,"\n#****** ");
 4988:       for(j=1;j<=cptcoveff;j++) 
 4989: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4990:       fprintf(ficreseij,"******\n");
 4991: 
 4992:       fprintf(ficresvij,"\n#****** ");
 4993:       for(j=1;j<=cptcoveff;j++) 
 4994: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4995:       fprintf(ficresvij,"******\n");
 4996: 
 4997:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4998:       oldm=oldms;savm=savms;
 4999:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 5000:  
 5001:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5002:       oldm=oldms;savm=savms;
 5003:       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 5004:       if(popbased==1){
 5005: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 5006:       }
 5007: 
 5008:  
 5009:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 5010:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5011:       fprintf(ficrest,"\n");
 5012: 
 5013:       epj=vector(1,nlstate+1);
 5014:       for(age=bage; age <=fage ;age++){
 5015: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5016: 	if (popbased==1) {
 5017: 	  if(mobilav ==0){
 5018: 	    for(i=1; i<=nlstate;i++)
 5019: 	      prlim[i][i]=probs[(int)age][i][k];
 5020: 	  }else{ /* mobilav */ 
 5021: 	    for(i=1; i<=nlstate;i++)
 5022: 	      prlim[i][i]=mobaverage[(int)age][i][k];
 5023: 	  }
 5024: 	}
 5025: 	
 5026: 	fprintf(ficrest," %4.0f",age);
 5027: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5028: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5029: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5030: 	    /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5031: 	  }
 5032: 	  epj[nlstate+1] +=epj[j];
 5033: 	}
 5034: 
 5035: 	for(i=1, vepp=0.;i <=nlstate;i++)
 5036: 	  for(j=1;j <=nlstate;j++)
 5037: 	    vepp += vareij[i][j][(int)age];
 5038: 	fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5039: 	for(j=1;j <=nlstate;j++){
 5040: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5041: 	}
 5042: 	fprintf(ficrest,"\n");
 5043:       }
 5044:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5045:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5046:       free_vector(epj,1,nlstate+1);
 5047:     }
 5048:   }
 5049:   free_vector(weight,1,n);
 5050:   free_imatrix(Tvard,1,15,1,2);
 5051:   free_imatrix(s,1,maxwav+1,1,n);
 5052:   free_matrix(anint,1,maxwav,1,n); 
 5053:   free_matrix(mint,1,maxwav,1,n);
 5054:   free_ivector(cod,1,n);
 5055:   free_ivector(tab,1,NCOVMAX);
 5056:   fclose(ficreseij);
 5057:   fclose(ficresvij);
 5058:   fclose(ficrest);
 5059:   fclose(ficpar);
 5060:   
 5061:   /*------- Variance of stable prevalence------*/   
 5062: 
 5063:   strcpy(fileresvpl,"vpl");
 5064:   strcat(fileresvpl,fileres);
 5065:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5066:     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5067:     exit(0);
 5068:   }
 5069:   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5070: 
 5071:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5072:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5073:       k=k+1;
 5074:       fprintf(ficresvpl,"\n#****** ");
 5075:       for(j=1;j<=cptcoveff;j++) 
 5076: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5077:       fprintf(ficresvpl,"******\n");
 5078:       
 5079:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5080:       oldm=oldms;savm=savms;
 5081:       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 5082:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5083:     }
 5084:   }
 5085: 
 5086:   fclose(ficresvpl);
 5087: 
 5088:   /*---------- End : free ----------------*/
 5089:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5090:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5091:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5092:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5093:   
 5094:   free_matrix(covar,0,NCOVMAX,1,n);
 5095:   free_matrix(matcov,1,npar,1,npar);
 5096:   /*free_vector(delti,1,npar);*/
 5097:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5098:   free_matrix(agev,1,maxwav,1,imx);
 5099:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5100:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5101:   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5102: 
 5103:   free_ivector(ncodemax,1,8);
 5104:   free_ivector(Tvar,1,15);
 5105:   free_ivector(Tprod,1,15);
 5106:   free_ivector(Tvaraff,1,15);
 5107:   free_ivector(Tage,1,15);
 5108:   free_ivector(Tcode,1,100);
 5109: 
 5110:   fflush(fichtm);
 5111:   fflush(ficgp);
 5112:   
 5113: 
 5114:   if((nberr >0) || (nbwarn>0)){
 5115:     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5116:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5117:   }else{
 5118:     printf("End of Imach\n");
 5119:     fprintf(ficlog,"End of Imach\n");
 5120:   }
 5121:   printf("See log file on %s\n",filelog);
 5122:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5123:   (void) gettimeofday(&end_time,&tzp);
 5124:   tm = *localtime(&end_time.tv_sec);
 5125:   tmg = *gmtime(&end_time.tv_sec);
 5126:   strcpy(strtend,asctime(&tm));
 5127:   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
 5128:   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5129:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5130: 
 5131:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5132:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5133:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5134:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5135: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5136:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5137:   fclose(fichtm);
 5138:   fclose(fichtmcov);
 5139:   fclose(ficgp);
 5140:   fclose(ficlog);
 5141:   /*------ End -----------*/
 5142: 
 5143:   chdir(path);
 5144:   strcpy(plotcmd,GNUPLOTPROGRAM);
 5145:   strcat(plotcmd," ");
 5146:   strcat(plotcmd,optionfilegnuplot);
 5147:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
 5148:   if((outcmd=system(plotcmd)) != 0){
 5149:     printf(" Problem with gnuplot\n");
 5150:   }
 5151:   printf(" Wait...");
 5152:   while (z[0] != 'q') {
 5153:     /* chdir(path); */
 5154:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5155:     scanf("%s",z);
 5156: /*     if (z[0] == 'c') system("./imach"); */
 5157:     if (z[0] == 'e') system(optionfilehtm);
 5158:     else if (z[0] == 'g') system(plotcmd);
 5159:     else if (z[0] == 'q') exit(0);
 5160:   }
 5161:   end:
 5162:   while (z[0] != 'q') {
 5163:     printf("\nType  q for exiting: ");
 5164:     scanf("%s",z);
 5165:   }
 5166: }
 5167: 
 5168: 
 5169: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>