File:  [Local Repository] / imach / src / imach.c
Revision 1.93: download - view: text, annotated - select for diffs
Wed Jun 25 16:33:55 2003 UTC (20 years, 11 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
(Module): On windows (cygwin) function asctime_r doesn't
exist so I changed back to asctime which exists.
(Module): Version 0.96b

    1: /* $Id: imach.c,v 1.93 2003/06/25 16:33:55 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.93  2003/06/25 16:33:55  brouard
    5:   (Module): On windows (cygwin) function asctime_r doesn't
    6:   exist so I changed back to asctime which exists.
    7:   (Module): Version 0.96b
    8: 
    9:   Revision 1.92  2003/06/25 16:30:45  brouard
   10:   (Module): On windows (cygwin) function asctime_r doesn't
   11:   exist so I changed back to asctime which exists.
   12: 
   13:   Revision 1.91  2003/06/25 15:30:29  brouard
   14:   * imach.c (Repository): Duplicated warning errors corrected.
   15:   (Repository): Elapsed time after each iteration is now output. It
   16:   helps to forecast when convergence will be reached. Elapsed time
   17:   is stamped in powell.  We created a new html file for the graphs
   18:   concerning matrix of covariance. It has extension -cov.htm.
   19: 
   20:   Revision 1.90  2003/06/24 12:34:15  brouard
   21:   (Module): Some bugs corrected for windows. Also, when
   22:   mle=-1 a template is output in file "or"mypar.txt with the design
   23:   of the covariance matrix to be input.
   24: 
   25:   Revision 1.89  2003/06/24 12:30:52  brouard
   26:   (Module): Some bugs corrected for windows. Also, when
   27:   mle=-1 a template is output in file "or"mypar.txt with the design
   28:   of the covariance matrix to be input.
   29: 
   30:   Revision 1.88  2003/06/23 17:54:56  brouard
   31:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   32: 
   33:   Revision 1.87  2003/06/18 12:26:01  brouard
   34:   Version 0.96
   35: 
   36:   Revision 1.86  2003/06/17 20:04:08  brouard
   37:   (Module): Change position of html and gnuplot routines and added
   38:   routine fileappend.
   39: 
   40:   Revision 1.85  2003/06/17 13:12:43  brouard
   41:   * imach.c (Repository): Check when date of death was earlier that
   42:   current date of interview. It may happen when the death was just
   43:   prior to the death. In this case, dh was negative and likelihood
   44:   was wrong (infinity). We still send an "Error" but patch by
   45:   assuming that the date of death was just one stepm after the
   46:   interview.
   47:   (Repository): Because some people have very long ID (first column)
   48:   we changed int to long in num[] and we added a new lvector for
   49:   memory allocation. But we also truncated to 8 characters (left
   50:   truncation)
   51:   (Repository): No more line truncation errors.
   52: 
   53:   Revision 1.84  2003/06/13 21:44:43  brouard
   54:   * imach.c (Repository): Replace "freqsummary" at a correct
   55:   place. It differs from routine "prevalence" which may be called
   56:   many times. Probs is memory consuming and must be used with
   57:   parcimony.
   58:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   59: 
   60:   Revision 1.83  2003/06/10 13:39:11  lievre
   61:   *** empty log message ***
   62: 
   63:   Revision 1.82  2003/06/05 15:57:20  brouard
   64:   Add log in  imach.c and  fullversion number is now printed.
   65: 
   66: */
   67: /*
   68:    Interpolated Markov Chain
   69: 
   70:   Short summary of the programme:
   71:   
   72:   This program computes Healthy Life Expectancies from
   73:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   74:   first survey ("cross") where individuals from different ages are
   75:   interviewed on their health status or degree of disability (in the
   76:   case of a health survey which is our main interest) -2- at least a
   77:   second wave of interviews ("longitudinal") which measure each change
   78:   (if any) in individual health status.  Health expectancies are
   79:   computed from the time spent in each health state according to a
   80:   model. More health states you consider, more time is necessary to reach the
   81:   Maximum Likelihood of the parameters involved in the model.  The
   82:   simplest model is the multinomial logistic model where pij is the
   83:   probability to be observed in state j at the second wave
   84:   conditional to be observed in state i at the first wave. Therefore
   85:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   86:   'age' is age and 'sex' is a covariate. If you want to have a more
   87:   complex model than "constant and age", you should modify the program
   88:   where the markup *Covariates have to be included here again* invites
   89:   you to do it.  More covariates you add, slower the
   90:   convergence.
   91: 
   92:   The advantage of this computer programme, compared to a simple
   93:   multinomial logistic model, is clear when the delay between waves is not
   94:   identical for each individual. Also, if a individual missed an
   95:   intermediate interview, the information is lost, but taken into
   96:   account using an interpolation or extrapolation.  
   97: 
   98:   hPijx is the probability to be observed in state i at age x+h
   99:   conditional to the observed state i at age x. The delay 'h' can be
  100:   split into an exact number (nh*stepm) of unobserved intermediate
  101:   states. This elementary transition (by month, quarter,
  102:   semester or year) is modelled as a multinomial logistic.  The hPx
  103:   matrix is simply the matrix product of nh*stepm elementary matrices
  104:   and the contribution of each individual to the likelihood is simply
  105:   hPijx.
  106: 
  107:   Also this programme outputs the covariance matrix of the parameters but also
  108:   of the life expectancies. It also computes the stable prevalence. 
  109:   
  110:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  111:            Institut national d'études démographiques, Paris.
  112:   This software have been partly granted by Euro-REVES, a concerted action
  113:   from the European Union.
  114:   It is copyrighted identically to a GNU software product, ie programme and
  115:   software can be distributed freely for non commercial use. Latest version
  116:   can be accessed at http://euroreves.ined.fr/imach .
  117: 
  118:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  119:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  120:   
  121:   **********************************************************************/
  122: /*
  123:   main
  124:   read parameterfile
  125:   read datafile
  126:   concatwav
  127:   freqsummary
  128:   if (mle >= 1)
  129:     mlikeli
  130:   print results files
  131:   if mle==1 
  132:      computes hessian
  133:   read end of parameter file: agemin, agemax, bage, fage, estepm
  134:       begin-prev-date,...
  135:   open gnuplot file
  136:   open html file
  137:   stable prevalence
  138:    for age prevalim()
  139:   h Pij x
  140:   variance of p varprob
  141:   forecasting if prevfcast==1 prevforecast call prevalence()
  142:   health expectancies
  143:   Variance-covariance of DFLE
  144:   prevalence()
  145:    movingaverage()
  146:   varevsij() 
  147:   if popbased==1 varevsij(,popbased)
  148:   total life expectancies
  149:   Variance of stable prevalence
  150:  end
  151: */
  152: 
  153: 
  154: 
  155:  
  156: #include <math.h>
  157: #include <stdio.h>
  158: #include <stdlib.h>
  159: #include <unistd.h>
  160: 
  161: #include <sys/time.h>
  162: #include <time.h>
  163: #include "timeval.h"
  164: 
  165: #define MAXLINE 256
  166: #define GNUPLOTPROGRAM "gnuplot"
  167: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  168: #define FILENAMELENGTH 132
  169: /*#define DEBUG*/
  170: /*#define windows*/
  171: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  172: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  173: 
  174: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  175: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  176: 
  177: #define NINTERVMAX 8
  178: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  179: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  180: #define NCOVMAX 8 /* Maximum number of covariates */
  181: #define MAXN 20000
  182: #define YEARM 12. /* Number of months per year */
  183: #define AGESUP 130
  184: #define AGEBASE 40
  185: #ifdef unix
  186: #define DIRSEPARATOR '/'
  187: #define ODIRSEPARATOR '\\'
  188: #else
  189: #define DIRSEPARATOR '\\'
  190: #define ODIRSEPARATOR '/'
  191: #endif
  192: 
  193: /* $Id: imach.c,v 1.93 2003/06/25 16:33:55 brouard Exp $ */
  194: /* $State: Exp $ */
  195: 
  196: char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
  197: char fullversion[]="$Revision: 1.93 $ $Date: 2003/06/25 16:33:55 $"; 
  198: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  199: int nvar;
  200: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  201: int npar=NPARMAX;
  202: int nlstate=2; /* Number of live states */
  203: int ndeath=1; /* Number of dead states */
  204: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  205: int popbased=0;
  206: 
  207: int *wav; /* Number of waves for this individuual 0 is possible */
  208: int maxwav; /* Maxim number of waves */
  209: int jmin, jmax; /* min, max spacing between 2 waves */
  210: int gipmx, gsw; /* Global variables on the number of contributions 
  211: 		   to the likelihood and the sum of weights (done by funcone)*/
  212: int mle, weightopt;
  213: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  214: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  215: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  216: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  217: double jmean; /* Mean space between 2 waves */
  218: double **oldm, **newm, **savm; /* Working pointers to matrices */
  219: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  220: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  221: FILE *ficlog, *ficrespow;
  222: int globpr; /* Global variable for printing or not */
  223: double fretone; /* Only one call to likelihood */
  224: long ipmx; /* Number of contributions */
  225: double sw; /* Sum of weights */
  226: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  227: FILE *ficresilk;
  228: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  229: FILE *ficresprobmorprev;
  230: FILE *fichtm, *fichtmcov; /* Html File */
  231: FILE *ficreseij;
  232: char filerese[FILENAMELENGTH];
  233: FILE  *ficresvij;
  234: char fileresv[FILENAMELENGTH];
  235: FILE  *ficresvpl;
  236: char fileresvpl[FILENAMELENGTH];
  237: char title[MAXLINE];
  238: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  239: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  240: char tmpout[FILENAMELENGTH]; 
  241: char command[FILENAMELENGTH];
  242: int  outcmd=0;
  243: 
  244: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  245: char lfileres[FILENAMELENGTH];
  246: char filelog[FILENAMELENGTH]; /* Log file */
  247: char filerest[FILENAMELENGTH];
  248: char fileregp[FILENAMELENGTH];
  249: char popfile[FILENAMELENGTH];
  250: 
  251: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  252: 
  253: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  254: struct timezone tzp;
  255: extern int gettimeofday();
  256: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  257: long time_value;
  258: extern long time();
  259: char strcurr[80], strfor[80];
  260: 
  261: #define NR_END 1
  262: #define FREE_ARG char*
  263: #define FTOL 1.0e-10
  264: 
  265: #define NRANSI 
  266: #define ITMAX 200 
  267: 
  268: #define TOL 2.0e-4 
  269: 
  270: #define CGOLD 0.3819660 
  271: #define ZEPS 1.0e-10 
  272: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  273: 
  274: #define GOLD 1.618034 
  275: #define GLIMIT 100.0 
  276: #define TINY 1.0e-20 
  277: 
  278: static double maxarg1,maxarg2;
  279: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  280: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  281:   
  282: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  283: #define rint(a) floor(a+0.5)
  284: 
  285: static double sqrarg;
  286: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  287: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  288: 
  289: int imx; 
  290: int stepm;
  291: /* Stepm, step in month: minimum step interpolation*/
  292: 
  293: int estepm;
  294: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  295: 
  296: int m,nb;
  297: long *num;
  298: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  299: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  300: double **pmmij, ***probs;
  301: double dateintmean=0;
  302: 
  303: double *weight;
  304: int **s; /* Status */
  305: double *agedc, **covar, idx;
  306: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  307: 
  308: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  309: double ftolhess; /* Tolerance for computing hessian */
  310: 
  311: /**************** split *************************/
  312: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  313: {
  314:   char	*ss;				/* pointer */
  315:   int	l1, l2;				/* length counters */
  316: 
  317:   l1 = strlen(path );			/* length of path */
  318:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  319:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  320:   if ( ss == NULL ) {			/* no directory, so use current */
  321:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  322:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  323:     /* get current working directory */
  324:     /*    extern  char* getcwd ( char *buf , int len);*/
  325:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  326:       return( GLOCK_ERROR_GETCWD );
  327:     }
  328:     strcpy( name, path );		/* we've got it */
  329:   } else {				/* strip direcotry from path */
  330:     ss++;				/* after this, the filename */
  331:     l2 = strlen( ss );			/* length of filename */
  332:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  333:     strcpy( name, ss );		/* save file name */
  334:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  335:     dirc[l1-l2] = 0;			/* add zero */
  336:   }
  337:   l1 = strlen( dirc );			/* length of directory */
  338:   /*#ifdef windows
  339:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  340: #else
  341:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  342: #endif
  343:   */
  344:   ss = strrchr( name, '.' );		/* find last / */
  345:   ss++;
  346:   strcpy(ext,ss);			/* save extension */
  347:   l1= strlen( name);
  348:   l2= strlen(ss)+1;
  349:   strncpy( finame, name, l1-l2);
  350:   finame[l1-l2]= 0;
  351:   return( 0 );				/* we're done */
  352: }
  353: 
  354: 
  355: /******************************************/
  356: 
  357: void replace_back_to_slash(char *s, char*t)
  358: {
  359:   int i;
  360:   int lg=0;
  361:   i=0;
  362:   lg=strlen(t);
  363:   for(i=0; i<= lg; i++) {
  364:     (s[i] = t[i]);
  365:     if (t[i]== '\\') s[i]='/';
  366:   }
  367: }
  368: 
  369: int nbocc(char *s, char occ)
  370: {
  371:   int i,j=0;
  372:   int lg=20;
  373:   i=0;
  374:   lg=strlen(s);
  375:   for(i=0; i<= lg; i++) {
  376:   if  (s[i] == occ ) j++;
  377:   }
  378:   return j;
  379: }
  380: 
  381: void cutv(char *u,char *v, char*t, char occ)
  382: {
  383:   /* cuts string t into u and v where u is ended by char occ excluding it
  384:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
  385:      gives u="abcedf" and v="ghi2j" */
  386:   int i,lg,j,p=0;
  387:   i=0;
  388:   for(j=0; j<=strlen(t)-1; j++) {
  389:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  390:   }
  391: 
  392:   lg=strlen(t);
  393:   for(j=0; j<p; j++) {
  394:     (u[j] = t[j]);
  395:   }
  396:      u[p]='\0';
  397: 
  398:    for(j=0; j<= lg; j++) {
  399:     if (j>=(p+1))(v[j-p-1] = t[j]);
  400:   }
  401: }
  402: 
  403: /********************** nrerror ********************/
  404: 
  405: void nrerror(char error_text[])
  406: {
  407:   fprintf(stderr,"ERREUR ...\n");
  408:   fprintf(stderr,"%s\n",error_text);
  409:   exit(EXIT_FAILURE);
  410: }
  411: /*********************** vector *******************/
  412: double *vector(int nl, int nh)
  413: {
  414:   double *v;
  415:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  416:   if (!v) nrerror("allocation failure in vector");
  417:   return v-nl+NR_END;
  418: }
  419: 
  420: /************************ free vector ******************/
  421: void free_vector(double*v, int nl, int nh)
  422: {
  423:   free((FREE_ARG)(v+nl-NR_END));
  424: }
  425: 
  426: /************************ivector *******************************/
  427: int *ivector(long nl,long nh)
  428: {
  429:   int *v;
  430:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  431:   if (!v) nrerror("allocation failure in ivector");
  432:   return v-nl+NR_END;
  433: }
  434: 
  435: /******************free ivector **************************/
  436: void free_ivector(int *v, long nl, long nh)
  437: {
  438:   free((FREE_ARG)(v+nl-NR_END));
  439: }
  440: 
  441: /************************lvector *******************************/
  442: long *lvector(long nl,long nh)
  443: {
  444:   long *v;
  445:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  446:   if (!v) nrerror("allocation failure in ivector");
  447:   return v-nl+NR_END;
  448: }
  449: 
  450: /******************free lvector **************************/
  451: void free_lvector(long *v, long nl, long nh)
  452: {
  453:   free((FREE_ARG)(v+nl-NR_END));
  454: }
  455: 
  456: /******************* imatrix *******************************/
  457: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  458:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  459: { 
  460:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  461:   int **m; 
  462:   
  463:   /* allocate pointers to rows */ 
  464:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  465:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  466:   m += NR_END; 
  467:   m -= nrl; 
  468:   
  469:   
  470:   /* allocate rows and set pointers to them */ 
  471:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  472:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  473:   m[nrl] += NR_END; 
  474:   m[nrl] -= ncl; 
  475:   
  476:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  477:   
  478:   /* return pointer to array of pointers to rows */ 
  479:   return m; 
  480: } 
  481: 
  482: /****************** free_imatrix *************************/
  483: void free_imatrix(m,nrl,nrh,ncl,nch)
  484:       int **m;
  485:       long nch,ncl,nrh,nrl; 
  486:      /* free an int matrix allocated by imatrix() */ 
  487: { 
  488:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  489:   free((FREE_ARG) (m+nrl-NR_END)); 
  490: } 
  491: 
  492: /******************* matrix *******************************/
  493: double **matrix(long nrl, long nrh, long ncl, long nch)
  494: {
  495:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  496:   double **m;
  497: 
  498:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  499:   if (!m) nrerror("allocation failure 1 in matrix()");
  500:   m += NR_END;
  501:   m -= nrl;
  502: 
  503:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  504:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  505:   m[nrl] += NR_END;
  506:   m[nrl] -= ncl;
  507: 
  508:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  509:   return m;
  510:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  511:    */
  512: }
  513: 
  514: /*************************free matrix ************************/
  515: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  516: {
  517:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  518:   free((FREE_ARG)(m+nrl-NR_END));
  519: }
  520: 
  521: /******************* ma3x *******************************/
  522: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  523: {
  524:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  525:   double ***m;
  526: 
  527:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  528:   if (!m) nrerror("allocation failure 1 in matrix()");
  529:   m += NR_END;
  530:   m -= nrl;
  531: 
  532:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  533:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  534:   m[nrl] += NR_END;
  535:   m[nrl] -= ncl;
  536: 
  537:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  538: 
  539:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  540:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  541:   m[nrl][ncl] += NR_END;
  542:   m[nrl][ncl] -= nll;
  543:   for (j=ncl+1; j<=nch; j++) 
  544:     m[nrl][j]=m[nrl][j-1]+nlay;
  545:   
  546:   for (i=nrl+1; i<=nrh; i++) {
  547:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  548:     for (j=ncl+1; j<=nch; j++) 
  549:       m[i][j]=m[i][j-1]+nlay;
  550:   }
  551:   return m; 
  552:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  553:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  554:   */
  555: }
  556: 
  557: /*************************free ma3x ************************/
  558: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  559: {
  560:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  561:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  562:   free((FREE_ARG)(m+nrl-NR_END));
  563: }
  564: 
  565: /***************** f1dim *************************/
  566: extern int ncom; 
  567: extern double *pcom,*xicom;
  568: extern double (*nrfunc)(double []); 
  569:  
  570: double f1dim(double x) 
  571: { 
  572:   int j; 
  573:   double f;
  574:   double *xt; 
  575:  
  576:   xt=vector(1,ncom); 
  577:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  578:   f=(*nrfunc)(xt); 
  579:   free_vector(xt,1,ncom); 
  580:   return f; 
  581: } 
  582: 
  583: /*****************brent *************************/
  584: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  585: { 
  586:   int iter; 
  587:   double a,b,d,etemp;
  588:   double fu,fv,fw,fx;
  589:   double ftemp;
  590:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  591:   double e=0.0; 
  592:  
  593:   a=(ax < cx ? ax : cx); 
  594:   b=(ax > cx ? ax : cx); 
  595:   x=w=v=bx; 
  596:   fw=fv=fx=(*f)(x); 
  597:   for (iter=1;iter<=ITMAX;iter++) { 
  598:     xm=0.5*(a+b); 
  599:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  600:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  601:     printf(".");fflush(stdout);
  602:     fprintf(ficlog,".");fflush(ficlog);
  603: #ifdef DEBUG
  604:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  605:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  606:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  607: #endif
  608:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  609:       *xmin=x; 
  610:       return fx; 
  611:     } 
  612:     ftemp=fu;
  613:     if (fabs(e) > tol1) { 
  614:       r=(x-w)*(fx-fv); 
  615:       q=(x-v)*(fx-fw); 
  616:       p=(x-v)*q-(x-w)*r; 
  617:       q=2.0*(q-r); 
  618:       if (q > 0.0) p = -p; 
  619:       q=fabs(q); 
  620:       etemp=e; 
  621:       e=d; 
  622:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  623: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  624:       else { 
  625: 	d=p/q; 
  626: 	u=x+d; 
  627: 	if (u-a < tol2 || b-u < tol2) 
  628: 	  d=SIGN(tol1,xm-x); 
  629:       } 
  630:     } else { 
  631:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  632:     } 
  633:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  634:     fu=(*f)(u); 
  635:     if (fu <= fx) { 
  636:       if (u >= x) a=x; else b=x; 
  637:       SHFT(v,w,x,u) 
  638: 	SHFT(fv,fw,fx,fu) 
  639: 	} else { 
  640: 	  if (u < x) a=u; else b=u; 
  641: 	  if (fu <= fw || w == x) { 
  642: 	    v=w; 
  643: 	    w=u; 
  644: 	    fv=fw; 
  645: 	    fw=fu; 
  646: 	  } else if (fu <= fv || v == x || v == w) { 
  647: 	    v=u; 
  648: 	    fv=fu; 
  649: 	  } 
  650: 	} 
  651:   } 
  652:   nrerror("Too many iterations in brent"); 
  653:   *xmin=x; 
  654:   return fx; 
  655: } 
  656: 
  657: /****************** mnbrak ***********************/
  658: 
  659: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  660: 	    double (*func)(double)) 
  661: { 
  662:   double ulim,u,r,q, dum;
  663:   double fu; 
  664:  
  665:   *fa=(*func)(*ax); 
  666:   *fb=(*func)(*bx); 
  667:   if (*fb > *fa) { 
  668:     SHFT(dum,*ax,*bx,dum) 
  669:       SHFT(dum,*fb,*fa,dum) 
  670:       } 
  671:   *cx=(*bx)+GOLD*(*bx-*ax); 
  672:   *fc=(*func)(*cx); 
  673:   while (*fb > *fc) { 
  674:     r=(*bx-*ax)*(*fb-*fc); 
  675:     q=(*bx-*cx)*(*fb-*fa); 
  676:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  677:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  678:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  679:     if ((*bx-u)*(u-*cx) > 0.0) { 
  680:       fu=(*func)(u); 
  681:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  682:       fu=(*func)(u); 
  683:       if (fu < *fc) { 
  684: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  685: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  686: 	  } 
  687:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  688:       u=ulim; 
  689:       fu=(*func)(u); 
  690:     } else { 
  691:       u=(*cx)+GOLD*(*cx-*bx); 
  692:       fu=(*func)(u); 
  693:     } 
  694:     SHFT(*ax,*bx,*cx,u) 
  695:       SHFT(*fa,*fb,*fc,fu) 
  696:       } 
  697: } 
  698: 
  699: /*************** linmin ************************/
  700: 
  701: int ncom; 
  702: double *pcom,*xicom;
  703: double (*nrfunc)(double []); 
  704:  
  705: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  706: { 
  707:   double brent(double ax, double bx, double cx, 
  708: 	       double (*f)(double), double tol, double *xmin); 
  709:   double f1dim(double x); 
  710:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  711: 	      double *fc, double (*func)(double)); 
  712:   int j; 
  713:   double xx,xmin,bx,ax; 
  714:   double fx,fb,fa;
  715:  
  716:   ncom=n; 
  717:   pcom=vector(1,n); 
  718:   xicom=vector(1,n); 
  719:   nrfunc=func; 
  720:   for (j=1;j<=n;j++) { 
  721:     pcom[j]=p[j]; 
  722:     xicom[j]=xi[j]; 
  723:   } 
  724:   ax=0.0; 
  725:   xx=1.0; 
  726:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  727:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  728: #ifdef DEBUG
  729:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  730:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  731: #endif
  732:   for (j=1;j<=n;j++) { 
  733:     xi[j] *= xmin; 
  734:     p[j] += xi[j]; 
  735:   } 
  736:   free_vector(xicom,1,n); 
  737:   free_vector(pcom,1,n); 
  738: } 
  739: 
  740: char *asc_diff_time(long time_sec, char ascdiff[])
  741: {
  742:   long sec_left, days, hours, minutes;
  743:   days = (time_sec) / (60*60*24);
  744:   sec_left = (time_sec) % (60*60*24);
  745:   hours = (sec_left) / (60*60) ;
  746:   sec_left = (sec_left) %(60*60);
  747:   minutes = (sec_left) /60;
  748:   sec_left = (sec_left) % (60);
  749:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  750:   return ascdiff;
  751: }
  752: 
  753: /*************** powell ************************/
  754: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  755: 	    double (*func)(double [])) 
  756: { 
  757:   void linmin(double p[], double xi[], int n, double *fret, 
  758: 	      double (*func)(double [])); 
  759:   int i,ibig,j; 
  760:   double del,t,*pt,*ptt,*xit;
  761:   double fp,fptt;
  762:   double *xits;
  763:   int niterf, itmp;
  764: 
  765:   pt=vector(1,n); 
  766:   ptt=vector(1,n); 
  767:   xit=vector(1,n); 
  768:   xits=vector(1,n); 
  769:   *fret=(*func)(p); 
  770:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  771:   for (*iter=1;;++(*iter)) { 
  772:     fp=(*fret); 
  773:     ibig=0; 
  774:     del=0.0; 
  775:     last_time=curr_time;
  776:     (void) gettimeofday(&curr_time,&tzp);
  777:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  778:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  779:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  780:     for (i=1;i<=n;i++) {
  781:       printf(" %d %.12f",i, p[i]);
  782:       fprintf(ficlog," %d %.12lf",i, p[i]);
  783:       fprintf(ficrespow," %.12lf", p[i]);
  784:     }
  785:     printf("\n");
  786:     fprintf(ficlog,"\n");
  787:     fprintf(ficrespow,"\n");fflush(ficrespow);
  788:     if(*iter <=3){
  789:       tm = *localtime(&curr_time.tv_sec);
  790:       strcpy(strcurr,asctime(&tmf));
  791: /*       asctime_r(&tm,strcurr); */
  792:       forecast_time=curr_time;
  793:       itmp = strlen(strcurr);
  794:       if(strcurr[itmp-1]=='\n')
  795: 	strcurr[itmp-1]='\0';
  796:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  797:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  798:       for(niterf=10;niterf<=30;niterf+=10){
  799: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  800: 	tmf = *localtime(&forecast_time.tv_sec);
  801: /* 	asctime_r(&tmf,strfor); */
  802: 	strcpy(strfor,asctime(&tmf));
  803: 	itmp = strlen(strfor);
  804: 	if(strfor[itmp-1]=='\n')
  805: 	strfor[itmp-1]='\0';
  806: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  807: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  808:       }
  809:     }
  810:     for (i=1;i<=n;i++) { 
  811:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  812:       fptt=(*fret); 
  813: #ifdef DEBUG
  814:       printf("fret=%lf \n",*fret);
  815:       fprintf(ficlog,"fret=%lf \n",*fret);
  816: #endif
  817:       printf("%d",i);fflush(stdout);
  818:       fprintf(ficlog,"%d",i);fflush(ficlog);
  819:       linmin(p,xit,n,fret,func); 
  820:       if (fabs(fptt-(*fret)) > del) { 
  821: 	del=fabs(fptt-(*fret)); 
  822: 	ibig=i; 
  823:       } 
  824: #ifdef DEBUG
  825:       printf("%d %.12e",i,(*fret));
  826:       fprintf(ficlog,"%d %.12e",i,(*fret));
  827:       for (j=1;j<=n;j++) {
  828: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  829: 	printf(" x(%d)=%.12e",j,xit[j]);
  830: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  831:       }
  832:       for(j=1;j<=n;j++) {
  833: 	printf(" p=%.12e",p[j]);
  834: 	fprintf(ficlog," p=%.12e",p[j]);
  835:       }
  836:       printf("\n");
  837:       fprintf(ficlog,"\n");
  838: #endif
  839:     } 
  840:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  841: #ifdef DEBUG
  842:       int k[2],l;
  843:       k[0]=1;
  844:       k[1]=-1;
  845:       printf("Max: %.12e",(*func)(p));
  846:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  847:       for (j=1;j<=n;j++) {
  848: 	printf(" %.12e",p[j]);
  849: 	fprintf(ficlog," %.12e",p[j]);
  850:       }
  851:       printf("\n");
  852:       fprintf(ficlog,"\n");
  853:       for(l=0;l<=1;l++) {
  854: 	for (j=1;j<=n;j++) {
  855: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  856: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  857: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  858: 	}
  859: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  860: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  861:       }
  862: #endif
  863: 
  864: 
  865:       free_vector(xit,1,n); 
  866:       free_vector(xits,1,n); 
  867:       free_vector(ptt,1,n); 
  868:       free_vector(pt,1,n); 
  869:       return; 
  870:     } 
  871:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  872:     for (j=1;j<=n;j++) { 
  873:       ptt[j]=2.0*p[j]-pt[j]; 
  874:       xit[j]=p[j]-pt[j]; 
  875:       pt[j]=p[j]; 
  876:     } 
  877:     fptt=(*func)(ptt); 
  878:     if (fptt < fp) { 
  879:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  880:       if (t < 0.0) { 
  881: 	linmin(p,xit,n,fret,func); 
  882: 	for (j=1;j<=n;j++) { 
  883: 	  xi[j][ibig]=xi[j][n]; 
  884: 	  xi[j][n]=xit[j]; 
  885: 	}
  886: #ifdef DEBUG
  887: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  888: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  889: 	for(j=1;j<=n;j++){
  890: 	  printf(" %.12e",xit[j]);
  891: 	  fprintf(ficlog," %.12e",xit[j]);
  892: 	}
  893: 	printf("\n");
  894: 	fprintf(ficlog,"\n");
  895: #endif
  896:       }
  897:     } 
  898:   } 
  899: } 
  900: 
  901: /**** Prevalence limit (stable prevalence)  ****************/
  902: 
  903: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  904: {
  905:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  906:      matrix by transitions matrix until convergence is reached */
  907: 
  908:   int i, ii,j,k;
  909:   double min, max, maxmin, maxmax,sumnew=0.;
  910:   double **matprod2();
  911:   double **out, cov[NCOVMAX], **pmij();
  912:   double **newm;
  913:   double agefin, delaymax=50 ; /* Max number of years to converge */
  914: 
  915:   for (ii=1;ii<=nlstate+ndeath;ii++)
  916:     for (j=1;j<=nlstate+ndeath;j++){
  917:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  918:     }
  919: 
  920:    cov[1]=1.;
  921:  
  922:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  923:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  924:     newm=savm;
  925:     /* Covariates have to be included here again */
  926:      cov[2]=agefin;
  927:   
  928:       for (k=1; k<=cptcovn;k++) {
  929: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  930: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  931:       }
  932:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  933:       for (k=1; k<=cptcovprod;k++)
  934: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  935: 
  936:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  937:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  938:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  939:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  940: 
  941:     savm=oldm;
  942:     oldm=newm;
  943:     maxmax=0.;
  944:     for(j=1;j<=nlstate;j++){
  945:       min=1.;
  946:       max=0.;
  947:       for(i=1; i<=nlstate; i++) {
  948: 	sumnew=0;
  949: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  950: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  951: 	max=FMAX(max,prlim[i][j]);
  952: 	min=FMIN(min,prlim[i][j]);
  953:       }
  954:       maxmin=max-min;
  955:       maxmax=FMAX(maxmax,maxmin);
  956:     }
  957:     if(maxmax < ftolpl){
  958:       return prlim;
  959:     }
  960:   }
  961: }
  962: 
  963: /*************** transition probabilities ***************/ 
  964: 
  965: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  966: {
  967:   double s1, s2;
  968:   /*double t34;*/
  969:   int i,j,j1, nc, ii, jj;
  970: 
  971:     for(i=1; i<= nlstate; i++){
  972:     for(j=1; j<i;j++){
  973:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  974: 	/*s2 += param[i][j][nc]*cov[nc];*/
  975: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  976: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
  977:       }
  978:       ps[i][j]=s2;
  979:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
  980:     }
  981:     for(j=i+1; j<=nlstate+ndeath;j++){
  982:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
  983: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
  984: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
  985:       }
  986:       ps[i][j]=s2;
  987:     }
  988:   }
  989:     /*ps[3][2]=1;*/
  990: 
  991:   for(i=1; i<= nlstate; i++){
  992:      s1=0;
  993:     for(j=1; j<i; j++)
  994:       s1+=exp(ps[i][j]);
  995:     for(j=i+1; j<=nlstate+ndeath; j++)
  996:       s1+=exp(ps[i][j]);
  997:     ps[i][i]=1./(s1+1.);
  998:     for(j=1; j<i; j++)
  999:       ps[i][j]= exp(ps[i][j])*ps[i][i];
 1000:     for(j=i+1; j<=nlstate+ndeath; j++)
 1001:       ps[i][j]= exp(ps[i][j])*ps[i][i];
 1002:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1003:   } /* end i */
 1004: 
 1005:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1006:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1007:       ps[ii][jj]=0;
 1008:       ps[ii][ii]=1;
 1009:     }
 1010:   }
 1011: 
 1012: 
 1013:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 1014:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1015:      printf("%lf ",ps[ii][jj]);
 1016:    }
 1017:     printf("\n ");
 1018:     }
 1019:     printf("\n ");printf("%lf ",cov[2]);*/
 1020: /*
 1021:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1022:   goto end;*/
 1023:     return ps;
 1024: }
 1025: 
 1026: /**************** Product of 2 matrices ******************/
 1027: 
 1028: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1029: {
 1030:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1031:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1032:   /* in, b, out are matrice of pointers which should have been initialized 
 1033:      before: only the contents of out is modified. The function returns
 1034:      a pointer to pointers identical to out */
 1035:   long i, j, k;
 1036:   for(i=nrl; i<= nrh; i++)
 1037:     for(k=ncolol; k<=ncoloh; k++)
 1038:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1039: 	out[i][k] +=in[i][j]*b[j][k];
 1040: 
 1041:   return out;
 1042: }
 1043: 
 1044: 
 1045: /************* Higher Matrix Product ***************/
 1046: 
 1047: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1048: {
 1049:   /* Computes the transition matrix starting at age 'age' over 
 1050:      'nhstepm*hstepm*stepm' months (i.e. until
 1051:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1052:      nhstepm*hstepm matrices. 
 1053:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1054:      (typically every 2 years instead of every month which is too big 
 1055:      for the memory).
 1056:      Model is determined by parameters x and covariates have to be 
 1057:      included manually here. 
 1058: 
 1059:      */
 1060: 
 1061:   int i, j, d, h, k;
 1062:   double **out, cov[NCOVMAX];
 1063:   double **newm;
 1064: 
 1065:   /* Hstepm could be zero and should return the unit matrix */
 1066:   for (i=1;i<=nlstate+ndeath;i++)
 1067:     for (j=1;j<=nlstate+ndeath;j++){
 1068:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1069:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1070:     }
 1071:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1072:   for(h=1; h <=nhstepm; h++){
 1073:     for(d=1; d <=hstepm; d++){
 1074:       newm=savm;
 1075:       /* Covariates have to be included here again */
 1076:       cov[1]=1.;
 1077:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1078:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1079:       for (k=1; k<=cptcovage;k++)
 1080: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1081:       for (k=1; k<=cptcovprod;k++)
 1082: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1083: 
 1084: 
 1085:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1086:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1087:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1088: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1089:       savm=oldm;
 1090:       oldm=newm;
 1091:     }
 1092:     for(i=1; i<=nlstate+ndeath; i++)
 1093:       for(j=1;j<=nlstate+ndeath;j++) {
 1094: 	po[i][j][h]=newm[i][j];
 1095: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1096: 	 */
 1097:       }
 1098:   } /* end h */
 1099:   return po;
 1100: }
 1101: 
 1102: 
 1103: /*************** log-likelihood *************/
 1104: double func( double *x)
 1105: {
 1106:   int i, ii, j, k, mi, d, kk;
 1107:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1108:   double **out;
 1109:   double sw; /* Sum of weights */
 1110:   double lli; /* Individual log likelihood */
 1111:   int s1, s2;
 1112:   double bbh, survp;
 1113:   long ipmx;
 1114:   /*extern weight */
 1115:   /* We are differentiating ll according to initial status */
 1116:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1117:   /*for(i=1;i<imx;i++) 
 1118:     printf(" %d\n",s[4][i]);
 1119:   */
 1120:   cov[1]=1.;
 1121: 
 1122:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1123: 
 1124:   if(mle==1){
 1125:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1126:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1127:       for(mi=1; mi<= wav[i]-1; mi++){
 1128: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1129: 	  for (j=1;j<=nlstate+ndeath;j++){
 1130: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1131: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1132: 	  }
 1133: 	for(d=0; d<dh[mi][i]; d++){
 1134: 	  newm=savm;
 1135: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1136: 	  for (kk=1; kk<=cptcovage;kk++) {
 1137: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1138: 	  }
 1139: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1140: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1141: 	  savm=oldm;
 1142: 	  oldm=newm;
 1143: 	} /* end mult */
 1144:       
 1145: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1146: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1147: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1148: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1149: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1150: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1151: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1152: 	 * probability in order to take into account the bias as a fraction of the way
 1153: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1154: 	 * -stepm/2 to stepm/2 .
 1155: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1156: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1157: 	 */
 1158: 	s1=s[mw[mi][i]][i];
 1159: 	s2=s[mw[mi+1][i]][i];
 1160: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1161: 	/* bias is positive if real duration
 1162: 	 * is higher than the multiple of stepm and negative otherwise.
 1163: 	 */
 1164: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1165: 	if( s2 > nlstate){ 
 1166: 	  /* i.e. if s2 is a death state and if the date of death is known then the contribution
 1167: 	     to the likelihood is the probability to die between last step unit time and current 
 1168: 	     step unit time, which is also the differences between probability to die before dh 
 1169: 	     and probability to die before dh-stepm . 
 1170: 	     In version up to 0.92 likelihood was computed
 1171: 	as if date of death was unknown. Death was treated as any other
 1172: 	health state: the date of the interview describes the actual state
 1173: 	and not the date of a change in health state. The former idea was
 1174: 	to consider that at each interview the state was recorded
 1175: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1176: 	introduced the exact date of death then we should have modified
 1177: 	the contribution of an exact death to the likelihood. This new
 1178: 	contribution is smaller and very dependent of the step unit
 1179: 	stepm. It is no more the probability to die between last interview
 1180: 	and month of death but the probability to survive from last
 1181: 	interview up to one month before death multiplied by the
 1182: 	probability to die within a month. Thanks to Chris
 1183: 	Jackson for correcting this bug.  Former versions increased
 1184: 	mortality artificially. The bad side is that we add another loop
 1185: 	which slows down the processing. The difference can be up to 10%
 1186: 	lower mortality.
 1187: 	  */
 1188: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1189: 	}else{
 1190: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1191: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1192: 	} 
 1193: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1194: 	/*if(lli ==000.0)*/
 1195: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1196:   	ipmx +=1;
 1197: 	sw += weight[i];
 1198: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1199:       } /* end of wave */
 1200:     } /* end of individual */
 1201:   }  else if(mle==2){
 1202:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1203:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1204:       for(mi=1; mi<= wav[i]-1; mi++){
 1205: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1206: 	  for (j=1;j<=nlstate+ndeath;j++){
 1207: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1208: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1209: 	  }
 1210: 	for(d=0; d<=dh[mi][i]; d++){
 1211: 	  newm=savm;
 1212: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1213: 	  for (kk=1; kk<=cptcovage;kk++) {
 1214: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1215: 	  }
 1216: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1217: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1218: 	  savm=oldm;
 1219: 	  oldm=newm;
 1220: 	} /* end mult */
 1221:       
 1222: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1223: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1224: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1225: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1226: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1227: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1228: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1229: 	 * probability in order to take into account the bias as a fraction of the way
 1230: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1231: 	 * -stepm/2 to stepm/2 .
 1232: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1233: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1234: 	 */
 1235: 	s1=s[mw[mi][i]][i];
 1236: 	s2=s[mw[mi+1][i]][i];
 1237: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1238: 	/* bias is positive if real duration
 1239: 	 * is higher than the multiple of stepm and negative otherwise.
 1240: 	 */
 1241: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1242: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1243: 	/*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 1244: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1245: 	/*if(lli ==000.0)*/
 1246: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1247: 	ipmx +=1;
 1248: 	sw += weight[i];
 1249: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1250:       } /* end of wave */
 1251:     } /* end of individual */
 1252:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1253:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1254:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1255:       for(mi=1; mi<= wav[i]-1; mi++){
 1256: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1257: 	  for (j=1;j<=nlstate+ndeath;j++){
 1258: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1259: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1260: 	  }
 1261: 	for(d=0; d<dh[mi][i]; d++){
 1262: 	  newm=savm;
 1263: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1264: 	  for (kk=1; kk<=cptcovage;kk++) {
 1265: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1266: 	  }
 1267: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1268: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1269: 	  savm=oldm;
 1270: 	  oldm=newm;
 1271: 	} /* end mult */
 1272:       
 1273: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1274: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1275: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1276: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1277: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1278: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1279: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1280: 	 * probability in order to take into account the bias as a fraction of the way
 1281: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1282: 	 * -stepm/2 to stepm/2 .
 1283: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1284: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1285: 	 */
 1286: 	s1=s[mw[mi][i]][i];
 1287: 	s2=s[mw[mi+1][i]][i];
 1288: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1289: 	/* bias is positive if real duration
 1290: 	 * is higher than the multiple of stepm and negative otherwise.
 1291: 	 */
 1292: 	/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
 1293: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1294: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1295: 	/*if(lli ==000.0)*/
 1296: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1297: 	ipmx +=1;
 1298: 	sw += weight[i];
 1299: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1300:       } /* end of wave */
 1301:     } /* end of individual */
 1302:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1303:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1304:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1305:       for(mi=1; mi<= wav[i]-1; mi++){
 1306: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1307: 	  for (j=1;j<=nlstate+ndeath;j++){
 1308: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1309: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1310: 	  }
 1311: 	for(d=0; d<dh[mi][i]; d++){
 1312: 	  newm=savm;
 1313: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1314: 	  for (kk=1; kk<=cptcovage;kk++) {
 1315: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1316: 	  }
 1317: 	
 1318: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1319: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1320: 	  savm=oldm;
 1321: 	  oldm=newm;
 1322: 	} /* end mult */
 1323:       
 1324: 	s1=s[mw[mi][i]][i];
 1325: 	s2=s[mw[mi+1][i]][i];
 1326: 	if( s2 > nlstate){ 
 1327: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1328: 	}else{
 1329: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1330: 	}
 1331: 	ipmx +=1;
 1332: 	sw += weight[i];
 1333: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1334: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1335:       } /* end of wave */
 1336:     } /* end of individual */
 1337:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1338:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1339:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1340:       for(mi=1; mi<= wav[i]-1; mi++){
 1341: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1342: 	  for (j=1;j<=nlstate+ndeath;j++){
 1343: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1344: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1345: 	  }
 1346: 	for(d=0; d<dh[mi][i]; d++){
 1347: 	  newm=savm;
 1348: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1349: 	  for (kk=1; kk<=cptcovage;kk++) {
 1350: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1351: 	  }
 1352: 	
 1353: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1354: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1355: 	  savm=oldm;
 1356: 	  oldm=newm;
 1357: 	} /* end mult */
 1358:       
 1359: 	s1=s[mw[mi][i]][i];
 1360: 	s2=s[mw[mi+1][i]][i];
 1361: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1362: 	ipmx +=1;
 1363: 	sw += weight[i];
 1364: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1365: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1366:       } /* end of wave */
 1367:     } /* end of individual */
 1368:   } /* End of if */
 1369:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1370:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1371:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1372:   return -l;
 1373: }
 1374: 
 1375: /*************** log-likelihood *************/
 1376: double funcone( double *x)
 1377: {
 1378:   /* Same as likeli but slower because of a lot of printf and if */
 1379:   int i, ii, j, k, mi, d, kk;
 1380:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1381:   double **out;
 1382:   double lli; /* Individual log likelihood */
 1383:   double llt;
 1384:   int s1, s2;
 1385:   double bbh, survp;
 1386:   /*extern weight */
 1387:   /* We are differentiating ll according to initial status */
 1388:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1389:   /*for(i=1;i<imx;i++) 
 1390:     printf(" %d\n",s[4][i]);
 1391:   */
 1392:   cov[1]=1.;
 1393: 
 1394:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1395: 
 1396:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1397:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1398:     for(mi=1; mi<= wav[i]-1; mi++){
 1399:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1400: 	for (j=1;j<=nlstate+ndeath;j++){
 1401: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1402: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1403: 	}
 1404:       for(d=0; d<dh[mi][i]; d++){
 1405: 	newm=savm;
 1406: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1407: 	for (kk=1; kk<=cptcovage;kk++) {
 1408: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1409: 	}
 1410: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1411: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1412: 	savm=oldm;
 1413: 	oldm=newm;
 1414:       } /* end mult */
 1415:       
 1416:       s1=s[mw[mi][i]][i];
 1417:       s2=s[mw[mi+1][i]][i];
 1418:       bbh=(double)bh[mi][i]/(double)stepm; 
 1419:       /* bias is positive if real duration
 1420:        * is higher than the multiple of stepm and negative otherwise.
 1421:        */
 1422:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1423: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1424:       } else if (mle==1){
 1425: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1426:       } else if(mle==2){
 1427: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1428:       } else if(mle==3){  /* exponential inter-extrapolation */
 1429: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1430:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1431: 	lli=log(out[s1][s2]); /* Original formula */
 1432:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1433: 	lli=log(out[s1][s2]); /* Original formula */
 1434:       } /* End of if */
 1435:       ipmx +=1;
 1436:       sw += weight[i];
 1437:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1438: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1439:       if(globpr){
 1440: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1441:  %10.6f %10.6f %10.6f ", \
 1442: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1443: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1444: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1445: 	  llt +=ll[k]*gipmx/gsw;
 1446: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1447: 	}
 1448: 	fprintf(ficresilk," %10.6f\n", -llt);
 1449:       }
 1450:     } /* end of wave */
 1451:   } /* end of individual */
 1452:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1453:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1454:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1455:   if(globpr==0){ /* First time we count the contributions and weights */
 1456:     gipmx=ipmx;
 1457:     gsw=sw;
 1458:   }
 1459:   return -l;
 1460: }
 1461: 
 1462: char *subdirf(char fileres[])
 1463: {
 1464:   /* Caution optionfilefiname is hidden */
 1465:   strcpy(tmpout,optionfilefiname);
 1466:   strcat(tmpout,"/"); /* Add to the right */
 1467:   strcat(tmpout,fileres);
 1468:   return tmpout;
 1469: }
 1470: 
 1471: char *subdirf2(char fileres[], char *preop)
 1472: {
 1473:   
 1474:   strcpy(tmpout,optionfilefiname);
 1475:   strcat(tmpout,"/");
 1476:   strcat(tmpout,preop);
 1477:   strcat(tmpout,fileres);
 1478:   return tmpout;
 1479: }
 1480: char *subdirf3(char fileres[], char *preop, char *preop2)
 1481: {
 1482:   
 1483:   strcpy(tmpout,optionfilefiname);
 1484:   strcat(tmpout,"/");
 1485:   strcat(tmpout,preop);
 1486:   strcat(tmpout,preop2);
 1487:   strcat(tmpout,fileres);
 1488:   return tmpout;
 1489: }
 1490: 
 1491: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1492: {
 1493:   /* This routine should help understanding what is done with 
 1494:      the selection of individuals/waves and
 1495:      to check the exact contribution to the likelihood.
 1496:      Plotting could be done.
 1497:    */
 1498:   int k;
 1499: 
 1500:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1501:     strcpy(fileresilk,"ilk"); 
 1502:     strcat(fileresilk,fileres);
 1503:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1504:       printf("Problem with resultfile: %s\n", fileresilk);
 1505:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1506:     }
 1507:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1508:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1509:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1510:     for(k=1; k<=nlstate; k++) 
 1511:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1512:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1513:   }
 1514: 
 1515:   *fretone=(*funcone)(p);
 1516:   if(*globpri !=0){
 1517:     fclose(ficresilk);
 1518:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1519:     fflush(fichtm); 
 1520:   } 
 1521:   return;
 1522: }
 1523: 
 1524: 
 1525: /*********** Maximum Likelihood Estimation ***************/
 1526: 
 1527: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1528: {
 1529:   int i,j, iter;
 1530:   double **xi;
 1531:   double fret;
 1532:   double fretone; /* Only one call to likelihood */
 1533:   char filerespow[FILENAMELENGTH];
 1534:   xi=matrix(1,npar,1,npar);
 1535:   for (i=1;i<=npar;i++)
 1536:     for (j=1;j<=npar;j++)
 1537:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1538:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1539:   strcpy(filerespow,"pow"); 
 1540:   strcat(filerespow,fileres);
 1541:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1542:     printf("Problem with resultfile: %s\n", filerespow);
 1543:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1544:   }
 1545:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1546:   for (i=1;i<=nlstate;i++)
 1547:     for(j=1;j<=nlstate+ndeath;j++)
 1548:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1549:   fprintf(ficrespow,"\n");
 1550: 
 1551:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1552: 
 1553:   fclose(ficrespow);
 1554:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1555:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1556:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1557: 
 1558: }
 1559: 
 1560: /**** Computes Hessian and covariance matrix ***/
 1561: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1562: {
 1563:   double  **a,**y,*x,pd;
 1564:   double **hess;
 1565:   int i, j,jk;
 1566:   int *indx;
 1567: 
 1568:   double hessii(double p[], double delta, int theta, double delti[]);
 1569:   double hessij(double p[], double delti[], int i, int j);
 1570:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1571:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1572: 
 1573:   hess=matrix(1,npar,1,npar);
 1574: 
 1575:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1576:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1577:   for (i=1;i<=npar;i++){
 1578:     printf("%d",i);fflush(stdout);
 1579:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1580:     hess[i][i]=hessii(p,ftolhess,i,delti);
 1581:     /*printf(" %f ",p[i]);*/
 1582:     /*printf(" %lf ",hess[i][i]);*/
 1583:   }
 1584:   
 1585:   for (i=1;i<=npar;i++) {
 1586:     for (j=1;j<=npar;j++)  {
 1587:       if (j>i) { 
 1588: 	printf(".%d%d",i,j);fflush(stdout);
 1589: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1590: 	hess[i][j]=hessij(p,delti,i,j);
 1591: 	hess[j][i]=hess[i][j];    
 1592: 	/*printf(" %lf ",hess[i][j]);*/
 1593:       }
 1594:     }
 1595:   }
 1596:   printf("\n");
 1597:   fprintf(ficlog,"\n");
 1598: 
 1599:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1600:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1601:   
 1602:   a=matrix(1,npar,1,npar);
 1603:   y=matrix(1,npar,1,npar);
 1604:   x=vector(1,npar);
 1605:   indx=ivector(1,npar);
 1606:   for (i=1;i<=npar;i++)
 1607:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1608:   ludcmp(a,npar,indx,&pd);
 1609: 
 1610:   for (j=1;j<=npar;j++) {
 1611:     for (i=1;i<=npar;i++) x[i]=0;
 1612:     x[j]=1;
 1613:     lubksb(a,npar,indx,x);
 1614:     for (i=1;i<=npar;i++){ 
 1615:       matcov[i][j]=x[i];
 1616:     }
 1617:   }
 1618: 
 1619:   printf("\n#Hessian matrix#\n");
 1620:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1621:   for (i=1;i<=npar;i++) { 
 1622:     for (j=1;j<=npar;j++) { 
 1623:       printf("%.3e ",hess[i][j]);
 1624:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1625:     }
 1626:     printf("\n");
 1627:     fprintf(ficlog,"\n");
 1628:   }
 1629: 
 1630:   /* Recompute Inverse */
 1631:   for (i=1;i<=npar;i++)
 1632:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1633:   ludcmp(a,npar,indx,&pd);
 1634: 
 1635:   /*  printf("\n#Hessian matrix recomputed#\n");
 1636: 
 1637:   for (j=1;j<=npar;j++) {
 1638:     for (i=1;i<=npar;i++) x[i]=0;
 1639:     x[j]=1;
 1640:     lubksb(a,npar,indx,x);
 1641:     for (i=1;i<=npar;i++){ 
 1642:       y[i][j]=x[i];
 1643:       printf("%.3e ",y[i][j]);
 1644:       fprintf(ficlog,"%.3e ",y[i][j]);
 1645:     }
 1646:     printf("\n");
 1647:     fprintf(ficlog,"\n");
 1648:   }
 1649:   */
 1650: 
 1651:   free_matrix(a,1,npar,1,npar);
 1652:   free_matrix(y,1,npar,1,npar);
 1653:   free_vector(x,1,npar);
 1654:   free_ivector(indx,1,npar);
 1655:   free_matrix(hess,1,npar,1,npar);
 1656: 
 1657: 
 1658: }
 1659: 
 1660: /*************** hessian matrix ****************/
 1661: double hessii( double x[], double delta, int theta, double delti[])
 1662: {
 1663:   int i;
 1664:   int l=1, lmax=20;
 1665:   double k1,k2;
 1666:   double p2[NPARMAX+1];
 1667:   double res;
 1668:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1669:   double fx;
 1670:   int k=0,kmax=10;
 1671:   double l1;
 1672: 
 1673:   fx=func(x);
 1674:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1675:   for(l=0 ; l <=lmax; l++){
 1676:     l1=pow(10,l);
 1677:     delts=delt;
 1678:     for(k=1 ; k <kmax; k=k+1){
 1679:       delt = delta*(l1*k);
 1680:       p2[theta]=x[theta] +delt;
 1681:       k1=func(p2)-fx;
 1682:       p2[theta]=x[theta]-delt;
 1683:       k2=func(p2)-fx;
 1684:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1685:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1686:       
 1687: #ifdef DEBUG
 1688:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1689:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1690: #endif
 1691:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1692:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1693: 	k=kmax;
 1694:       }
 1695:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1696: 	k=kmax; l=lmax*10.;
 1697:       }
 1698:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1699: 	delts=delt;
 1700:       }
 1701:     }
 1702:   }
 1703:   delti[theta]=delts;
 1704:   return res; 
 1705:   
 1706: }
 1707: 
 1708: double hessij( double x[], double delti[], int thetai,int thetaj)
 1709: {
 1710:   int i;
 1711:   int l=1, l1, lmax=20;
 1712:   double k1,k2,k3,k4,res,fx;
 1713:   double p2[NPARMAX+1];
 1714:   int k;
 1715: 
 1716:   fx=func(x);
 1717:   for (k=1; k<=2; k++) {
 1718:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1719:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1720:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1721:     k1=func(p2)-fx;
 1722:   
 1723:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1724:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1725:     k2=func(p2)-fx;
 1726:   
 1727:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1728:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1729:     k3=func(p2)-fx;
 1730:   
 1731:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1732:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1733:     k4=func(p2)-fx;
 1734:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1735: #ifdef DEBUG
 1736:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1737:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1738: #endif
 1739:   }
 1740:   return res;
 1741: }
 1742: 
 1743: /************** Inverse of matrix **************/
 1744: void ludcmp(double **a, int n, int *indx, double *d) 
 1745: { 
 1746:   int i,imax,j,k; 
 1747:   double big,dum,sum,temp; 
 1748:   double *vv; 
 1749:  
 1750:   vv=vector(1,n); 
 1751:   *d=1.0; 
 1752:   for (i=1;i<=n;i++) { 
 1753:     big=0.0; 
 1754:     for (j=1;j<=n;j++) 
 1755:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1756:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1757:     vv[i]=1.0/big; 
 1758:   } 
 1759:   for (j=1;j<=n;j++) { 
 1760:     for (i=1;i<j;i++) { 
 1761:       sum=a[i][j]; 
 1762:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1763:       a[i][j]=sum; 
 1764:     } 
 1765:     big=0.0; 
 1766:     for (i=j;i<=n;i++) { 
 1767:       sum=a[i][j]; 
 1768:       for (k=1;k<j;k++) 
 1769: 	sum -= a[i][k]*a[k][j]; 
 1770:       a[i][j]=sum; 
 1771:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1772: 	big=dum; 
 1773: 	imax=i; 
 1774:       } 
 1775:     } 
 1776:     if (j != imax) { 
 1777:       for (k=1;k<=n;k++) { 
 1778: 	dum=a[imax][k]; 
 1779: 	a[imax][k]=a[j][k]; 
 1780: 	a[j][k]=dum; 
 1781:       } 
 1782:       *d = -(*d); 
 1783:       vv[imax]=vv[j]; 
 1784:     } 
 1785:     indx[j]=imax; 
 1786:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1787:     if (j != n) { 
 1788:       dum=1.0/(a[j][j]); 
 1789:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1790:     } 
 1791:   } 
 1792:   free_vector(vv,1,n);  /* Doesn't work */
 1793: ;
 1794: } 
 1795: 
 1796: void lubksb(double **a, int n, int *indx, double b[]) 
 1797: { 
 1798:   int i,ii=0,ip,j; 
 1799:   double sum; 
 1800:  
 1801:   for (i=1;i<=n;i++) { 
 1802:     ip=indx[i]; 
 1803:     sum=b[ip]; 
 1804:     b[ip]=b[i]; 
 1805:     if (ii) 
 1806:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1807:     else if (sum) ii=i; 
 1808:     b[i]=sum; 
 1809:   } 
 1810:   for (i=n;i>=1;i--) { 
 1811:     sum=b[i]; 
 1812:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1813:     b[i]=sum/a[i][i]; 
 1814:   } 
 1815: } 
 1816: 
 1817: /************ Frequencies ********************/
 1818: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 1819: {  /* Some frequencies */
 1820:   
 1821:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1822:   int first;
 1823:   double ***freq; /* Frequencies */
 1824:   double *pp, **prop;
 1825:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1826:   FILE *ficresp;
 1827:   char fileresp[FILENAMELENGTH];
 1828:   
 1829:   pp=vector(1,nlstate);
 1830:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1831:   strcpy(fileresp,"p");
 1832:   strcat(fileresp,fileres);
 1833:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1834:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1835:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1836:     exit(0);
 1837:   }
 1838:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 1839:   j1=0;
 1840:   
 1841:   j=cptcoveff;
 1842:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1843: 
 1844:   first=1;
 1845: 
 1846:   for(k1=1; k1<=j;k1++){
 1847:     for(i1=1; i1<=ncodemax[k1];i1++){
 1848:       j1++;
 1849:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1850: 	scanf("%d", i);*/
 1851:       for (i=-1; i<=nlstate+ndeath; i++)  
 1852: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1853: 	  for(m=iagemin; m <= iagemax+3; m++)
 1854: 	    freq[i][jk][m]=0;
 1855: 
 1856:     for (i=1; i<=nlstate; i++)  
 1857:       for(m=iagemin; m <= iagemax+3; m++)
 1858: 	prop[i][m]=0;
 1859:       
 1860:       dateintsum=0;
 1861:       k2cpt=0;
 1862:       for (i=1; i<=imx; i++) {
 1863: 	bool=1;
 1864: 	if  (cptcovn>0) {
 1865: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1866: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1867: 	      bool=0;
 1868: 	}
 1869: 	if (bool==1){
 1870: 	  for(m=firstpass; m<=lastpass; m++){
 1871: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1872: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1873: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1874: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1875: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1876: 	      if (m<lastpass) {
 1877: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1878: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 1879: 	      }
 1880: 	      
 1881: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 1882: 		dateintsum=dateintsum+k2;
 1883: 		k2cpt++;
 1884: 	      }
 1885: 	      /*}*/
 1886: 	  }
 1887: 	}
 1888:       }
 1889:        
 1890:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 1891: 
 1892:       if  (cptcovn>0) {
 1893: 	fprintf(ficresp, "\n#********** Variable "); 
 1894: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1895: 	fprintf(ficresp, "**********\n#");
 1896:       }
 1897:       for(i=1; i<=nlstate;i++) 
 1898: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1899:       fprintf(ficresp, "\n");
 1900:       
 1901:       for(i=iagemin; i <= iagemax+3; i++){
 1902: 	if(i==iagemax+3){
 1903: 	  fprintf(ficlog,"Total");
 1904: 	}else{
 1905: 	  if(first==1){
 1906: 	    first=0;
 1907: 	    printf("See log file for details...\n");
 1908: 	  }
 1909: 	  fprintf(ficlog,"Age %d", i);
 1910: 	}
 1911: 	for(jk=1; jk <=nlstate ; jk++){
 1912: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1913: 	    pp[jk] += freq[jk][m][i]; 
 1914: 	}
 1915: 	for(jk=1; jk <=nlstate ; jk++){
 1916: 	  for(m=-1, pos=0; m <=0 ; m++)
 1917: 	    pos += freq[jk][m][i];
 1918: 	  if(pp[jk]>=1.e-10){
 1919: 	    if(first==1){
 1920: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1921: 	    }
 1922: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1923: 	  }else{
 1924: 	    if(first==1)
 1925: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1926: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1927: 	  }
 1928: 	}
 1929: 
 1930: 	for(jk=1; jk <=nlstate ; jk++){
 1931: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1932: 	    pp[jk] += freq[jk][m][i];
 1933: 	}	
 1934: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 1935: 	  pos += pp[jk];
 1936: 	  posprop += prop[jk][i];
 1937: 	}
 1938: 	for(jk=1; jk <=nlstate ; jk++){
 1939: 	  if(pos>=1.e-5){
 1940: 	    if(first==1)
 1941: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1942: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1943: 	  }else{
 1944: 	    if(first==1)
 1945: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1946: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1947: 	  }
 1948: 	  if( i <= iagemax){
 1949: 	    if(pos>=1.e-5){
 1950: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 1951: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 1952: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1953: 	    }
 1954: 	    else
 1955: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 1956: 	  }
 1957: 	}
 1958: 	
 1959: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1960: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1961: 	    if(freq[jk][m][i] !=0 ) {
 1962: 	    if(first==1)
 1963: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1964: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 1965: 	    }
 1966: 	if(i <= iagemax)
 1967: 	  fprintf(ficresp,"\n");
 1968: 	if(first==1)
 1969: 	  printf("Others in log...\n");
 1970: 	fprintf(ficlog,"\n");
 1971:       }
 1972:     }
 1973:   }
 1974:   dateintmean=dateintsum/k2cpt; 
 1975:  
 1976:   fclose(ficresp);
 1977:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
 1978:   free_vector(pp,1,nlstate);
 1979:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 1980:   /* End of Freq */
 1981: }
 1982: 
 1983: /************ Prevalence ********************/
 1984: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 1985: {  
 1986:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 1987:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 1988:      We still use firstpass and lastpass as another selection.
 1989:   */
 1990:  
 1991:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1992:   double ***freq; /* Frequencies */
 1993:   double *pp, **prop;
 1994:   double pos,posprop; 
 1995:   double  y2; /* in fractional years */
 1996:   int iagemin, iagemax;
 1997: 
 1998:   iagemin= (int) agemin;
 1999:   iagemax= (int) agemax;
 2000:   /*pp=vector(1,nlstate);*/
 2001:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 2002:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 2003:   j1=0;
 2004:   
 2005:   j=cptcoveff;
 2006:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 2007:   
 2008:   for(k1=1; k1<=j;k1++){
 2009:     for(i1=1; i1<=ncodemax[k1];i1++){
 2010:       j1++;
 2011:       
 2012:       for (i=1; i<=nlstate; i++)  
 2013: 	for(m=iagemin; m <= iagemax+3; m++)
 2014: 	  prop[i][m]=0.0;
 2015:      
 2016:       for (i=1; i<=imx; i++) { /* Each individual */
 2017: 	bool=1;
 2018: 	if  (cptcovn>0) {
 2019: 	  for (z1=1; z1<=cptcoveff; z1++) 
 2020: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 2021: 	      bool=0;
 2022: 	} 
 2023: 	if (bool==1) { 
 2024: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 2025: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 2026: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 2027: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 2028: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 2029: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2030:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2031: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2032:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2033:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2034:  	      } 
 2035: 	    }
 2036: 	  } /* end selection of waves */
 2037: 	}
 2038:       }
 2039:       for(i=iagemin; i <= iagemax+3; i++){  
 2040: 	
 2041:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2042:  	  posprop += prop[jk][i]; 
 2043:  	} 
 2044: 
 2045:  	for(jk=1; jk <=nlstate ; jk++){	    
 2046:  	  if( i <=  iagemax){ 
 2047:  	    if(posprop>=1.e-5){ 
 2048:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2049:  	    } 
 2050:  	  } 
 2051:  	}/* end jk */ 
 2052:       }/* end i */ 
 2053:     } /* end i1 */
 2054:   } /* end k1 */
 2055:   
 2056:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2057:   /*free_vector(pp,1,nlstate);*/
 2058:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2059: }  /* End of prevalence */
 2060: 
 2061: /************* Waves Concatenation ***************/
 2062: 
 2063: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2064: {
 2065:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2066:      Death is a valid wave (if date is known).
 2067:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2068:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2069:      and mw[mi+1][i]. dh depends on stepm.
 2070:      */
 2071: 
 2072:   int i, mi, m;
 2073:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2074:      double sum=0., jmean=0.;*/
 2075:   int first;
 2076:   int j, k=0,jk, ju, jl;
 2077:   double sum=0.;
 2078:   first=0;
 2079:   jmin=1e+5;
 2080:   jmax=-1;
 2081:   jmean=0.;
 2082:   for(i=1; i<=imx; i++){
 2083:     mi=0;
 2084:     m=firstpass;
 2085:     while(s[m][i] <= nlstate){
 2086:       if(s[m][i]>=1)
 2087: 	mw[++mi][i]=m;
 2088:       if(m >=lastpass)
 2089: 	break;
 2090:       else
 2091: 	m++;
 2092:     }/* end while */
 2093:     if (s[m][i] > nlstate){
 2094:       mi++;	/* Death is another wave */
 2095:       /* if(mi==0)  never been interviewed correctly before death */
 2096: 	 /* Only death is a correct wave */
 2097:       mw[mi][i]=m;
 2098:     }
 2099: 
 2100:     wav[i]=mi;
 2101:     if(mi==0){
 2102:       nbwarn++;
 2103:       if(first==0){
 2104: 	printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2105: 	first=1;
 2106:       }
 2107:       if(first==1){
 2108: 	fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 2109:       }
 2110:     } /* end mi==0 */
 2111:   } /* End individuals */
 2112: 
 2113:   for(i=1; i<=imx; i++){
 2114:     for(mi=1; mi<wav[i];mi++){
 2115:       if (stepm <=0)
 2116: 	dh[mi][i]=1;
 2117:       else{
 2118: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2119: 	  if (agedc[i] < 2*AGESUP) {
 2120: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2121: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2122: 	    else if(j<0){
 2123: 	      nberr++;
 2124: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2125: 	      j=1; /* Temporary Dangerous patch */
 2126: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2127: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2128: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2129: 	    }
 2130: 	    k=k+1;
 2131: 	    if (j >= jmax) jmax=j;
 2132: 	    if (j <= jmin) jmin=j;
 2133: 	    sum=sum+j;
 2134: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2135: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2136: 	  }
 2137: 	}
 2138: 	else{
 2139: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2140: 	  /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2141: 	  k=k+1;
 2142: 	  if (j >= jmax) jmax=j;
 2143: 	  else if (j <= jmin)jmin=j;
 2144: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2145: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2146: 	  if(j<0){
 2147: 	    nberr++;
 2148: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2149: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2150: 	  }
 2151: 	  sum=sum+j;
 2152: 	}
 2153: 	jk= j/stepm;
 2154: 	jl= j -jk*stepm;
 2155: 	ju= j -(jk+1)*stepm;
 2156: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2157: 	  if(jl==0){
 2158: 	    dh[mi][i]=jk;
 2159: 	    bh[mi][i]=0;
 2160: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2161: 		  * at the price of an extra matrix product in likelihood */
 2162: 	    dh[mi][i]=jk+1;
 2163: 	    bh[mi][i]=ju;
 2164: 	  }
 2165: 	}else{
 2166: 	  if(jl <= -ju){
 2167: 	    dh[mi][i]=jk;
 2168: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2169: 				 * is higher than the multiple of stepm and negative otherwise.
 2170: 				 */
 2171: 	  }
 2172: 	  else{
 2173: 	    dh[mi][i]=jk+1;
 2174: 	    bh[mi][i]=ju;
 2175: 	  }
 2176: 	  if(dh[mi][i]==0){
 2177: 	    dh[mi][i]=1; /* At least one step */
 2178: 	    bh[mi][i]=ju; /* At least one step */
 2179: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2180: 	  }
 2181: 	} /* end if mle */
 2182:       }
 2183:     } /* end wave */
 2184:   }
 2185:   jmean=sum/k;
 2186:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2187:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2188:  }
 2189: 
 2190: /*********** Tricode ****************************/
 2191: void tricode(int *Tvar, int **nbcode, int imx)
 2192: {
 2193:   
 2194:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2195:   int cptcode=0;
 2196:   cptcoveff=0; 
 2197:  
 2198:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2199:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2200: 
 2201:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2202:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2203: 			       modality*/ 
 2204:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2205:       Ndum[ij]++; /*store the modality */
 2206:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2207:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2208: 				       Tvar[j]. If V=sex and male is 0 and 
 2209: 				       female is 1, then  cptcode=1.*/
 2210:     }
 2211: 
 2212:     for (i=0; i<=cptcode; i++) {
 2213:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2214:     }
 2215: 
 2216:     ij=1; 
 2217:     for (i=1; i<=ncodemax[j]; i++) {
 2218:       for (k=0; k<= maxncov; k++) {
 2219: 	if (Ndum[k] != 0) {
 2220: 	  nbcode[Tvar[j]][ij]=k; 
 2221: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2222: 	  
 2223: 	  ij++;
 2224: 	}
 2225: 	if (ij > ncodemax[j]) break; 
 2226:       }  
 2227:     } 
 2228:   }  
 2229: 
 2230:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2231: 
 2232:  for (i=1; i<=ncovmodel-2; i++) { 
 2233:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2234:    ij=Tvar[i];
 2235:    Ndum[ij]++;
 2236:  }
 2237: 
 2238:  ij=1;
 2239:  for (i=1; i<= maxncov; i++) {
 2240:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2241:      Tvaraff[ij]=i; /*For printing */
 2242:      ij++;
 2243:    }
 2244:  }
 2245:  
 2246:  cptcoveff=ij-1; /*Number of simple covariates*/
 2247: }
 2248: 
 2249: /*********** Health Expectancies ****************/
 2250: 
 2251: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 2252: 
 2253: {
 2254:   /* Health expectancies */
 2255:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2256:   double age, agelim, hf;
 2257:   double ***p3mat,***varhe;
 2258:   double **dnewm,**doldm;
 2259:   double *xp;
 2260:   double **gp, **gm;
 2261:   double ***gradg, ***trgradg;
 2262:   int theta;
 2263: 
 2264:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2265:   xp=vector(1,npar);
 2266:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2267:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2268:   
 2269:   fprintf(ficreseij,"# Health expectancies\n");
 2270:   fprintf(ficreseij,"# Age");
 2271:   for(i=1; i<=nlstate;i++)
 2272:     for(j=1; j<=nlstate;j++)
 2273:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2274:   fprintf(ficreseij,"\n");
 2275: 
 2276:   if(estepm < stepm){
 2277:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2278:   }
 2279:   else  hstepm=estepm;   
 2280:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2281:    * This is mainly to measure the difference between two models: for example
 2282:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2283:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2284:    * progression in between and thus overestimating or underestimating according
 2285:    * to the curvature of the survival function. If, for the same date, we 
 2286:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2287:    * to compare the new estimate of Life expectancy with the same linear 
 2288:    * hypothesis. A more precise result, taking into account a more precise
 2289:    * curvature will be obtained if estepm is as small as stepm. */
 2290: 
 2291:   /* For example we decided to compute the life expectancy with the smallest unit */
 2292:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2293:      nhstepm is the number of hstepm from age to agelim 
 2294:      nstepm is the number of stepm from age to agelin. 
 2295:      Look at hpijx to understand the reason of that which relies in memory size
 2296:      and note for a fixed period like estepm months */
 2297:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2298:      survival function given by stepm (the optimization length). Unfortunately it
 2299:      means that if the survival funtion is printed only each two years of age and if
 2300:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2301:      results. So we changed our mind and took the option of the best precision.
 2302:   */
 2303:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2304: 
 2305:   agelim=AGESUP;
 2306:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2307:     /* nhstepm age range expressed in number of stepm */
 2308:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2309:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2310:     /* if (stepm >= YEARM) hstepm=1;*/
 2311:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2312:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2313:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2314:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2315:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2316: 
 2317:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2318:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2319:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2320:  
 2321: 
 2322:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2323: 
 2324:     /* Computing Variances of health expectancies */
 2325: 
 2326:      for(theta=1; theta <=npar; theta++){
 2327:       for(i=1; i<=npar; i++){ 
 2328: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2329:       }
 2330:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2331:   
 2332:       cptj=0;
 2333:       for(j=1; j<= nlstate; j++){
 2334: 	for(i=1; i<=nlstate; i++){
 2335: 	  cptj=cptj+1;
 2336: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2337: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2338: 	  }
 2339: 	}
 2340:       }
 2341:      
 2342:      
 2343:       for(i=1; i<=npar; i++) 
 2344: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2345:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2346:       
 2347:       cptj=0;
 2348:       for(j=1; j<= nlstate; j++){
 2349: 	for(i=1;i<=nlstate;i++){
 2350: 	  cptj=cptj+1;
 2351: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2352: 
 2353: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2354: 	  }
 2355: 	}
 2356:       }
 2357:       for(j=1; j<= nlstate*nlstate; j++)
 2358: 	for(h=0; h<=nhstepm-1; h++){
 2359: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2360: 	}
 2361:      } 
 2362:    
 2363: /* End theta */
 2364: 
 2365:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2366: 
 2367:      for(h=0; h<=nhstepm-1; h++)
 2368:       for(j=1; j<=nlstate*nlstate;j++)
 2369: 	for(theta=1; theta <=npar; theta++)
 2370: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2371:      
 2372: 
 2373:      for(i=1;i<=nlstate*nlstate;i++)
 2374:       for(j=1;j<=nlstate*nlstate;j++)
 2375: 	varhe[i][j][(int)age] =0.;
 2376: 
 2377:      printf("%d|",(int)age);fflush(stdout);
 2378:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2379:      for(h=0;h<=nhstepm-1;h++){
 2380:       for(k=0;k<=nhstepm-1;k++){
 2381: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2382: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2383: 	for(i=1;i<=nlstate*nlstate;i++)
 2384: 	  for(j=1;j<=nlstate*nlstate;j++)
 2385: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2386:       }
 2387:     }
 2388:     /* Computing expectancies */
 2389:     for(i=1; i<=nlstate;i++)
 2390:       for(j=1; j<=nlstate;j++)
 2391: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2392: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2393: 	  
 2394: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2395: 
 2396: 	}
 2397: 
 2398:     fprintf(ficreseij,"%3.0f",age );
 2399:     cptj=0;
 2400:     for(i=1; i<=nlstate;i++)
 2401:       for(j=1; j<=nlstate;j++){
 2402: 	cptj++;
 2403: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2404:       }
 2405:     fprintf(ficreseij,"\n");
 2406:    
 2407:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2408:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2409:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2410:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2411:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2412:   }
 2413:   printf("\n");
 2414:   fprintf(ficlog,"\n");
 2415: 
 2416:   free_vector(xp,1,npar);
 2417:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2418:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2419:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2420: }
 2421: 
 2422: /************ Variance ******************/
 2423: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 2424: {
 2425:   /* Variance of health expectancies */
 2426:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2427:   /* double **newm;*/
 2428:   double **dnewm,**doldm;
 2429:   double **dnewmp,**doldmp;
 2430:   int i, j, nhstepm, hstepm, h, nstepm ;
 2431:   int k, cptcode;
 2432:   double *xp;
 2433:   double **gp, **gm;  /* for var eij */
 2434:   double ***gradg, ***trgradg; /*for var eij */
 2435:   double **gradgp, **trgradgp; /* for var p point j */
 2436:   double *gpp, *gmp; /* for var p point j */
 2437:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2438:   double ***p3mat;
 2439:   double age,agelim, hf;
 2440:   double ***mobaverage;
 2441:   int theta;
 2442:   char digit[4];
 2443:   char digitp[25];
 2444: 
 2445:   char fileresprobmorprev[FILENAMELENGTH];
 2446: 
 2447:   if(popbased==1){
 2448:     if(mobilav!=0)
 2449:       strcpy(digitp,"-populbased-mobilav-");
 2450:     else strcpy(digitp,"-populbased-nomobil-");
 2451:   }
 2452:   else 
 2453:     strcpy(digitp,"-stablbased-");
 2454: 
 2455:   if (mobilav!=0) {
 2456:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2457:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2458:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2459:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2460:     }
 2461:   }
 2462: 
 2463:   strcpy(fileresprobmorprev,"prmorprev"); 
 2464:   sprintf(digit,"%-d",ij);
 2465:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2466:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2467:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2468:   strcat(fileresprobmorprev,fileres);
 2469:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2470:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2471:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2472:   }
 2473:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2474:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2475:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2476:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2477:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2478:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2479:     for(i=1; i<=nlstate;i++)
 2480:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2481:   }  
 2482:   fprintf(ficresprobmorprev,"\n");
 2483:   fprintf(ficgp,"\n# Routine varevsij");
 2484:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2485:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2486: /*   } */
 2487:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2488: 
 2489:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2490:   fprintf(ficresvij,"# Age");
 2491:   for(i=1; i<=nlstate;i++)
 2492:     for(j=1; j<=nlstate;j++)
 2493:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2494:   fprintf(ficresvij,"\n");
 2495: 
 2496:   xp=vector(1,npar);
 2497:   dnewm=matrix(1,nlstate,1,npar);
 2498:   doldm=matrix(1,nlstate,1,nlstate);
 2499:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2500:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2501: 
 2502:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2503:   gpp=vector(nlstate+1,nlstate+ndeath);
 2504:   gmp=vector(nlstate+1,nlstate+ndeath);
 2505:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2506:   
 2507:   if(estepm < stepm){
 2508:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2509:   }
 2510:   else  hstepm=estepm;   
 2511:   /* For example we decided to compute the life expectancy with the smallest unit */
 2512:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2513:      nhstepm is the number of hstepm from age to agelim 
 2514:      nstepm is the number of stepm from age to agelin. 
 2515:      Look at hpijx to understand the reason of that which relies in memory size
 2516:      and note for a fixed period like k years */
 2517:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2518:      survival function given by stepm (the optimization length). Unfortunately it
 2519:      means that if the survival funtion is printed every two years of age and if
 2520:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2521:      results. So we changed our mind and took the option of the best precision.
 2522:   */
 2523:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2524:   agelim = AGESUP;
 2525:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2526:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2527:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2528:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2529:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2530:     gp=matrix(0,nhstepm,1,nlstate);
 2531:     gm=matrix(0,nhstepm,1,nlstate);
 2532: 
 2533: 
 2534:     for(theta=1; theta <=npar; theta++){
 2535:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2536: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2537:       }
 2538:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2539:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2540: 
 2541:       if (popbased==1) {
 2542: 	if(mobilav ==0){
 2543: 	  for(i=1; i<=nlstate;i++)
 2544: 	    prlim[i][i]=probs[(int)age][i][ij];
 2545: 	}else{ /* mobilav */ 
 2546: 	  for(i=1; i<=nlstate;i++)
 2547: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2548: 	}
 2549:       }
 2550:   
 2551:       for(j=1; j<= nlstate; j++){
 2552: 	for(h=0; h<=nhstepm; h++){
 2553: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2554: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2555: 	}
 2556:       }
 2557:       /* This for computing probability of death (h=1 means
 2558:          computed over hstepm matrices product = hstepm*stepm months) 
 2559:          as a weighted average of prlim.
 2560:       */
 2561:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2562: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2563: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2564:       }    
 2565:       /* end probability of death */
 2566: 
 2567:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2568: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2569:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2570:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2571:  
 2572:       if (popbased==1) {
 2573: 	if(mobilav ==0){
 2574: 	  for(i=1; i<=nlstate;i++)
 2575: 	    prlim[i][i]=probs[(int)age][i][ij];
 2576: 	}else{ /* mobilav */ 
 2577: 	  for(i=1; i<=nlstate;i++)
 2578: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2579: 	}
 2580:       }
 2581: 
 2582:       for(j=1; j<= nlstate; j++){
 2583: 	for(h=0; h<=nhstepm; h++){
 2584: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2585: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2586: 	}
 2587:       }
 2588:       /* This for computing probability of death (h=1 means
 2589:          computed over hstepm matrices product = hstepm*stepm months) 
 2590:          as a weighted average of prlim.
 2591:       */
 2592:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2593: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2594:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2595:       }    
 2596:       /* end probability of death */
 2597: 
 2598:       for(j=1; j<= nlstate; j++) /* vareij */
 2599: 	for(h=0; h<=nhstepm; h++){
 2600: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2601: 	}
 2602: 
 2603:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2604: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2605:       }
 2606: 
 2607:     } /* End theta */
 2608: 
 2609:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2610: 
 2611:     for(h=0; h<=nhstepm; h++) /* veij */
 2612:       for(j=1; j<=nlstate;j++)
 2613: 	for(theta=1; theta <=npar; theta++)
 2614: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2615: 
 2616:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2617:       for(theta=1; theta <=npar; theta++)
 2618: 	trgradgp[j][theta]=gradgp[theta][j];
 2619:   
 2620: 
 2621:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2622:     for(i=1;i<=nlstate;i++)
 2623:       for(j=1;j<=nlstate;j++)
 2624: 	vareij[i][j][(int)age] =0.;
 2625: 
 2626:     for(h=0;h<=nhstepm;h++){
 2627:       for(k=0;k<=nhstepm;k++){
 2628: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2629: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2630: 	for(i=1;i<=nlstate;i++)
 2631: 	  for(j=1;j<=nlstate;j++)
 2632: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2633:       }
 2634:     }
 2635:   
 2636:     /* pptj */
 2637:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2638:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2639:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2640:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2641: 	varppt[j][i]=doldmp[j][i];
 2642:     /* end ppptj */
 2643:     /*  x centered again */
 2644:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2645:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2646:  
 2647:     if (popbased==1) {
 2648:       if(mobilav ==0){
 2649: 	for(i=1; i<=nlstate;i++)
 2650: 	  prlim[i][i]=probs[(int)age][i][ij];
 2651:       }else{ /* mobilav */ 
 2652: 	for(i=1; i<=nlstate;i++)
 2653: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2654:       }
 2655:     }
 2656:              
 2657:     /* This for computing probability of death (h=1 means
 2658:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2659:        as a weighted average of prlim.
 2660:     */
 2661:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2662:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2663: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2664:     }    
 2665:     /* end probability of death */
 2666: 
 2667:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2668:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2669:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2670:       for(i=1; i<=nlstate;i++){
 2671: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2672:       }
 2673:     } 
 2674:     fprintf(ficresprobmorprev,"\n");
 2675: 
 2676:     fprintf(ficresvij,"%.0f ",age );
 2677:     for(i=1; i<=nlstate;i++)
 2678:       for(j=1; j<=nlstate;j++){
 2679: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2680:       }
 2681:     fprintf(ficresvij,"\n");
 2682:     free_matrix(gp,0,nhstepm,1,nlstate);
 2683:     free_matrix(gm,0,nhstepm,1,nlstate);
 2684:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2685:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2686:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2687:   } /* End age */
 2688:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2689:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2690:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2691:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2692:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2693:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2694:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2695: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2696: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2697: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2698:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2699:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2700:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2701:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2702:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2703:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2704: */
 2705: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2706:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2707: 
 2708:   free_vector(xp,1,npar);
 2709:   free_matrix(doldm,1,nlstate,1,nlstate);
 2710:   free_matrix(dnewm,1,nlstate,1,npar);
 2711:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2712:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2713:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2714:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2715:   fclose(ficresprobmorprev);
 2716:   fflush(ficgp);
 2717:   fflush(fichtm); 
 2718: }  /* end varevsij */
 2719: 
 2720: /************ Variance of prevlim ******************/
 2721: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2722: {
 2723:   /* Variance of prevalence limit */
 2724:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2725:   double **newm;
 2726:   double **dnewm,**doldm;
 2727:   int i, j, nhstepm, hstepm;
 2728:   int k, cptcode;
 2729:   double *xp;
 2730:   double *gp, *gm;
 2731:   double **gradg, **trgradg;
 2732:   double age,agelim;
 2733:   int theta;
 2734:    
 2735:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2736:   fprintf(ficresvpl,"# Age");
 2737:   for(i=1; i<=nlstate;i++)
 2738:       fprintf(ficresvpl," %1d-%1d",i,i);
 2739:   fprintf(ficresvpl,"\n");
 2740: 
 2741:   xp=vector(1,npar);
 2742:   dnewm=matrix(1,nlstate,1,npar);
 2743:   doldm=matrix(1,nlstate,1,nlstate);
 2744:   
 2745:   hstepm=1*YEARM; /* Every year of age */
 2746:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2747:   agelim = AGESUP;
 2748:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2749:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2750:     if (stepm >= YEARM) hstepm=1;
 2751:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2752:     gradg=matrix(1,npar,1,nlstate);
 2753:     gp=vector(1,nlstate);
 2754:     gm=vector(1,nlstate);
 2755: 
 2756:     for(theta=1; theta <=npar; theta++){
 2757:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2758: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2759:       }
 2760:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2761:       for(i=1;i<=nlstate;i++)
 2762: 	gp[i] = prlim[i][i];
 2763:     
 2764:       for(i=1; i<=npar; i++) /* Computes gradient */
 2765: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2766:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2767:       for(i=1;i<=nlstate;i++)
 2768: 	gm[i] = prlim[i][i];
 2769: 
 2770:       for(i=1;i<=nlstate;i++)
 2771: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2772:     } /* End theta */
 2773: 
 2774:     trgradg =matrix(1,nlstate,1,npar);
 2775: 
 2776:     for(j=1; j<=nlstate;j++)
 2777:       for(theta=1; theta <=npar; theta++)
 2778: 	trgradg[j][theta]=gradg[theta][j];
 2779: 
 2780:     for(i=1;i<=nlstate;i++)
 2781:       varpl[i][(int)age] =0.;
 2782:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2783:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2784:     for(i=1;i<=nlstate;i++)
 2785:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2786: 
 2787:     fprintf(ficresvpl,"%.0f ",age );
 2788:     for(i=1; i<=nlstate;i++)
 2789:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2790:     fprintf(ficresvpl,"\n");
 2791:     free_vector(gp,1,nlstate);
 2792:     free_vector(gm,1,nlstate);
 2793:     free_matrix(gradg,1,npar,1,nlstate);
 2794:     free_matrix(trgradg,1,nlstate,1,npar);
 2795:   } /* End age */
 2796: 
 2797:   free_vector(xp,1,npar);
 2798:   free_matrix(doldm,1,nlstate,1,npar);
 2799:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2800: 
 2801: }
 2802: 
 2803: /************ Variance of one-step probabilities  ******************/
 2804: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2805: {
 2806:   int i, j=0,  i1, k1, l1, t, tj;
 2807:   int k2, l2, j1,  z1;
 2808:   int k=0,l, cptcode;
 2809:   int first=1, first1;
 2810:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2811:   double **dnewm,**doldm;
 2812:   double *xp;
 2813:   double *gp, *gm;
 2814:   double **gradg, **trgradg;
 2815:   double **mu;
 2816:   double age,agelim, cov[NCOVMAX];
 2817:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2818:   int theta;
 2819:   char fileresprob[FILENAMELENGTH];
 2820:   char fileresprobcov[FILENAMELENGTH];
 2821:   char fileresprobcor[FILENAMELENGTH];
 2822: 
 2823:   double ***varpij;
 2824: 
 2825:   strcpy(fileresprob,"prob"); 
 2826:   strcat(fileresprob,fileres);
 2827:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2828:     printf("Problem with resultfile: %s\n", fileresprob);
 2829:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2830:   }
 2831:   strcpy(fileresprobcov,"probcov"); 
 2832:   strcat(fileresprobcov,fileres);
 2833:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2834:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2835:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2836:   }
 2837:   strcpy(fileresprobcor,"probcor"); 
 2838:   strcat(fileresprobcor,fileres);
 2839:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2840:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2841:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2842:   }
 2843:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2844:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2845:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2846:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2847:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2848:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2849:   
 2850:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2851:   fprintf(ficresprob,"# Age");
 2852:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2853:   fprintf(ficresprobcov,"# Age");
 2854:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2855:   fprintf(ficresprobcov,"# Age");
 2856: 
 2857: 
 2858:   for(i=1; i<=nlstate;i++)
 2859:     for(j=1; j<=(nlstate+ndeath);j++){
 2860:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2861:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2862:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2863:     }  
 2864:  /* fprintf(ficresprob,"\n");
 2865:   fprintf(ficresprobcov,"\n");
 2866:   fprintf(ficresprobcor,"\n");
 2867:  */
 2868:  xp=vector(1,npar);
 2869:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2870:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2871:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2872:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2873:   first=1;
 2874:   fprintf(ficgp,"\n# Routine varprob");
 2875:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2876:   fprintf(fichtm,"\n");
 2877: 
 2878:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
 2879:   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
 2880:   file %s<br>\n",optionfilehtmcov);
 2881:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 2882: and drawn. It helps understanding how is the covariance between two incidences.\
 2883:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2884:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 2885: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 2886: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 2887: standard deviations wide on each axis. <br>\
 2888:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 2889:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 2890: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 2891: 
 2892:   cov[1]=1;
 2893:   tj=cptcoveff;
 2894:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2895:   j1=0;
 2896:   for(t=1; t<=tj;t++){
 2897:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2898:       j1++;
 2899:       if  (cptcovn>0) {
 2900: 	fprintf(ficresprob, "\n#********** Variable "); 
 2901: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2902: 	fprintf(ficresprob, "**********\n#\n");
 2903: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2904: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2905: 	fprintf(ficresprobcov, "**********\n#\n");
 2906: 	
 2907: 	fprintf(ficgp, "\n#********** Variable "); 
 2908: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2909: 	fprintf(ficgp, "**********\n#\n");
 2910: 	
 2911: 	
 2912: 	fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2913: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2914: 	fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2915: 	
 2916: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2917: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2918: 	fprintf(ficresprobcor, "**********\n#");    
 2919:       }
 2920:       
 2921:       for (age=bage; age<=fage; age ++){ 
 2922: 	cov[2]=age;
 2923: 	for (k=1; k<=cptcovn;k++) {
 2924: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2925: 	}
 2926: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2927: 	for (k=1; k<=cptcovprod;k++)
 2928: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2929: 	
 2930: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2931: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2932: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2933: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2934:     
 2935: 	for(theta=1; theta <=npar; theta++){
 2936: 	  for(i=1; i<=npar; i++)
 2937: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 2938: 	  
 2939: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2940: 	  
 2941: 	  k=0;
 2942: 	  for(i=1; i<= (nlstate); i++){
 2943: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2944: 	      k=k+1;
 2945: 	      gp[k]=pmmij[i][j];
 2946: 	    }
 2947: 	  }
 2948: 	  
 2949: 	  for(i=1; i<=npar; i++)
 2950: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 2951:     
 2952: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2953: 	  k=0;
 2954: 	  for(i=1; i<=(nlstate); i++){
 2955: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2956: 	      k=k+1;
 2957: 	      gm[k]=pmmij[i][j];
 2958: 	    }
 2959: 	  }
 2960:      
 2961: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 2962: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 2963: 	}
 2964: 
 2965: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 2966: 	  for(theta=1; theta <=npar; theta++)
 2967: 	    trgradg[j][theta]=gradg[theta][j];
 2968: 	
 2969: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 2970: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 2971: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 2972: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 2973: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2974: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2975: 
 2976: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 2977: 	
 2978: 	k=0;
 2979: 	for(i=1; i<=(nlstate); i++){
 2980: 	  for(j=1; j<=(nlstate+ndeath);j++){
 2981: 	    k=k+1;
 2982: 	    mu[k][(int) age]=pmmij[i][j];
 2983: 	  }
 2984: 	}
 2985:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 2986: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 2987: 	    varpij[i][j][(int)age] = doldm[i][j];
 2988: 
 2989: 	/*printf("\n%d ",(int)age);
 2990: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2991: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2992: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2993: 	  }*/
 2994: 
 2995: 	fprintf(ficresprob,"\n%d ",(int)age);
 2996: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 2997: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 2998: 
 2999: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 3000: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 3001: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 3002: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 3003: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 3004: 	}
 3005: 	i=0;
 3006: 	for (k=1; k<=(nlstate);k++){
 3007:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 3008:  	    i=i++;
 3009: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 3010: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 3011: 	    for (j=1; j<=i;j++){
 3012: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 3013: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 3014: 	    }
 3015: 	  }
 3016: 	}/* end of loop for state */
 3017:       } /* end of loop for age */
 3018: 
 3019:       /* Confidence intervalle of pij  */
 3020:       /*
 3021: 	fprintf(ficgp,"\nset noparametric;unset label");
 3022: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 3023: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3024: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 3025: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 3026: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 3027: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 3028:       */
 3029: 
 3030:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3031:       first1=1;
 3032:       for (k2=1; k2<=(nlstate);k2++){
 3033: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3034: 	  if(l2==k2) continue;
 3035: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3036: 	  for (k1=1; k1<=(nlstate);k1++){
 3037: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3038: 	      if(l1==k1) continue;
 3039: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3040: 	      if(i<=j) continue;
 3041: 	      for (age=bage; age<=fage; age ++){ 
 3042: 		if ((int)age %5==0){
 3043: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3044: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3045: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3046: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3047: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3048: 		  c12=cv12/sqrt(v1*v2);
 3049: 		  /* Computing eigen value of matrix of covariance */
 3050: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3051: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3052: 		  /* Eigen vectors */
 3053: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3054: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3055: 		  v21=(lc1-v1)/cv12*v11;
 3056: 		  v12=-v21;
 3057: 		  v22=v11;
 3058: 		  tnalp=v21/v11;
 3059: 		  if(first1==1){
 3060: 		    first1=0;
 3061: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3062: 		  }
 3063: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3064: 		  /*printf(fignu*/
 3065: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3066: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3067: 		  if(first==1){
 3068: 		    first=0;
 3069:  		    fprintf(ficgp,"\nset parametric;unset label");
 3070: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3071: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3072: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3073:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3074: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3075: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3076: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3077: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3078: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3079: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3080: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3081: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3082: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3083: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3084: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3085: 		  }else{
 3086: 		    first=0;
 3087: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3088: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3089: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3090: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3091: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3092: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3093: 		  }/* if first */
 3094: 		} /* age mod 5 */
 3095: 	      } /* end loop age */
 3096: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3097: 	      first=1;
 3098: 	    } /*l12 */
 3099: 	  } /* k12 */
 3100: 	} /*l1 */
 3101:       }/* k1 */
 3102:     } /* loop covariates */
 3103:   }
 3104:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3105:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3106:   free_vector(xp,1,npar);
 3107:   fclose(ficresprob);
 3108:   fclose(ficresprobcov);
 3109:   fclose(ficresprobcor);
 3110:   fflush(ficgp);
 3111:   fflush(fichtmcov);
 3112: }
 3113: 
 3114: 
 3115: /******************* Printing html file ***********/
 3116: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3117: 		  int lastpass, int stepm, int weightopt, char model[],\
 3118: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3119: 		  int popforecast, int estepm ,\
 3120: 		  double jprev1, double mprev1,double anprev1, \
 3121: 		  double jprev2, double mprev2,double anprev2){
 3122:   int jj1, k1, i1, cpt;
 3123:   /*char optionfilehtm[FILENAMELENGTH];*/
 3124: /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
 3125: /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
 3126: /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
 3127: /*   } */
 3128: 
 3129:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
 3130:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
 3131:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
 3132:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
 3133:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3134:    <a href=\"%s\">%s</a> <br>\n</li>", \
 3135: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
 3136: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
 3137: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
 3138: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3139: 
 3140: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3141: 
 3142:  m=cptcoveff;
 3143:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3144: 
 3145:  jj1=0;
 3146:  for(k1=1; k1<=m;k1++){
 3147:    for(i1=1; i1<=ncodemax[k1];i1++){
 3148:      jj1++;
 3149:      if (cptcovn > 0) {
 3150:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3151:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3152: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3153:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3154:      }
 3155:      /* Pij */
 3156:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3157: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3158:      /* Quasi-incidences */
 3159:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3160:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3161: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3162:        /* Stable prevalence in each health state */
 3163:        for(cpt=1; cpt<nlstate;cpt++){
 3164: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3165: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3166:        }
 3167:      for(cpt=1; cpt<=nlstate;cpt++) {
 3168:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3169: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3170:      }
 3171:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3172: health expectancies in states (1) and (2): %s%d.png<br>\
 3173: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3174:    } /* end i1 */
 3175:  }/* End k1 */
 3176:  fprintf(fichtm,"</ul>");
 3177: 
 3178: 
 3179:  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
 3180:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
 3181:  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3182:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3183:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3184:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
 3185:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
 3186:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3187: 	 rfileres,rfileres,\
 3188: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
 3189: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
 3190: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
 3191: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
 3192: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
 3193: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3194: 
 3195: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3196: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3197: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3198: /* 	<br>",fileres,fileres,fileres,fileres); */
 3199: /*  else  */
 3200: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3201: fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3202: 
 3203:  m=cptcoveff;
 3204:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3205: 
 3206:  jj1=0;
 3207:  for(k1=1; k1<=m;k1++){
 3208:    for(i1=1; i1<=ncodemax[k1];i1++){
 3209:      jj1++;
 3210:      if (cptcovn > 0) {
 3211:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3212:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3213: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3214:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3215:      }
 3216:      for(cpt=1; cpt<=nlstate;cpt++) {
 3217:        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
 3218: interval) in state (%d): %s%d%d.png <br>\
 3219: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3220:      }
 3221:    } /* end i1 */
 3222:  }/* End k1 */
 3223:  fprintf(fichtm,"</ul>");
 3224:  fflush(fichtm);
 3225: }
 3226: 
 3227: /******************* Gnuplot file **************/
 3228: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3229: 
 3230:   char dirfileres[132],optfileres[132];
 3231:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3232:   int ng;
 3233: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3234: /*     printf("Problem with file %s",optionfilegnuplot); */
 3235: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3236: /*   } */
 3237: 
 3238:   /*#ifdef windows */
 3239:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3240:     /*#endif */
 3241:   m=pow(2,cptcoveff);
 3242: 
 3243:   strcpy(dirfileres,optionfilefiname);
 3244:   strcpy(optfileres,"vpl");
 3245:  /* 1eme*/
 3246:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3247:    for (k1=1; k1<= m ; k1 ++) {
 3248:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3249:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3250:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3251: set ylabel \"Probability\" \n\
 3252: set ter png small\n\
 3253: set size 0.65,0.65\n\
 3254: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3255: 
 3256:      for (i=1; i<= nlstate ; i ++) {
 3257:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3258:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3259:      }
 3260:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3261:      for (i=1; i<= nlstate ; i ++) {
 3262:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3263:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3264:      } 
 3265:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3266:      for (i=1; i<= nlstate ; i ++) {
 3267:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3268:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3269:      }  
 3270:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3271:    }
 3272:   }
 3273:   /*2 eme*/
 3274:   
 3275:   for (k1=1; k1<= m ; k1 ++) { 
 3276:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3277:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3278:     
 3279:     for (i=1; i<= nlstate+1 ; i ++) {
 3280:       k=2*i;
 3281:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3282:       for (j=1; j<= nlstate+1 ; j ++) {
 3283: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3284: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3285:       }   
 3286:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3287:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3288:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3289:       for (j=1; j<= nlstate+1 ; j ++) {
 3290: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3291: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3292:       }   
 3293:       fprintf(ficgp,"\" t\"\" w l 0,");
 3294:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3295:       for (j=1; j<= nlstate+1 ; j ++) {
 3296: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3297: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3298:       }   
 3299:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3300:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3301:     }
 3302:   }
 3303:   
 3304:   /*3eme*/
 3305:   
 3306:   for (k1=1; k1<= m ; k1 ++) { 
 3307:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3308:       k=2+nlstate*(2*cpt-2);
 3309:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3310:       fprintf(ficgp,"set ter png small\n\
 3311: set size 0.65,0.65\n\
 3312: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3313:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3314: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3315: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3316: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3317: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3318: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3319: 	
 3320:       */
 3321:       for (i=1; i< nlstate ; i ++) {
 3322: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3323: 	
 3324:       } 
 3325:     }
 3326:   }
 3327:   
 3328:   /* CV preval stable (period) */
 3329:   for (k1=1; k1<= m ; k1 ++) { 
 3330:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3331:       k=3;
 3332:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3333:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3334: set ter png small\nset size 0.65,0.65\n\
 3335: unset log y\n\
 3336: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3337:       
 3338:       for (i=1; i< nlstate ; i ++)
 3339: 	fprintf(ficgp,"+$%d",k+i+1);
 3340:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3341:       
 3342:       l=3+(nlstate+ndeath)*cpt;
 3343:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3344:       for (i=1; i< nlstate ; i ++) {
 3345: 	l=3+(nlstate+ndeath)*cpt;
 3346: 	fprintf(ficgp,"+$%d",l+i+1);
 3347:       }
 3348:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3349:     } 
 3350:   }  
 3351:   
 3352:   /* proba elementaires */
 3353:   for(i=1,jk=1; i <=nlstate; i++){
 3354:     for(k=1; k <=(nlstate+ndeath); k++){
 3355:       if (k != i) {
 3356: 	for(j=1; j <=ncovmodel; j++){
 3357: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3358: 	  jk++; 
 3359: 	  fprintf(ficgp,"\n");
 3360: 	}
 3361:       }
 3362:     }
 3363:    }
 3364: 
 3365:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3366:      for(jk=1; jk <=m; jk++) {
 3367:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3368:        if (ng==2)
 3369: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3370:        else
 3371: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3372:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3373:        i=1;
 3374:        for(k2=1; k2<=nlstate; k2++) {
 3375: 	 k3=i;
 3376: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3377: 	   if (k != k2){
 3378: 	     if(ng==2)
 3379: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3380: 	     else
 3381: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3382: 	     ij=1;
 3383: 	     for(j=3; j <=ncovmodel; j++) {
 3384: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3385: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3386: 		 ij++;
 3387: 	       }
 3388: 	       else
 3389: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3390: 	     }
 3391: 	     fprintf(ficgp,")/(1");
 3392: 	     
 3393: 	     for(k1=1; k1 <=nlstate; k1++){   
 3394: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3395: 	       ij=1;
 3396: 	       for(j=3; j <=ncovmodel; j++){
 3397: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3398: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3399: 		   ij++;
 3400: 		 }
 3401: 		 else
 3402: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3403: 	       }
 3404: 	       fprintf(ficgp,")");
 3405: 	     }
 3406: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3407: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3408: 	     i=i+ncovmodel;
 3409: 	   }
 3410: 	 } /* end k */
 3411:        } /* end k2 */
 3412:      } /* end jk */
 3413:    } /* end ng */
 3414:    fflush(ficgp); 
 3415: }  /* end gnuplot */
 3416: 
 3417: 
 3418: /*************** Moving average **************/
 3419: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3420: 
 3421:   int i, cpt, cptcod;
 3422:   int modcovmax =1;
 3423:   int mobilavrange, mob;
 3424:   double age;
 3425: 
 3426:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3427: 			   a covariate has 2 modalities */
 3428:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3429: 
 3430:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3431:     if(mobilav==1) mobilavrange=5; /* default */
 3432:     else mobilavrange=mobilav;
 3433:     for (age=bage; age<=fage; age++)
 3434:       for (i=1; i<=nlstate;i++)
 3435: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3436: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3437:     /* We keep the original values on the extreme ages bage, fage and for 
 3438:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3439:        we use a 5 terms etc. until the borders are no more concerned. 
 3440:     */ 
 3441:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3442:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3443: 	for (i=1; i<=nlstate;i++){
 3444: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3445: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3446: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3447: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3448: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3449: 	      }
 3450: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3451: 	  }
 3452: 	}
 3453:       }/* end age */
 3454:     }/* end mob */
 3455:   }else return -1;
 3456:   return 0;
 3457: }/* End movingaverage */
 3458: 
 3459: 
 3460: /************** Forecasting ******************/
 3461: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3462:   /* proj1, year, month, day of starting projection 
 3463:      agemin, agemax range of age
 3464:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3465:      anproj2 year of en of projection (same day and month as proj1).
 3466:   */
 3467:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3468:   int *popage;
 3469:   double agec; /* generic age */
 3470:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3471:   double *popeffectif,*popcount;
 3472:   double ***p3mat;
 3473:   double ***mobaverage;
 3474:   char fileresf[FILENAMELENGTH];
 3475: 
 3476:   agelim=AGESUP;
 3477:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3478:  
 3479:   strcpy(fileresf,"f"); 
 3480:   strcat(fileresf,fileres);
 3481:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3482:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3483:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3484:   }
 3485:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3486:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3487: 
 3488:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3489: 
 3490:   if (mobilav!=0) {
 3491:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3492:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3493:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3494:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3495:     }
 3496:   }
 3497: 
 3498:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3499:   if (stepm<=12) stepsize=1;
 3500:   if(estepm < stepm){
 3501:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3502:   }
 3503:   else  hstepm=estepm;   
 3504: 
 3505:   hstepm=hstepm/stepm; 
 3506:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3507:                                fractional in yp1 */
 3508:   anprojmean=yp;
 3509:   yp2=modf((yp1*12),&yp);
 3510:   mprojmean=yp;
 3511:   yp1=modf((yp2*30.5),&yp);
 3512:   jprojmean=yp;
 3513:   if(jprojmean==0) jprojmean=1;
 3514:   if(mprojmean==0) jprojmean=1;
 3515: 
 3516:   i1=cptcoveff;
 3517:   if (cptcovn < 1){i1=1;}
 3518:   
 3519:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3520:   
 3521:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3522: 
 3523: /* 	      if (h==(int)(YEARM*yearp)){ */
 3524:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3525:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3526:       k=k+1;
 3527:       fprintf(ficresf,"\n#******");
 3528:       for(j=1;j<=cptcoveff;j++) {
 3529: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3530:       }
 3531:       fprintf(ficresf,"******\n");
 3532:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3533:       for(j=1; j<=nlstate+ndeath;j++){ 
 3534: 	for(i=1; i<=nlstate;i++) 	      
 3535:           fprintf(ficresf," p%d%d",i,j);
 3536: 	fprintf(ficresf," p.%d",j);
 3537:       }
 3538:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3539: 	fprintf(ficresf,"\n");
 3540: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3541: 
 3542:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3543: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3544: 	  nhstepm = nhstepm/hstepm; 
 3545: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3546: 	  oldm=oldms;savm=savms;
 3547: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3548: 	
 3549: 	  for (h=0; h<=nhstepm; h++){
 3550: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3551:               fprintf(ficresf,"\n");
 3552:               for(j=1;j<=cptcoveff;j++) 
 3553:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3554: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3555: 	    } 
 3556: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3557: 	      ppij=0.;
 3558: 	      for(i=1; i<=nlstate;i++) {
 3559: 		if (mobilav==1) 
 3560: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3561: 		else {
 3562: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3563: 		}
 3564: 		if (h*hstepm/YEARM*stepm== yearp) {
 3565: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3566: 		}
 3567: 	      } /* end i */
 3568: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3569: 		fprintf(ficresf," %.3f", ppij);
 3570: 	      }
 3571: 	    }/* end j */
 3572: 	  } /* end h */
 3573: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3574: 	} /* end agec */
 3575:       } /* end yearp */
 3576:     } /* end cptcod */
 3577:   } /* end  cptcov */
 3578:        
 3579:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3580: 
 3581:   fclose(ficresf);
 3582: }
 3583: 
 3584: /************** Forecasting *****not tested NB*************/
 3585: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3586:   
 3587:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3588:   int *popage;
 3589:   double calagedatem, agelim, kk1, kk2;
 3590:   double *popeffectif,*popcount;
 3591:   double ***p3mat,***tabpop,***tabpopprev;
 3592:   double ***mobaverage;
 3593:   char filerespop[FILENAMELENGTH];
 3594: 
 3595:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3596:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3597:   agelim=AGESUP;
 3598:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3599:   
 3600:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3601:   
 3602:   
 3603:   strcpy(filerespop,"pop"); 
 3604:   strcat(filerespop,fileres);
 3605:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3606:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3607:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3608:   }
 3609:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3610:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3611: 
 3612:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3613: 
 3614:   if (mobilav!=0) {
 3615:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3616:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3617:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3618:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3619:     }
 3620:   }
 3621: 
 3622:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3623:   if (stepm<=12) stepsize=1;
 3624:   
 3625:   agelim=AGESUP;
 3626:   
 3627:   hstepm=1;
 3628:   hstepm=hstepm/stepm; 
 3629:   
 3630:   if (popforecast==1) {
 3631:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3632:       printf("Problem with population file : %s\n",popfile);exit(0);
 3633:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3634:     } 
 3635:     popage=ivector(0,AGESUP);
 3636:     popeffectif=vector(0,AGESUP);
 3637:     popcount=vector(0,AGESUP);
 3638:     
 3639:     i=1;   
 3640:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3641:    
 3642:     imx=i;
 3643:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3644:   }
 3645: 
 3646:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3647:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3648:       k=k+1;
 3649:       fprintf(ficrespop,"\n#******");
 3650:       for(j=1;j<=cptcoveff;j++) {
 3651: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3652:       }
 3653:       fprintf(ficrespop,"******\n");
 3654:       fprintf(ficrespop,"# Age");
 3655:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3656:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3657:       
 3658:       for (cpt=0; cpt<=0;cpt++) { 
 3659: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3660: 	
 3661:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3662: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3663: 	  nhstepm = nhstepm/hstepm; 
 3664: 	  
 3665: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3666: 	  oldm=oldms;savm=savms;
 3667: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3668: 	
 3669: 	  for (h=0; h<=nhstepm; h++){
 3670: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3671: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3672: 	    } 
 3673: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3674: 	      kk1=0.;kk2=0;
 3675: 	      for(i=1; i<=nlstate;i++) {	      
 3676: 		if (mobilav==1) 
 3677: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3678: 		else {
 3679: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3680: 		}
 3681: 	      }
 3682: 	      if (h==(int)(calagedatem+12*cpt)){
 3683: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3684: 		  /*fprintf(ficrespop," %.3f", kk1);
 3685: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3686: 	      }
 3687: 	    }
 3688: 	    for(i=1; i<=nlstate;i++){
 3689: 	      kk1=0.;
 3690: 		for(j=1; j<=nlstate;j++){
 3691: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3692: 		}
 3693: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3694: 	    }
 3695: 
 3696: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3697: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3698: 	  }
 3699: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3700: 	}
 3701:       }
 3702:  
 3703:   /******/
 3704: 
 3705:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3706: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3707: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3708: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3709: 	  nhstepm = nhstepm/hstepm; 
 3710: 	  
 3711: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3712: 	  oldm=oldms;savm=savms;
 3713: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3714: 	  for (h=0; h<=nhstepm; h++){
 3715: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3716: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3717: 	    } 
 3718: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3719: 	      kk1=0.;kk2=0;
 3720: 	      for(i=1; i<=nlstate;i++) {	      
 3721: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3722: 	      }
 3723: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3724: 	    }
 3725: 	  }
 3726: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3727: 	}
 3728:       }
 3729:    } 
 3730:   }
 3731:  
 3732:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3733: 
 3734:   if (popforecast==1) {
 3735:     free_ivector(popage,0,AGESUP);
 3736:     free_vector(popeffectif,0,AGESUP);
 3737:     free_vector(popcount,0,AGESUP);
 3738:   }
 3739:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3740:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3741:   fclose(ficrespop);
 3742: } /* End of popforecast */
 3743: 
 3744: int fileappend(FILE *fichier, char *optionfich)
 3745: {
 3746:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3747:     printf("Problem with file: %s\n", optionfich);
 3748:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3749:     return (0);
 3750:   }
 3751:   fflush(fichier);
 3752:   return (1);
 3753: }
 3754: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3755: {
 3756: 
 3757:   char ca[32], cb[32], cc[32];
 3758:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3759:   int numlinepar;
 3760: 
 3761:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3762:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3763:   for(i=1; i <=nlstate; i++){
 3764:     jj=0;
 3765:     for(j=1; j <=nlstate+ndeath; j++){
 3766:       if(j==i) continue;
 3767:       jj++;
 3768:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3769:       printf("%1d%1d",i,j);
 3770:       fprintf(ficparo,"%1d%1d",i,j);
 3771:       for(k=1; k<=ncovmodel;k++){
 3772: 	/* 	  printf(" %lf",param[i][j][k]); */
 3773: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3774: 	printf(" 0.");
 3775: 	fprintf(ficparo," 0.");
 3776:       }
 3777:       printf("\n");
 3778:       fprintf(ficparo,"\n");
 3779:     }
 3780:   }
 3781:   printf("# Scales (for hessian or gradient estimation)\n");
 3782:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3783:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3784:   for(i=1; i <=nlstate; i++){
 3785:     jj=0;
 3786:     for(j=1; j <=nlstate+ndeath; j++){
 3787:       if(j==i) continue;
 3788:       jj++;
 3789:       fprintf(ficparo,"%1d%1d",i,j);
 3790:       printf("%1d%1d",i,j);
 3791:       fflush(stdout);
 3792:       for(k=1; k<=ncovmodel;k++){
 3793: 	/* 	printf(" %le",delti3[i][j][k]); */
 3794: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3795: 	printf(" 0.");
 3796: 	fprintf(ficparo," 0.");
 3797:       }
 3798:       numlinepar++;
 3799:       printf("\n");
 3800:       fprintf(ficparo,"\n");
 3801:     }
 3802:   }
 3803:   printf("# Covariance matrix\n");
 3804: /* # 121 Var(a12)\n\ */
 3805: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3806: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3807: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3808: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3809: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3810: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3811: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3812:   fflush(stdout);
 3813:   fprintf(ficparo,"# Covariance matrix\n");
 3814:   /* # 121 Var(a12)\n\ */
 3815:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3816:   /* #   ...\n\ */
 3817:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3818:   
 3819:   for(itimes=1;itimes<=2;itimes++){
 3820:     jj=0;
 3821:     for(i=1; i <=nlstate; i++){
 3822:       for(j=1; j <=nlstate+ndeath; j++){
 3823: 	if(j==i) continue;
 3824: 	for(k=1; k<=ncovmodel;k++){
 3825: 	  jj++;
 3826: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3827: 	  if(itimes==1){
 3828: 	    printf("#%1d%1d%d",i,j,k);
 3829: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3830: 	  }else{
 3831: 	    printf("%1d%1d%d",i,j,k);
 3832: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3833: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3834: 	  }
 3835: 	  ll=0;
 3836: 	  for(li=1;li <=nlstate; li++){
 3837: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3838: 	      if(lj==li) continue;
 3839: 	      for(lk=1;lk<=ncovmodel;lk++){
 3840: 		ll++;
 3841: 		if(ll<=jj){
 3842: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3843: 		  if(ll<jj){
 3844: 		    if(itimes==1){
 3845: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3846: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3847: 		    }else{
 3848: 		      printf(" 0.");
 3849: 		      fprintf(ficparo," 0.");
 3850: 		    }
 3851: 		  }else{
 3852: 		    if(itimes==1){
 3853: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 3854: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 3855: 		    }else{
 3856: 		      printf(" 0.");
 3857: 		      fprintf(ficparo," 0.");
 3858: 		    }
 3859: 		  }
 3860: 		}
 3861: 	      } /* end lk */
 3862: 	    } /* end lj */
 3863: 	  } /* end li */
 3864: 	  printf("\n");
 3865: 	  fprintf(ficparo,"\n");
 3866: 	  numlinepar++;
 3867: 	} /* end k*/
 3868:       } /*end j */
 3869:     } /* end i */
 3870:   }
 3871: 
 3872: } /* end of prwizard */
 3873: 
 3874: 
 3875: /***********************************************/
 3876: /**************** Main Program *****************/
 3877: /***********************************************/
 3878: 
 3879: int main(int argc, char *argv[])
 3880: {
 3881:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 3882:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 3883:   int jj, imk;
 3884:   int numlinepar=0; /* Current linenumber of parameter file */
 3885:   /*  FILE *fichtm; *//* Html File */
 3886:   /* FILE *ficgp;*/ /*Gnuplot File */
 3887:   double agedeb, agefin,hf;
 3888:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 3889: 
 3890:   double fret;
 3891:   double **xi,tmp,delta;
 3892: 
 3893:   double dum; /* Dummy variable */
 3894:   double ***p3mat;
 3895:   double ***mobaverage;
 3896:   int *indx;
 3897:   char line[MAXLINE], linepar[MAXLINE];
 3898:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 3899:   char pathr[MAXLINE]; 
 3900:   int firstobs=1, lastobs=10;
 3901:   int sdeb, sfin; /* Status at beginning and end */
 3902:   int c,  h , cpt,l;
 3903:   int ju,jl, mi;
 3904:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 3905:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 3906:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 3907:   int mobilav=0,popforecast=0;
 3908:   int hstepm, nhstepm;
 3909:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 3910:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 3911: 
 3912:   double bage, fage, age, agelim, agebase;
 3913:   double ftolpl=FTOL;
 3914:   double **prlim;
 3915:   double *severity;
 3916:   double ***param; /* Matrix of parameters */
 3917:   double  *p;
 3918:   double **matcov; /* Matrix of covariance */
 3919:   double ***delti3; /* Scale */
 3920:   double *delti; /* Scale */
 3921:   double ***eij, ***vareij;
 3922:   double **varpl; /* Variances of prevalence limits by age */
 3923:   double *epj, vepp;
 3924:   double kk1, kk2;
 3925:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 3926: 
 3927:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 3928: 
 3929: 
 3930:   char z[1]="c", occ;
 3931: 
 3932:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 3933:   char strstart[80], *strt, strtend[80];
 3934:   char *stratrunc;
 3935:   int lstra;
 3936: 
 3937:   long total_usecs;
 3938:  
 3939:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 3940:   (void) gettimeofday(&start_time,&tzp);
 3941:   curr_time=start_time;
 3942:   tm = *localtime(&start_time.tv_sec);
 3943:   tmg = *gmtime(&start_time.tv_sec);
 3944:   strcpy(strstart,asctime(&tm));
 3945: 
 3946: /*  printf("Localtime (at start)=%s",strstart); */
 3947: /*  tp.tv_sec = tp.tv_sec +86400; */
 3948: /*  tm = *localtime(&start_time.tv_sec); */
 3949: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 3950: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 3951: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 3952: /*   tp.tv_sec = mktime(&tmg); */
 3953: /*   strt=asctime(&tmg); */
 3954: /*   printf("Time(after) =%s",strstart);  */
 3955: /*  (void) time (&time_value);
 3956: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 3957: *  tm = *localtime(&time_value);
 3958: *  strstart=asctime(&tm);
 3959: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 3960: */
 3961: 
 3962:   nberr=0; /* Number of errors and warnings */
 3963:   nbwarn=0;
 3964:   getcwd(pathcd, size);
 3965: 
 3966:   printf("\n%s\n%s",version,fullversion);
 3967:   if(argc <=1){
 3968:     printf("\nEnter the parameter file name: ");
 3969:     scanf("%s",pathtot);
 3970:   }
 3971:   else{
 3972:     strcpy(pathtot,argv[1]);
 3973:   }
 3974:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 3975:   /*cygwin_split_path(pathtot,path,optionfile);
 3976:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 3977:   /* cutv(path,optionfile,pathtot,'\\');*/
 3978: 
 3979:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 3980:   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3981:   chdir(path);
 3982:   strcpy(command,"mkdir ");
 3983:   strcat(command,optionfilefiname);
 3984:   if((outcmd=system(command)) != 0){
 3985:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 3986:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 3987:     /* fclose(ficlog); */
 3988: /*     exit(1); */
 3989:   }
 3990: /*   if((imk=mkdir(optionfilefiname))<0){ */
 3991: /*     perror("mkdir"); */
 3992: /*   } */
 3993: 
 3994:   /*-------- arguments in the command line --------*/
 3995: 
 3996:   /* Log file */
 3997:   strcat(filelog, optionfilefiname);
 3998:   strcat(filelog,".log");    /* */
 3999:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 4000:     printf("Problem with logfile %s\n",filelog);
 4001:     goto end;
 4002:   }
 4003:   fprintf(ficlog,"Log filename:%s\n",filelog);
 4004:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 4005:   fprintf(ficlog,"\nEnter the parameter file name: ");
 4006:   fprintf(ficlog,"pathtot=%s\n\
 4007:  path=%s \n\
 4008:  optionfile=%s\n\
 4009:  optionfilext=%s\n\
 4010:  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 4011: 
 4012:   printf("Localtime (at start):%s",strstart);
 4013:   fprintf(ficlog,"Localtime (at start): %s",strstart);
 4014:   fflush(ficlog);
 4015: /*   (void) gettimeofday(&curr_time,&tzp); */
 4016: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 4017: 
 4018:   /* */
 4019:   strcpy(fileres,"r");
 4020:   strcat(fileres, optionfilefiname);
 4021:   strcat(fileres,".txt");    /* Other files have txt extension */
 4022: 
 4023:   /*---------arguments file --------*/
 4024: 
 4025:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4026:     printf("Problem with optionfile %s\n",optionfile);
 4027:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4028:     fflush(ficlog);
 4029:     goto end;
 4030:   }
 4031: 
 4032: 
 4033: 
 4034:   strcpy(filereso,"o");
 4035:   strcat(filereso,fileres);
 4036:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4037:     printf("Problem with Output resultfile: %s\n", filereso);
 4038:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4039:     fflush(ficlog);
 4040:     goto end;
 4041:   }
 4042: 
 4043:   /* Reads comments: lines beginning with '#' */
 4044:   numlinepar=0;
 4045:   while((c=getc(ficpar))=='#' && c!= EOF){
 4046:     ungetc(c,ficpar);
 4047:     fgets(line, MAXLINE, ficpar);
 4048:     numlinepar++;
 4049:     puts(line);
 4050:     fputs(line,ficparo);
 4051:     fputs(line,ficlog);
 4052:   }
 4053:   ungetc(c,ficpar);
 4054: 
 4055:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4056:   numlinepar++;
 4057:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4058:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4059:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4060:   fflush(ficlog);
 4061:   while((c=getc(ficpar))=='#' && c!= EOF){
 4062:     ungetc(c,ficpar);
 4063:     fgets(line, MAXLINE, ficpar);
 4064:     numlinepar++;
 4065:     puts(line);
 4066:     fputs(line,ficparo);
 4067:     fputs(line,ficlog);
 4068:   }
 4069:   ungetc(c,ficpar);
 4070: 
 4071:    
 4072:   covar=matrix(0,NCOVMAX,1,n); 
 4073:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4074:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4075: 
 4076:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4077:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4078:  
 4079:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4080:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4081:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4082:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4083:     fclose (ficparo);
 4084:     fclose (ficlog);
 4085:     exit(0);
 4086:   }
 4087:   /* Read guess parameters */
 4088:   /* Reads comments: lines beginning with '#' */
 4089:   while((c=getc(ficpar))=='#' && c!= EOF){
 4090:     ungetc(c,ficpar);
 4091:     fgets(line, MAXLINE, ficpar);
 4092:     numlinepar++;
 4093:     puts(line);
 4094:     fputs(line,ficparo);
 4095:     fputs(line,ficlog);
 4096:   }
 4097:   ungetc(c,ficpar);
 4098: 
 4099:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4100:   for(i=1; i <=nlstate; i++){
 4101:     j=0;
 4102:     for(jj=1; jj <=nlstate+ndeath; jj++){
 4103:       if(jj==i) continue;
 4104:       j++;
 4105:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4106:       if ((i1 != i) && (j1 != j)){
 4107: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4108: 	exit(1);
 4109:       }
 4110:       fprintf(ficparo,"%1d%1d",i1,j1);
 4111:       if(mle==1)
 4112: 	printf("%1d%1d",i,j);
 4113:       fprintf(ficlog,"%1d%1d",i,j);
 4114:       for(k=1; k<=ncovmodel;k++){
 4115: 	fscanf(ficpar," %lf",&param[i][j][k]);
 4116: 	if(mle==1){
 4117: 	  printf(" %lf",param[i][j][k]);
 4118: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4119: 	}
 4120: 	else
 4121: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4122: 	fprintf(ficparo," %lf",param[i][j][k]);
 4123:       }
 4124:       fscanf(ficpar,"\n");
 4125:       numlinepar++;
 4126:       if(mle==1)
 4127: 	printf("\n");
 4128:       fprintf(ficlog,"\n");
 4129:       fprintf(ficparo,"\n");
 4130:     }
 4131:   }  
 4132:   fflush(ficlog);
 4133: 
 4134:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4135: 
 4136:   p=param[1][1];
 4137:   
 4138:   /* Reads comments: lines beginning with '#' */
 4139:   while((c=getc(ficpar))=='#' && c!= EOF){
 4140:     ungetc(c,ficpar);
 4141:     fgets(line, MAXLINE, ficpar);
 4142:     numlinepar++;
 4143:     puts(line);
 4144:     fputs(line,ficparo);
 4145:     fputs(line,ficlog);
 4146:   }
 4147:   ungetc(c,ficpar);
 4148: 
 4149:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4150:   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
 4151:   for(i=1; i <=nlstate; i++){
 4152:     for(j=1; j <=nlstate+ndeath-1; j++){
 4153:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4154:       if ((i1-i)*(j1-j)!=0){
 4155: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4156: 	exit(1);
 4157:       }
 4158:       printf("%1d%1d",i,j);
 4159:       fprintf(ficparo,"%1d%1d",i1,j1);
 4160:       fprintf(ficlog,"%1d%1d",i1,j1);
 4161:       for(k=1; k<=ncovmodel;k++){
 4162: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 4163: 	printf(" %le",delti3[i][j][k]);
 4164: 	fprintf(ficparo," %le",delti3[i][j][k]);
 4165: 	fprintf(ficlog," %le",delti3[i][j][k]);
 4166:       }
 4167:       fscanf(ficpar,"\n");
 4168:       numlinepar++;
 4169:       printf("\n");
 4170:       fprintf(ficparo,"\n");
 4171:       fprintf(ficlog,"\n");
 4172:     }
 4173:   }
 4174:   fflush(ficlog);
 4175: 
 4176:   delti=delti3[1][1];
 4177: 
 4178: 
 4179:   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4180:   
 4181:   /* Reads comments: lines beginning with '#' */
 4182:   while((c=getc(ficpar))=='#' && c!= EOF){
 4183:     ungetc(c,ficpar);
 4184:     fgets(line, MAXLINE, ficpar);
 4185:     numlinepar++;
 4186:     puts(line);
 4187:     fputs(line,ficparo);
 4188:     fputs(line,ficlog);
 4189:   }
 4190:   ungetc(c,ficpar);
 4191:   
 4192:   matcov=matrix(1,npar,1,npar);
 4193:   for(i=1; i <=npar; i++){
 4194:     fscanf(ficpar,"%s",&str);
 4195:     if(mle==1)
 4196:       printf("%s",str);
 4197:     fprintf(ficlog,"%s",str);
 4198:     fprintf(ficparo,"%s",str);
 4199:     for(j=1; j <=i; j++){
 4200:       fscanf(ficpar," %le",&matcov[i][j]);
 4201:       if(mle==1){
 4202: 	printf(" %.5le",matcov[i][j]);
 4203:       }
 4204:       fprintf(ficlog," %.5le",matcov[i][j]);
 4205:       fprintf(ficparo," %.5le",matcov[i][j]);
 4206:     }
 4207:     fscanf(ficpar,"\n");
 4208:     numlinepar++;
 4209:     if(mle==1)
 4210:       printf("\n");
 4211:     fprintf(ficlog,"\n");
 4212:     fprintf(ficparo,"\n");
 4213:   }
 4214:   for(i=1; i <=npar; i++)
 4215:     for(j=i+1;j<=npar;j++)
 4216:       matcov[i][j]=matcov[j][i];
 4217:    
 4218:   if(mle==1)
 4219:     printf("\n");
 4220:   fprintf(ficlog,"\n");
 4221: 
 4222:   fflush(ficlog);
 4223: 
 4224:   /*-------- Rewriting paramater file ----------*/
 4225:   strcpy(rfileres,"r");    /* "Rparameterfile */
 4226:   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4227:   strcat(rfileres,".");    /* */
 4228:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4229:   if((ficres =fopen(rfileres,"w"))==NULL) {
 4230:     printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4231:     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4232:   }
 4233:   fprintf(ficres,"#%s\n",version);
 4234:     
 4235:   /*-------- data file ----------*/
 4236:   if((fic=fopen(datafile,"r"))==NULL)    {
 4237:     printf("Problem with datafile: %s\n", datafile);goto end;
 4238:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4239:   }
 4240: 
 4241:   n= lastobs;
 4242:   severity = vector(1,maxwav);
 4243:   outcome=imatrix(1,maxwav+1,1,n);
 4244:   num=lvector(1,n);
 4245:   moisnais=vector(1,n);
 4246:   annais=vector(1,n);
 4247:   moisdc=vector(1,n);
 4248:   andc=vector(1,n);
 4249:   agedc=vector(1,n);
 4250:   cod=ivector(1,n);
 4251:   weight=vector(1,n);
 4252:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4253:   mint=matrix(1,maxwav,1,n);
 4254:   anint=matrix(1,maxwav,1,n);
 4255:   s=imatrix(1,maxwav+1,1,n);
 4256:   tab=ivector(1,NCOVMAX);
 4257:   ncodemax=ivector(1,8);
 4258: 
 4259:   i=1;
 4260:   while (fgets(line, MAXLINE, fic) != NULL)    {
 4261:     if ((i >= firstobs) && (i <=lastobs)) {
 4262: 	
 4263:       for (j=maxwav;j>=1;j--){
 4264: 	cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 4265: 	strcpy(line,stra);
 4266: 	cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4267: 	cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4268:       }
 4269: 	
 4270:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4271:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4272: 
 4273:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4274:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4275: 
 4276:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 4277:       for (j=ncovcol;j>=1;j--){
 4278: 	cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4279:       } 
 4280:       lstra=strlen(stra);
 4281:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4282: 	stratrunc = &(stra[lstra-9]);
 4283: 	num[i]=atol(stratrunc);
 4284:       }
 4285:       else
 4286: 	num[i]=atol(stra);
 4287: 	
 4288:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4289: 	printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4290: 
 4291:       i=i+1;
 4292:     }
 4293:   }
 4294:   /* printf("ii=%d", ij);
 4295:      scanf("%d",i);*/
 4296:   imx=i-1; /* Number of individuals */
 4297: 
 4298:   /* for (i=1; i<=imx; i++){
 4299:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4300:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4301:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4302:     }*/
 4303:    /*  for (i=1; i<=imx; i++){
 4304:      if (s[4][i]==9)  s[4][i]=-1; 
 4305:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4306:   
 4307:  for (i=1; i<=imx; i++)
 4308:  
 4309:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4310:      else weight[i]=1;*/
 4311: 
 4312:   /* Calculation of the number of parameter from char model*/
 4313:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4314:   Tprod=ivector(1,15); 
 4315:   Tvaraff=ivector(1,15); 
 4316:   Tvard=imatrix(1,15,1,2);
 4317:   Tage=ivector(1,15);      
 4318:    
 4319:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4320:     j=0, j1=0, k1=1, k2=1;
 4321:     j=nbocc(model,'+'); /* j=Number of '+' */
 4322:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4323:     cptcovn=j+1; 
 4324:     cptcovprod=j1; /*Number of products */
 4325:     
 4326:     strcpy(modelsav,model); 
 4327:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4328:       printf("Error. Non available option model=%s ",model);
 4329:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4330:       goto end;
 4331:     }
 4332:     
 4333:     /* This loop fills the array Tvar from the string 'model'.*/
 4334: 
 4335:     for(i=(j+1); i>=1;i--){
 4336:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4337:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4338:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4339:       /*scanf("%d",i);*/
 4340:       if (strchr(strb,'*')) {  /* Model includes a product */
 4341: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4342: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4343: 	  cptcovprod--;
 4344: 	  cutv(strb,stre,strd,'V');
 4345: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4346: 	  cptcovage++;
 4347: 	    Tage[cptcovage]=i;
 4348: 	    /*printf("stre=%s ", stre);*/
 4349: 	}
 4350: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4351: 	  cptcovprod--;
 4352: 	  cutv(strb,stre,strc,'V');
 4353: 	  Tvar[i]=atoi(stre);
 4354: 	  cptcovage++;
 4355: 	  Tage[cptcovage]=i;
 4356: 	}
 4357: 	else {  /* Age is not in the model */
 4358: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4359: 	  Tvar[i]=ncovcol+k1;
 4360: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4361: 	  Tprod[k1]=i;
 4362: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4363: 	  Tvard[k1][2]=atoi(stre); /* n */
 4364: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4365: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4366: 	  for (k=1; k<=lastobs;k++) 
 4367: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4368: 	  k1++;
 4369: 	  k2=k2+2;
 4370: 	}
 4371:       }
 4372:       else { /* no more sum */
 4373: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4374:        /*  scanf("%d",i);*/
 4375:       cutv(strd,strc,strb,'V');
 4376:       Tvar[i]=atoi(strc);
 4377:       }
 4378:       strcpy(modelsav,stra);  
 4379:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4380: 	scanf("%d",i);*/
 4381:     } /* end of loop + */
 4382:   } /* end model */
 4383:   
 4384:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4385:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4386: 
 4387:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4388:   printf("cptcovprod=%d ", cptcovprod);
 4389:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4390: 
 4391:   scanf("%d ",i);
 4392:   fclose(fic);*/
 4393: 
 4394:     /*  if(mle==1){*/
 4395:   if (weightopt != 1) { /* Maximisation without weights*/
 4396:     for(i=1;i<=n;i++) weight[i]=1.0;
 4397:   }
 4398:     /*-calculation of age at interview from date of interview and age at death -*/
 4399:   agev=matrix(1,maxwav,1,imx);
 4400: 
 4401:   for (i=1; i<=imx; i++) {
 4402:     for(m=2; (m<= maxwav); m++) {
 4403:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4404: 	anint[m][i]=9999;
 4405: 	s[m][i]=-1;
 4406:       }
 4407:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4408: 	nberr++;
 4409: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4410: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4411: 	s[m][i]=-1;
 4412:       }
 4413:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4414: 	nberr++;
 4415: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4416: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4417: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4418:       }
 4419:     }
 4420:   }
 4421: 
 4422:   for (i=1; i<=imx; i++)  {
 4423:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4424:     for(m=firstpass; (m<= lastpass); m++){
 4425:       if(s[m][i] >0){
 4426: 	if (s[m][i] >= nlstate+1) {
 4427: 	  if(agedc[i]>0)
 4428: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4429: 	      agev[m][i]=agedc[i];
 4430: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4431: 	    else {
 4432: 	      if ((int)andc[i]!=9999){
 4433: 		nbwarn++;
 4434: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4435: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4436: 		agev[m][i]=-1;
 4437: 	      }
 4438: 	    }
 4439: 	}
 4440: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4441: 				 years but with the precision of a
 4442: 				 month */
 4443: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4444: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4445: 	    agev[m][i]=1;
 4446: 	  else if(agev[m][i] <agemin){ 
 4447: 	    agemin=agev[m][i];
 4448: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4449: 	  }
 4450: 	  else if(agev[m][i] >agemax){
 4451: 	    agemax=agev[m][i];
 4452: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4453: 	  }
 4454: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4455: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4456: 	}
 4457: 	else { /* =9 */
 4458: 	  agev[m][i]=1;
 4459: 	  s[m][i]=-1;
 4460: 	}
 4461:       }
 4462:       else /*= 0 Unknown */
 4463: 	agev[m][i]=1;
 4464:     }
 4465:     
 4466:   }
 4467:   for (i=1; i<=imx; i++)  {
 4468:     for(m=firstpass; (m<=lastpass); m++){
 4469:       if (s[m][i] > (nlstate+ndeath)) {
 4470: 	nberr++;
 4471: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4472: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4473: 	goto end;
 4474:       }
 4475:     }
 4476:   }
 4477: 
 4478:   /*for (i=1; i<=imx; i++){
 4479:   for (m=firstpass; (m<lastpass); m++){
 4480:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4481: }
 4482: 
 4483: }*/
 4484: 
 4485:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4486:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4487: 
 4488:   free_vector(severity,1,maxwav);
 4489:   free_imatrix(outcome,1,maxwav+1,1,n);
 4490:   free_vector(moisnais,1,n);
 4491:   free_vector(annais,1,n);
 4492:   /* free_matrix(mint,1,maxwav,1,n);
 4493:      free_matrix(anint,1,maxwav,1,n);*/
 4494:   free_vector(moisdc,1,n);
 4495:   free_vector(andc,1,n);
 4496: 
 4497:    
 4498:   wav=ivector(1,imx);
 4499:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4500:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4501:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4502:    
 4503:   /* Concatenates waves */
 4504:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4505: 
 4506:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4507: 
 4508:   Tcode=ivector(1,100);
 4509:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4510:   ncodemax[1]=1;
 4511:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4512:       
 4513:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4514: 				 the estimations*/
 4515:   h=0;
 4516:   m=pow(2,cptcoveff);
 4517:  
 4518:   for(k=1;k<=cptcoveff; k++){
 4519:     for(i=1; i <=(m/pow(2,k));i++){
 4520:       for(j=1; j <= ncodemax[k]; j++){
 4521: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4522: 	  h++;
 4523: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4524: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4525: 	} 
 4526:       }
 4527:     }
 4528:   } 
 4529:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4530:      codtab[1][2]=1;codtab[2][2]=2; */
 4531:   /* for(i=1; i <=m ;i++){ 
 4532:      for(k=1; k <=cptcovn; k++){
 4533:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4534:      }
 4535:      printf("\n");
 4536:      }
 4537:      scanf("%d",i);*/
 4538:     
 4539:   /*------------ gnuplot -------------*/
 4540:   strcpy(optionfilegnuplot,optionfilefiname);
 4541:   strcat(optionfilegnuplot,".gp");
 4542:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4543:     printf("Problem with file %s",optionfilegnuplot);
 4544:   }
 4545:   else{
 4546:     fprintf(ficgp,"\n# %s\n", version); 
 4547:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4548:     fprintf(ficgp,"set missing 'NaNq'\n");
 4549:   }
 4550:   /*  fclose(ficgp);*/
 4551:   /*--------- index.htm --------*/
 4552: 
 4553:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4554:   strcat(optionfilehtm,".htm");
 4555:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4556:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4557:   }
 4558: 
 4559:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4560:   strcat(optionfilehtmcov,"-cov.htm");
 4561:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4562:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4563:   }
 4564:   else{
 4565:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4566: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4567: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4568: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4569:   }
 4570: 
 4571:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4572: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4573: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4574: \n\
 4575: <hr  size=\"2\" color=\"#EC5E5E\">\
 4576:  <ul><li><h4>Parameter files</h4>\n\
 4577:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4578:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4579:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4580:  - Date and time at start: %s</ul>\n",\
 4581: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4582: 	  fileres,fileres,\
 4583: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4584:   fflush(fichtm);
 4585: 
 4586:   strcpy(pathr,path);
 4587:   strcat(pathr,optionfilefiname);
 4588:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4589:   strcpy(lfileres,fileres);
 4590:   strcat(lfileres,"/");
 4591:   strcat(lfileres,optionfilefiname);
 4592:   
 4593:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4594:      and prints on file fileres'p'. */
 4595:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
 4596: 
 4597:   fprintf(fichtm,"\n");
 4598:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4599: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4600: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4601: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4602:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4603:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4604:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4605:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4606:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4607:     
 4608:    
 4609:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4610:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4611:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4612: 
 4613:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4614:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4615:   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4616:   for (k=1; k<=npar;k++)
 4617:     printf(" %d %8.5f",k,p[k]);
 4618:   printf("\n");
 4619:   globpr=1; /* to print the contributions */
 4620:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4621:   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4622:   for (k=1; k<=npar;k++)
 4623:     printf(" %d %8.5f",k,p[k]);
 4624:   printf("\n");
 4625:   if(mle>=1){ /* Could be 1 or 2 */
 4626:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 4627:   }
 4628:     
 4629:   /*--------- results files --------------*/
 4630:   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 4631:   
 4632: 
 4633:   jk=1;
 4634:   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4635:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4636:   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4637:   for(i=1,jk=1; i <=nlstate; i++){
 4638:     for(k=1; k <=(nlstate+ndeath); k++){
 4639:       if (k != i) 
 4640: 	{
 4641: 	  printf("%d%d ",i,k);
 4642: 	  fprintf(ficlog,"%d%d ",i,k);
 4643: 	  fprintf(ficres,"%1d%1d ",i,k);
 4644: 	  for(j=1; j <=ncovmodel; j++){
 4645: 	    printf("%f ",p[jk]);
 4646: 	    fprintf(ficlog,"%f ",p[jk]);
 4647: 	    fprintf(ficres,"%f ",p[jk]);
 4648: 	    jk++; 
 4649: 	  }
 4650: 	  printf("\n");
 4651: 	  fprintf(ficlog,"\n");
 4652: 	  fprintf(ficres,"\n");
 4653: 	}
 4654:     }
 4655:   }
 4656:   if(mle!=0){
 4657:     /* Computing hessian and covariance matrix */
 4658:     ftolhess=ftol; /* Usually correct */
 4659:     hesscov(matcov, p, npar, delti, ftolhess, func);
 4660:   }
 4661:   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 4662:   printf("# Scales (for hessian or gradient estimation)\n");
 4663:   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 4664:   for(i=1,jk=1; i <=nlstate; i++){
 4665:     for(j=1; j <=nlstate+ndeath; j++){
 4666:       if (j!=i) {
 4667: 	fprintf(ficres,"%1d%1d",i,j);
 4668: 	printf("%1d%1d",i,j);
 4669: 	fprintf(ficlog,"%1d%1d",i,j);
 4670: 	for(k=1; k<=ncovmodel;k++){
 4671: 	  printf(" %.5e",delti[jk]);
 4672: 	  fprintf(ficlog," %.5e",delti[jk]);
 4673: 	  fprintf(ficres," %.5e",delti[jk]);
 4674: 	  jk++;
 4675: 	}
 4676: 	printf("\n");
 4677: 	fprintf(ficlog,"\n");
 4678: 	fprintf(ficres,"\n");
 4679:       }
 4680:     }
 4681:   }
 4682:    
 4683:   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4684:   if(mle==1)
 4685:     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4686:   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4687:   for(i=1,k=1;i<=npar;i++){
 4688:     /*  if (k>nlstate) k=1;
 4689: 	i1=(i-1)/(ncovmodel*nlstate)+1; 
 4690: 	fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 4691: 	printf("%s%d%d",alph[k],i1,tab[i]);
 4692:     */
 4693:     fprintf(ficres,"%3d",i);
 4694:     if(mle==1)
 4695:       printf("%3d",i);
 4696:     fprintf(ficlog,"%3d",i);
 4697:     for(j=1; j<=i;j++){
 4698:       fprintf(ficres," %.5e",matcov[i][j]);
 4699:       if(mle==1)
 4700: 	printf(" %.5e",matcov[i][j]);
 4701:       fprintf(ficlog," %.5e",matcov[i][j]);
 4702:     }
 4703:     fprintf(ficres,"\n");
 4704:     if(mle==1)
 4705:       printf("\n");
 4706:     fprintf(ficlog,"\n");
 4707:     k++;
 4708:   }
 4709:    
 4710:   while((c=getc(ficpar))=='#' && c!= EOF){
 4711:     ungetc(c,ficpar);
 4712:     fgets(line, MAXLINE, ficpar);
 4713:     puts(line);
 4714:     fputs(line,ficparo);
 4715:   }
 4716:   ungetc(c,ficpar);
 4717: 
 4718:   estepm=0;
 4719:   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 4720:   if (estepm==0 || estepm < stepm) estepm=stepm;
 4721:   if (fage <= 2) {
 4722:     bage = ageminpar;
 4723:     fage = agemaxpar;
 4724:   }
 4725:    
 4726:   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 4727:   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4728:   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4729:    
 4730:   while((c=getc(ficpar))=='#' && c!= EOF){
 4731:     ungetc(c,ficpar);
 4732:     fgets(line, MAXLINE, ficpar);
 4733:     puts(line);
 4734:     fputs(line,ficparo);
 4735:   }
 4736:   ungetc(c,ficpar);
 4737:   
 4738:   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 4739:   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4740:   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4741:   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4742:   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4743:    
 4744:   while((c=getc(ficpar))=='#' && c!= EOF){
 4745:     ungetc(c,ficpar);
 4746:     fgets(line, MAXLINE, ficpar);
 4747:     puts(line);
 4748:     fputs(line,ficparo);
 4749:   }
 4750:   ungetc(c,ficpar);
 4751:  
 4752: 
 4753:   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 4754:   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 4755: 
 4756:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 4757:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 4758:   fprintf(ficres,"pop_based=%d\n",popbased);   
 4759:   
 4760:   while((c=getc(ficpar))=='#' && c!= EOF){
 4761:     ungetc(c,ficpar);
 4762:     fgets(line, MAXLINE, ficpar);
 4763:     puts(line);
 4764:     fputs(line,ficparo);
 4765:   }
 4766:   ungetc(c,ficpar);
 4767: 
 4768:   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 4769:   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4770:   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4771:   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4772:   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4773:   /* day and month of proj2 are not used but only year anproj2.*/
 4774: 
 4775:   while((c=getc(ficpar))=='#' && c!= EOF){
 4776:     ungetc(c,ficpar);
 4777:     fgets(line, MAXLINE, ficpar);
 4778:     puts(line);
 4779:     fputs(line,ficparo);
 4780:   }
 4781:   ungetc(c,ficpar);
 4782: 
 4783:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 4784:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4785:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4786: 
 4787:   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 4788:   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 4789: 
 4790:   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 4791:   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 4792: 
 4793:   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 4794: 	       model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 4795: 	       jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 4796:  
 4797:   /*------------ free_vector  -------------*/
 4798:   /*  chdir(path); */
 4799:  
 4800:   free_ivector(wav,1,imx);
 4801:   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 4802:   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 4803:   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 4804:   free_lvector(num,1,n);
 4805:   free_vector(agedc,1,n);
 4806:   /*free_matrix(covar,0,NCOVMAX,1,n);*/
 4807:   /*free_matrix(covar,1,NCOVMAX,1,n);*/
 4808:   fclose(ficparo);
 4809:   fclose(ficres);
 4810: 
 4811: 
 4812:   /*--------------- Prevalence limit  (stable prevalence) --------------*/
 4813:   
 4814:   strcpy(filerespl,"pl");
 4815:   strcat(filerespl,fileres);
 4816:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 4817:     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4818:     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4819:   }
 4820:   printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 4821:   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 4822:   fprintf(ficrespl,"#Stable prevalence \n");
 4823:   fprintf(ficrespl,"#Age ");
 4824:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 4825:   fprintf(ficrespl,"\n");
 4826:   
 4827:   prlim=matrix(1,nlstate,1,nlstate);
 4828: 
 4829:   agebase=ageminpar;
 4830:   agelim=agemaxpar;
 4831:   ftolpl=1.e-10;
 4832:   i1=cptcoveff;
 4833:   if (cptcovn < 1){i1=1;}
 4834: 
 4835:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4836:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4837:       k=k+1;
 4838:       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 4839:       fprintf(ficrespl,"\n#******");
 4840:       printf("\n#******");
 4841:       fprintf(ficlog,"\n#******");
 4842:       for(j=1;j<=cptcoveff;j++) {
 4843: 	fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4844: 	printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4845: 	fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4846:       }
 4847:       fprintf(ficrespl,"******\n");
 4848:       printf("******\n");
 4849:       fprintf(ficlog,"******\n");
 4850: 	
 4851:       for (age=agebase; age<=agelim; age++){
 4852: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4853: 	fprintf(ficrespl,"%.0f ",age );
 4854:         for(j=1;j<=cptcoveff;j++)
 4855:  	  fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4856: 	for(i=1; i<=nlstate;i++)
 4857: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 4858: 	fprintf(ficrespl,"\n");
 4859:       }
 4860:     }
 4861:   }
 4862:   fclose(ficrespl);
 4863: 
 4864:   /*------------- h Pij x at various ages ------------*/
 4865:   
 4866:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 4867:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 4868:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 4869:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 4870:   }
 4871:   printf("Computing pij: result on file '%s' \n", filerespij);
 4872:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 4873:   
 4874:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4875:   /*if (stepm<=24) stepsize=2;*/
 4876: 
 4877:   agelim=AGESUP;
 4878:   hstepm=stepsize*YEARM; /* Every year of age */
 4879:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 4880: 
 4881:   /* hstepm=1;   aff par mois*/
 4882: 
 4883:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 4884:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4885:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4886:       k=k+1;
 4887:       fprintf(ficrespij,"\n#****** ");
 4888:       for(j=1;j<=cptcoveff;j++) 
 4889: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4890:       fprintf(ficrespij,"******\n");
 4891: 	
 4892:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 4893: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4894: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4895: 
 4896: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 4897: 
 4898: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4899: 	oldm=oldms;savm=savms;
 4900: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4901: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 4902: 	for(i=1; i<=nlstate;i++)
 4903: 	  for(j=1; j<=nlstate+ndeath;j++)
 4904: 	    fprintf(ficrespij," %1d-%1d",i,j);
 4905: 	fprintf(ficrespij,"\n");
 4906: 	for (h=0; h<=nhstepm; h++){
 4907: 	  fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 4908: 	  for(i=1; i<=nlstate;i++)
 4909: 	    for(j=1; j<=nlstate+ndeath;j++)
 4910: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 4911: 	  fprintf(ficrespij,"\n");
 4912: 	}
 4913: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4914: 	fprintf(ficrespij,"\n");
 4915:       }
 4916:     }
 4917:   }
 4918: 
 4919:   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
 4920: 
 4921:   fclose(ficrespij);
 4922: 
 4923:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4924: 
 4925:   /*---------- Forecasting ------------------*/
 4926:   /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 4927:   if(prevfcast==1){
 4928:     /*    if(stepm ==1){*/
 4929:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 4930:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 4931: /*      }  */
 4932: /*      else{ */
 4933: /*        erreur=108; */
 4934: /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4935: /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4936: /*      } */
 4937:   }
 4938:   
 4939: 
 4940:   /*---------- Health expectancies and variances ------------*/
 4941: 
 4942:   strcpy(filerest,"t");
 4943:   strcat(filerest,fileres);
 4944:   if((ficrest=fopen(filerest,"w"))==NULL) {
 4945:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 4946:     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 4947:   }
 4948:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 4949:   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 4950: 
 4951: 
 4952:   strcpy(filerese,"e");
 4953:   strcat(filerese,fileres);
 4954:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 4955:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4956:     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4957:   }
 4958:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 4959:   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 4960: 
 4961:   strcpy(fileresv,"v");
 4962:   strcat(fileresv,fileres);
 4963:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 4964:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 4965:     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 4966:   }
 4967:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4968:   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4969: 
 4970:   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 4971:   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4972:   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 4973: ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 4974:   */
 4975: 
 4976:   if (mobilav!=0) {
 4977:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4978:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 4979:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4980:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4981:     }
 4982:   }
 4983: 
 4984:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4985:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4986:       k=k+1; 
 4987:       fprintf(ficrest,"\n#****** ");
 4988:       for(j=1;j<=cptcoveff;j++) 
 4989: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4990:       fprintf(ficrest,"******\n");
 4991: 
 4992:       fprintf(ficreseij,"\n#****** ");
 4993:       for(j=1;j<=cptcoveff;j++) 
 4994: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4995:       fprintf(ficreseij,"******\n");
 4996: 
 4997:       fprintf(ficresvij,"\n#****** ");
 4998:       for(j=1;j<=cptcoveff;j++) 
 4999: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5000:       fprintf(ficresvij,"******\n");
 5001: 
 5002:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5003:       oldm=oldms;savm=savms;
 5004:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 5005:  
 5006:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 5007:       oldm=oldms;savm=savms;
 5008:       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 5009:       if(popbased==1){
 5010: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 5011:       }
 5012: 
 5013:  
 5014:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 5015:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 5016:       fprintf(ficrest,"\n");
 5017: 
 5018:       epj=vector(1,nlstate+1);
 5019:       for(age=bage; age <=fage ;age++){
 5020: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 5021: 	if (popbased==1) {
 5022: 	  if(mobilav ==0){
 5023: 	    for(i=1; i<=nlstate;i++)
 5024: 	      prlim[i][i]=probs[(int)age][i][k];
 5025: 	  }else{ /* mobilav */ 
 5026: 	    for(i=1; i<=nlstate;i++)
 5027: 	      prlim[i][i]=mobaverage[(int)age][i][k];
 5028: 	  }
 5029: 	}
 5030: 	
 5031: 	fprintf(ficrest," %4.0f",age);
 5032: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5033: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5034: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5035: 	    /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5036: 	  }
 5037: 	  epj[nlstate+1] +=epj[j];
 5038: 	}
 5039: 
 5040: 	for(i=1, vepp=0.;i <=nlstate;i++)
 5041: 	  for(j=1;j <=nlstate;j++)
 5042: 	    vepp += vareij[i][j][(int)age];
 5043: 	fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5044: 	for(j=1;j <=nlstate;j++){
 5045: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5046: 	}
 5047: 	fprintf(ficrest,"\n");
 5048:       }
 5049:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5050:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5051:       free_vector(epj,1,nlstate+1);
 5052:     }
 5053:   }
 5054:   free_vector(weight,1,n);
 5055:   free_imatrix(Tvard,1,15,1,2);
 5056:   free_imatrix(s,1,maxwav+1,1,n);
 5057:   free_matrix(anint,1,maxwav,1,n); 
 5058:   free_matrix(mint,1,maxwav,1,n);
 5059:   free_ivector(cod,1,n);
 5060:   free_ivector(tab,1,NCOVMAX);
 5061:   fclose(ficreseij);
 5062:   fclose(ficresvij);
 5063:   fclose(ficrest);
 5064:   fclose(ficpar);
 5065:   
 5066:   /*------- Variance of stable prevalence------*/   
 5067: 
 5068:   strcpy(fileresvpl,"vpl");
 5069:   strcat(fileresvpl,fileres);
 5070:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5071:     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5072:     exit(0);
 5073:   }
 5074:   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5075: 
 5076:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5077:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5078:       k=k+1;
 5079:       fprintf(ficresvpl,"\n#****** ");
 5080:       for(j=1;j<=cptcoveff;j++) 
 5081: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5082:       fprintf(ficresvpl,"******\n");
 5083:       
 5084:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5085:       oldm=oldms;savm=savms;
 5086:       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 5087:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5088:     }
 5089:   }
 5090: 
 5091:   fclose(ficresvpl);
 5092: 
 5093:   /*---------- End : free ----------------*/
 5094:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5095:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5096:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5097:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5098:   
 5099:   free_matrix(covar,0,NCOVMAX,1,n);
 5100:   free_matrix(matcov,1,npar,1,npar);
 5101:   /*free_vector(delti,1,npar);*/
 5102:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5103:   free_matrix(agev,1,maxwav,1,imx);
 5104:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5105:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5106:   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5107: 
 5108:   free_ivector(ncodemax,1,8);
 5109:   free_ivector(Tvar,1,15);
 5110:   free_ivector(Tprod,1,15);
 5111:   free_ivector(Tvaraff,1,15);
 5112:   free_ivector(Tage,1,15);
 5113:   free_ivector(Tcode,1,100);
 5114: 
 5115:   fflush(fichtm);
 5116:   fflush(ficgp);
 5117:   
 5118: 
 5119:   if((nberr >0) || (nbwarn>0)){
 5120:     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5121:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5122:   }else{
 5123:     printf("End of Imach\n");
 5124:     fprintf(ficlog,"End of Imach\n");
 5125:   }
 5126:   printf("See log file on %s\n",filelog);
 5127:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5128:   (void) gettimeofday(&end_time,&tzp);
 5129:   tm = *localtime(&end_time.tv_sec);
 5130:   tmg = *gmtime(&end_time.tv_sec);
 5131:   strcpy(strtend,asctime(&tm));
 5132:   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
 5133:   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5134:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5135: 
 5136:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5137:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5138:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5139:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5140: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5141:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5142:   fclose(fichtm);
 5143:   fclose(fichtmcov);
 5144:   fclose(ficgp);
 5145:   fclose(ficlog);
 5146:   /*------ End -----------*/
 5147: 
 5148:   chdir(path);
 5149:   strcpy(plotcmd,GNUPLOTPROGRAM);
 5150:   strcat(plotcmd," ");
 5151:   strcat(plotcmd,optionfilegnuplot);
 5152:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
 5153:   if((outcmd=system(plotcmd)) != 0){
 5154:     printf(" Problem with gnuplot\n");
 5155:   }
 5156:   printf(" Wait...");
 5157:   while (z[0] != 'q') {
 5158:     /* chdir(path); */
 5159:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5160:     scanf("%s",z);
 5161: /*     if (z[0] == 'c') system("./imach"); */
 5162:     if (z[0] == 'e') system(optionfilehtm);
 5163:     else if (z[0] == 'g') system(plotcmd);
 5164:     else if (z[0] == 'q') exit(0);
 5165:   }
 5166:   end:
 5167:   while (z[0] != 'q') {
 5168:     printf("\nType  q for exiting: ");
 5169:     scanf("%s",z);
 5170:   }
 5171: }
 5172: 
 5173: 
 5174: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>