File:  [Local Repository] / imach / src / imach.c
Revision 1.94: download - view: text, annotated - select for diffs
Fri Jun 27 13:00:02 2003 UTC (20 years, 11 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
Just cleaning

    1: /* $Id: imach.c,v 1.94 2003/06/27 13:00:02 brouard Exp $
    2:   $State: Exp $
    3:   $Log: imach.c,v $
    4:   Revision 1.94  2003/06/27 13:00:02  brouard
    5:   Just cleaning
    6: 
    7:   Revision 1.93  2003/06/25 16:33:55  brouard
    8:   (Module): On windows (cygwin) function asctime_r doesn't
    9:   exist so I changed back to asctime which exists.
   10:   (Module): Version 0.96b
   11: 
   12:   Revision 1.92  2003/06/25 16:30:45  brouard
   13:   (Module): On windows (cygwin) function asctime_r doesn't
   14:   exist so I changed back to asctime which exists.
   15: 
   16:   Revision 1.91  2003/06/25 15:30:29  brouard
   17:   * imach.c (Repository): Duplicated warning errors corrected.
   18:   (Repository): Elapsed time after each iteration is now output. It
   19:   helps to forecast when convergence will be reached. Elapsed time
   20:   is stamped in powell.  We created a new html file for the graphs
   21:   concerning matrix of covariance. It has extension -cov.htm.
   22: 
   23:   Revision 1.90  2003/06/24 12:34:15  brouard
   24:   (Module): Some bugs corrected for windows. Also, when
   25:   mle=-1 a template is output in file "or"mypar.txt with the design
   26:   of the covariance matrix to be input.
   27: 
   28:   Revision 1.89  2003/06/24 12:30:52  brouard
   29:   (Module): Some bugs corrected for windows. Also, when
   30:   mle=-1 a template is output in file "or"mypar.txt with the design
   31:   of the covariance matrix to be input.
   32: 
   33:   Revision 1.88  2003/06/23 17:54:56  brouard
   34:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   35: 
   36:   Revision 1.87  2003/06/18 12:26:01  brouard
   37:   Version 0.96
   38: 
   39:   Revision 1.86  2003/06/17 20:04:08  brouard
   40:   (Module): Change position of html and gnuplot routines and added
   41:   routine fileappend.
   42: 
   43:   Revision 1.85  2003/06/17 13:12:43  brouard
   44:   * imach.c (Repository): Check when date of death was earlier that
   45:   current date of interview. It may happen when the death was just
   46:   prior to the death. In this case, dh was negative and likelihood
   47:   was wrong (infinity). We still send an "Error" but patch by
   48:   assuming that the date of death was just one stepm after the
   49:   interview.
   50:   (Repository): Because some people have very long ID (first column)
   51:   we changed int to long in num[] and we added a new lvector for
   52:   memory allocation. But we also truncated to 8 characters (left
   53:   truncation)
   54:   (Repository): No more line truncation errors.
   55: 
   56:   Revision 1.84  2003/06/13 21:44:43  brouard
   57:   * imach.c (Repository): Replace "freqsummary" at a correct
   58:   place. It differs from routine "prevalence" which may be called
   59:   many times. Probs is memory consuming and must be used with
   60:   parcimony.
   61:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   62: 
   63:   Revision 1.83  2003/06/10 13:39:11  lievre
   64:   *** empty log message ***
   65: 
   66:   Revision 1.82  2003/06/05 15:57:20  brouard
   67:   Add log in  imach.c and  fullversion number is now printed.
   68: 
   69: */
   70: /*
   71:    Interpolated Markov Chain
   72: 
   73:   Short summary of the programme:
   74:   
   75:   This program computes Healthy Life Expectancies from
   76:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   77:   first survey ("cross") where individuals from different ages are
   78:   interviewed on their health status or degree of disability (in the
   79:   case of a health survey which is our main interest) -2- at least a
   80:   second wave of interviews ("longitudinal") which measure each change
   81:   (if any) in individual health status.  Health expectancies are
   82:   computed from the time spent in each health state according to a
   83:   model. More health states you consider, more time is necessary to reach the
   84:   Maximum Likelihood of the parameters involved in the model.  The
   85:   simplest model is the multinomial logistic model where pij is the
   86:   probability to be observed in state j at the second wave
   87:   conditional to be observed in state i at the first wave. Therefore
   88:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   89:   'age' is age and 'sex' is a covariate. If you want to have a more
   90:   complex model than "constant and age", you should modify the program
   91:   where the markup *Covariates have to be included here again* invites
   92:   you to do it.  More covariates you add, slower the
   93:   convergence.
   94: 
   95:   The advantage of this computer programme, compared to a simple
   96:   multinomial logistic model, is clear when the delay between waves is not
   97:   identical for each individual. Also, if a individual missed an
   98:   intermediate interview, the information is lost, but taken into
   99:   account using an interpolation or extrapolation.  
  100: 
  101:   hPijx is the probability to be observed in state i at age x+h
  102:   conditional to the observed state i at age x. The delay 'h' can be
  103:   split into an exact number (nh*stepm) of unobserved intermediate
  104:   states. This elementary transition (by month, quarter,
  105:   semester or year) is modelled as a multinomial logistic.  The hPx
  106:   matrix is simply the matrix product of nh*stepm elementary matrices
  107:   and the contribution of each individual to the likelihood is simply
  108:   hPijx.
  109: 
  110:   Also this programme outputs the covariance matrix of the parameters but also
  111:   of the life expectancies. It also computes the stable prevalence. 
  112:   
  113:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
  114:            Institut national d'études démographiques, Paris.
  115:   This software have been partly granted by Euro-REVES, a concerted action
  116:   from the European Union.
  117:   It is copyrighted identically to a GNU software product, ie programme and
  118:   software can be distributed freely for non commercial use. Latest version
  119:   can be accessed at http://euroreves.ined.fr/imach .
  120: 
  121:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
  122:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
  123:   
  124:   **********************************************************************/
  125: /*
  126:   main
  127:   read parameterfile
  128:   read datafile
  129:   concatwav
  130:   freqsummary
  131:   if (mle >= 1)
  132:     mlikeli
  133:   print results files
  134:   if mle==1 
  135:      computes hessian
  136:   read end of parameter file: agemin, agemax, bage, fage, estepm
  137:       begin-prev-date,...
  138:   open gnuplot file
  139:   open html file
  140:   stable prevalence
  141:    for age prevalim()
  142:   h Pij x
  143:   variance of p varprob
  144:   forecasting if prevfcast==1 prevforecast call prevalence()
  145:   health expectancies
  146:   Variance-covariance of DFLE
  147:   prevalence()
  148:    movingaverage()
  149:   varevsij() 
  150:   if popbased==1 varevsij(,popbased)
  151:   total life expectancies
  152:   Variance of stable prevalence
  153:  end
  154: */
  155: 
  156: 
  157: 
  158:  
  159: #include <math.h>
  160: #include <stdio.h>
  161: #include <stdlib.h>
  162: #include <unistd.h>
  163: 
  164: #include <sys/time.h>
  165: #include <time.h>
  166: #include "timeval.h"
  167: 
  168: #define MAXLINE 256
  169: #define GNUPLOTPROGRAM "gnuplot"
  170: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
  171: #define FILENAMELENGTH 132
  172: /*#define DEBUG*/
  173: /*#define windows*/
  174: #define	GLOCK_ERROR_NOPATH		-1	/* empty path */
  175: #define	GLOCK_ERROR_GETCWD		-2	/* cannot get cwd */
  176: 
  177: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
  178: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
  179: 
  180: #define NINTERVMAX 8
  181: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
  182: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
  183: #define NCOVMAX 8 /* Maximum number of covariates */
  184: #define MAXN 20000
  185: #define YEARM 12. /* Number of months per year */
  186: #define AGESUP 130
  187: #define AGEBASE 40
  188: #ifdef unix
  189: #define DIRSEPARATOR '/'
  190: #define ODIRSEPARATOR '\\'
  191: #else
  192: #define DIRSEPARATOR '\\'
  193: #define ODIRSEPARATOR '/'
  194: #endif
  195: 
  196: /* $Id: imach.c,v 1.94 2003/06/27 13:00:02 brouard Exp $ */
  197: /* $State: Exp $ */
  198: 
  199: char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
  200: char fullversion[]="$Revision: 1.94 $ $Date: 2003/06/27 13:00:02 $"; 
  201: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  202: int nvar;
  203: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  204: int npar=NPARMAX;
  205: int nlstate=2; /* Number of live states */
  206: int ndeath=1; /* Number of dead states */
  207: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
  208: int popbased=0;
  209: 
  210: int *wav; /* Number of waves for this individuual 0 is possible */
  211: int maxwav; /* Maxim number of waves */
  212: int jmin, jmax; /* min, max spacing between 2 waves */
  213: int gipmx, gsw; /* Global variables on the number of contributions 
  214: 		   to the likelihood and the sum of weights (done by funcone)*/
  215: int mle, weightopt;
  216: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
  217: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  218: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  219: 	   * wave mi and wave mi+1 is not an exact multiple of stepm. */
  220: double jmean; /* Mean space between 2 waves */
  221: double **oldm, **newm, **savm; /* Working pointers to matrices */
  222: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
  223: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
  224: FILE *ficlog, *ficrespow;
  225: int globpr; /* Global variable for printing or not */
  226: double fretone; /* Only one call to likelihood */
  227: long ipmx; /* Number of contributions */
  228: double sw; /* Sum of weights */
  229: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
  230: FILE *ficresilk;
  231: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
  232: FILE *ficresprobmorprev;
  233: FILE *fichtm, *fichtmcov; /* Html File */
  234: FILE *ficreseij;
  235: char filerese[FILENAMELENGTH];
  236: FILE  *ficresvij;
  237: char fileresv[FILENAMELENGTH];
  238: FILE  *ficresvpl;
  239: char fileresvpl[FILENAMELENGTH];
  240: char title[MAXLINE];
  241: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  242: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
  243: char tmpout[FILENAMELENGTH]; 
  244: char command[FILENAMELENGTH];
  245: int  outcmd=0;
  246: 
  247: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
  248: 
  249: char filelog[FILENAMELENGTH]; /* Log file */
  250: char filerest[FILENAMELENGTH];
  251: char fileregp[FILENAMELENGTH];
  252: char popfile[FILENAMELENGTH];
  253: 
  254: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
  255: 
  256: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
  257: struct timezone tzp;
  258: extern int gettimeofday();
  259: struct tm tmg, tm, tmf, *gmtime(), *localtime();
  260: long time_value;
  261: extern long time();
  262: char strcurr[80], strfor[80];
  263: 
  264: #define NR_END 1
  265: #define FREE_ARG char*
  266: #define FTOL 1.0e-10
  267: 
  268: #define NRANSI 
  269: #define ITMAX 200 
  270: 
  271: #define TOL 2.0e-4 
  272: 
  273: #define CGOLD 0.3819660 
  274: #define ZEPS 1.0e-10 
  275: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
  276: 
  277: #define GOLD 1.618034 
  278: #define GLIMIT 100.0 
  279: #define TINY 1.0e-20 
  280: 
  281: static double maxarg1,maxarg2;
  282: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
  283: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
  284:   
  285: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
  286: #define rint(a) floor(a+0.5)
  287: 
  288: static double sqrarg;
  289: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
  290: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
  291: 
  292: int imx; 
  293: int stepm;
  294: /* Stepm, step in month: minimum step interpolation*/
  295: 
  296: int estepm;
  297: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
  298: 
  299: int m,nb;
  300: long *num;
  301: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
  302: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
  303: double **pmmij, ***probs;
  304: double dateintmean=0;
  305: 
  306: double *weight;
  307: int **s; /* Status */
  308: double *agedc, **covar, idx;
  309: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
  310: 
  311: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
  312: double ftolhess; /* Tolerance for computing hessian */
  313: 
  314: /**************** split *************************/
  315: static	int split( char *path, char *dirc, char *name, char *ext, char *finame )
  316: {
  317:   char	*ss;				/* pointer */
  318:   int	l1, l2;				/* length counters */
  319: 
  320:   l1 = strlen(path );			/* length of path */
  321:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
  322:   ss= strrchr( path, DIRSEPARATOR );		/* find last / */
  323:   if ( ss == NULL ) {			/* no directory, so use current */
  324:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
  325:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
  326:     /* get current working directory */
  327:     /*    extern  char* getcwd ( char *buf , int len);*/
  328:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  329:       return( GLOCK_ERROR_GETCWD );
  330:     }
  331:     strcpy( name, path );		/* we've got it */
  332:   } else {				/* strip direcotry from path */
  333:     ss++;				/* after this, the filename */
  334:     l2 = strlen( ss );			/* length of filename */
  335:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
  336:     strcpy( name, ss );		/* save file name */
  337:     strncpy( dirc, path, l1 - l2 );	/* now the directory */
  338:     dirc[l1-l2] = 0;			/* add zero */
  339:   }
  340:   l1 = strlen( dirc );			/* length of directory */
  341:   /*#ifdef windows
  342:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
  343: #else
  344:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
  345: #endif
  346:   */
  347:   ss = strrchr( name, '.' );		/* find last / */
  348:   ss++;
  349:   strcpy(ext,ss);			/* save extension */
  350:   l1= strlen( name);
  351:   l2= strlen(ss)+1;
  352:   strncpy( finame, name, l1-l2);
  353:   finame[l1-l2]= 0;
  354:   return( 0 );				/* we're done */
  355: }
  356: 
  357: 
  358: /******************************************/
  359: 
  360: void replace_back_to_slash(char *s, char*t)
  361: {
  362:   int i;
  363:   int lg=0;
  364:   i=0;
  365:   lg=strlen(t);
  366:   for(i=0; i<= lg; i++) {
  367:     (s[i] = t[i]);
  368:     if (t[i]== '\\') s[i]='/';
  369:   }
  370: }
  371: 
  372: int nbocc(char *s, char occ)
  373: {
  374:   int i,j=0;
  375:   int lg=20;
  376:   i=0;
  377:   lg=strlen(s);
  378:   for(i=0; i<= lg; i++) {
  379:   if  (s[i] == occ ) j++;
  380:   }
  381:   return j;
  382: }
  383: 
  384: void cutv(char *u,char *v, char*t, char occ)
  385: {
  386:   /* cuts string t into u and v where u is ended by char occ excluding it
  387:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
  388:      gives u="abcedf" and v="ghi2j" */
  389:   int i,lg,j,p=0;
  390:   i=0;
  391:   for(j=0; j<=strlen(t)-1; j++) {
  392:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
  393:   }
  394: 
  395:   lg=strlen(t);
  396:   for(j=0; j<p; j++) {
  397:     (u[j] = t[j]);
  398:   }
  399:      u[p]='\0';
  400: 
  401:    for(j=0; j<= lg; j++) {
  402:     if (j>=(p+1))(v[j-p-1] = t[j]);
  403:   }
  404: }
  405: 
  406: /********************** nrerror ********************/
  407: 
  408: void nrerror(char error_text[])
  409: {
  410:   fprintf(stderr,"ERREUR ...\n");
  411:   fprintf(stderr,"%s\n",error_text);
  412:   exit(EXIT_FAILURE);
  413: }
  414: /*********************** vector *******************/
  415: double *vector(int nl, int nh)
  416: {
  417:   double *v;
  418:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
  419:   if (!v) nrerror("allocation failure in vector");
  420:   return v-nl+NR_END;
  421: }
  422: 
  423: /************************ free vector ******************/
  424: void free_vector(double*v, int nl, int nh)
  425: {
  426:   free((FREE_ARG)(v+nl-NR_END));
  427: }
  428: 
  429: /************************ivector *******************************/
  430: int *ivector(long nl,long nh)
  431: {
  432:   int *v;
  433:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  434:   if (!v) nrerror("allocation failure in ivector");
  435:   return v-nl+NR_END;
  436: }
  437: 
  438: /******************free ivector **************************/
  439: void free_ivector(int *v, long nl, long nh)
  440: {
  441:   free((FREE_ARG)(v+nl-NR_END));
  442: }
  443: 
  444: /************************lvector *******************************/
  445: long *lvector(long nl,long nh)
  446: {
  447:   long *v;
  448:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
  449:   if (!v) nrerror("allocation failure in ivector");
  450:   return v-nl+NR_END;
  451: }
  452: 
  453: /******************free lvector **************************/
  454: void free_lvector(long *v, long nl, long nh)
  455: {
  456:   free((FREE_ARG)(v+nl-NR_END));
  457: }
  458: 
  459: /******************* imatrix *******************************/
  460: int **imatrix(long nrl, long nrh, long ncl, long nch) 
  461:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
  462: { 
  463:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
  464:   int **m; 
  465:   
  466:   /* allocate pointers to rows */ 
  467:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  468:   if (!m) nrerror("allocation failure 1 in matrix()"); 
  469:   m += NR_END; 
  470:   m -= nrl; 
  471:   
  472:   
  473:   /* allocate rows and set pointers to them */ 
  474:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
  475:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
  476:   m[nrl] += NR_END; 
  477:   m[nrl] -= ncl; 
  478:   
  479:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
  480:   
  481:   /* return pointer to array of pointers to rows */ 
  482:   return m; 
  483: } 
  484: 
  485: /****************** free_imatrix *************************/
  486: void free_imatrix(m,nrl,nrh,ncl,nch)
  487:       int **m;
  488:       long nch,ncl,nrh,nrl; 
  489:      /* free an int matrix allocated by imatrix() */ 
  490: { 
  491:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
  492:   free((FREE_ARG) (m+nrl-NR_END)); 
  493: } 
  494: 
  495: /******************* matrix *******************************/
  496: double **matrix(long nrl, long nrh, long ncl, long nch)
  497: {
  498:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  499:   double **m;
  500: 
  501:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  502:   if (!m) nrerror("allocation failure 1 in matrix()");
  503:   m += NR_END;
  504:   m -= nrl;
  505: 
  506:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  507:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  508:   m[nrl] += NR_END;
  509:   m[nrl] -= ncl;
  510: 
  511:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  512:   return m;
  513:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
  514:    */
  515: }
  516: 
  517: /*************************free matrix ************************/
  518: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
  519: {
  520:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  521:   free((FREE_ARG)(m+nrl-NR_END));
  522: }
  523: 
  524: /******************* ma3x *******************************/
  525: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
  526: {
  527:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
  528:   double ***m;
  529: 
  530:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
  531:   if (!m) nrerror("allocation failure 1 in matrix()");
  532:   m += NR_END;
  533:   m -= nrl;
  534: 
  535:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
  536:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  537:   m[nrl] += NR_END;
  538:   m[nrl] -= ncl;
  539: 
  540:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  541: 
  542:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
  543:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
  544:   m[nrl][ncl] += NR_END;
  545:   m[nrl][ncl] -= nll;
  546:   for (j=ncl+1; j<=nch; j++) 
  547:     m[nrl][j]=m[nrl][j-1]+nlay;
  548:   
  549:   for (i=nrl+1; i<=nrh; i++) {
  550:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  551:     for (j=ncl+1; j<=nch; j++) 
  552:       m[i][j]=m[i][j-1]+nlay;
  553:   }
  554:   return m; 
  555:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  556:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
  557:   */
  558: }
  559: 
  560: /*************************free ma3x ************************/
  561: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  562: {
  563:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
  564:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
  565:   free((FREE_ARG)(m+nrl-NR_END));
  566: }
  567: 
  568: /*************** function subdirf ***********/
  569: char *subdirf(char fileres[])
  570: {
  571:   /* Caution optionfilefiname is hidden */
  572:   strcpy(tmpout,optionfilefiname);
  573:   strcat(tmpout,"/"); /* Add to the right */
  574:   strcat(tmpout,fileres);
  575:   return tmpout;
  576: }
  577: 
  578: /*************** function subdirf2 ***********/
  579: char *subdirf2(char fileres[], char *preop)
  580: {
  581:   
  582:   /* Caution optionfilefiname is hidden */
  583:   strcpy(tmpout,optionfilefiname);
  584:   strcat(tmpout,"/");
  585:   strcat(tmpout,preop);
  586:   strcat(tmpout,fileres);
  587:   return tmpout;
  588: }
  589: 
  590: /*************** function subdirf3 ***********/
  591: char *subdirf3(char fileres[], char *preop, char *preop2)
  592: {
  593:   
  594:   /* Caution optionfilefiname is hidden */
  595:   strcpy(tmpout,optionfilefiname);
  596:   strcat(tmpout,"/");
  597:   strcat(tmpout,preop);
  598:   strcat(tmpout,preop2);
  599:   strcat(tmpout,fileres);
  600:   return tmpout;
  601: }
  602: 
  603: /***************** f1dim *************************/
  604: extern int ncom; 
  605: extern double *pcom,*xicom;
  606: extern double (*nrfunc)(double []); 
  607:  
  608: double f1dim(double x) 
  609: { 
  610:   int j; 
  611:   double f;
  612:   double *xt; 
  613:  
  614:   xt=vector(1,ncom); 
  615:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
  616:   f=(*nrfunc)(xt); 
  617:   free_vector(xt,1,ncom); 
  618:   return f; 
  619: } 
  620: 
  621: /*****************brent *************************/
  622: double brent(double ax, double bx, double cx, double (*f)(double), double tol, 	double *xmin) 
  623: { 
  624:   int iter; 
  625:   double a,b,d,etemp;
  626:   double fu,fv,fw,fx;
  627:   double ftemp;
  628:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
  629:   double e=0.0; 
  630:  
  631:   a=(ax < cx ? ax : cx); 
  632:   b=(ax > cx ? ax : cx); 
  633:   x=w=v=bx; 
  634:   fw=fv=fx=(*f)(x); 
  635:   for (iter=1;iter<=ITMAX;iter++) { 
  636:     xm=0.5*(a+b); 
  637:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  638:     /*		if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
  639:     printf(".");fflush(stdout);
  640:     fprintf(ficlog,".");fflush(ficlog);
  641: #ifdef DEBUG
  642:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  643:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  644:     /*		if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
  645: #endif
  646:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
  647:       *xmin=x; 
  648:       return fx; 
  649:     } 
  650:     ftemp=fu;
  651:     if (fabs(e) > tol1) { 
  652:       r=(x-w)*(fx-fv); 
  653:       q=(x-v)*(fx-fw); 
  654:       p=(x-v)*q-(x-w)*r; 
  655:       q=2.0*(q-r); 
  656:       if (q > 0.0) p = -p; 
  657:       q=fabs(q); 
  658:       etemp=e; 
  659:       e=d; 
  660:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
  661: 	d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  662:       else { 
  663: 	d=p/q; 
  664: 	u=x+d; 
  665: 	if (u-a < tol2 || b-u < tol2) 
  666: 	  d=SIGN(tol1,xm-x); 
  667:       } 
  668:     } else { 
  669:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  670:     } 
  671:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  672:     fu=(*f)(u); 
  673:     if (fu <= fx) { 
  674:       if (u >= x) a=x; else b=x; 
  675:       SHFT(v,w,x,u) 
  676: 	SHFT(fv,fw,fx,fu) 
  677: 	} else { 
  678: 	  if (u < x) a=u; else b=u; 
  679: 	  if (fu <= fw || w == x) { 
  680: 	    v=w; 
  681: 	    w=u; 
  682: 	    fv=fw; 
  683: 	    fw=fu; 
  684: 	  } else if (fu <= fv || v == x || v == w) { 
  685: 	    v=u; 
  686: 	    fv=fu; 
  687: 	  } 
  688: 	} 
  689:   } 
  690:   nrerror("Too many iterations in brent"); 
  691:   *xmin=x; 
  692:   return fx; 
  693: } 
  694: 
  695: /****************** mnbrak ***********************/
  696: 
  697: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
  698: 	    double (*func)(double)) 
  699: { 
  700:   double ulim,u,r,q, dum;
  701:   double fu; 
  702:  
  703:   *fa=(*func)(*ax); 
  704:   *fb=(*func)(*bx); 
  705:   if (*fb > *fa) { 
  706:     SHFT(dum,*ax,*bx,dum) 
  707:       SHFT(dum,*fb,*fa,dum) 
  708:       } 
  709:   *cx=(*bx)+GOLD*(*bx-*ax); 
  710:   *fc=(*func)(*cx); 
  711:   while (*fb > *fc) { 
  712:     r=(*bx-*ax)*(*fb-*fc); 
  713:     q=(*bx-*cx)*(*fb-*fa); 
  714:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
  715:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
  716:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
  717:     if ((*bx-u)*(u-*cx) > 0.0) { 
  718:       fu=(*func)(u); 
  719:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
  720:       fu=(*func)(u); 
  721:       if (fu < *fc) { 
  722: 	SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
  723: 	  SHFT(*fb,*fc,fu,(*func)(u)) 
  724: 	  } 
  725:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
  726:       u=ulim; 
  727:       fu=(*func)(u); 
  728:     } else { 
  729:       u=(*cx)+GOLD*(*cx-*bx); 
  730:       fu=(*func)(u); 
  731:     } 
  732:     SHFT(*ax,*bx,*cx,u) 
  733:       SHFT(*fa,*fb,*fc,fu) 
  734:       } 
  735: } 
  736: 
  737: /*************** linmin ************************/
  738: 
  739: int ncom; 
  740: double *pcom,*xicom;
  741: double (*nrfunc)(double []); 
  742:  
  743: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
  744: { 
  745:   double brent(double ax, double bx, double cx, 
  746: 	       double (*f)(double), double tol, double *xmin); 
  747:   double f1dim(double x); 
  748:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
  749: 	      double *fc, double (*func)(double)); 
  750:   int j; 
  751:   double xx,xmin,bx,ax; 
  752:   double fx,fb,fa;
  753:  
  754:   ncom=n; 
  755:   pcom=vector(1,n); 
  756:   xicom=vector(1,n); 
  757:   nrfunc=func; 
  758:   for (j=1;j<=n;j++) { 
  759:     pcom[j]=p[j]; 
  760:     xicom[j]=xi[j]; 
  761:   } 
  762:   ax=0.0; 
  763:   xx=1.0; 
  764:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
  765:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  766: #ifdef DEBUG
  767:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  768:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  769: #endif
  770:   for (j=1;j<=n;j++) { 
  771:     xi[j] *= xmin; 
  772:     p[j] += xi[j]; 
  773:   } 
  774:   free_vector(xicom,1,n); 
  775:   free_vector(pcom,1,n); 
  776: } 
  777: 
  778: char *asc_diff_time(long time_sec, char ascdiff[])
  779: {
  780:   long sec_left, days, hours, minutes;
  781:   days = (time_sec) / (60*60*24);
  782:   sec_left = (time_sec) % (60*60*24);
  783:   hours = (sec_left) / (60*60) ;
  784:   sec_left = (sec_left) %(60*60);
  785:   minutes = (sec_left) /60;
  786:   sec_left = (sec_left) % (60);
  787:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
  788:   return ascdiff;
  789: }
  790: 
  791: /*************** powell ************************/
  792: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
  793: 	    double (*func)(double [])) 
  794: { 
  795:   void linmin(double p[], double xi[], int n, double *fret, 
  796: 	      double (*func)(double [])); 
  797:   int i,ibig,j; 
  798:   double del,t,*pt,*ptt,*xit;
  799:   double fp,fptt;
  800:   double *xits;
  801:   int niterf, itmp;
  802: 
  803:   pt=vector(1,n); 
  804:   ptt=vector(1,n); 
  805:   xit=vector(1,n); 
  806:   xits=vector(1,n); 
  807:   *fret=(*func)(p); 
  808:   for (j=1;j<=n;j++) pt[j]=p[j]; 
  809:   for (*iter=1;;++(*iter)) { 
  810:     fp=(*fret); 
  811:     ibig=0; 
  812:     del=0.0; 
  813:     last_time=curr_time;
  814:     (void) gettimeofday(&curr_time,&tzp);
  815:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
  816:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
  817:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
  818:     for (i=1;i<=n;i++) {
  819:       printf(" %d %.12f",i, p[i]);
  820:       fprintf(ficlog," %d %.12lf",i, p[i]);
  821:       fprintf(ficrespow," %.12lf", p[i]);
  822:     }
  823:     printf("\n");
  824:     fprintf(ficlog,"\n");
  825:     fprintf(ficrespow,"\n");fflush(ficrespow);
  826:     if(*iter <=3){
  827:       tm = *localtime(&curr_time.tv_sec);
  828:       strcpy(strcurr,asctime(&tmf));
  829: /*       asctime_r(&tm,strcurr); */
  830:       forecast_time=curr_time;
  831:       itmp = strlen(strcurr);
  832:       if(strcurr[itmp-1]=='\n')
  833: 	strcurr[itmp-1]='\0';
  834:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  835:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  836:       for(niterf=10;niterf<=30;niterf+=10){
  837: 	forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
  838: 	tmf = *localtime(&forecast_time.tv_sec);
  839: /* 	asctime_r(&tmf,strfor); */
  840: 	strcpy(strfor,asctime(&tmf));
  841: 	itmp = strlen(strfor);
  842: 	if(strfor[itmp-1]=='\n')
  843: 	strfor[itmp-1]='\0';
  844: 	printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  845: 	fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
  846:       }
  847:     }
  848:     for (i=1;i<=n;i++) { 
  849:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
  850:       fptt=(*fret); 
  851: #ifdef DEBUG
  852:       printf("fret=%lf \n",*fret);
  853:       fprintf(ficlog,"fret=%lf \n",*fret);
  854: #endif
  855:       printf("%d",i);fflush(stdout);
  856:       fprintf(ficlog,"%d",i);fflush(ficlog);
  857:       linmin(p,xit,n,fret,func); 
  858:       if (fabs(fptt-(*fret)) > del) { 
  859: 	del=fabs(fptt-(*fret)); 
  860: 	ibig=i; 
  861:       } 
  862: #ifdef DEBUG
  863:       printf("%d %.12e",i,(*fret));
  864:       fprintf(ficlog,"%d %.12e",i,(*fret));
  865:       for (j=1;j<=n;j++) {
  866: 	xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
  867: 	printf(" x(%d)=%.12e",j,xit[j]);
  868: 	fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  869:       }
  870:       for(j=1;j<=n;j++) {
  871: 	printf(" p=%.12e",p[j]);
  872: 	fprintf(ficlog," p=%.12e",p[j]);
  873:       }
  874:       printf("\n");
  875:       fprintf(ficlog,"\n");
  876: #endif
  877:     } 
  878:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
  879: #ifdef DEBUG
  880:       int k[2],l;
  881:       k[0]=1;
  882:       k[1]=-1;
  883:       printf("Max: %.12e",(*func)(p));
  884:       fprintf(ficlog,"Max: %.12e",(*func)(p));
  885:       for (j=1;j<=n;j++) {
  886: 	printf(" %.12e",p[j]);
  887: 	fprintf(ficlog," %.12e",p[j]);
  888:       }
  889:       printf("\n");
  890:       fprintf(ficlog,"\n");
  891:       for(l=0;l<=1;l++) {
  892: 	for (j=1;j<=n;j++) {
  893: 	  ptt[j]=p[j]+(p[j]-pt[j])*k[l];
  894: 	  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  895: 	  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  896: 	}
  897: 	printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  898: 	fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  899:       }
  900: #endif
  901: 
  902: 
  903:       free_vector(xit,1,n); 
  904:       free_vector(xits,1,n); 
  905:       free_vector(ptt,1,n); 
  906:       free_vector(pt,1,n); 
  907:       return; 
  908:     } 
  909:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  910:     for (j=1;j<=n;j++) { 
  911:       ptt[j]=2.0*p[j]-pt[j]; 
  912:       xit[j]=p[j]-pt[j]; 
  913:       pt[j]=p[j]; 
  914:     } 
  915:     fptt=(*func)(ptt); 
  916:     if (fptt < fp) { 
  917:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
  918:       if (t < 0.0) { 
  919: 	linmin(p,xit,n,fret,func); 
  920: 	for (j=1;j<=n;j++) { 
  921: 	  xi[j][ibig]=xi[j][n]; 
  922: 	  xi[j][n]=xit[j]; 
  923: 	}
  924: #ifdef DEBUG
  925: 	printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  926: 	fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  927: 	for(j=1;j<=n;j++){
  928: 	  printf(" %.12e",xit[j]);
  929: 	  fprintf(ficlog," %.12e",xit[j]);
  930: 	}
  931: 	printf("\n");
  932: 	fprintf(ficlog,"\n");
  933: #endif
  934:       }
  935:     } 
  936:   } 
  937: } 
  938: 
  939: /**** Prevalence limit (stable prevalence)  ****************/
  940: 
  941: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
  942: {
  943:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
  944:      matrix by transitions matrix until convergence is reached */
  945: 
  946:   int i, ii,j,k;
  947:   double min, max, maxmin, maxmax,sumnew=0.;
  948:   double **matprod2();
  949:   double **out, cov[NCOVMAX], **pmij();
  950:   double **newm;
  951:   double agefin, delaymax=50 ; /* Max number of years to converge */
  952: 
  953:   for (ii=1;ii<=nlstate+ndeath;ii++)
  954:     for (j=1;j<=nlstate+ndeath;j++){
  955:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  956:     }
  957: 
  958:    cov[1]=1.;
  959:  
  960:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  961:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
  962:     newm=savm;
  963:     /* Covariates have to be included here again */
  964:      cov[2]=agefin;
  965:   
  966:       for (k=1; k<=cptcovn;k++) {
  967: 	cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
  968: 	/*	printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
  969:       }
  970:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  971:       for (k=1; k<=cptcovprod;k++)
  972: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  973: 
  974:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  975:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  976:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  977:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
  978: 
  979:     savm=oldm;
  980:     oldm=newm;
  981:     maxmax=0.;
  982:     for(j=1;j<=nlstate;j++){
  983:       min=1.;
  984:       max=0.;
  985:       for(i=1; i<=nlstate; i++) {
  986: 	sumnew=0;
  987: 	for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  988: 	prlim[i][j]= newm[i][j]/(1-sumnew);
  989: 	max=FMAX(max,prlim[i][j]);
  990: 	min=FMIN(min,prlim[i][j]);
  991:       }
  992:       maxmin=max-min;
  993:       maxmax=FMAX(maxmax,maxmin);
  994:     }
  995:     if(maxmax < ftolpl){
  996:       return prlim;
  997:     }
  998:   }
  999: }
 1000: 
 1001: /*************** transition probabilities ***************/ 
 1002: 
 1003: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 1004: {
 1005:   double s1, s2;
 1006:   /*double t34;*/
 1007:   int i,j,j1, nc, ii, jj;
 1008: 
 1009:     for(i=1; i<= nlstate; i++){
 1010:     for(j=1; j<i;j++){
 1011:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1012: 	/*s2 += param[i][j][nc]*cov[nc];*/
 1013: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1014: 	/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 1015:       }
 1016:       ps[i][j]=s2;
 1017:       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 1018:     }
 1019:     for(j=i+1; j<=nlstate+ndeath;j++){
 1020:       for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 1021: 	s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 1022: 	/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 1023:       }
 1024:       ps[i][j]=s2;
 1025:     }
 1026:   }
 1027:     /*ps[3][2]=1;*/
 1028: 
 1029:   for(i=1; i<= nlstate; i++){
 1030:      s1=0;
 1031:     for(j=1; j<i; j++)
 1032:       s1+=exp(ps[i][j]);
 1033:     for(j=i+1; j<=nlstate+ndeath; j++)
 1034:       s1+=exp(ps[i][j]);
 1035:     ps[i][i]=1./(s1+1.);
 1036:     for(j=1; j<i; j++)
 1037:       ps[i][j]= exp(ps[i][j])*ps[i][i];
 1038:     for(j=i+1; j<=nlstate+ndeath; j++)
 1039:       ps[i][j]= exp(ps[i][j])*ps[i][i];
 1040:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 1041:   } /* end i */
 1042: 
 1043:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 1044:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1045:       ps[ii][jj]=0;
 1046:       ps[ii][ii]=1;
 1047:     }
 1048:   }
 1049: 
 1050: 
 1051:   /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 1052:     for(jj=1; jj<= nlstate+ndeath; jj++){
 1053:      printf("%lf ",ps[ii][jj]);
 1054:    }
 1055:     printf("\n ");
 1056:     }
 1057:     printf("\n ");printf("%lf ",cov[2]);*/
 1058: /*
 1059:   for(i=1; i<= npar; i++) printf("%f ",x[i]);
 1060:   goto end;*/
 1061:     return ps;
 1062: }
 1063: 
 1064: /**************** Product of 2 matrices ******************/
 1065: 
 1066: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 1067: {
 1068:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 1069:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 1070:   /* in, b, out are matrice of pointers which should have been initialized 
 1071:      before: only the contents of out is modified. The function returns
 1072:      a pointer to pointers identical to out */
 1073:   long i, j, k;
 1074:   for(i=nrl; i<= nrh; i++)
 1075:     for(k=ncolol; k<=ncoloh; k++)
 1076:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
 1077: 	out[i][k] +=in[i][j]*b[j][k];
 1078: 
 1079:   return out;
 1080: }
 1081: 
 1082: 
 1083: /************* Higher Matrix Product ***************/
 1084: 
 1085: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 1086: {
 1087:   /* Computes the transition matrix starting at age 'age' over 
 1088:      'nhstepm*hstepm*stepm' months (i.e. until
 1089:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 1090:      nhstepm*hstepm matrices. 
 1091:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 1092:      (typically every 2 years instead of every month which is too big 
 1093:      for the memory).
 1094:      Model is determined by parameters x and covariates have to be 
 1095:      included manually here. 
 1096: 
 1097:      */
 1098: 
 1099:   int i, j, d, h, k;
 1100:   double **out, cov[NCOVMAX];
 1101:   double **newm;
 1102: 
 1103:   /* Hstepm could be zero and should return the unit matrix */
 1104:   for (i=1;i<=nlstate+ndeath;i++)
 1105:     for (j=1;j<=nlstate+ndeath;j++){
 1106:       oldm[i][j]=(i==j ? 1.0 : 0.0);
 1107:       po[i][j][0]=(i==j ? 1.0 : 0.0);
 1108:     }
 1109:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 1110:   for(h=1; h <=nhstepm; h++){
 1111:     for(d=1; d <=hstepm; d++){
 1112:       newm=savm;
 1113:       /* Covariates have to be included here again */
 1114:       cov[1]=1.;
 1115:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 1116:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 1117:       for (k=1; k<=cptcovage;k++)
 1118: 	cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 1119:       for (k=1; k<=cptcovprod;k++)
 1120: 	cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 1121: 
 1122: 
 1123:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 1124:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 1125:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 1126: 		   pmij(pmmij,cov,ncovmodel,x,nlstate));
 1127:       savm=oldm;
 1128:       oldm=newm;
 1129:     }
 1130:     for(i=1; i<=nlstate+ndeath; i++)
 1131:       for(j=1;j<=nlstate+ndeath;j++) {
 1132: 	po[i][j][h]=newm[i][j];
 1133: 	/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 1134: 	 */
 1135:       }
 1136:   } /* end h */
 1137:   return po;
 1138: }
 1139: 
 1140: 
 1141: /*************** log-likelihood *************/
 1142: double func( double *x)
 1143: {
 1144:   int i, ii, j, k, mi, d, kk;
 1145:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1146:   double **out;
 1147:   double sw; /* Sum of weights */
 1148:   double lli; /* Individual log likelihood */
 1149:   int s1, s2;
 1150:   double bbh, survp;
 1151:   long ipmx;
 1152:   /*extern weight */
 1153:   /* We are differentiating ll according to initial status */
 1154:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1155:   /*for(i=1;i<imx;i++) 
 1156:     printf(" %d\n",s[4][i]);
 1157:   */
 1158:   cov[1]=1.;
 1159: 
 1160:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1161: 
 1162:   if(mle==1){
 1163:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1164:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1165:       for(mi=1; mi<= wav[i]-1; mi++){
 1166: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1167: 	  for (j=1;j<=nlstate+ndeath;j++){
 1168: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1169: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1170: 	  }
 1171: 	for(d=0; d<dh[mi][i]; d++){
 1172: 	  newm=savm;
 1173: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1174: 	  for (kk=1; kk<=cptcovage;kk++) {
 1175: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1176: 	  }
 1177: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1178: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1179: 	  savm=oldm;
 1180: 	  oldm=newm;
 1181: 	} /* end mult */
 1182:       
 1183: 	/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 1184: 	/* But now since version 0.9 we anticipate for bias and large stepm.
 1185: 	 * If stepm is larger than one month (smallest stepm) and if the exact delay 
 1186: 	 * (in months) between two waves is not a multiple of stepm, we rounded to 
 1187: 	 * the nearest (and in case of equal distance, to the lowest) interval but now
 1188: 	 * we keep into memory the bias bh[mi][i] and also the previous matrix product
 1189: 	 * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 1190: 	 * probability in order to take into account the bias as a fraction of the way
 1191: 	 * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 1192: 	 * -stepm/2 to stepm/2 .
 1193: 	 * For stepm=1 the results are the same as for previous versions of Imach.
 1194: 	 * For stepm > 1 the results are less biased than in previous versions. 
 1195: 	 */
 1196: 	s1=s[mw[mi][i]][i];
 1197: 	s2=s[mw[mi+1][i]][i];
 1198: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1199: 	/* bias is positive if real duration
 1200: 	 * is higher than the multiple of stepm and negative otherwise.
 1201: 	 */
 1202: 	/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 1203: 	if( s2 > nlstate){ 
 1204: 	  /* i.e. if s2 is a death state and if the date of death is known then the contribution
 1205: 	     to the likelihood is the probability to die between last step unit time and current 
 1206: 	     step unit time, which is also the differences between probability to die before dh 
 1207: 	     and probability to die before dh-stepm . 
 1208: 	     In version up to 0.92 likelihood was computed
 1209: 	as if date of death was unknown. Death was treated as any other
 1210: 	health state: the date of the interview describes the actual state
 1211: 	and not the date of a change in health state. The former idea was
 1212: 	to consider that at each interview the state was recorded
 1213: 	(healthy, disable or death) and IMaCh was corrected; but when we
 1214: 	introduced the exact date of death then we should have modified
 1215: 	the contribution of an exact death to the likelihood. This new
 1216: 	contribution is smaller and very dependent of the step unit
 1217: 	stepm. It is no more the probability to die between last interview
 1218: 	and month of death but the probability to survive from last
 1219: 	interview up to one month before death multiplied by the
 1220: 	probability to die within a month. Thanks to Chris
 1221: 	Jackson for correcting this bug.  Former versions increased
 1222: 	mortality artificially. The bad side is that we add another loop
 1223: 	which slows down the processing. The difference can be up to 10%
 1224: 	lower mortality.
 1225: 	  */
 1226: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1227: 	}else{
 1228: 	  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1229: 	  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 1230: 	} 
 1231: 	/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 1232: 	/*if(lli ==000.0)*/
 1233: 	/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 1234:   	ipmx +=1;
 1235: 	sw += weight[i];
 1236: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1237:       } /* end of wave */
 1238:     } /* end of individual */
 1239:   }  else if(mle==2){
 1240:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1241:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1242:       for(mi=1; mi<= wav[i]-1; mi++){
 1243: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1244: 	  for (j=1;j<=nlstate+ndeath;j++){
 1245: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1246: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1247: 	  }
 1248: 	for(d=0; d<=dh[mi][i]; d++){
 1249: 	  newm=savm;
 1250: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1251: 	  for (kk=1; kk<=cptcovage;kk++) {
 1252: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1253: 	  }
 1254: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1255: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1256: 	  savm=oldm;
 1257: 	  oldm=newm;
 1258: 	} /* end mult */
 1259:       
 1260: 	s1=s[mw[mi][i]][i];
 1261: 	s2=s[mw[mi+1][i]][i];
 1262: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1263: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1264: 	ipmx +=1;
 1265: 	sw += weight[i];
 1266: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1267:       } /* end of wave */
 1268:     } /* end of individual */
 1269:   }  else if(mle==3){  /* exponential inter-extrapolation */
 1270:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1271:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1272:       for(mi=1; mi<= wav[i]-1; mi++){
 1273: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1274: 	  for (j=1;j<=nlstate+ndeath;j++){
 1275: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1276: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1277: 	  }
 1278: 	for(d=0; d<dh[mi][i]; d++){
 1279: 	  newm=savm;
 1280: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1281: 	  for (kk=1; kk<=cptcovage;kk++) {
 1282: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1283: 	  }
 1284: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1285: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1286: 	  savm=oldm;
 1287: 	  oldm=newm;
 1288: 	} /* end mult */
 1289:       
 1290: 	s1=s[mw[mi][i]][i];
 1291: 	s2=s[mw[mi+1][i]][i];
 1292: 	bbh=(double)bh[mi][i]/(double)stepm; 
 1293: 	lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1294: 	ipmx +=1;
 1295: 	sw += weight[i];
 1296: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1297:       } /* end of wave */
 1298:     } /* end of individual */
 1299:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
 1300:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1301:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1302:       for(mi=1; mi<= wav[i]-1; mi++){
 1303: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1304: 	  for (j=1;j<=nlstate+ndeath;j++){
 1305: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1306: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1307: 	  }
 1308: 	for(d=0; d<dh[mi][i]; d++){
 1309: 	  newm=savm;
 1310: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1311: 	  for (kk=1; kk<=cptcovage;kk++) {
 1312: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1313: 	  }
 1314: 	
 1315: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1316: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1317: 	  savm=oldm;
 1318: 	  oldm=newm;
 1319: 	} /* end mult */
 1320:       
 1321: 	s1=s[mw[mi][i]][i];
 1322: 	s2=s[mw[mi+1][i]][i];
 1323: 	if( s2 > nlstate){ 
 1324: 	  lli=log(out[s1][s2] - savm[s1][s2]);
 1325: 	}else{
 1326: 	  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1327: 	}
 1328: 	ipmx +=1;
 1329: 	sw += weight[i];
 1330: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1331: /* 	printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1332:       } /* end of wave */
 1333:     } /* end of individual */
 1334:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 1335:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1336:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1337:       for(mi=1; mi<= wav[i]-1; mi++){
 1338: 	for (ii=1;ii<=nlstate+ndeath;ii++)
 1339: 	  for (j=1;j<=nlstate+ndeath;j++){
 1340: 	    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1341: 	    savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1342: 	  }
 1343: 	for(d=0; d<dh[mi][i]; d++){
 1344: 	  newm=savm;
 1345: 	  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1346: 	  for (kk=1; kk<=cptcovage;kk++) {
 1347: 	    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1348: 	  }
 1349: 	
 1350: 	  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1351: 		       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1352: 	  savm=oldm;
 1353: 	  oldm=newm;
 1354: 	} /* end mult */
 1355:       
 1356: 	s1=s[mw[mi][i]][i];
 1357: 	s2=s[mw[mi+1][i]][i];
 1358: 	lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 1359: 	ipmx +=1;
 1360: 	sw += weight[i];
 1361: 	ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1362: 	/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 1363:       } /* end of wave */
 1364:     } /* end of individual */
 1365:   } /* End of if */
 1366:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1367:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1368:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1369:   return -l;
 1370: }
 1371: 
 1372: /*************** log-likelihood *************/
 1373: double funcone( double *x)
 1374: {
 1375:   /* Same as likeli but slower because of a lot of printf and if */
 1376:   int i, ii, j, k, mi, d, kk;
 1377:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
 1378:   double **out;
 1379:   double lli; /* Individual log likelihood */
 1380:   double llt;
 1381:   int s1, s2;
 1382:   double bbh, survp;
 1383:   /*extern weight */
 1384:   /* We are differentiating ll according to initial status */
 1385:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 1386:   /*for(i=1;i<imx;i++) 
 1387:     printf(" %d\n",s[4][i]);
 1388:   */
 1389:   cov[1]=1.;
 1390: 
 1391:   for(k=1; k<=nlstate; k++) ll[k]=0.;
 1392: 
 1393:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 1394:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 1395:     for(mi=1; mi<= wav[i]-1; mi++){
 1396:       for (ii=1;ii<=nlstate+ndeath;ii++)
 1397: 	for (j=1;j<=nlstate+ndeath;j++){
 1398: 	  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 1399: 	  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 1400: 	}
 1401:       for(d=0; d<dh[mi][i]; d++){
 1402: 	newm=savm;
 1403: 	cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 1404: 	for (kk=1; kk<=cptcovage;kk++) {
 1405: 	  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 1406: 	}
 1407: 	out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 1408: 		     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 1409: 	savm=oldm;
 1410: 	oldm=newm;
 1411:       } /* end mult */
 1412:       
 1413:       s1=s[mw[mi][i]][i];
 1414:       s2=s[mw[mi+1][i]][i];
 1415:       bbh=(double)bh[mi][i]/(double)stepm; 
 1416:       /* bias is positive if real duration
 1417:        * is higher than the multiple of stepm and negative otherwise.
 1418:        */
 1419:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
 1420: 	lli=log(out[s1][s2] - savm[s1][s2]);
 1421:       } else if (mle==1){
 1422: 	lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 1423:       } else if(mle==2){
 1424: 	lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 1425:       } else if(mle==3){  /* exponential inter-extrapolation */
 1426: 	lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 1427:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
 1428: 	lli=log(out[s1][s2]); /* Original formula */
 1429:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 1430: 	lli=log(out[s1][s2]); /* Original formula */
 1431:       } /* End of if */
 1432:       ipmx +=1;
 1433:       sw += weight[i];
 1434:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 1435: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 1436:       if(globpr){
 1437: 	fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 1438:  %10.6f %10.6f %10.6f ", \
 1439: 		num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 1440: 		2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 1441: 	for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 1442: 	  llt +=ll[k]*gipmx/gsw;
 1443: 	  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 1444: 	}
 1445: 	fprintf(ficresilk," %10.6f\n", -llt);
 1446:       }
 1447:     } /* end of wave */
 1448:   } /* end of individual */
 1449:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 1450:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 1451:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 1452:   if(globpr==0){ /* First time we count the contributions and weights */
 1453:     gipmx=ipmx;
 1454:     gsw=sw;
 1455:   }
 1456:   return -l;
 1457: }
 1458: 
 1459: 
 1460: /*************** function likelione ***********/
 1461: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 1462: {
 1463:   /* This routine should help understanding what is done with 
 1464:      the selection of individuals/waves and
 1465:      to check the exact contribution to the likelihood.
 1466:      Plotting could be done.
 1467:    */
 1468:   int k;
 1469: 
 1470:   if(*globpri !=0){ /* Just counts and sums, no printings */
 1471:     strcpy(fileresilk,"ilk"); 
 1472:     strcat(fileresilk,fileres);
 1473:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 1474:       printf("Problem with resultfile: %s\n", fileresilk);
 1475:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 1476:     }
 1477:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 1478:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 1479:     /* 	i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 1480:     for(k=1; k<=nlstate; k++) 
 1481:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 1482:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 1483:   }
 1484: 
 1485:   *fretone=(*funcone)(p);
 1486:   if(*globpri !=0){
 1487:     fclose(ficresilk);
 1488:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 1489:     fflush(fichtm); 
 1490:   } 
 1491:   return;
 1492: }
 1493: 
 1494: 
 1495: /*********** Maximum Likelihood Estimation ***************/
 1496: 
 1497: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 1498: {
 1499:   int i,j, iter;
 1500:   double **xi;
 1501:   double fret;
 1502:   double fretone; /* Only one call to likelihood */
 1503:   char filerespow[FILENAMELENGTH];
 1504:   xi=matrix(1,npar,1,npar);
 1505:   for (i=1;i<=npar;i++)
 1506:     for (j=1;j<=npar;j++)
 1507:       xi[i][j]=(i==j ? 1.0 : 0.0);
 1508:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
 1509:   strcpy(filerespow,"pow"); 
 1510:   strcat(filerespow,fileres);
 1511:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
 1512:     printf("Problem with resultfile: %s\n", filerespow);
 1513:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 1514:   }
 1515:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
 1516:   for (i=1;i<=nlstate;i++)
 1517:     for(j=1;j<=nlstate+ndeath;j++)
 1518:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 1519:   fprintf(ficrespow,"\n");
 1520: 
 1521:   powell(p,xi,npar,ftol,&iter,&fret,func);
 1522: 
 1523:   fclose(ficrespow);
 1524:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 1525:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1526:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 1527: 
 1528: }
 1529: 
 1530: /**** Computes Hessian and covariance matrix ***/
 1531: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 1532: {
 1533:   double  **a,**y,*x,pd;
 1534:   double **hess;
 1535:   int i, j,jk;
 1536:   int *indx;
 1537: 
 1538:   double hessii(double p[], double delta, int theta, double delti[]);
 1539:   double hessij(double p[], double delti[], int i, int j);
 1540:   void lubksb(double **a, int npar, int *indx, double b[]) ;
 1541:   void ludcmp(double **a, int npar, int *indx, double *d) ;
 1542: 
 1543:   hess=matrix(1,npar,1,npar);
 1544: 
 1545:   printf("\nCalculation of the hessian matrix. Wait...\n");
 1546:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 1547:   for (i=1;i<=npar;i++){
 1548:     printf("%d",i);fflush(stdout);
 1549:     fprintf(ficlog,"%d",i);fflush(ficlog);
 1550:     hess[i][i]=hessii(p,ftolhess,i,delti);
 1551:     /*printf(" %f ",p[i]);*/
 1552:     /*printf(" %lf ",hess[i][i]);*/
 1553:   }
 1554:   
 1555:   for (i=1;i<=npar;i++) {
 1556:     for (j=1;j<=npar;j++)  {
 1557:       if (j>i) { 
 1558: 	printf(".%d%d",i,j);fflush(stdout);
 1559: 	fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 1560: 	hess[i][j]=hessij(p,delti,i,j);
 1561: 	hess[j][i]=hess[i][j];    
 1562: 	/*printf(" %lf ",hess[i][j]);*/
 1563:       }
 1564:     }
 1565:   }
 1566:   printf("\n");
 1567:   fprintf(ficlog,"\n");
 1568: 
 1569:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 1570:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 1571:   
 1572:   a=matrix(1,npar,1,npar);
 1573:   y=matrix(1,npar,1,npar);
 1574:   x=vector(1,npar);
 1575:   indx=ivector(1,npar);
 1576:   for (i=1;i<=npar;i++)
 1577:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 1578:   ludcmp(a,npar,indx,&pd);
 1579: 
 1580:   for (j=1;j<=npar;j++) {
 1581:     for (i=1;i<=npar;i++) x[i]=0;
 1582:     x[j]=1;
 1583:     lubksb(a,npar,indx,x);
 1584:     for (i=1;i<=npar;i++){ 
 1585:       matcov[i][j]=x[i];
 1586:     }
 1587:   }
 1588: 
 1589:   printf("\n#Hessian matrix#\n");
 1590:   fprintf(ficlog,"\n#Hessian matrix#\n");
 1591:   for (i=1;i<=npar;i++) { 
 1592:     for (j=1;j<=npar;j++) { 
 1593:       printf("%.3e ",hess[i][j]);
 1594:       fprintf(ficlog,"%.3e ",hess[i][j]);
 1595:     }
 1596:     printf("\n");
 1597:     fprintf(ficlog,"\n");
 1598:   }
 1599: 
 1600:   /* Recompute Inverse */
 1601:   for (i=1;i<=npar;i++)
 1602:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 1603:   ludcmp(a,npar,indx,&pd);
 1604: 
 1605:   /*  printf("\n#Hessian matrix recomputed#\n");
 1606: 
 1607:   for (j=1;j<=npar;j++) {
 1608:     for (i=1;i<=npar;i++) x[i]=0;
 1609:     x[j]=1;
 1610:     lubksb(a,npar,indx,x);
 1611:     for (i=1;i<=npar;i++){ 
 1612:       y[i][j]=x[i];
 1613:       printf("%.3e ",y[i][j]);
 1614:       fprintf(ficlog,"%.3e ",y[i][j]);
 1615:     }
 1616:     printf("\n");
 1617:     fprintf(ficlog,"\n");
 1618:   }
 1619:   */
 1620: 
 1621:   free_matrix(a,1,npar,1,npar);
 1622:   free_matrix(y,1,npar,1,npar);
 1623:   free_vector(x,1,npar);
 1624:   free_ivector(indx,1,npar);
 1625:   free_matrix(hess,1,npar,1,npar);
 1626: 
 1627: 
 1628: }
 1629: 
 1630: /*************** hessian matrix ****************/
 1631: double hessii( double x[], double delta, int theta, double delti[])
 1632: {
 1633:   int i;
 1634:   int l=1, lmax=20;
 1635:   double k1,k2;
 1636:   double p2[NPARMAX+1];
 1637:   double res;
 1638:   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 1639:   double fx;
 1640:   int k=0,kmax=10;
 1641:   double l1;
 1642: 
 1643:   fx=func(x);
 1644:   for (i=1;i<=npar;i++) p2[i]=x[i];
 1645:   for(l=0 ; l <=lmax; l++){
 1646:     l1=pow(10,l);
 1647:     delts=delt;
 1648:     for(k=1 ; k <kmax; k=k+1){
 1649:       delt = delta*(l1*k);
 1650:       p2[theta]=x[theta] +delt;
 1651:       k1=func(p2)-fx;
 1652:       p2[theta]=x[theta]-delt;
 1653:       k2=func(p2)-fx;
 1654:       /*res= (k1-2.0*fx+k2)/delt/delt; */
 1655:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 1656:       
 1657: #ifdef DEBUG
 1658:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1659:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 1660: #endif
 1661:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 1662:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 1663: 	k=kmax;
 1664:       }
 1665:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 1666: 	k=kmax; l=lmax*10.;
 1667:       }
 1668:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 1669: 	delts=delt;
 1670:       }
 1671:     }
 1672:   }
 1673:   delti[theta]=delts;
 1674:   return res; 
 1675:   
 1676: }
 1677: 
 1678: double hessij( double x[], double delti[], int thetai,int thetaj)
 1679: {
 1680:   int i;
 1681:   int l=1, l1, lmax=20;
 1682:   double k1,k2,k3,k4,res,fx;
 1683:   double p2[NPARMAX+1];
 1684:   int k;
 1685: 
 1686:   fx=func(x);
 1687:   for (k=1; k<=2; k++) {
 1688:     for (i=1;i<=npar;i++) p2[i]=x[i];
 1689:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1690:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1691:     k1=func(p2)-fx;
 1692:   
 1693:     p2[thetai]=x[thetai]+delti[thetai]/k;
 1694:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1695:     k2=func(p2)-fx;
 1696:   
 1697:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1698:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 1699:     k3=func(p2)-fx;
 1700:   
 1701:     p2[thetai]=x[thetai]-delti[thetai]/k;
 1702:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 1703:     k4=func(p2)-fx;
 1704:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 1705: #ifdef DEBUG
 1706:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1707:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 1708: #endif
 1709:   }
 1710:   return res;
 1711: }
 1712: 
 1713: /************** Inverse of matrix **************/
 1714: void ludcmp(double **a, int n, int *indx, double *d) 
 1715: { 
 1716:   int i,imax,j,k; 
 1717:   double big,dum,sum,temp; 
 1718:   double *vv; 
 1719:  
 1720:   vv=vector(1,n); 
 1721:   *d=1.0; 
 1722:   for (i=1;i<=n;i++) { 
 1723:     big=0.0; 
 1724:     for (j=1;j<=n;j++) 
 1725:       if ((temp=fabs(a[i][j])) > big) big=temp; 
 1726:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 1727:     vv[i]=1.0/big; 
 1728:   } 
 1729:   for (j=1;j<=n;j++) { 
 1730:     for (i=1;i<j;i++) { 
 1731:       sum=a[i][j]; 
 1732:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 1733:       a[i][j]=sum; 
 1734:     } 
 1735:     big=0.0; 
 1736:     for (i=j;i<=n;i++) { 
 1737:       sum=a[i][j]; 
 1738:       for (k=1;k<j;k++) 
 1739: 	sum -= a[i][k]*a[k][j]; 
 1740:       a[i][j]=sum; 
 1741:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
 1742: 	big=dum; 
 1743: 	imax=i; 
 1744:       } 
 1745:     } 
 1746:     if (j != imax) { 
 1747:       for (k=1;k<=n;k++) { 
 1748: 	dum=a[imax][k]; 
 1749: 	a[imax][k]=a[j][k]; 
 1750: 	a[j][k]=dum; 
 1751:       } 
 1752:       *d = -(*d); 
 1753:       vv[imax]=vv[j]; 
 1754:     } 
 1755:     indx[j]=imax; 
 1756:     if (a[j][j] == 0.0) a[j][j]=TINY; 
 1757:     if (j != n) { 
 1758:       dum=1.0/(a[j][j]); 
 1759:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 1760:     } 
 1761:   } 
 1762:   free_vector(vv,1,n);  /* Doesn't work */
 1763: ;
 1764: } 
 1765: 
 1766: void lubksb(double **a, int n, int *indx, double b[]) 
 1767: { 
 1768:   int i,ii=0,ip,j; 
 1769:   double sum; 
 1770:  
 1771:   for (i=1;i<=n;i++) { 
 1772:     ip=indx[i]; 
 1773:     sum=b[ip]; 
 1774:     b[ip]=b[i]; 
 1775:     if (ii) 
 1776:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 1777:     else if (sum) ii=i; 
 1778:     b[i]=sum; 
 1779:   } 
 1780:   for (i=n;i>=1;i--) { 
 1781:     sum=b[i]; 
 1782:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 1783:     b[i]=sum/a[i][i]; 
 1784:   } 
 1785: } 
 1786: 
 1787: /************ Frequencies ********************/
 1788: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
 1789: {  /* Some frequencies */
 1790:   
 1791:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 1792:   int first;
 1793:   double ***freq; /* Frequencies */
 1794:   double *pp, **prop;
 1795:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
 1796:   FILE *ficresp;
 1797:   char fileresp[FILENAMELENGTH];
 1798:   
 1799:   pp=vector(1,nlstate);
 1800:   prop=matrix(1,nlstate,iagemin,iagemax+3);
 1801:   strcpy(fileresp,"p");
 1802:   strcat(fileresp,fileres);
 1803:   if((ficresp=fopen(fileresp,"w"))==NULL) {
 1804:     printf("Problem with prevalence resultfile: %s\n", fileresp);
 1805:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 1806:     exit(0);
 1807:   }
 1808:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
 1809:   j1=0;
 1810:   
 1811:   j=cptcoveff;
 1812:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1813: 
 1814:   first=1;
 1815: 
 1816:   for(k1=1; k1<=j;k1++){
 1817:     for(i1=1; i1<=ncodemax[k1];i1++){
 1818:       j1++;
 1819:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 1820: 	scanf("%d", i);*/
 1821:       for (i=-1; i<=nlstate+ndeath; i++)  
 1822: 	for (jk=-1; jk<=nlstate+ndeath; jk++)  
 1823: 	  for(m=iagemin; m <= iagemax+3; m++)
 1824: 	    freq[i][jk][m]=0;
 1825: 
 1826:     for (i=1; i<=nlstate; i++)  
 1827:       for(m=iagemin; m <= iagemax+3; m++)
 1828: 	prop[i][m]=0;
 1829:       
 1830:       dateintsum=0;
 1831:       k2cpt=0;
 1832:       for (i=1; i<=imx; i++) {
 1833: 	bool=1;
 1834: 	if  (cptcovn>0) {
 1835: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1836: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1837: 	      bool=0;
 1838: 	}
 1839: 	if (bool==1){
 1840: 	  for(m=firstpass; m<=lastpass; m++){
 1841: 	    k2=anint[m][i]+(mint[m][i]/12.);
 1842: 	    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 1843: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1844: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1845: 	      if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 1846: 	      if (m<lastpass) {
 1847: 		freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 1848: 		freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 1849: 	      }
 1850: 	      
 1851: 	      if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 1852: 		dateintsum=dateintsum+k2;
 1853: 		k2cpt++;
 1854: 	      }
 1855: 	      /*}*/
 1856: 	  }
 1857: 	}
 1858:       }
 1859:        
 1860:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 1861: 
 1862:       if  (cptcovn>0) {
 1863: 	fprintf(ficresp, "\n#********** Variable "); 
 1864: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 1865: 	fprintf(ficresp, "**********\n#");
 1866:       }
 1867:       for(i=1; i<=nlstate;i++) 
 1868: 	fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 1869:       fprintf(ficresp, "\n");
 1870:       
 1871:       for(i=iagemin; i <= iagemax+3; i++){
 1872: 	if(i==iagemax+3){
 1873: 	  fprintf(ficlog,"Total");
 1874: 	}else{
 1875: 	  if(first==1){
 1876: 	    first=0;
 1877: 	    printf("See log file for details...\n");
 1878: 	  }
 1879: 	  fprintf(ficlog,"Age %d", i);
 1880: 	}
 1881: 	for(jk=1; jk <=nlstate ; jk++){
 1882: 	  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 1883: 	    pp[jk] += freq[jk][m][i]; 
 1884: 	}
 1885: 	for(jk=1; jk <=nlstate ; jk++){
 1886: 	  for(m=-1, pos=0; m <=0 ; m++)
 1887: 	    pos += freq[jk][m][i];
 1888: 	  if(pp[jk]>=1.e-10){
 1889: 	    if(first==1){
 1890: 	    printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1891: 	    }
 1892: 	    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 1893: 	  }else{
 1894: 	    if(first==1)
 1895: 	      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1896: 	    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 1897: 	  }
 1898: 	}
 1899: 
 1900: 	for(jk=1; jk <=nlstate ; jk++){
 1901: 	  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 1902: 	    pp[jk] += freq[jk][m][i];
 1903: 	}	
 1904: 	for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 1905: 	  pos += pp[jk];
 1906: 	  posprop += prop[jk][i];
 1907: 	}
 1908: 	for(jk=1; jk <=nlstate ; jk++){
 1909: 	  if(pos>=1.e-5){
 1910: 	    if(first==1)
 1911: 	      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1912: 	    fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 1913: 	  }else{
 1914: 	    if(first==1)
 1915: 	      printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1916: 	    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 1917: 	  }
 1918: 	  if( i <= iagemax){
 1919: 	    if(pos>=1.e-5){
 1920: 	      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 1921: 	      /*probs[i][jk][j1]= pp[jk]/pos;*/
 1922: 	      /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 1923: 	    }
 1924: 	    else
 1925: 	      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 1926: 	  }
 1927: 	}
 1928: 	
 1929: 	for(jk=-1; jk <=nlstate+ndeath; jk++)
 1930: 	  for(m=-1; m <=nlstate+ndeath; m++)
 1931: 	    if(freq[jk][m][i] !=0 ) {
 1932: 	    if(first==1)
 1933: 	      printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 1934: 	      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 1935: 	    }
 1936: 	if(i <= iagemax)
 1937: 	  fprintf(ficresp,"\n");
 1938: 	if(first==1)
 1939: 	  printf("Others in log...\n");
 1940: 	fprintf(ficlog,"\n");
 1941:       }
 1942:     }
 1943:   }
 1944:   dateintmean=dateintsum/k2cpt; 
 1945:  
 1946:   fclose(ficresp);
 1947:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
 1948:   free_vector(pp,1,nlstate);
 1949:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 1950:   /* End of Freq */
 1951: }
 1952: 
 1953: /************ Prevalence ********************/
 1954: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 1955: {  
 1956:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 1957:      in each health status at the date of interview (if between dateprev1 and dateprev2).
 1958:      We still use firstpass and lastpass as another selection.
 1959:   */
 1960:  
 1961:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 1962:   double ***freq; /* Frequencies */
 1963:   double *pp, **prop;
 1964:   double pos,posprop; 
 1965:   double  y2; /* in fractional years */
 1966:   int iagemin, iagemax;
 1967: 
 1968:   iagemin= (int) agemin;
 1969:   iagemax= (int) agemax;
 1970:   /*pp=vector(1,nlstate);*/
 1971:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
 1972:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 1973:   j1=0;
 1974:   
 1975:   j=cptcoveff;
 1976:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
 1977:   
 1978:   for(k1=1; k1<=j;k1++){
 1979:     for(i1=1; i1<=ncodemax[k1];i1++){
 1980:       j1++;
 1981:       
 1982:       for (i=1; i<=nlstate; i++)  
 1983: 	for(m=iagemin; m <= iagemax+3; m++)
 1984: 	  prop[i][m]=0.0;
 1985:      
 1986:       for (i=1; i<=imx; i++) { /* Each individual */
 1987: 	bool=1;
 1988: 	if  (cptcovn>0) {
 1989: 	  for (z1=1; z1<=cptcoveff; z1++) 
 1990: 	    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 1991: 	      bool=0;
 1992: 	} 
 1993: 	if (bool==1) { 
 1994: 	  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 1995: 	    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 1996: 	    if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 1997: 	      if(agev[m][i]==0) agev[m][i]=iagemax+1;
 1998: 	      if(agev[m][i]==1) agev[m][i]=iagemax+2;
 1999: 	      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 2000:  	      if (s[m][i]>0 && s[m][i]<=nlstate) { 
 2001: 		/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 2002:  		prop[s[m][i]][(int)agev[m][i]] += weight[i];
 2003:  		prop[s[m][i]][iagemax+3] += weight[i]; 
 2004:  	      } 
 2005: 	    }
 2006: 	  } /* end selection of waves */
 2007: 	}
 2008:       }
 2009:       for(i=iagemin; i <= iagemax+3; i++){  
 2010: 	
 2011:  	for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 2012:  	  posprop += prop[jk][i]; 
 2013:  	} 
 2014: 
 2015:  	for(jk=1; jk <=nlstate ; jk++){	    
 2016:  	  if( i <=  iagemax){ 
 2017:  	    if(posprop>=1.e-5){ 
 2018:  	      probs[i][jk][j1]= prop[jk][i]/posprop;
 2019:  	    } 
 2020:  	  } 
 2021:  	}/* end jk */ 
 2022:       }/* end i */ 
 2023:     } /* end i1 */
 2024:   } /* end k1 */
 2025:   
 2026:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 2027:   /*free_vector(pp,1,nlstate);*/
 2028:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 2029: }  /* End of prevalence */
 2030: 
 2031: /************* Waves Concatenation ***************/
 2032: 
 2033: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 2034: {
 2035:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 2036:      Death is a valid wave (if date is known).
 2037:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 2038:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 2039:      and mw[mi+1][i]. dh depends on stepm.
 2040:      */
 2041: 
 2042:   int i, mi, m;
 2043:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 2044:      double sum=0., jmean=0.;*/
 2045:   int first;
 2046:   int j, k=0,jk, ju, jl;
 2047:   double sum=0.;
 2048:   first=0;
 2049:   jmin=1e+5;
 2050:   jmax=-1;
 2051:   jmean=0.;
 2052:   for(i=1; i<=imx; i++){
 2053:     mi=0;
 2054:     m=firstpass;
 2055:     while(s[m][i] <= nlstate){
 2056:       if(s[m][i]>=1)
 2057: 	mw[++mi][i]=m;
 2058:       if(m >=lastpass)
 2059: 	break;
 2060:       else
 2061: 	m++;
 2062:     }/* end while */
 2063:     if (s[m][i] > nlstate){
 2064:       mi++;	/* Death is another wave */
 2065:       /* if(mi==0)  never been interviewed correctly before death */
 2066: 	 /* Only death is a correct wave */
 2067:       mw[mi][i]=m;
 2068:     }
 2069: 
 2070:     wav[i]=mi;
 2071:     if(mi==0){
 2072:       nbwarn++;
 2073:       if(first==0){
 2074: 	printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 2075: 	first=1;
 2076:       }
 2077:       if(first==1){
 2078: 	fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
 2079:       }
 2080:     } /* end mi==0 */
 2081:   } /* End individuals */
 2082: 
 2083:   for(i=1; i<=imx; i++){
 2084:     for(mi=1; mi<wav[i];mi++){
 2085:       if (stepm <=0)
 2086: 	dh[mi][i]=1;
 2087:       else{
 2088: 	if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 2089: 	  if (agedc[i] < 2*AGESUP) {
 2090: 	    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 2091: 	    if(j==0) j=1;  /* Survives at least one month after exam */
 2092: 	    else if(j<0){
 2093: 	      nberr++;
 2094: 	      printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2095: 	      j=1; /* Temporary Dangerous patch */
 2096: 	      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2097: 	      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2098: 	      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 2099: 	    }
 2100: 	    k=k+1;
 2101: 	    if (j >= jmax) jmax=j;
 2102: 	    if (j <= jmin) jmin=j;
 2103: 	    sum=sum+j;
 2104: 	    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 2105: 	    /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2106: 	  }
 2107: 	}
 2108: 	else{
 2109: 	  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 2110: 	  /*	  printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 2111: 	  k=k+1;
 2112: 	  if (j >= jmax) jmax=j;
 2113: 	  else if (j <= jmin)jmin=j;
 2114: 	  /*	    if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 2115: 	  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 2116: 	  if(j<0){
 2117: 	    nberr++;
 2118: 	    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2119: 	    fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 2120: 	  }
 2121: 	  sum=sum+j;
 2122: 	}
 2123: 	jk= j/stepm;
 2124: 	jl= j -jk*stepm;
 2125: 	ju= j -(jk+1)*stepm;
 2126: 	if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 2127: 	  if(jl==0){
 2128: 	    dh[mi][i]=jk;
 2129: 	    bh[mi][i]=0;
 2130: 	  }else{ /* We want a negative bias in order to only have interpolation ie
 2131: 		  * at the price of an extra matrix product in likelihood */
 2132: 	    dh[mi][i]=jk+1;
 2133: 	    bh[mi][i]=ju;
 2134: 	  }
 2135: 	}else{
 2136: 	  if(jl <= -ju){
 2137: 	    dh[mi][i]=jk;
 2138: 	    bh[mi][i]=jl;	/* bias is positive if real duration
 2139: 				 * is higher than the multiple of stepm and negative otherwise.
 2140: 				 */
 2141: 	  }
 2142: 	  else{
 2143: 	    dh[mi][i]=jk+1;
 2144: 	    bh[mi][i]=ju;
 2145: 	  }
 2146: 	  if(dh[mi][i]==0){
 2147: 	    dh[mi][i]=1; /* At least one step */
 2148: 	    bh[mi][i]=ju; /* At least one step */
 2149: 	    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 2150: 	  }
 2151: 	} /* end if mle */
 2152:       }
 2153:     } /* end wave */
 2154:   }
 2155:   jmean=sum/k;
 2156:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2157:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 2158:  }
 2159: 
 2160: /*********** Tricode ****************************/
 2161: void tricode(int *Tvar, int **nbcode, int imx)
 2162: {
 2163:   
 2164:   int Ndum[20],ij=1, k, j, i, maxncov=19;
 2165:   int cptcode=0;
 2166:   cptcoveff=0; 
 2167:  
 2168:   for (k=0; k<maxncov; k++) Ndum[k]=0;
 2169:   for (k=1; k<=7; k++) ncodemax[k]=0;
 2170: 
 2171:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 2172:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 2173: 			       modality*/ 
 2174:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 2175:       Ndum[ij]++; /*store the modality */
 2176:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 2177:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 2178: 				       Tvar[j]. If V=sex and male is 0 and 
 2179: 				       female is 1, then  cptcode=1.*/
 2180:     }
 2181: 
 2182:     for (i=0; i<=cptcode; i++) {
 2183:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 2184:     }
 2185: 
 2186:     ij=1; 
 2187:     for (i=1; i<=ncodemax[j]; i++) {
 2188:       for (k=0; k<= maxncov; k++) {
 2189: 	if (Ndum[k] != 0) {
 2190: 	  nbcode[Tvar[j]][ij]=k; 
 2191: 	  /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 2192: 	  
 2193: 	  ij++;
 2194: 	}
 2195: 	if (ij > ncodemax[j]) break; 
 2196:       }  
 2197:     } 
 2198:   }  
 2199: 
 2200:  for (k=0; k< maxncov; k++) Ndum[k]=0;
 2201: 
 2202:  for (i=1; i<=ncovmodel-2; i++) { 
 2203:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 2204:    ij=Tvar[i];
 2205:    Ndum[ij]++;
 2206:  }
 2207: 
 2208:  ij=1;
 2209:  for (i=1; i<= maxncov; i++) {
 2210:    if((Ndum[i]!=0) && (i<=ncovcol)){
 2211:      Tvaraff[ij]=i; /*For printing */
 2212:      ij++;
 2213:    }
 2214:  }
 2215:  
 2216:  cptcoveff=ij-1; /*Number of simple covariates*/
 2217: }
 2218: 
 2219: /*********** Health Expectancies ****************/
 2220: 
 2221: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 2222: 
 2223: {
 2224:   /* Health expectancies */
 2225:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
 2226:   double age, agelim, hf;
 2227:   double ***p3mat,***varhe;
 2228:   double **dnewm,**doldm;
 2229:   double *xp;
 2230:   double **gp, **gm;
 2231:   double ***gradg, ***trgradg;
 2232:   int theta;
 2233: 
 2234:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 2235:   xp=vector(1,npar);
 2236:   dnewm=matrix(1,nlstate*nlstate,1,npar);
 2237:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 2238:   
 2239:   fprintf(ficreseij,"# Health expectancies\n");
 2240:   fprintf(ficreseij,"# Age");
 2241:   for(i=1; i<=nlstate;i++)
 2242:     for(j=1; j<=nlstate;j++)
 2243:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
 2244:   fprintf(ficreseij,"\n");
 2245: 
 2246:   if(estepm < stepm){
 2247:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2248:   }
 2249:   else  hstepm=estepm;   
 2250:   /* We compute the life expectancy from trapezoids spaced every estepm months
 2251:    * This is mainly to measure the difference between two models: for example
 2252:    * if stepm=24 months pijx are given only every 2 years and by summing them
 2253:    * we are calculating an estimate of the Life Expectancy assuming a linear 
 2254:    * progression in between and thus overestimating or underestimating according
 2255:    * to the curvature of the survival function. If, for the same date, we 
 2256:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
 2257:    * to compare the new estimate of Life expectancy with the same linear 
 2258:    * hypothesis. A more precise result, taking into account a more precise
 2259:    * curvature will be obtained if estepm is as small as stepm. */
 2260: 
 2261:   /* For example we decided to compute the life expectancy with the smallest unit */
 2262:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2263:      nhstepm is the number of hstepm from age to agelim 
 2264:      nstepm is the number of stepm from age to agelin. 
 2265:      Look at hpijx to understand the reason of that which relies in memory size
 2266:      and note for a fixed period like estepm months */
 2267:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2268:      survival function given by stepm (the optimization length). Unfortunately it
 2269:      means that if the survival funtion is printed only each two years of age and if
 2270:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2271:      results. So we changed our mind and took the option of the best precision.
 2272:   */
 2273:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2274: 
 2275:   agelim=AGESUP;
 2276:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2277:     /* nhstepm age range expressed in number of stepm */
 2278:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 2279:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 2280:     /* if (stepm >= YEARM) hstepm=1;*/
 2281:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2282:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2283:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 2284:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 2285:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 2286: 
 2287:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
 2288:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 2289:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
 2290:  
 2291: 
 2292:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2293: 
 2294:     /* Computing Variances of health expectancies */
 2295: 
 2296:      for(theta=1; theta <=npar; theta++){
 2297:       for(i=1; i<=npar; i++){ 
 2298: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2299:       }
 2300:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2301:   
 2302:       cptj=0;
 2303:       for(j=1; j<= nlstate; j++){
 2304: 	for(i=1; i<=nlstate; i++){
 2305: 	  cptj=cptj+1;
 2306: 	  for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 2307: 	    gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2308: 	  }
 2309: 	}
 2310:       }
 2311:      
 2312:      
 2313:       for(i=1; i<=npar; i++) 
 2314: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2315:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2316:       
 2317:       cptj=0;
 2318:       for(j=1; j<= nlstate; j++){
 2319: 	for(i=1;i<=nlstate;i++){
 2320: 	  cptj=cptj+1;
 2321: 	  for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 2322: 
 2323: 	    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 2324: 	  }
 2325: 	}
 2326:       }
 2327:       for(j=1; j<= nlstate*nlstate; j++)
 2328: 	for(h=0; h<=nhstepm-1; h++){
 2329: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2330: 	}
 2331:      } 
 2332:    
 2333: /* End theta */
 2334: 
 2335:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 2336: 
 2337:      for(h=0; h<=nhstepm-1; h++)
 2338:       for(j=1; j<=nlstate*nlstate;j++)
 2339: 	for(theta=1; theta <=npar; theta++)
 2340: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2341:      
 2342: 
 2343:      for(i=1;i<=nlstate*nlstate;i++)
 2344:       for(j=1;j<=nlstate*nlstate;j++)
 2345: 	varhe[i][j][(int)age] =0.;
 2346: 
 2347:      printf("%d|",(int)age);fflush(stdout);
 2348:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 2349:      for(h=0;h<=nhstepm-1;h++){
 2350:       for(k=0;k<=nhstepm-1;k++){
 2351: 	matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 2352: 	matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 2353: 	for(i=1;i<=nlstate*nlstate;i++)
 2354: 	  for(j=1;j<=nlstate*nlstate;j++)
 2355: 	    varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 2356:       }
 2357:     }
 2358:     /* Computing expectancies */
 2359:     for(i=1; i<=nlstate;i++)
 2360:       for(j=1; j<=nlstate;j++)
 2361: 	for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 2362: 	  eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 2363: 	  
 2364: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 2365: 
 2366: 	}
 2367: 
 2368:     fprintf(ficreseij,"%3.0f",age );
 2369:     cptj=0;
 2370:     for(i=1; i<=nlstate;i++)
 2371:       for(j=1; j<=nlstate;j++){
 2372: 	cptj++;
 2373: 	fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
 2374:       }
 2375:     fprintf(ficreseij,"\n");
 2376:    
 2377:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 2378:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 2379:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 2380:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 2381:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2382:   }
 2383:   printf("\n");
 2384:   fprintf(ficlog,"\n");
 2385: 
 2386:   free_vector(xp,1,npar);
 2387:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 2388:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 2389:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 2390: }
 2391: 
 2392: /************ Variance ******************/
 2393: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 2394: {
 2395:   /* Variance of health expectancies */
 2396:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 2397:   /* double **newm;*/
 2398:   double **dnewm,**doldm;
 2399:   double **dnewmp,**doldmp;
 2400:   int i, j, nhstepm, hstepm, h, nstepm ;
 2401:   int k, cptcode;
 2402:   double *xp;
 2403:   double **gp, **gm;  /* for var eij */
 2404:   double ***gradg, ***trgradg; /*for var eij */
 2405:   double **gradgp, **trgradgp; /* for var p point j */
 2406:   double *gpp, *gmp; /* for var p point j */
 2407:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 2408:   double ***p3mat;
 2409:   double age,agelim, hf;
 2410:   double ***mobaverage;
 2411:   int theta;
 2412:   char digit[4];
 2413:   char digitp[25];
 2414: 
 2415:   char fileresprobmorprev[FILENAMELENGTH];
 2416: 
 2417:   if(popbased==1){
 2418:     if(mobilav!=0)
 2419:       strcpy(digitp,"-populbased-mobilav-");
 2420:     else strcpy(digitp,"-populbased-nomobil-");
 2421:   }
 2422:   else 
 2423:     strcpy(digitp,"-stablbased-");
 2424: 
 2425:   if (mobilav!=0) {
 2426:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2427:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 2428:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 2429:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 2430:     }
 2431:   }
 2432: 
 2433:   strcpy(fileresprobmorprev,"prmorprev"); 
 2434:   sprintf(digit,"%-d",ij);
 2435:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 2436:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
 2437:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 2438:   strcat(fileresprobmorprev,fileres);
 2439:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 2440:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
 2441:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 2442:   }
 2443:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2444:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 2445:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 2446:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 2447:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2448:     fprintf(ficresprobmorprev," p.%-d SE",j);
 2449:     for(i=1; i<=nlstate;i++)
 2450:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 2451:   }  
 2452:   fprintf(ficresprobmorprev,"\n");
 2453:   fprintf(ficgp,"\n# Routine varevsij");
 2454:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 2455:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 2456: /*   } */
 2457:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2458: 
 2459:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 2460:   fprintf(ficresvij,"# Age");
 2461:   for(i=1; i<=nlstate;i++)
 2462:     for(j=1; j<=nlstate;j++)
 2463:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 2464:   fprintf(ficresvij,"\n");
 2465: 
 2466:   xp=vector(1,npar);
 2467:   dnewm=matrix(1,nlstate,1,npar);
 2468:   doldm=matrix(1,nlstate,1,nlstate);
 2469:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 2470:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2471: 
 2472:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 2473:   gpp=vector(nlstate+1,nlstate+ndeath);
 2474:   gmp=vector(nlstate+1,nlstate+ndeath);
 2475:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2476:   
 2477:   if(estepm < stepm){
 2478:     printf ("Problem %d lower than %d\n",estepm, stepm);
 2479:   }
 2480:   else  hstepm=estepm;   
 2481:   /* For example we decided to compute the life expectancy with the smallest unit */
 2482:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 2483:      nhstepm is the number of hstepm from age to agelim 
 2484:      nstepm is the number of stepm from age to agelin. 
 2485:      Look at hpijx to understand the reason of that which relies in memory size
 2486:      and note for a fixed period like k years */
 2487:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 2488:      survival function given by stepm (the optimization length). Unfortunately it
 2489:      means that if the survival funtion is printed every two years of age and if
 2490:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 2491:      results. So we changed our mind and took the option of the best precision.
 2492:   */
 2493:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 2494:   agelim = AGESUP;
 2495:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2496:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2497:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 2498:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2499:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
 2500:     gp=matrix(0,nhstepm,1,nlstate);
 2501:     gm=matrix(0,nhstepm,1,nlstate);
 2502: 
 2503: 
 2504:     for(theta=1; theta <=npar; theta++){
 2505:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 2506: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2507:       }
 2508:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2509:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2510: 
 2511:       if (popbased==1) {
 2512: 	if(mobilav ==0){
 2513: 	  for(i=1; i<=nlstate;i++)
 2514: 	    prlim[i][i]=probs[(int)age][i][ij];
 2515: 	}else{ /* mobilav */ 
 2516: 	  for(i=1; i<=nlstate;i++)
 2517: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2518: 	}
 2519:       }
 2520:   
 2521:       for(j=1; j<= nlstate; j++){
 2522: 	for(h=0; h<=nhstepm; h++){
 2523: 	  for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 2524: 	    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 2525: 	}
 2526:       }
 2527:       /* This for computing probability of death (h=1 means
 2528:          computed over hstepm matrices product = hstepm*stepm months) 
 2529:          as a weighted average of prlim.
 2530:       */
 2531:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2532: 	for(i=1,gpp[j]=0.; i<= nlstate; i++)
 2533: 	  gpp[j] += prlim[i][i]*p3mat[i][j][1];
 2534:       }    
 2535:       /* end probability of death */
 2536: 
 2537:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 2538: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2539:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 2540:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2541:  
 2542:       if (popbased==1) {
 2543: 	if(mobilav ==0){
 2544: 	  for(i=1; i<=nlstate;i++)
 2545: 	    prlim[i][i]=probs[(int)age][i][ij];
 2546: 	}else{ /* mobilav */ 
 2547: 	  for(i=1; i<=nlstate;i++)
 2548: 	    prlim[i][i]=mobaverage[(int)age][i][ij];
 2549: 	}
 2550:       }
 2551: 
 2552:       for(j=1; j<= nlstate; j++){
 2553: 	for(h=0; h<=nhstepm; h++){
 2554: 	  for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 2555: 	    gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 2556: 	}
 2557:       }
 2558:       /* This for computing probability of death (h=1 means
 2559:          computed over hstepm matrices product = hstepm*stepm months) 
 2560:          as a weighted average of prlim.
 2561:       */
 2562:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2563: 	for(i=1,gmp[j]=0.; i<= nlstate; i++)
 2564:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 2565:       }    
 2566:       /* end probability of death */
 2567: 
 2568:       for(j=1; j<= nlstate; j++) /* vareij */
 2569: 	for(h=0; h<=nhstepm; h++){
 2570: 	  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 2571: 	}
 2572: 
 2573:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 2574: 	gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 2575:       }
 2576: 
 2577:     } /* End theta */
 2578: 
 2579:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 2580: 
 2581:     for(h=0; h<=nhstepm; h++) /* veij */
 2582:       for(j=1; j<=nlstate;j++)
 2583: 	for(theta=1; theta <=npar; theta++)
 2584: 	  trgradg[h][j][theta]=gradg[h][theta][j];
 2585: 
 2586:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 2587:       for(theta=1; theta <=npar; theta++)
 2588: 	trgradgp[j][theta]=gradgp[theta][j];
 2589:   
 2590: 
 2591:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 2592:     for(i=1;i<=nlstate;i++)
 2593:       for(j=1;j<=nlstate;j++)
 2594: 	vareij[i][j][(int)age] =0.;
 2595: 
 2596:     for(h=0;h<=nhstepm;h++){
 2597:       for(k=0;k<=nhstepm;k++){
 2598: 	matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 2599: 	matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 2600: 	for(i=1;i<=nlstate;i++)
 2601: 	  for(j=1;j<=nlstate;j++)
 2602: 	    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 2603:       }
 2604:     }
 2605:   
 2606:     /* pptj */
 2607:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 2608:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 2609:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
 2610:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
 2611: 	varppt[j][i]=doldmp[j][i];
 2612:     /* end ppptj */
 2613:     /*  x centered again */
 2614:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 2615:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 2616:  
 2617:     if (popbased==1) {
 2618:       if(mobilav ==0){
 2619: 	for(i=1; i<=nlstate;i++)
 2620: 	  prlim[i][i]=probs[(int)age][i][ij];
 2621:       }else{ /* mobilav */ 
 2622: 	for(i=1; i<=nlstate;i++)
 2623: 	  prlim[i][i]=mobaverage[(int)age][i][ij];
 2624:       }
 2625:     }
 2626:              
 2627:     /* This for computing probability of death (h=1 means
 2628:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 2629:        as a weighted average of prlim.
 2630:     */
 2631:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
 2632:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 2633: 	gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 2634:     }    
 2635:     /* end probability of death */
 2636: 
 2637:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 2638:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 2639:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 2640:       for(i=1; i<=nlstate;i++){
 2641: 	fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 2642:       }
 2643:     } 
 2644:     fprintf(ficresprobmorprev,"\n");
 2645: 
 2646:     fprintf(ficresvij,"%.0f ",age );
 2647:     for(i=1; i<=nlstate;i++)
 2648:       for(j=1; j<=nlstate;j++){
 2649: 	fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 2650:       }
 2651:     fprintf(ficresvij,"\n");
 2652:     free_matrix(gp,0,nhstepm,1,nlstate);
 2653:     free_matrix(gm,0,nhstepm,1,nlstate);
 2654:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 2655:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 2656:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 2657:   } /* End age */
 2658:   free_vector(gpp,nlstate+1,nlstate+ndeath);
 2659:   free_vector(gmp,nlstate+1,nlstate+ndeath);
 2660:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 2661:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 2662:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 2663:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 2664:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 2665: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 2666: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2667: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 2668:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 2669:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 2670:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
 2671:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 2672:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2673:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 2674: */
 2675: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
 2676:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 2677: 
 2678:   free_vector(xp,1,npar);
 2679:   free_matrix(doldm,1,nlstate,1,nlstate);
 2680:   free_matrix(dnewm,1,nlstate,1,npar);
 2681:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2682:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 2683:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 2684:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 2685:   fclose(ficresprobmorprev);
 2686:   fflush(ficgp);
 2687:   fflush(fichtm); 
 2688: }  /* end varevsij */
 2689: 
 2690: /************ Variance of prevlim ******************/
 2691: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 2692: {
 2693:   /* Variance of prevalence limit */
 2694:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 2695:   double **newm;
 2696:   double **dnewm,**doldm;
 2697:   int i, j, nhstepm, hstepm;
 2698:   int k, cptcode;
 2699:   double *xp;
 2700:   double *gp, *gm;
 2701:   double **gradg, **trgradg;
 2702:   double age,agelim;
 2703:   int theta;
 2704:    
 2705:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 2706:   fprintf(ficresvpl,"# Age");
 2707:   for(i=1; i<=nlstate;i++)
 2708:       fprintf(ficresvpl," %1d-%1d",i,i);
 2709:   fprintf(ficresvpl,"\n");
 2710: 
 2711:   xp=vector(1,npar);
 2712:   dnewm=matrix(1,nlstate,1,npar);
 2713:   doldm=matrix(1,nlstate,1,nlstate);
 2714:   
 2715:   hstepm=1*YEARM; /* Every year of age */
 2716:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
 2717:   agelim = AGESUP;
 2718:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 2719:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 2720:     if (stepm >= YEARM) hstepm=1;
 2721:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 2722:     gradg=matrix(1,npar,1,nlstate);
 2723:     gp=vector(1,nlstate);
 2724:     gm=vector(1,nlstate);
 2725: 
 2726:     for(theta=1; theta <=npar; theta++){
 2727:       for(i=1; i<=npar; i++){ /* Computes gradient */
 2728: 	xp[i] = x[i] + (i==theta ?delti[theta]:0);
 2729:       }
 2730:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2731:       for(i=1;i<=nlstate;i++)
 2732: 	gp[i] = prlim[i][i];
 2733:     
 2734:       for(i=1; i<=npar; i++) /* Computes gradient */
 2735: 	xp[i] = x[i] - (i==theta ?delti[theta]:0);
 2736:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 2737:       for(i=1;i<=nlstate;i++)
 2738: 	gm[i] = prlim[i][i];
 2739: 
 2740:       for(i=1;i<=nlstate;i++)
 2741: 	gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 2742:     } /* End theta */
 2743: 
 2744:     trgradg =matrix(1,nlstate,1,npar);
 2745: 
 2746:     for(j=1; j<=nlstate;j++)
 2747:       for(theta=1; theta <=npar; theta++)
 2748: 	trgradg[j][theta]=gradg[theta][j];
 2749: 
 2750:     for(i=1;i<=nlstate;i++)
 2751:       varpl[i][(int)age] =0.;
 2752:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 2753:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 2754:     for(i=1;i<=nlstate;i++)
 2755:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 2756: 
 2757:     fprintf(ficresvpl,"%.0f ",age );
 2758:     for(i=1; i<=nlstate;i++)
 2759:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 2760:     fprintf(ficresvpl,"\n");
 2761:     free_vector(gp,1,nlstate);
 2762:     free_vector(gm,1,nlstate);
 2763:     free_matrix(gradg,1,npar,1,nlstate);
 2764:     free_matrix(trgradg,1,nlstate,1,npar);
 2765:   } /* End age */
 2766: 
 2767:   free_vector(xp,1,npar);
 2768:   free_matrix(doldm,1,nlstate,1,npar);
 2769:   free_matrix(dnewm,1,nlstate,1,nlstate);
 2770: 
 2771: }
 2772: 
 2773: /************ Variance of one-step probabilities  ******************/
 2774: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 2775: {
 2776:   int i, j=0,  i1, k1, l1, t, tj;
 2777:   int k2, l2, j1,  z1;
 2778:   int k=0,l, cptcode;
 2779:   int first=1, first1;
 2780:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 2781:   double **dnewm,**doldm;
 2782:   double *xp;
 2783:   double *gp, *gm;
 2784:   double **gradg, **trgradg;
 2785:   double **mu;
 2786:   double age,agelim, cov[NCOVMAX];
 2787:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 2788:   int theta;
 2789:   char fileresprob[FILENAMELENGTH];
 2790:   char fileresprobcov[FILENAMELENGTH];
 2791:   char fileresprobcor[FILENAMELENGTH];
 2792: 
 2793:   double ***varpij;
 2794: 
 2795:   strcpy(fileresprob,"prob"); 
 2796:   strcat(fileresprob,fileres);
 2797:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 2798:     printf("Problem with resultfile: %s\n", fileresprob);
 2799:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 2800:   }
 2801:   strcpy(fileresprobcov,"probcov"); 
 2802:   strcat(fileresprobcov,fileres);
 2803:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 2804:     printf("Problem with resultfile: %s\n", fileresprobcov);
 2805:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 2806:   }
 2807:   strcpy(fileresprobcor,"probcor"); 
 2808:   strcat(fileresprobcor,fileres);
 2809:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 2810:     printf("Problem with resultfile: %s\n", fileresprobcor);
 2811:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 2812:   }
 2813:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2814:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 2815:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2816:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 2817:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2818:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 2819:   
 2820:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 2821:   fprintf(ficresprob,"# Age");
 2822:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 2823:   fprintf(ficresprobcov,"# Age");
 2824:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 2825:   fprintf(ficresprobcov,"# Age");
 2826: 
 2827: 
 2828:   for(i=1; i<=nlstate;i++)
 2829:     for(j=1; j<=(nlstate+ndeath);j++){
 2830:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 2831:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
 2832:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
 2833:     }  
 2834:  /* fprintf(ficresprob,"\n");
 2835:   fprintf(ficresprobcov,"\n");
 2836:   fprintf(ficresprobcor,"\n");
 2837:  */
 2838:  xp=vector(1,npar);
 2839:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2840:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 2841:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 2842:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 2843:   first=1;
 2844:   fprintf(ficgp,"\n# Routine varprob");
 2845:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 2846:   fprintf(fichtm,"\n");
 2847: 
 2848:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
 2849:   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
 2850:   file %s<br>\n",optionfilehtmcov);
 2851:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 2852: and drawn. It helps understanding how is the covariance between two incidences.\
 2853:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 2854:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 2855: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 2856: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 2857: standard deviations wide on each axis. <br>\
 2858:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
 2859:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 2860: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 2861: 
 2862:   cov[1]=1;
 2863:   tj=cptcoveff;
 2864:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 2865:   j1=0;
 2866:   for(t=1; t<=tj;t++){
 2867:     for(i1=1; i1<=ncodemax[t];i1++){ 
 2868:       j1++;
 2869:       if  (cptcovn>0) {
 2870: 	fprintf(ficresprob, "\n#********** Variable "); 
 2871: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2872: 	fprintf(ficresprob, "**********\n#\n");
 2873: 	fprintf(ficresprobcov, "\n#********** Variable "); 
 2874: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2875: 	fprintf(ficresprobcov, "**********\n#\n");
 2876: 	
 2877: 	fprintf(ficgp, "\n#********** Variable "); 
 2878: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2879: 	fprintf(ficgp, "**********\n#\n");
 2880: 	
 2881: 	
 2882: 	fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 2883: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2884: 	fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 2885: 	
 2886: 	fprintf(ficresprobcor, "\n#********** Variable ");    
 2887: 	for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 2888: 	fprintf(ficresprobcor, "**********\n#");    
 2889:       }
 2890:       
 2891:       for (age=bage; age<=fage; age ++){ 
 2892: 	cov[2]=age;
 2893: 	for (k=1; k<=cptcovn;k++) {
 2894: 	  cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 2895: 	}
 2896: 	for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 2897: 	for (k=1; k<=cptcovprod;k++)
 2898: 	  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 2899: 	
 2900: 	gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 2901: 	trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 2902: 	gp=vector(1,(nlstate)*(nlstate+ndeath));
 2903: 	gm=vector(1,(nlstate)*(nlstate+ndeath));
 2904:     
 2905: 	for(theta=1; theta <=npar; theta++){
 2906: 	  for(i=1; i<=npar; i++)
 2907: 	    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 2908: 	  
 2909: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2910: 	  
 2911: 	  k=0;
 2912: 	  for(i=1; i<= (nlstate); i++){
 2913: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2914: 	      k=k+1;
 2915: 	      gp[k]=pmmij[i][j];
 2916: 	    }
 2917: 	  }
 2918: 	  
 2919: 	  for(i=1; i<=npar; i++)
 2920: 	    xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 2921:     
 2922: 	  pmij(pmmij,cov,ncovmodel,xp,nlstate);
 2923: 	  k=0;
 2924: 	  for(i=1; i<=(nlstate); i++){
 2925: 	    for(j=1; j<=(nlstate+ndeath);j++){
 2926: 	      k=k+1;
 2927: 	      gm[k]=pmmij[i][j];
 2928: 	    }
 2929: 	  }
 2930:      
 2931: 	  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 2932: 	    gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 2933: 	}
 2934: 
 2935: 	for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 2936: 	  for(theta=1; theta <=npar; theta++)
 2937: 	    trgradg[j][theta]=gradg[theta][j];
 2938: 	
 2939: 	matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 2940: 	matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 2941: 	free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 2942: 	free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 2943: 	free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2944: 	free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 2945: 
 2946: 	pmij(pmmij,cov,ncovmodel,x,nlstate);
 2947: 	
 2948: 	k=0;
 2949: 	for(i=1; i<=(nlstate); i++){
 2950: 	  for(j=1; j<=(nlstate+ndeath);j++){
 2951: 	    k=k+1;
 2952: 	    mu[k][(int) age]=pmmij[i][j];
 2953: 	  }
 2954: 	}
 2955:      	for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 2956: 	  for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 2957: 	    varpij[i][j][(int)age] = doldm[i][j];
 2958: 
 2959: 	/*printf("\n%d ",(int)age);
 2960: 	  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2961: 	  printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2962: 	  fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 2963: 	  }*/
 2964: 
 2965: 	fprintf(ficresprob,"\n%d ",(int)age);
 2966: 	fprintf(ficresprobcov,"\n%d ",(int)age);
 2967: 	fprintf(ficresprobcor,"\n%d ",(int)age);
 2968: 
 2969: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 2970: 	  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 2971: 	for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 2972: 	  fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 2973: 	  fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 2974: 	}
 2975: 	i=0;
 2976: 	for (k=1; k<=(nlstate);k++){
 2977:  	  for (l=1; l<=(nlstate+ndeath);l++){ 
 2978:  	    i=i++;
 2979: 	    fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 2980: 	    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 2981: 	    for (j=1; j<=i;j++){
 2982: 	      fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 2983: 	      fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 2984: 	    }
 2985: 	  }
 2986: 	}/* end of loop for state */
 2987:       } /* end of loop for age */
 2988: 
 2989:       /* Confidence intervalle of pij  */
 2990:       /*
 2991: 	fprintf(ficgp,"\nset noparametric;unset label");
 2992: 	fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 2993: 	fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 2994: 	fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 2995: 	fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 2996: 	fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 2997: 	fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 2998:       */
 2999: 
 3000:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 3001:       first1=1;
 3002:       for (k2=1; k2<=(nlstate);k2++){
 3003: 	for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 3004: 	  if(l2==k2) continue;
 3005: 	  j=(k2-1)*(nlstate+ndeath)+l2;
 3006: 	  for (k1=1; k1<=(nlstate);k1++){
 3007: 	    for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 3008: 	      if(l1==k1) continue;
 3009: 	      i=(k1-1)*(nlstate+ndeath)+l1;
 3010: 	      if(i<=j) continue;
 3011: 	      for (age=bage; age<=fage; age ++){ 
 3012: 		if ((int)age %5==0){
 3013: 		  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 3014: 		  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3015: 		  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 3016: 		  mu1=mu[i][(int) age]/stepm*YEARM ;
 3017: 		  mu2=mu[j][(int) age]/stepm*YEARM;
 3018: 		  c12=cv12/sqrt(v1*v2);
 3019: 		  /* Computing eigen value of matrix of covariance */
 3020: 		  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3021: 		  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 3022: 		  /* Eigen vectors */
 3023: 		  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 3024: 		  /*v21=sqrt(1.-v11*v11); *//* error */
 3025: 		  v21=(lc1-v1)/cv12*v11;
 3026: 		  v12=-v21;
 3027: 		  v22=v11;
 3028: 		  tnalp=v21/v11;
 3029: 		  if(first1==1){
 3030: 		    first1=0;
 3031: 		    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3032: 		  }
 3033: 		  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 3034: 		  /*printf(fignu*/
 3035: 		  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 3036: 		  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 3037: 		  if(first==1){
 3038: 		    first=0;
 3039:  		    fprintf(ficgp,"\nset parametric;unset label");
 3040: 		    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 3041: 		    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 3042: 		    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 3043:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 3044: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 3045: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 3046: 			    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3047: 		    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3048: 		    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 3049: 		    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3050: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3051: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3052: 		    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3053: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3054: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3055: 		  }else{
 3056: 		    first=0;
 3057: 		    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 3058: 		    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 3059: 		    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 3060: 		    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 3061: 			    mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 3062: 			    mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 3063: 		  }/* if first */
 3064: 		} /* age mod 5 */
 3065: 	      } /* end loop age */
 3066: 	      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 3067: 	      first=1;
 3068: 	    } /*l12 */
 3069: 	  } /* k12 */
 3070: 	} /*l1 */
 3071:       }/* k1 */
 3072:     } /* loop covariates */
 3073:   }
 3074:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 3075:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 3076:   free_vector(xp,1,npar);
 3077:   fclose(ficresprob);
 3078:   fclose(ficresprobcov);
 3079:   fclose(ficresprobcor);
 3080:   fflush(ficgp);
 3081:   fflush(fichtmcov);
 3082: }
 3083: 
 3084: 
 3085: /******************* Printing html file ***********/
 3086: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 3087: 		  int lastpass, int stepm, int weightopt, char model[],\
 3088: 		  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 3089: 		  int popforecast, int estepm ,\
 3090: 		  double jprev1, double mprev1,double anprev1, \
 3091: 		  double jprev2, double mprev2,double anprev2){
 3092:   int jj1, k1, i1, cpt;
 3093:   /*char optionfilehtm[FILENAMELENGTH];*/
 3094: /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
 3095: /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
 3096: /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
 3097: /*   } */
 3098: 
 3099:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
 3100:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
 3101:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
 3102:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
 3103:  - Life expectancies by age and initial health status (estepm=%2d months): \
 3104:    <a href=\"%s\">%s</a> <br>\n</li>", \
 3105: 	   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
 3106: 	   stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
 3107: 	   subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
 3108: 	   estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 3109: 
 3110: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 3111: 
 3112:  m=cptcoveff;
 3113:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3114: 
 3115:  jj1=0;
 3116:  for(k1=1; k1<=m;k1++){
 3117:    for(i1=1; i1<=ncodemax[k1];i1++){
 3118:      jj1++;
 3119:      if (cptcovn > 0) {
 3120:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3121:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3122: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3123:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3124:      }
 3125:      /* Pij */
 3126:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
 3127: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 3128:      /* Quasi-incidences */
 3129:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 3130:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
 3131: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
 3132:        /* Stable prevalence in each health state */
 3133:        for(cpt=1; cpt<nlstate;cpt++){
 3134: 	 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
 3135: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 3136:        }
 3137:      for(cpt=1; cpt<=nlstate;cpt++) {
 3138:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
 3139: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 3140:      }
 3141:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 3142: health expectancies in states (1) and (2): %s%d.png<br>\
 3143: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 3144:    } /* end i1 */
 3145:  }/* End k1 */
 3146:  fprintf(fichtm,"</ul>");
 3147: 
 3148: 
 3149:  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
 3150:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
 3151:  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3152:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3153:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
 3154:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
 3155:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
 3156:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
 3157: 	 rfileres,rfileres,\
 3158: 	 subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
 3159: 	 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
 3160: 	 subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
 3161: 	 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
 3162: 	 subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
 3163: 	 subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 3164: 
 3165: /*  if(popforecast==1) fprintf(fichtm,"\n */
 3166: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 3167: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 3168: /* 	<br>",fileres,fileres,fileres,fileres); */
 3169: /*  else  */
 3170: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 3171: fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 3172: 
 3173:  m=cptcoveff;
 3174:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 3175: 
 3176:  jj1=0;
 3177:  for(k1=1; k1<=m;k1++){
 3178:    for(i1=1; i1<=ncodemax[k1];i1++){
 3179:      jj1++;
 3180:      if (cptcovn > 0) {
 3181:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 3182:        for (cpt=1; cpt<=cptcoveff;cpt++) 
 3183: 	 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 3184:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 3185:      }
 3186:      for(cpt=1; cpt<=nlstate;cpt++) {
 3187:        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
 3188: interval) in state (%d): %s%d%d.png <br>\
 3189: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 3190:      }
 3191:    } /* end i1 */
 3192:  }/* End k1 */
 3193:  fprintf(fichtm,"</ul>");
 3194:  fflush(fichtm);
 3195: }
 3196: 
 3197: /******************* Gnuplot file **************/
 3198: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 3199: 
 3200:   char dirfileres[132],optfileres[132];
 3201:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 3202:   int ng;
 3203: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 3204: /*     printf("Problem with file %s",optionfilegnuplot); */
 3205: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 3206: /*   } */
 3207: 
 3208:   /*#ifdef windows */
 3209:   fprintf(ficgp,"cd \"%s\" \n",pathc);
 3210:     /*#endif */
 3211:   m=pow(2,cptcoveff);
 3212: 
 3213:   strcpy(dirfileres,optionfilefiname);
 3214:   strcpy(optfileres,"vpl");
 3215:  /* 1eme*/
 3216:   for (cpt=1; cpt<= nlstate ; cpt ++) {
 3217:    for (k1=1; k1<= m ; k1 ++) {
 3218:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
 3219:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 3220:      fprintf(ficgp,"set xlabel \"Age\" \n\
 3221: set ylabel \"Probability\" \n\
 3222: set ter png small\n\
 3223: set size 0.65,0.65\n\
 3224: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 3225: 
 3226:      for (i=1; i<= nlstate ; i ++) {
 3227:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3228:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3229:      }
 3230:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 3231:      for (i=1; i<= nlstate ; i ++) {
 3232:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3233:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3234:      } 
 3235:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 3236:      for (i=1; i<= nlstate ; i ++) {
 3237:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 3238:        else fprintf(ficgp," \%%*lf (\%%*lf)");
 3239:      }  
 3240:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 3241:    }
 3242:   }
 3243:   /*2 eme*/
 3244:   
 3245:   for (k1=1; k1<= m ; k1 ++) { 
 3246:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
 3247:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 3248:     
 3249:     for (i=1; i<= nlstate+1 ; i ++) {
 3250:       k=2*i;
 3251:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3252:       for (j=1; j<= nlstate+1 ; j ++) {
 3253: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3254: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3255:       }   
 3256:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 3257:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 3258:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3259:       for (j=1; j<= nlstate+1 ; j ++) {
 3260: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3261: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3262:       }   
 3263:       fprintf(ficgp,"\" t\"\" w l 0,");
 3264:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 3265:       for (j=1; j<= nlstate+1 ; j ++) {
 3266: 	if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 3267: 	else fprintf(ficgp," \%%*lf (\%%*lf)");
 3268:       }   
 3269:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 3270:       else fprintf(ficgp,"\" t\"\" w l 0,");
 3271:     }
 3272:   }
 3273:   
 3274:   /*3eme*/
 3275:   
 3276:   for (k1=1; k1<= m ; k1 ++) { 
 3277:     for (cpt=1; cpt<= nlstate ; cpt ++) {
 3278:       k=2+nlstate*(2*cpt-2);
 3279:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 3280:       fprintf(ficgp,"set ter png small\n\
 3281: set size 0.65,0.65\n\
 3282: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 3283:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3284: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3285: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3286: 	fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 3287: 	for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 3288: 	fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
 3289: 	
 3290:       */
 3291:       for (i=1; i< nlstate ; i ++) {
 3292: 	fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
 3293: 	
 3294:       } 
 3295:     }
 3296:   }
 3297:   
 3298:   /* CV preval stable (period) */
 3299:   for (k1=1; k1<= m ; k1 ++) { 
 3300:     for (cpt=1; cpt<=nlstate ; cpt ++) {
 3301:       k=3;
 3302:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
 3303:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 3304: set ter png small\nset size 0.65,0.65\n\
 3305: unset log y\n\
 3306: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
 3307:       
 3308:       for (i=1; i< nlstate ; i ++)
 3309: 	fprintf(ficgp,"+$%d",k+i+1);
 3310:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 3311:       
 3312:       l=3+(nlstate+ndeath)*cpt;
 3313:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 3314:       for (i=1; i< nlstate ; i ++) {
 3315: 	l=3+(nlstate+ndeath)*cpt;
 3316: 	fprintf(ficgp,"+$%d",l+i+1);
 3317:       }
 3318:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 3319:     } 
 3320:   }  
 3321:   
 3322:   /* proba elementaires */
 3323:   for(i=1,jk=1; i <=nlstate; i++){
 3324:     for(k=1; k <=(nlstate+ndeath); k++){
 3325:       if (k != i) {
 3326: 	for(j=1; j <=ncovmodel; j++){
 3327: 	  fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 3328: 	  jk++; 
 3329: 	  fprintf(ficgp,"\n");
 3330: 	}
 3331:       }
 3332:     }
 3333:    }
 3334: 
 3335:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 3336:      for(jk=1; jk <=m; jk++) {
 3337:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
 3338:        if (ng==2)
 3339: 	 fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
 3340:        else
 3341: 	 fprintf(ficgp,"\nset title \"Probability\"\n");
 3342:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 3343:        i=1;
 3344:        for(k2=1; k2<=nlstate; k2++) {
 3345: 	 k3=i;
 3346: 	 for(k=1; k<=(nlstate+ndeath); k++) {
 3347: 	   if (k != k2){
 3348: 	     if(ng==2)
 3349: 	       fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
 3350: 	     else
 3351: 	       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 3352: 	     ij=1;
 3353: 	     for(j=3; j <=ncovmodel; j++) {
 3354: 	       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3355: 		 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3356: 		 ij++;
 3357: 	       }
 3358: 	       else
 3359: 		 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3360: 	     }
 3361: 	     fprintf(ficgp,")/(1");
 3362: 	     
 3363: 	     for(k1=1; k1 <=nlstate; k1++){   
 3364: 	       fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 3365: 	       ij=1;
 3366: 	       for(j=3; j <=ncovmodel; j++){
 3367: 		 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 3368: 		   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 3369: 		   ij++;
 3370: 		 }
 3371: 		 else
 3372: 		   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 3373: 	       }
 3374: 	       fprintf(ficgp,")");
 3375: 	     }
 3376: 	     fprintf(ficgp,") t \"p%d%d\" ", k2,k);
 3377: 	     if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 3378: 	     i=i+ncovmodel;
 3379: 	   }
 3380: 	 } /* end k */
 3381:        } /* end k2 */
 3382:      } /* end jk */
 3383:    } /* end ng */
 3384:    fflush(ficgp); 
 3385: }  /* end gnuplot */
 3386: 
 3387: 
 3388: /*************** Moving average **************/
 3389: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 3390: 
 3391:   int i, cpt, cptcod;
 3392:   int modcovmax =1;
 3393:   int mobilavrange, mob;
 3394:   double age;
 3395: 
 3396:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
 3397: 			   a covariate has 2 modalities */
 3398:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
 3399: 
 3400:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 3401:     if(mobilav==1) mobilavrange=5; /* default */
 3402:     else mobilavrange=mobilav;
 3403:     for (age=bage; age<=fage; age++)
 3404:       for (i=1; i<=nlstate;i++)
 3405: 	for (cptcod=1;cptcod<=modcovmax;cptcod++)
 3406: 	  mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 3407:     /* We keep the original values on the extreme ages bage, fage and for 
 3408:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 3409:        we use a 5 terms etc. until the borders are no more concerned. 
 3410:     */ 
 3411:     for (mob=3;mob <=mobilavrange;mob=mob+2){
 3412:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
 3413: 	for (i=1; i<=nlstate;i++){
 3414: 	  for (cptcod=1;cptcod<=modcovmax;cptcod++){
 3415: 	    mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 3416: 	      for (cpt=1;cpt<=(mob-1)/2;cpt++){
 3417: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 3418: 		mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 3419: 	      }
 3420: 	    mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 3421: 	  }
 3422: 	}
 3423:       }/* end age */
 3424:     }/* end mob */
 3425:   }else return -1;
 3426:   return 0;
 3427: }/* End movingaverage */
 3428: 
 3429: 
 3430: /************** Forecasting ******************/
 3431: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 3432:   /* proj1, year, month, day of starting projection 
 3433:      agemin, agemax range of age
 3434:      dateprev1 dateprev2 range of dates during which prevalence is computed
 3435:      anproj2 year of en of projection (same day and month as proj1).
 3436:   */
 3437:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 3438:   int *popage;
 3439:   double agec; /* generic age */
 3440:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 3441:   double *popeffectif,*popcount;
 3442:   double ***p3mat;
 3443:   double ***mobaverage;
 3444:   char fileresf[FILENAMELENGTH];
 3445: 
 3446:   agelim=AGESUP;
 3447:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3448:  
 3449:   strcpy(fileresf,"f"); 
 3450:   strcat(fileresf,fileres);
 3451:   if((ficresf=fopen(fileresf,"w"))==NULL) {
 3452:     printf("Problem with forecast resultfile: %s\n", fileresf);
 3453:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 3454:   }
 3455:   printf("Computing forecasting: result on file '%s' \n", fileresf);
 3456:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
 3457: 
 3458:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3459: 
 3460:   if (mobilav!=0) {
 3461:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3462:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3463:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3464:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3465:     }
 3466:   }
 3467: 
 3468:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3469:   if (stepm<=12) stepsize=1;
 3470:   if(estepm < stepm){
 3471:     printf ("Problem %d lower than %d\n",estepm, stepm);
 3472:   }
 3473:   else  hstepm=estepm;   
 3474: 
 3475:   hstepm=hstepm/stepm; 
 3476:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
 3477:                                fractional in yp1 */
 3478:   anprojmean=yp;
 3479:   yp2=modf((yp1*12),&yp);
 3480:   mprojmean=yp;
 3481:   yp1=modf((yp2*30.5),&yp);
 3482:   jprojmean=yp;
 3483:   if(jprojmean==0) jprojmean=1;
 3484:   if(mprojmean==0) jprojmean=1;
 3485: 
 3486:   i1=cptcoveff;
 3487:   if (cptcovn < 1){i1=1;}
 3488:   
 3489:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 3490:   
 3491:   fprintf(ficresf,"#****** Routine prevforecast **\n");
 3492: 
 3493: /* 	      if (h==(int)(YEARM*yearp)){ */
 3494:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 3495:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3496:       k=k+1;
 3497:       fprintf(ficresf,"\n#******");
 3498:       for(j=1;j<=cptcoveff;j++) {
 3499: 	fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3500:       }
 3501:       fprintf(ficresf,"******\n");
 3502:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 3503:       for(j=1; j<=nlstate+ndeath;j++){ 
 3504: 	for(i=1; i<=nlstate;i++) 	      
 3505:           fprintf(ficresf," p%d%d",i,j);
 3506: 	fprintf(ficresf," p.%d",j);
 3507:       }
 3508:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 3509: 	fprintf(ficresf,"\n");
 3510: 	fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
 3511: 
 3512:      	for (agec=fage; agec>=(ageminpar-1); agec--){ 
 3513: 	  nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 3514: 	  nhstepm = nhstepm/hstepm; 
 3515: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3516: 	  oldm=oldms;savm=savms;
 3517: 	  hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3518: 	
 3519: 	  for (h=0; h<=nhstepm; h++){
 3520: 	    if (h*hstepm/YEARM*stepm ==yearp) {
 3521:               fprintf(ficresf,"\n");
 3522:               for(j=1;j<=cptcoveff;j++) 
 3523:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3524: 	      fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 3525: 	    } 
 3526: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3527: 	      ppij=0.;
 3528: 	      for(i=1; i<=nlstate;i++) {
 3529: 		if (mobilav==1) 
 3530: 		  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 3531: 		else {
 3532: 		  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 3533: 		}
 3534: 		if (h*hstepm/YEARM*stepm== yearp) {
 3535: 		  fprintf(ficresf," %.3f", p3mat[i][j][h]);
 3536: 		}
 3537: 	      } /* end i */
 3538: 	      if (h*hstepm/YEARM*stepm==yearp) {
 3539: 		fprintf(ficresf," %.3f", ppij);
 3540: 	      }
 3541: 	    }/* end j */
 3542: 	  } /* end h */
 3543: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3544: 	} /* end agec */
 3545:       } /* end yearp */
 3546:     } /* end cptcod */
 3547:   } /* end  cptcov */
 3548:        
 3549:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3550: 
 3551:   fclose(ficresf);
 3552: }
 3553: 
 3554: /************** Forecasting *****not tested NB*************/
 3555: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 3556:   
 3557:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 3558:   int *popage;
 3559:   double calagedatem, agelim, kk1, kk2;
 3560:   double *popeffectif,*popcount;
 3561:   double ***p3mat,***tabpop,***tabpopprev;
 3562:   double ***mobaverage;
 3563:   char filerespop[FILENAMELENGTH];
 3564: 
 3565:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3566:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3567:   agelim=AGESUP;
 3568:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 3569:   
 3570:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 3571:   
 3572:   
 3573:   strcpy(filerespop,"pop"); 
 3574:   strcat(filerespop,fileres);
 3575:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
 3576:     printf("Problem with forecast resultfile: %s\n", filerespop);
 3577:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
 3578:   }
 3579:   printf("Computing forecasting: result on file '%s' \n", filerespop);
 3580:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 3581: 
 3582:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
 3583: 
 3584:   if (mobilav!=0) {
 3585:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3586:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 3587:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 3588:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 3589:     }
 3590:   }
 3591: 
 3592:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 3593:   if (stepm<=12) stepsize=1;
 3594:   
 3595:   agelim=AGESUP;
 3596:   
 3597:   hstepm=1;
 3598:   hstepm=hstepm/stepm; 
 3599:   
 3600:   if (popforecast==1) {
 3601:     if((ficpop=fopen(popfile,"r"))==NULL) {
 3602:       printf("Problem with population file : %s\n",popfile);exit(0);
 3603:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 3604:     } 
 3605:     popage=ivector(0,AGESUP);
 3606:     popeffectif=vector(0,AGESUP);
 3607:     popcount=vector(0,AGESUP);
 3608:     
 3609:     i=1;   
 3610:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 3611:    
 3612:     imx=i;
 3613:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 3614:   }
 3615: 
 3616:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
 3617:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 3618:       k=k+1;
 3619:       fprintf(ficrespop,"\n#******");
 3620:       for(j=1;j<=cptcoveff;j++) {
 3621: 	fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 3622:       }
 3623:       fprintf(ficrespop,"******\n");
 3624:       fprintf(ficrespop,"# Age");
 3625:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 3626:       if (popforecast==1)  fprintf(ficrespop," [Population]");
 3627:       
 3628:       for (cpt=0; cpt<=0;cpt++) { 
 3629: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3630: 	
 3631:      	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3632: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3633: 	  nhstepm = nhstepm/hstepm; 
 3634: 	  
 3635: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3636: 	  oldm=oldms;savm=savms;
 3637: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3638: 	
 3639: 	  for (h=0; h<=nhstepm; h++){
 3640: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3641: 	      fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3642: 	    } 
 3643: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3644: 	      kk1=0.;kk2=0;
 3645: 	      for(i=1; i<=nlstate;i++) {	      
 3646: 		if (mobilav==1) 
 3647: 		  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
 3648: 		else {
 3649: 		  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 3650: 		}
 3651: 	      }
 3652: 	      if (h==(int)(calagedatem+12*cpt)){
 3653: 		tabpop[(int)(agedeb)][j][cptcod]=kk1;
 3654: 		  /*fprintf(ficrespop," %.3f", kk1);
 3655: 		    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 3656: 	      }
 3657: 	    }
 3658: 	    for(i=1; i<=nlstate;i++){
 3659: 	      kk1=0.;
 3660: 		for(j=1; j<=nlstate;j++){
 3661: 		  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
 3662: 		}
 3663: 		  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 3664: 	    }
 3665: 
 3666: 	    if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
 3667: 	      fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 3668: 	  }
 3669: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3670: 	}
 3671:       }
 3672:  
 3673:   /******/
 3674: 
 3675:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
 3676: 	fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 3677: 	for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 3678: 	  nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 3679: 	  nhstepm = nhstepm/hstepm; 
 3680: 	  
 3681: 	  p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3682: 	  oldm=oldms;savm=savms;
 3683: 	  hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 3684: 	  for (h=0; h<=nhstepm; h++){
 3685: 	    if (h==(int) (calagedatem+YEARM*cpt)) {
 3686: 	      fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 3687: 	    } 
 3688: 	    for(j=1; j<=nlstate+ndeath;j++) {
 3689: 	      kk1=0.;kk2=0;
 3690: 	      for(i=1; i<=nlstate;i++) {	      
 3691: 		kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];	
 3692: 	      }
 3693: 	      if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);	
 3694: 	    }
 3695: 	  }
 3696: 	  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 3697: 	}
 3698:       }
 3699:    } 
 3700:   }
 3701:  
 3702:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3703: 
 3704:   if (popforecast==1) {
 3705:     free_ivector(popage,0,AGESUP);
 3706:     free_vector(popeffectif,0,AGESUP);
 3707:     free_vector(popcount,0,AGESUP);
 3708:   }
 3709:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3710:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 3711:   fclose(ficrespop);
 3712: } /* End of popforecast */
 3713: 
 3714: int fileappend(FILE *fichier, char *optionfich)
 3715: {
 3716:   if((fichier=fopen(optionfich,"a"))==NULL) {
 3717:     printf("Problem with file: %s\n", optionfich);
 3718:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
 3719:     return (0);
 3720:   }
 3721:   fflush(fichier);
 3722:   return (1);
 3723: }
 3724: 
 3725: 
 3726: /**************** function prwizard **********************/
 3727: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 3728: {
 3729: 
 3730:   /* Wizard to print covariance matrix template */
 3731: 
 3732:   char ca[32], cb[32], cc[32];
 3733:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 3734:   int numlinepar;
 3735: 
 3736:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3737:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 3738:   for(i=1; i <=nlstate; i++){
 3739:     jj=0;
 3740:     for(j=1; j <=nlstate+ndeath; j++){
 3741:       if(j==i) continue;
 3742:       jj++;
 3743:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
 3744:       printf("%1d%1d",i,j);
 3745:       fprintf(ficparo,"%1d%1d",i,j);
 3746:       for(k=1; k<=ncovmodel;k++){
 3747: 	/* 	  printf(" %lf",param[i][j][k]); */
 3748: 	/* 	  fprintf(ficparo," %lf",param[i][j][k]); */
 3749: 	printf(" 0.");
 3750: 	fprintf(ficparo," 0.");
 3751:       }
 3752:       printf("\n");
 3753:       fprintf(ficparo,"\n");
 3754:     }
 3755:   }
 3756:   printf("# Scales (for hessian or gradient estimation)\n");
 3757:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 3758:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
 3759:   for(i=1; i <=nlstate; i++){
 3760:     jj=0;
 3761:     for(j=1; j <=nlstate+ndeath; j++){
 3762:       if(j==i) continue;
 3763:       jj++;
 3764:       fprintf(ficparo,"%1d%1d",i,j);
 3765:       printf("%1d%1d",i,j);
 3766:       fflush(stdout);
 3767:       for(k=1; k<=ncovmodel;k++){
 3768: 	/* 	printf(" %le",delti3[i][j][k]); */
 3769: 	/* 	fprintf(ficparo," %le",delti3[i][j][k]); */
 3770: 	printf(" 0.");
 3771: 	fprintf(ficparo," 0.");
 3772:       }
 3773:       numlinepar++;
 3774:       printf("\n");
 3775:       fprintf(ficparo,"\n");
 3776:     }
 3777:   }
 3778:   printf("# Covariance matrix\n");
 3779: /* # 121 Var(a12)\n\ */
 3780: /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3781: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 3782: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 3783: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 3784: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 3785: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 3786: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 3787:   fflush(stdout);
 3788:   fprintf(ficparo,"# Covariance matrix\n");
 3789:   /* # 121 Var(a12)\n\ */
 3790:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
 3791:   /* #   ...\n\ */
 3792:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 3793:   
 3794:   for(itimes=1;itimes<=2;itimes++){
 3795:     jj=0;
 3796:     for(i=1; i <=nlstate; i++){
 3797:       for(j=1; j <=nlstate+ndeath; j++){
 3798: 	if(j==i) continue;
 3799: 	for(k=1; k<=ncovmodel;k++){
 3800: 	  jj++;
 3801: 	  ca[0]= k+'a'-1;ca[1]='\0';
 3802: 	  if(itimes==1){
 3803: 	    printf("#%1d%1d%d",i,j,k);
 3804: 	    fprintf(ficparo,"#%1d%1d%d",i,j,k);
 3805: 	  }else{
 3806: 	    printf("%1d%1d%d",i,j,k);
 3807: 	    fprintf(ficparo,"%1d%1d%d",i,j,k);
 3808: 	    /* 	printf(" %.5le",matcov[i][j]); */
 3809: 	  }
 3810: 	  ll=0;
 3811: 	  for(li=1;li <=nlstate; li++){
 3812: 	    for(lj=1;lj <=nlstate+ndeath; lj++){
 3813: 	      if(lj==li) continue;
 3814: 	      for(lk=1;lk<=ncovmodel;lk++){
 3815: 		ll++;
 3816: 		if(ll<=jj){
 3817: 		  cb[0]= lk +'a'-1;cb[1]='\0';
 3818: 		  if(ll<jj){
 3819: 		    if(itimes==1){
 3820: 		      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3821: 		      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 3822: 		    }else{
 3823: 		      printf(" 0.");
 3824: 		      fprintf(ficparo," 0.");
 3825: 		    }
 3826: 		  }else{
 3827: 		    if(itimes==1){
 3828: 		      printf(" Var(%s%1d%1d)",ca,i,j);
 3829: 		      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 3830: 		    }else{
 3831: 		      printf(" 0.");
 3832: 		      fprintf(ficparo," 0.");
 3833: 		    }
 3834: 		  }
 3835: 		}
 3836: 	      } /* end lk */
 3837: 	    } /* end lj */
 3838: 	  } /* end li */
 3839: 	  printf("\n");
 3840: 	  fprintf(ficparo,"\n");
 3841: 	  numlinepar++;
 3842: 	} /* end k*/
 3843:       } /*end j */
 3844:     } /* end i */
 3845:   }
 3846: 
 3847: } /* end of prwizard */
 3848: 
 3849: 
 3850: /***********************************************/
 3851: /**************** Main Program *****************/
 3852: /***********************************************/
 3853: 
 3854: int main(int argc, char *argv[])
 3855: {
 3856:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 3857:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
 3858:   int jj, imk;
 3859:   int numlinepar=0; /* Current linenumber of parameter file */
 3860:   /*  FILE *fichtm; *//* Html File */
 3861:   /* FILE *ficgp;*/ /*Gnuplot File */
 3862:   double agedeb, agefin,hf;
 3863:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 3864: 
 3865:   double fret;
 3866:   double **xi,tmp,delta;
 3867: 
 3868:   double dum; /* Dummy variable */
 3869:   double ***p3mat;
 3870:   double ***mobaverage;
 3871:   int *indx;
 3872:   char line[MAXLINE], linepar[MAXLINE];
 3873:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 3874:   char pathr[MAXLINE]; 
 3875:   int firstobs=1, lastobs=10;
 3876:   int sdeb, sfin; /* Status at beginning and end */
 3877:   int c,  h , cpt,l;
 3878:   int ju,jl, mi;
 3879:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 3880:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
 3881:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 3882:   int mobilav=0,popforecast=0;
 3883:   int hstepm, nhstepm;
 3884:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 3885:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 3886: 
 3887:   double bage, fage, age, agelim, agebase;
 3888:   double ftolpl=FTOL;
 3889:   double **prlim;
 3890:   double *severity;
 3891:   double ***param; /* Matrix of parameters */
 3892:   double  *p;
 3893:   double **matcov; /* Matrix of covariance */
 3894:   double ***delti3; /* Scale */
 3895:   double *delti; /* Scale */
 3896:   double ***eij, ***vareij;
 3897:   double **varpl; /* Variances of prevalence limits by age */
 3898:   double *epj, vepp;
 3899:   double kk1, kk2;
 3900:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 3901: 
 3902:   char *alph[]={"a","a","b","c","d","e"}, str[4];
 3903: 
 3904: 
 3905:   char z[1]="c", occ;
 3906: 
 3907:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 3908:   char strstart[80], *strt, strtend[80];
 3909:   char *stratrunc;
 3910:   int lstra;
 3911: 
 3912:   long total_usecs;
 3913:  
 3914:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 3915:   (void) gettimeofday(&start_time,&tzp);
 3916:   curr_time=start_time;
 3917:   tm = *localtime(&start_time.tv_sec);
 3918:   tmg = *gmtime(&start_time.tv_sec);
 3919:   strcpy(strstart,asctime(&tm));
 3920: 
 3921: /*  printf("Localtime (at start)=%s",strstart); */
 3922: /*  tp.tv_sec = tp.tv_sec +86400; */
 3923: /*  tm = *localtime(&start_time.tv_sec); */
 3924: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 3925: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
 3926: /*   tmg.tm_hour=tmg.tm_hour + 1; */
 3927: /*   tp.tv_sec = mktime(&tmg); */
 3928: /*   strt=asctime(&tmg); */
 3929: /*   printf("Time(after) =%s",strstart);  */
 3930: /*  (void) time (&time_value);
 3931: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
 3932: *  tm = *localtime(&time_value);
 3933: *  strstart=asctime(&tm);
 3934: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
 3935: */
 3936: 
 3937:   nberr=0; /* Number of errors and warnings */
 3938:   nbwarn=0;
 3939:   getcwd(pathcd, size);
 3940: 
 3941:   printf("\n%s\n%s",version,fullversion);
 3942:   if(argc <=1){
 3943:     printf("\nEnter the parameter file name: ");
 3944:     scanf("%s",pathtot);
 3945:   }
 3946:   else{
 3947:     strcpy(pathtot,argv[1]);
 3948:   }
 3949:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 3950:   /*cygwin_split_path(pathtot,path,optionfile);
 3951:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 3952:   /* cutv(path,optionfile,pathtot,'\\');*/
 3953: 
 3954:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 3955:   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3956:   chdir(path);
 3957:   strcpy(command,"mkdir ");
 3958:   strcat(command,optionfilefiname);
 3959:   if((outcmd=system(command)) != 0){
 3960:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
 3961:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 3962:     /* fclose(ficlog); */
 3963: /*     exit(1); */
 3964:   }
 3965: /*   if((imk=mkdir(optionfilefiname))<0){ */
 3966: /*     perror("mkdir"); */
 3967: /*   } */
 3968: 
 3969:   /*-------- arguments in the command line --------*/
 3970: 
 3971:   /* Log file */
 3972:   strcat(filelog, optionfilefiname);
 3973:   strcat(filelog,".log");    /* */
 3974:   if((ficlog=fopen(filelog,"w"))==NULL)    {
 3975:     printf("Problem with logfile %s\n",filelog);
 3976:     goto end;
 3977:   }
 3978:   fprintf(ficlog,"Log filename:%s\n",filelog);
 3979:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
 3980:   fprintf(ficlog,"\nEnter the parameter file name: ");
 3981:   fprintf(ficlog,"pathtot=%s\n\
 3982:  path=%s \n\
 3983:  optionfile=%s\n\
 3984:  optionfilext=%s\n\
 3985:  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 3986: 
 3987:   printf("Local time (at start):%s",strstart);
 3988:   fprintf(ficlog,"Local time (at start): %s",strstart);
 3989:   fflush(ficlog);
 3990: /*   (void) gettimeofday(&curr_time,&tzp); */
 3991: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
 3992: 
 3993:   /* */
 3994:   strcpy(fileres,"r");
 3995:   strcat(fileres, optionfilefiname);
 3996:   strcat(fileres,".txt");    /* Other files have txt extension */
 3997: 
 3998:   /*---------arguments file --------*/
 3999: 
 4000:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
 4001:     printf("Problem with optionfile %s\n",optionfile);
 4002:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
 4003:     fflush(ficlog);
 4004:     goto end;
 4005:   }
 4006: 
 4007: 
 4008: 
 4009:   strcpy(filereso,"o");
 4010:   strcat(filereso,fileres);
 4011:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
 4012:     printf("Problem with Output resultfile: %s\n", filereso);
 4013:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 4014:     fflush(ficlog);
 4015:     goto end;
 4016:   }
 4017: 
 4018:   /* Reads comments: lines beginning with '#' */
 4019:   numlinepar=0;
 4020:   while((c=getc(ficpar))=='#' && c!= EOF){
 4021:     ungetc(c,ficpar);
 4022:     fgets(line, MAXLINE, ficpar);
 4023:     numlinepar++;
 4024:     puts(line);
 4025:     fputs(line,ficparo);
 4026:     fputs(line,ficlog);
 4027:   }
 4028:   ungetc(c,ficpar);
 4029: 
 4030:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 4031:   numlinepar++;
 4032:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 4033:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4034:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 4035:   fflush(ficlog);
 4036:   while((c=getc(ficpar))=='#' && c!= EOF){
 4037:     ungetc(c,ficpar);
 4038:     fgets(line, MAXLINE, ficpar);
 4039:     numlinepar++;
 4040:     puts(line);
 4041:     fputs(line,ficparo);
 4042:     fputs(line,ficlog);
 4043:   }
 4044:   ungetc(c,ficpar);
 4045: 
 4046:    
 4047:   covar=matrix(0,NCOVMAX,1,n); 
 4048:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
 4049:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
 4050: 
 4051:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 4052:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
 4053:  
 4054:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 4055:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
 4056:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4057:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
 4058:     fclose (ficparo);
 4059:     fclose (ficlog);
 4060:     exit(0);
 4061:   }
 4062:   /* Read guess parameters */
 4063:   /* Reads comments: lines beginning with '#' */
 4064:   while((c=getc(ficpar))=='#' && c!= EOF){
 4065:     ungetc(c,ficpar);
 4066:     fgets(line, MAXLINE, ficpar);
 4067:     numlinepar++;
 4068:     puts(line);
 4069:     fputs(line,ficparo);
 4070:     fputs(line,ficlog);
 4071:   }
 4072:   ungetc(c,ficpar);
 4073: 
 4074:   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4075:   for(i=1; i <=nlstate; i++){
 4076:     j=0;
 4077:     for(jj=1; jj <=nlstate+ndeath; jj++){
 4078:       if(jj==i) continue;
 4079:       j++;
 4080:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4081:       if ((i1 != i) && (j1 != j)){
 4082: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4083: 	exit(1);
 4084:       }
 4085:       fprintf(ficparo,"%1d%1d",i1,j1);
 4086:       if(mle==1)
 4087: 	printf("%1d%1d",i,j);
 4088:       fprintf(ficlog,"%1d%1d",i,j);
 4089:       for(k=1; k<=ncovmodel;k++){
 4090: 	fscanf(ficpar," %lf",&param[i][j][k]);
 4091: 	if(mle==1){
 4092: 	  printf(" %lf",param[i][j][k]);
 4093: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4094: 	}
 4095: 	else
 4096: 	  fprintf(ficlog," %lf",param[i][j][k]);
 4097: 	fprintf(ficparo," %lf",param[i][j][k]);
 4098:       }
 4099:       fscanf(ficpar,"\n");
 4100:       numlinepar++;
 4101:       if(mle==1)
 4102: 	printf("\n");
 4103:       fprintf(ficlog,"\n");
 4104:       fprintf(ficparo,"\n");
 4105:     }
 4106:   }  
 4107:   fflush(ficlog);
 4108: 
 4109:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
 4110: 
 4111:   p=param[1][1];
 4112:   
 4113:   /* Reads comments: lines beginning with '#' */
 4114:   while((c=getc(ficpar))=='#' && c!= EOF){
 4115:     ungetc(c,ficpar);
 4116:     fgets(line, MAXLINE, ficpar);
 4117:     numlinepar++;
 4118:     puts(line);
 4119:     fputs(line,ficparo);
 4120:     fputs(line,ficlog);
 4121:   }
 4122:   ungetc(c,ficpar);
 4123: 
 4124:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 4125:   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
 4126:   for(i=1; i <=nlstate; i++){
 4127:     for(j=1; j <=nlstate+ndeath-1; j++){
 4128:       fscanf(ficpar,"%1d%1d",&i1,&j1);
 4129:       if ((i1-i)*(j1-j)!=0){
 4130: 	printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
 4131: 	exit(1);
 4132:       }
 4133:       printf("%1d%1d",i,j);
 4134:       fprintf(ficparo,"%1d%1d",i1,j1);
 4135:       fprintf(ficlog,"%1d%1d",i1,j1);
 4136:       for(k=1; k<=ncovmodel;k++){
 4137: 	fscanf(ficpar,"%le",&delti3[i][j][k]);
 4138: 	printf(" %le",delti3[i][j][k]);
 4139: 	fprintf(ficparo," %le",delti3[i][j][k]);
 4140: 	fprintf(ficlog," %le",delti3[i][j][k]);
 4141:       }
 4142:       fscanf(ficpar,"\n");
 4143:       numlinepar++;
 4144:       printf("\n");
 4145:       fprintf(ficparo,"\n");
 4146:       fprintf(ficlog,"\n");
 4147:     }
 4148:   }
 4149:   fflush(ficlog);
 4150: 
 4151:   delti=delti3[1][1];
 4152: 
 4153: 
 4154:   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
 4155:   
 4156:   /* Reads comments: lines beginning with '#' */
 4157:   while((c=getc(ficpar))=='#' && c!= EOF){
 4158:     ungetc(c,ficpar);
 4159:     fgets(line, MAXLINE, ficpar);
 4160:     numlinepar++;
 4161:     puts(line);
 4162:     fputs(line,ficparo);
 4163:     fputs(line,ficlog);
 4164:   }
 4165:   ungetc(c,ficpar);
 4166:   
 4167:   matcov=matrix(1,npar,1,npar);
 4168:   for(i=1; i <=npar; i++){
 4169:     fscanf(ficpar,"%s",&str);
 4170:     if(mle==1)
 4171:       printf("%s",str);
 4172:     fprintf(ficlog,"%s",str);
 4173:     fprintf(ficparo,"%s",str);
 4174:     for(j=1; j <=i; j++){
 4175:       fscanf(ficpar," %le",&matcov[i][j]);
 4176:       if(mle==1){
 4177: 	printf(" %.5le",matcov[i][j]);
 4178:       }
 4179:       fprintf(ficlog," %.5le",matcov[i][j]);
 4180:       fprintf(ficparo," %.5le",matcov[i][j]);
 4181:     }
 4182:     fscanf(ficpar,"\n");
 4183:     numlinepar++;
 4184:     if(mle==1)
 4185:       printf("\n");
 4186:     fprintf(ficlog,"\n");
 4187:     fprintf(ficparo,"\n");
 4188:   }
 4189:   for(i=1; i <=npar; i++)
 4190:     for(j=i+1;j<=npar;j++)
 4191:       matcov[i][j]=matcov[j][i];
 4192:    
 4193:   if(mle==1)
 4194:     printf("\n");
 4195:   fprintf(ficlog,"\n");
 4196: 
 4197:   fflush(ficlog);
 4198: 
 4199:   /*-------- Rewriting paramater file ----------*/
 4200:   strcpy(rfileres,"r");    /* "Rparameterfile */
 4201:   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
 4202:   strcat(rfileres,".");    /* */
 4203:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
 4204:   if((ficres =fopen(rfileres,"w"))==NULL) {
 4205:     printf("Problem writing new parameter file: %s\n", fileres);goto end;
 4206:     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 4207:   }
 4208:   fprintf(ficres,"#%s\n",version);
 4209:     
 4210:   /*-------- data file ----------*/
 4211:   if((fic=fopen(datafile,"r"))==NULL)    {
 4212:     printf("Problem with datafile: %s\n", datafile);goto end;
 4213:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
 4214:   }
 4215: 
 4216:   n= lastobs;
 4217:   severity = vector(1,maxwav);
 4218:   outcome=imatrix(1,maxwav+1,1,n);
 4219:   num=lvector(1,n);
 4220:   moisnais=vector(1,n);
 4221:   annais=vector(1,n);
 4222:   moisdc=vector(1,n);
 4223:   andc=vector(1,n);
 4224:   agedc=vector(1,n);
 4225:   cod=ivector(1,n);
 4226:   weight=vector(1,n);
 4227:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
 4228:   mint=matrix(1,maxwav,1,n);
 4229:   anint=matrix(1,maxwav,1,n);
 4230:   s=imatrix(1,maxwav+1,1,n);
 4231:   tab=ivector(1,NCOVMAX);
 4232:   ncodemax=ivector(1,8);
 4233: 
 4234:   i=1;
 4235:   while (fgets(line, MAXLINE, fic) != NULL)    {
 4236:     if ((i >= firstobs) && (i <=lastobs)) {
 4237: 	
 4238:       for (j=maxwav;j>=1;j--){
 4239: 	cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
 4240: 	strcpy(line,stra);
 4241: 	cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4242: 	cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4243:       }
 4244: 	
 4245:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4246:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
 4247: 
 4248:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4249:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
 4250: 
 4251:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
 4252:       for (j=ncovcol;j>=1;j--){
 4253: 	cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
 4254:       } 
 4255:       lstra=strlen(stra);
 4256:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
 4257: 	stratrunc = &(stra[lstra-9]);
 4258: 	num[i]=atol(stratrunc);
 4259:       }
 4260:       else
 4261: 	num[i]=atol(stra);
 4262: 	
 4263:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
 4264: 	printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
 4265: 
 4266:       i=i+1;
 4267:     }
 4268:   }
 4269:   /* printf("ii=%d", ij);
 4270:      scanf("%d",i);*/
 4271:   imx=i-1; /* Number of individuals */
 4272: 
 4273:   /* for (i=1; i<=imx; i++){
 4274:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
 4275:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
 4276:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 4277:     }*/
 4278:    /*  for (i=1; i<=imx; i++){
 4279:      if (s[4][i]==9)  s[4][i]=-1; 
 4280:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 4281:   
 4282:  for (i=1; i<=imx; i++)
 4283:  
 4284:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 4285:      else weight[i]=1;*/
 4286: 
 4287:   /* Calculation of the number of parameter from char model*/
 4288:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 4289:   Tprod=ivector(1,15); 
 4290:   Tvaraff=ivector(1,15); 
 4291:   Tvard=imatrix(1,15,1,2);
 4292:   Tage=ivector(1,15);      
 4293:    
 4294:   if (strlen(model) >1){ /* If there is at least 1 covariate */
 4295:     j=0, j1=0, k1=1, k2=1;
 4296:     j=nbocc(model,'+'); /* j=Number of '+' */
 4297:     j1=nbocc(model,'*'); /* j1=Number of '*' */
 4298:     cptcovn=j+1; 
 4299:     cptcovprod=j1; /*Number of products */
 4300:     
 4301:     strcpy(modelsav,model); 
 4302:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 4303:       printf("Error. Non available option model=%s ",model);
 4304:       fprintf(ficlog,"Error. Non available option model=%s ",model);
 4305:       goto end;
 4306:     }
 4307:     
 4308:     /* This loop fills the array Tvar from the string 'model'.*/
 4309: 
 4310:     for(i=(j+1); i>=1;i--){
 4311:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
 4312:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
 4313:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
 4314:       /*scanf("%d",i);*/
 4315:       if (strchr(strb,'*')) {  /* Model includes a product */
 4316: 	cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
 4317: 	if (strcmp(strc,"age")==0) { /* Vn*age */
 4318: 	  cptcovprod--;
 4319: 	  cutv(strb,stre,strd,'V');
 4320: 	  Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
 4321: 	  cptcovage++;
 4322: 	    Tage[cptcovage]=i;
 4323: 	    /*printf("stre=%s ", stre);*/
 4324: 	}
 4325: 	else if (strcmp(strd,"age")==0) { /* or age*Vn */
 4326: 	  cptcovprod--;
 4327: 	  cutv(strb,stre,strc,'V');
 4328: 	  Tvar[i]=atoi(stre);
 4329: 	  cptcovage++;
 4330: 	  Tage[cptcovage]=i;
 4331: 	}
 4332: 	else {  /* Age is not in the model */
 4333: 	  cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 4334: 	  Tvar[i]=ncovcol+k1;
 4335: 	  cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
 4336: 	  Tprod[k1]=i;
 4337: 	  Tvard[k1][1]=atoi(strc); /* m*/
 4338: 	  Tvard[k1][2]=atoi(stre); /* n */
 4339: 	  Tvar[cptcovn+k2]=Tvard[k1][1];
 4340: 	  Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
 4341: 	  for (k=1; k<=lastobs;k++) 
 4342: 	    covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 4343: 	  k1++;
 4344: 	  k2=k2+2;
 4345: 	}
 4346:       }
 4347:       else { /* no more sum */
 4348: 	/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 4349:        /*  scanf("%d",i);*/
 4350:       cutv(strd,strc,strb,'V');
 4351:       Tvar[i]=atoi(strc);
 4352:       }
 4353:       strcpy(modelsav,stra);  
 4354:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
 4355: 	scanf("%d",i);*/
 4356:     } /* end of loop + */
 4357:   } /* end model */
 4358:   
 4359:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
 4360:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
 4361: 
 4362:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
 4363:   printf("cptcovprod=%d ", cptcovprod);
 4364:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
 4365: 
 4366:   scanf("%d ",i);
 4367:   fclose(fic);*/
 4368: 
 4369:     /*  if(mle==1){*/
 4370:   if (weightopt != 1) { /* Maximisation without weights*/
 4371:     for(i=1;i<=n;i++) weight[i]=1.0;
 4372:   }
 4373:     /*-calculation of age at interview from date of interview and age at death -*/
 4374:   agev=matrix(1,maxwav,1,imx);
 4375: 
 4376:   for (i=1; i<=imx; i++) {
 4377:     for(m=2; (m<= maxwav); m++) {
 4378:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
 4379: 	anint[m][i]=9999;
 4380: 	s[m][i]=-1;
 4381:       }
 4382:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 4383: 	nberr++;
 4384: 	printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4385: 	fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 4386: 	s[m][i]=-1;
 4387:       }
 4388:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
 4389: 	nberr++;
 4390: 	printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
 4391: 	fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
 4392: 	s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
 4393:       }
 4394:     }
 4395:   }
 4396: 
 4397:   for (i=1; i<=imx; i++)  {
 4398:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
 4399:     for(m=firstpass; (m<= lastpass); m++){
 4400:       if(s[m][i] >0){
 4401: 	if (s[m][i] >= nlstate+1) {
 4402: 	  if(agedc[i]>0)
 4403: 	    if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
 4404: 	      agev[m][i]=agedc[i];
 4405: 	  /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
 4406: 	    else {
 4407: 	      if ((int)andc[i]!=9999){
 4408: 		nbwarn++;
 4409: 		printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 4410: 		fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 4411: 		agev[m][i]=-1;
 4412: 	      }
 4413: 	    }
 4414: 	}
 4415: 	else if(s[m][i] !=9){ /* Standard case, age in fractional
 4416: 				 years but with the precision of a
 4417: 				 month */
 4418: 	  agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
 4419: 	  if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
 4420: 	    agev[m][i]=1;
 4421: 	  else if(agev[m][i] <agemin){ 
 4422: 	    agemin=agev[m][i];
 4423: 	    /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
 4424: 	  }
 4425: 	  else if(agev[m][i] >agemax){
 4426: 	    agemax=agev[m][i];
 4427: 	    /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
 4428: 	  }
 4429: 	  /*agev[m][i]=anint[m][i]-annais[i];*/
 4430: 	  /*	 agev[m][i] = age[i]+2*m;*/
 4431: 	}
 4432: 	else { /* =9 */
 4433: 	  agev[m][i]=1;
 4434: 	  s[m][i]=-1;
 4435: 	}
 4436:       }
 4437:       else /*= 0 Unknown */
 4438: 	agev[m][i]=1;
 4439:     }
 4440:     
 4441:   }
 4442:   for (i=1; i<=imx; i++)  {
 4443:     for(m=firstpass; (m<=lastpass); m++){
 4444:       if (s[m][i] > (nlstate+ndeath)) {
 4445: 	nberr++;
 4446: 	printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4447: 	fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);	
 4448: 	goto end;
 4449:       }
 4450:     }
 4451:   }
 4452: 
 4453:   /*for (i=1; i<=imx; i++){
 4454:   for (m=firstpass; (m<lastpass); m++){
 4455:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
 4456: }
 4457: 
 4458: }*/
 4459: 
 4460:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
 4461:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
 4462: 
 4463:   free_vector(severity,1,maxwav);
 4464:   free_imatrix(outcome,1,maxwav+1,1,n);
 4465:   free_vector(moisnais,1,n);
 4466:   free_vector(annais,1,n);
 4467:   /* free_matrix(mint,1,maxwav,1,n);
 4468:      free_matrix(anint,1,maxwav,1,n);*/
 4469:   free_vector(moisdc,1,n);
 4470:   free_vector(andc,1,n);
 4471: 
 4472:    
 4473:   wav=ivector(1,imx);
 4474:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
 4475:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
 4476:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
 4477:    
 4478:   /* Concatenates waves */
 4479:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 4480: 
 4481:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 4482: 
 4483:   Tcode=ivector(1,100);
 4484:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
 4485:   ncodemax[1]=1;
 4486:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 4487:       
 4488:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
 4489: 				 the estimations*/
 4490:   h=0;
 4491:   m=pow(2,cptcoveff);
 4492:  
 4493:   for(k=1;k<=cptcoveff; k++){
 4494:     for(i=1; i <=(m/pow(2,k));i++){
 4495:       for(j=1; j <= ncodemax[k]; j++){
 4496: 	for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
 4497: 	  h++;
 4498: 	  if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 4499: 	  /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 4500: 	} 
 4501:       }
 4502:     }
 4503:   } 
 4504:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
 4505:      codtab[1][2]=1;codtab[2][2]=2; */
 4506:   /* for(i=1; i <=m ;i++){ 
 4507:      for(k=1; k <=cptcovn; k++){
 4508:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 4509:      }
 4510:      printf("\n");
 4511:      }
 4512:      scanf("%d",i);*/
 4513:     
 4514:   /*------------ gnuplot -------------*/
 4515:   strcpy(optionfilegnuplot,optionfilefiname);
 4516:   strcat(optionfilegnuplot,".gp");
 4517:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
 4518:     printf("Problem with file %s",optionfilegnuplot);
 4519:   }
 4520:   else{
 4521:     fprintf(ficgp,"\n# %s\n", version); 
 4522:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
 4523:     fprintf(ficgp,"set missing 'NaNq'\n");
 4524:   }
 4525:   /*  fclose(ficgp);*/
 4526:   /*--------- index.htm --------*/
 4527: 
 4528:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 4529:   strcat(optionfilehtm,".htm");
 4530:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 4531:     printf("Problem with %s \n",optionfilehtm), exit(0);
 4532:   }
 4533: 
 4534:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 4535:   strcat(optionfilehtmcov,"-cov.htm");
 4536:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 4537:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
 4538:   }
 4539:   else{
 4540:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4541: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4542: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
 4543: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 4544:   }
 4545: 
 4546:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
 4547: <hr size=\"2\" color=\"#EC5E5E\"> \n\
 4548: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
 4549: \n\
 4550: <hr  size=\"2\" color=\"#EC5E5E\">\
 4551:  <ul><li><h4>Parameter files</h4>\n\
 4552:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
 4553:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
 4554:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
 4555:  - Date and time at start: %s</ul>\n",\
 4556: 	  fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
 4557: 	  fileres,fileres,\
 4558: 	  filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 4559:   fflush(fichtm);
 4560: 
 4561:   strcpy(pathr,path);
 4562:   strcat(pathr,optionfilefiname);
 4563:   chdir(optionfilefiname); /* Move to directory named optionfile */
 4564:   
 4565:   /* Calculates basic frequencies. Computes observed prevalence at single age
 4566:      and prints on file fileres'p'. */
 4567:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
 4568: 
 4569:   fprintf(fichtm,"\n");
 4570:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 4571: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 4572: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
 4573: 	  imx,agemin,agemax,jmin,jmax,jmean);
 4574:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4575:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4576:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4577:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
 4578:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
 4579:     
 4580:    
 4581:   /* For Powell, parameters are in a vector p[] starting at p[1]
 4582:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
 4583:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
 4584: 
 4585:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
 4586:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4587:   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4588:   for (k=1; k<=npar;k++)
 4589:     printf(" %d %8.5f",k,p[k]);
 4590:   printf("\n");
 4591:   globpr=1; /* to print the contributions */
 4592:   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
 4593:   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
 4594:   for (k=1; k<=npar;k++)
 4595:     printf(" %d %8.5f",k,p[k]);
 4596:   printf("\n");
 4597:   if(mle>=1){ /* Could be 1 or 2 */
 4598:     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
 4599:   }
 4600:     
 4601:   /*--------- results files --------------*/
 4602:   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
 4603:   
 4604: 
 4605:   jk=1;
 4606:   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4607:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4608:   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 4609:   for(i=1,jk=1; i <=nlstate; i++){
 4610:     for(k=1; k <=(nlstate+ndeath); k++){
 4611:       if (k != i) 
 4612: 	{
 4613: 	  printf("%d%d ",i,k);
 4614: 	  fprintf(ficlog,"%d%d ",i,k);
 4615: 	  fprintf(ficres,"%1d%1d ",i,k);
 4616: 	  for(j=1; j <=ncovmodel; j++){
 4617: 	    printf("%f ",p[jk]);
 4618: 	    fprintf(ficlog,"%f ",p[jk]);
 4619: 	    fprintf(ficres,"%f ",p[jk]);
 4620: 	    jk++; 
 4621: 	  }
 4622: 	  printf("\n");
 4623: 	  fprintf(ficlog,"\n");
 4624: 	  fprintf(ficres,"\n");
 4625: 	}
 4626:     }
 4627:   }
 4628:   if(mle!=0){
 4629:     /* Computing hessian and covariance matrix */
 4630:     ftolhess=ftol; /* Usually correct */
 4631:     hesscov(matcov, p, npar, delti, ftolhess, func);
 4632:   }
 4633:   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
 4634:   printf("# Scales (for hessian or gradient estimation)\n");
 4635:   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
 4636:   for(i=1,jk=1; i <=nlstate; i++){
 4637:     for(j=1; j <=nlstate+ndeath; j++){
 4638:       if (j!=i) {
 4639: 	fprintf(ficres,"%1d%1d",i,j);
 4640: 	printf("%1d%1d",i,j);
 4641: 	fprintf(ficlog,"%1d%1d",i,j);
 4642: 	for(k=1; k<=ncovmodel;k++){
 4643: 	  printf(" %.5e",delti[jk]);
 4644: 	  fprintf(ficlog," %.5e",delti[jk]);
 4645: 	  fprintf(ficres," %.5e",delti[jk]);
 4646: 	  jk++;
 4647: 	}
 4648: 	printf("\n");
 4649: 	fprintf(ficlog,"\n");
 4650: 	fprintf(ficres,"\n");
 4651:       }
 4652:     }
 4653:   }
 4654:    
 4655:   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4656:   if(mle==1)
 4657:     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4658:   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
 4659:   for(i=1,k=1;i<=npar;i++){
 4660:     /*  if (k>nlstate) k=1;
 4661: 	i1=(i-1)/(ncovmodel*nlstate)+1; 
 4662: 	fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
 4663: 	printf("%s%d%d",alph[k],i1,tab[i]);
 4664:     */
 4665:     fprintf(ficres,"%3d",i);
 4666:     if(mle==1)
 4667:       printf("%3d",i);
 4668:     fprintf(ficlog,"%3d",i);
 4669:     for(j=1; j<=i;j++){
 4670:       fprintf(ficres," %.5e",matcov[i][j]);
 4671:       if(mle==1)
 4672: 	printf(" %.5e",matcov[i][j]);
 4673:       fprintf(ficlog," %.5e",matcov[i][j]);
 4674:     }
 4675:     fprintf(ficres,"\n");
 4676:     if(mle==1)
 4677:       printf("\n");
 4678:     fprintf(ficlog,"\n");
 4679:     k++;
 4680:   }
 4681:    
 4682:   while((c=getc(ficpar))=='#' && c!= EOF){
 4683:     ungetc(c,ficpar);
 4684:     fgets(line, MAXLINE, ficpar);
 4685:     puts(line);
 4686:     fputs(line,ficparo);
 4687:   }
 4688:   ungetc(c,ficpar);
 4689: 
 4690:   estepm=0;
 4691:   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
 4692:   if (estepm==0 || estepm < stepm) estepm=stepm;
 4693:   if (fage <= 2) {
 4694:     bage = ageminpar;
 4695:     fage = agemaxpar;
 4696:   }
 4697:    
 4698:   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 4699:   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4700:   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 4701:    
 4702:   while((c=getc(ficpar))=='#' && c!= EOF){
 4703:     ungetc(c,ficpar);
 4704:     fgets(line, MAXLINE, ficpar);
 4705:     puts(line);
 4706:     fputs(line,ficparo);
 4707:   }
 4708:   ungetc(c,ficpar);
 4709:   
 4710:   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 4711:   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4712:   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4713:   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4714:   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
 4715:    
 4716:   while((c=getc(ficpar))=='#' && c!= EOF){
 4717:     ungetc(c,ficpar);
 4718:     fgets(line, MAXLINE, ficpar);
 4719:     puts(line);
 4720:     fputs(line,ficparo);
 4721:   }
 4722:   ungetc(c,ficpar);
 4723:  
 4724: 
 4725:   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
 4726:   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
 4727: 
 4728:   fscanf(ficpar,"pop_based=%d\n",&popbased);
 4729:   fprintf(ficparo,"pop_based=%d\n",popbased);   
 4730:   fprintf(ficres,"pop_based=%d\n",popbased);   
 4731:   
 4732:   while((c=getc(ficpar))=='#' && c!= EOF){
 4733:     ungetc(c,ficpar);
 4734:     fgets(line, MAXLINE, ficpar);
 4735:     puts(line);
 4736:     fputs(line,ficparo);
 4737:   }
 4738:   ungetc(c,ficpar);
 4739: 
 4740:   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
 4741:   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4742:   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4743:   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4744:   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
 4745:   /* day and month of proj2 are not used but only year anproj2.*/
 4746: 
 4747:   while((c=getc(ficpar))=='#' && c!= EOF){
 4748:     ungetc(c,ficpar);
 4749:     fgets(line, MAXLINE, ficpar);
 4750:     puts(line);
 4751:     fputs(line,ficparo);
 4752:   }
 4753:   ungetc(c,ficpar);
 4754: 
 4755:   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
 4756:   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4757:   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
 4758: 
 4759:   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
 4760:   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 4761: 
 4762:   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
 4763:   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
 4764: 
 4765:   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
 4766: 	       model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
 4767: 	       jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
 4768:  
 4769:   /*------------ free_vector  -------------*/
 4770:   /*  chdir(path); */
 4771:  
 4772:   free_ivector(wav,1,imx);
 4773:   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
 4774:   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
 4775:   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
 4776:   free_lvector(num,1,n);
 4777:   free_vector(agedc,1,n);
 4778:   /*free_matrix(covar,0,NCOVMAX,1,n);*/
 4779:   /*free_matrix(covar,1,NCOVMAX,1,n);*/
 4780:   fclose(ficparo);
 4781:   fclose(ficres);
 4782: 
 4783: 
 4784:   /*--------------- Prevalence limit  (stable prevalence) --------------*/
 4785:   
 4786:   strcpy(filerespl,"pl");
 4787:   strcat(filerespl,fileres);
 4788:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
 4789:     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4790:     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
 4791:   }
 4792:   printf("Computing stable prevalence: result on file '%s' \n", filerespl);
 4793:   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
 4794:   fprintf(ficrespl,"#Stable prevalence \n");
 4795:   fprintf(ficrespl,"#Age ");
 4796:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
 4797:   fprintf(ficrespl,"\n");
 4798:   
 4799:   prlim=matrix(1,nlstate,1,nlstate);
 4800: 
 4801:   agebase=ageminpar;
 4802:   agelim=agemaxpar;
 4803:   ftolpl=1.e-10;
 4804:   i1=cptcoveff;
 4805:   if (cptcovn < 1){i1=1;}
 4806: 
 4807:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4808:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4809:       k=k+1;
 4810:       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
 4811:       fprintf(ficrespl,"\n#******");
 4812:       printf("\n#******");
 4813:       fprintf(ficlog,"\n#******");
 4814:       for(j=1;j<=cptcoveff;j++) {
 4815: 	fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4816: 	printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4817: 	fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4818:       }
 4819:       fprintf(ficrespl,"******\n");
 4820:       printf("******\n");
 4821:       fprintf(ficlog,"******\n");
 4822: 	
 4823:       for (age=agebase; age<=agelim; age++){
 4824: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4825: 	fprintf(ficrespl,"%.0f ",age );
 4826:         for(j=1;j<=cptcoveff;j++)
 4827:  	  fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4828: 	for(i=1; i<=nlstate;i++)
 4829: 	  fprintf(ficrespl," %.5f", prlim[i][i]);
 4830: 	fprintf(ficrespl,"\n");
 4831:       }
 4832:     }
 4833:   }
 4834:   fclose(ficrespl);
 4835: 
 4836:   /*------------- h Pij x at various ages ------------*/
 4837:   
 4838:   strcpy(filerespij,"pij");  strcat(filerespij,fileres);
 4839:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
 4840:     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
 4841:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
 4842:   }
 4843:   printf("Computing pij: result on file '%s' \n", filerespij);
 4844:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
 4845:   
 4846:   stepsize=(int) (stepm+YEARM-1)/YEARM;
 4847:   /*if (stepm<=24) stepsize=2;*/
 4848: 
 4849:   agelim=AGESUP;
 4850:   hstepm=stepsize*YEARM; /* Every year of age */
 4851:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
 4852: 
 4853:   /* hstepm=1;   aff par mois*/
 4854: 
 4855:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
 4856:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4857:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4858:       k=k+1;
 4859:       fprintf(ficrespij,"\n#****** ");
 4860:       for(j=1;j<=cptcoveff;j++) 
 4861: 	fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4862:       fprintf(ficrespij,"******\n");
 4863: 	
 4864:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
 4865: 	nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 4866: 	nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 4867: 
 4868: 	/*	  nhstepm=nhstepm*YEARM; aff par mois*/
 4869: 
 4870: 	p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4871: 	oldm=oldms;savm=savms;
 4872: 	hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
 4873: 	fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 4874: 	for(i=1; i<=nlstate;i++)
 4875: 	  for(j=1; j<=nlstate+ndeath;j++)
 4876: 	    fprintf(ficrespij," %1d-%1d",i,j);
 4877: 	fprintf(ficrespij,"\n");
 4878: 	for (h=0; h<=nhstepm; h++){
 4879: 	  fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
 4880: 	  for(i=1; i<=nlstate;i++)
 4881: 	    for(j=1; j<=nlstate+ndeath;j++)
 4882: 	      fprintf(ficrespij," %.5f", p3mat[i][j][h]);
 4883: 	  fprintf(ficrespij,"\n");
 4884: 	}
 4885: 	free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 4886: 	fprintf(ficrespij,"\n");
 4887:       }
 4888:     }
 4889:   }
 4890: 
 4891:   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
 4892: 
 4893:   fclose(ficrespij);
 4894: 
 4895:   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4896: 
 4897:   /*---------- Forecasting ------------------*/
 4898:   /*if((stepm == 1) && (strcmp(model,".")==0)){*/
 4899:   if(prevfcast==1){
 4900:     /*    if(stepm ==1){*/
 4901:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
 4902:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
 4903: /*      }  */
 4904: /*      else{ */
 4905: /*        erreur=108; */
 4906: /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4907: /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 4908: /*      } */
 4909:   }
 4910:   
 4911: 
 4912:   /*---------- Health expectancies and variances ------------*/
 4913: 
 4914:   strcpy(filerest,"t");
 4915:   strcat(filerest,fileres);
 4916:   if((ficrest=fopen(filerest,"w"))==NULL) {
 4917:     printf("Problem with total LE resultfile: %s\n", filerest);goto end;
 4918:     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
 4919:   }
 4920:   printf("Computing Total LEs with variances: file '%s' \n", filerest); 
 4921:   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
 4922: 
 4923: 
 4924:   strcpy(filerese,"e");
 4925:   strcat(filerese,fileres);
 4926:   if((ficreseij=fopen(filerese,"w"))==NULL) {
 4927:     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4928:     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 4929:   }
 4930:   printf("Computing Health Expectancies: result on file '%s' \n", filerese);
 4931:   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
 4932: 
 4933:   strcpy(fileresv,"v");
 4934:   strcat(fileresv,fileres);
 4935:   if((ficresvij=fopen(fileresv,"w"))==NULL) {
 4936:     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
 4937:     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
 4938:   }
 4939:   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4940:   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
 4941: 
 4942:   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
 4943:   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 4944:   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
 4945: ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
 4946:   */
 4947: 
 4948:   if (mobilav!=0) {
 4949:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 4950:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 4951:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 4952:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
 4953:     }
 4954:   }
 4955: 
 4956:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 4957:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 4958:       k=k+1; 
 4959:       fprintf(ficrest,"\n#****** ");
 4960:       for(j=1;j<=cptcoveff;j++) 
 4961: 	fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4962:       fprintf(ficrest,"******\n");
 4963: 
 4964:       fprintf(ficreseij,"\n#****** ");
 4965:       for(j=1;j<=cptcoveff;j++) 
 4966: 	fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4967:       fprintf(ficreseij,"******\n");
 4968: 
 4969:       fprintf(ficresvij,"\n#****** ");
 4970:       for(j=1;j<=cptcoveff;j++) 
 4971: 	fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 4972:       fprintf(ficresvij,"******\n");
 4973: 
 4974:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4975:       oldm=oldms;savm=savms;
 4976:       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
 4977:  
 4978:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
 4979:       oldm=oldms;savm=savms;
 4980:       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
 4981:       if(popbased==1){
 4982: 	varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
 4983:       }
 4984: 
 4985:  
 4986:       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
 4987:       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
 4988:       fprintf(ficrest,"\n");
 4989: 
 4990:       epj=vector(1,nlstate+1);
 4991:       for(age=bage; age <=fage ;age++){
 4992: 	prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
 4993: 	if (popbased==1) {
 4994: 	  if(mobilav ==0){
 4995: 	    for(i=1; i<=nlstate;i++)
 4996: 	      prlim[i][i]=probs[(int)age][i][k];
 4997: 	  }else{ /* mobilav */ 
 4998: 	    for(i=1; i<=nlstate;i++)
 4999: 	      prlim[i][i]=mobaverage[(int)age][i][k];
 5000: 	  }
 5001: 	}
 5002: 	
 5003: 	fprintf(ficrest," %4.0f",age);
 5004: 	for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
 5005: 	  for(i=1, epj[j]=0.;i <=nlstate;i++) {
 5006: 	    epj[j] += prlim[i][i]*eij[i][j][(int)age];
 5007: 	    /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
 5008: 	  }
 5009: 	  epj[nlstate+1] +=epj[j];
 5010: 	}
 5011: 
 5012: 	for(i=1, vepp=0.;i <=nlstate;i++)
 5013: 	  for(j=1;j <=nlstate;j++)
 5014: 	    vepp += vareij[i][j][(int)age];
 5015: 	fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
 5016: 	for(j=1;j <=nlstate;j++){
 5017: 	  fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
 5018: 	}
 5019: 	fprintf(ficrest,"\n");
 5020:       }
 5021:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5022:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
 5023:       free_vector(epj,1,nlstate+1);
 5024:     }
 5025:   }
 5026:   free_vector(weight,1,n);
 5027:   free_imatrix(Tvard,1,15,1,2);
 5028:   free_imatrix(s,1,maxwav+1,1,n);
 5029:   free_matrix(anint,1,maxwav,1,n); 
 5030:   free_matrix(mint,1,maxwav,1,n);
 5031:   free_ivector(cod,1,n);
 5032:   free_ivector(tab,1,NCOVMAX);
 5033:   fclose(ficreseij);
 5034:   fclose(ficresvij);
 5035:   fclose(ficrest);
 5036:   fclose(ficpar);
 5037:   
 5038:   /*------- Variance of stable prevalence------*/   
 5039: 
 5040:   strcpy(fileresvpl,"vpl");
 5041:   strcat(fileresvpl,fileres);
 5042:   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
 5043:     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
 5044:     exit(0);
 5045:   }
 5046:   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
 5047: 
 5048:   for(cptcov=1,k=0;cptcov<=i1;cptcov++){
 5049:     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
 5050:       k=k+1;
 5051:       fprintf(ficresvpl,"\n#****** ");
 5052:       for(j=1;j<=cptcoveff;j++) 
 5053: 	fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 5054:       fprintf(ficresvpl,"******\n");
 5055:       
 5056:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
 5057:       oldm=oldms;savm=savms;
 5058:       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
 5059:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
 5060:     }
 5061:   }
 5062: 
 5063:   fclose(ficresvpl);
 5064: 
 5065:   /*---------- End : free ----------------*/
 5066:   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
 5067:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5068:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5069:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
 5070:   
 5071:   free_matrix(covar,0,NCOVMAX,1,n);
 5072:   free_matrix(matcov,1,npar,1,npar);
 5073:   /*free_vector(delti,1,npar);*/
 5074:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
 5075:   free_matrix(agev,1,maxwav,1,imx);
 5076:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
 5077:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5078:   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
 5079: 
 5080:   free_ivector(ncodemax,1,8);
 5081:   free_ivector(Tvar,1,15);
 5082:   free_ivector(Tprod,1,15);
 5083:   free_ivector(Tvaraff,1,15);
 5084:   free_ivector(Tage,1,15);
 5085:   free_ivector(Tcode,1,100);
 5086: 
 5087:   fflush(fichtm);
 5088:   fflush(ficgp);
 5089:   
 5090: 
 5091:   if((nberr >0) || (nbwarn>0)){
 5092:     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5093:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 5094:   }else{
 5095:     printf("End of Imach\n");
 5096:     fprintf(ficlog,"End of Imach\n");
 5097:   }
 5098:   printf("See log file on %s\n",filelog);
 5099:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
 5100:   (void) gettimeofday(&end_time,&tzp);
 5101:   tm = *localtime(&end_time.tv_sec);
 5102:   tmg = *gmtime(&end_time.tv_sec);
 5103:   strcpy(strtend,asctime(&tm));
 5104:   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
 5105:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
 5106:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5107: 
 5108:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5109:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
 5110:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
 5111:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
 5112: /*   if(fileappend(fichtm,optionfilehtm)){ */
 5113:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
 5114:   fclose(fichtm);
 5115:   fclose(fichtmcov);
 5116:   fclose(ficgp);
 5117:   fclose(ficlog);
 5118:   /*------ End -----------*/
 5119: 
 5120:   chdir(path);
 5121:   strcpy(plotcmd,GNUPLOTPROGRAM);
 5122:   strcat(plotcmd," ");
 5123:   strcat(plotcmd,optionfilegnuplot);
 5124:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
 5125:   if((outcmd=system(plotcmd)) != 0){
 5126:     printf(" Problem with gnuplot\n");
 5127:   }
 5128:   printf(" Wait...");
 5129:   while (z[0] != 'q') {
 5130:     /* chdir(path); */
 5131:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
 5132:     scanf("%s",z);
 5133: /*     if (z[0] == 'c') system("./imach"); */
 5134:     if (z[0] == 'e') system(optionfilehtm);
 5135:     else if (z[0] == 'g') system(plotcmd);
 5136:     else if (z[0] == 'q') exit(0);
 5137:   }
 5138:   end:
 5139:   while (z[0] != 'q') {
 5140:     printf("\nType  q for exiting: ");
 5141:     scanf("%s",z);
 5142:   }
 5143: }
 5144: 
 5145: 
 5146: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>