Annotation of imach064/doc/imach.htm, revision 1.3

1.2       lievre      1: <html>
                      2: 
                      3: <head>
                      4: <meta http-equiv="Content-Type"
                      5: content="text/html; charset=iso-8859-1">
                      6: <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
                      7: <title>Computing Health Expectancies using IMaCh</title>
                      8: <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
                      9: </head>
                     10: 
                     11: <body bgcolor="#FFFFFF">
                     12: 
                     13: <hr size="3" color="#EC5E5E">
                     14: 
                     15: <h1 align="center"><font color="#00006A">Computing Health
                     16: Expectancies using IMaCh</font></h1>
                     17: 
                     18: <h1 align="center"><font color="#00006A" size="5">(a Maximum
                     19: Likelihood Computer Program using Interpolation of Markov Chains)</font></h1>
                     20: 
                     21: <p align="center">&nbsp;</p>
                     22: 
                     23: <p align="center"><a href="http://www.ined.fr/"><img
                     24: src="logo-ined.gif" border="0" width="151" height="76"></a><img
                     25: src="euroreves2.gif" width="151" height="75"></p>
                     26: 
                     27: <h3 align="center"><a href="http://www.ined.fr/"><font
                     28: color="#00006A">INED</font></a><font color="#00006A"> and </font><a
                     29: href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>
                     30: 
1.3     ! lievre     31: <p align="center"><font color="#00006A" size="4"><strong>Version
        !            32: 64b, May 2001</strong></font></p>
1.2       lievre     33: 
                     34: <hr size="3" color="#EC5E5E">
                     35: 
                     36: <p align="center"><font color="#00006A"><strong>Authors of the
                     37: program: </strong></font><a href="http://sauvy.ined.fr/brouard"><font
                     38: color="#00006A"><strong>Nicolas Brouard</strong></font></a><font
                     39: color="#00006A"><strong>, senior researcher at the </strong></font><a
                     40: href="http://www.ined.fr"><font color="#00006A"><strong>Institut
                     41: National d'Etudes Démographiques</strong></font></a><font
                     42: color="#00006A"><strong> (INED, Paris) in the &quot;Mortality,
                     43: Health and Epidemiology&quot; Research Unit </strong></font></p>
                     44: 
                     45: <p align="center"><font color="#00006A"><strong>and Agnès
                     46: Lièvre<br clear="left">
                     47: </strong></font></p>
                     48: 
                     49: <h4><font color="#00006A">Contribution to the mathematics: C. R.
                     50: Heathcote </font><font color="#00006A" size="2">(Australian
                     51: National University, Canberra).</font></h4>
                     52: 
                     53: <h4><font color="#00006A">Contact: Agnès Lièvre (</font><a
                     54: href="mailto:lievre@ined.fr"><font color="#00006A"><i>lievre@ined.fr</i></font></a><font
                     55: color="#00006A">) </font></h4>
                     56: 
                     57: <hr>
                     58: 
                     59: <ul>
                     60:     <li><a href="#intro">Introduction</a> </li>
                     61:     <li>The detailed statistical model (<a href="docmath.pdf">PDF
                     62:         version</a>),(<a href="docmath.ps">ps version</a>) </li>
                     63:     <li><a href="#data">On what kind of data can it be used?</a></li>
                     64:     <li><a href="#datafile">The data file</a> </li>
                     65:     <li><a href="#biaspar">The parameter file</a> </li>
                     66:     <li><a href="#running">Running Imach</a> </li>
                     67:     <li><a href="#output">Output files and graphs</a> </li>
                     68:     <li><a href="#example">Exemple</a> </li>
                     69: </ul>
                     70: 
                     71: <hr>
                     72: 
                     73: <h2><a name="intro"><font color="#00006A">Introduction</font></a></h2>
                     74: 
                     75: <p>This program computes <b>Healthy Life Expectancies</b> from <b>cross-longitudinal
                     76: data</b> using the methodology pioneered by Laditka and Wolf (1).
                     77: Within the family of Health Expectancies (HE), Disability-free
                     78: life expectancy (DFLE) is probably the most important index to
                     79: monitor. In low mortality countries, there is a fear that when
                     80: mortality declines, the increase in DFLE is not proportionate to
                     81: the increase in total Life expectancy. This case is called the <em>Expansion
                     82: of morbidity</em>. Most of the data collected today, in
                     83: particular by the international <a href="http://euroreves/reves">REVES</a>
                     84: network on Health expectancy, and most HE indices based on these
                     85: data, are <em>cross-sectional</em>. It means that the information
                     86: collected comes from a single cross-sectional survey: people from
                     87: various ages (but mostly old people) are surveyed on their health
                     88: status at a single date. Proportion of people disabled at each
                     89: age, can then be measured at that date. This age-specific
                     90: prevalence curve is then used to distinguish, within the
                     91: stationary population (which, by definition, is the life table
                     92: estimated from the vital statistics on mortality at the same
                     93: date), the disable population from the disability-free
                     94: population. Life expectancy (LE) (or total population divided by
                     95: the yearly number of births or deaths of this stationary
                     96: population) is then decomposed into DFLE and DLE. This method of
                     97: computing HE is usually called the Sullivan method (from the name
                     98: of the author who first described it).</p>
                     99: 
                    100: <p>Age-specific proportions of people disable are very difficult
                    101: to forecast because each proportion corresponds to historical
                    102: conditions of the cohort and it is the result of the historical
                    103: flows from entering disability and recovering in the past until
                    104: today. The age-specific intensities (or incidence rates) of
                    105: entering disability or recovering a good health, are reflecting
                    106: actual conditions and therefore can be used at each age to
                    107: forecast the future of this cohort. For example if a country is
                    108: improving its technology of prosthesis, the incidence of
                    109: recovering the ability to walk will be higher at each (old) age,
                    110: but the prevalence of disability will only slightly reflect an
                    111: improve because the prevalence is mostly affected by the history
                    112: of the cohort and not by recent period effects. To measure the
                    113: period improvement we have to simulate the future of a cohort of
                    114: new-borns entering or leaving at each age the disability state or
                    115: dying according to the incidence rates measured today on
                    116: different cohorts. The proportion of people disabled at each age
                    117: in this simulated cohort will be much lower (using the exemple of
                    118: an improvement) that the proportions observed at each age in a
                    119: cross-sectional survey. This new prevalence curve introduced in a
                    120: life table will give a much more actual and realistic HE level
                    121: than the Sullivan method which mostly measured the History of
                    122: health conditions in this country.</p>
                    123: 
                    124: <p>Therefore, the main question is how to measure incidence rates
                    125: from cross-longitudinal surveys? This is the goal of the IMaCH
                    126: program. From your data and using IMaCH you can estimate period
                    127: HE and not only Sullivan's HE. Also the standard errors of the HE
                    128: are computed.</p>
                    129: 
                    130: <p>A cross-longitudinal survey consists in a first survey
                    131: (&quot;cross&quot;) where individuals from different ages are
                    132: interviewed on their health status or degree of disability. At
                    133: least a second wave of interviews (&quot;longitudinal&quot;)
                    134: should measure each new individual health status. Health
                    135: expectancies are computed from the transitions observed between
                    136: waves and are computed for each degree of severity of disability
                    137: (number of life states). More degrees you consider, more time is
                    138: necessary to reach the Maximum Likelihood of the parameters
                    139: involved in the model. Considering only two states of disability
                    140: (disable and healthy) is generally enough but the computer
                    141: program works also with more health statuses.<br>
                    142: <br>
                    143: The simplest model is the multinomial logistic model where <i>pij</i>
                    144: is the probability to be observed in state <i>j</i> at the second
                    145: wave conditional to be observed in state <em>i</em> at the first
                    146: wave. Therefore a simple model is: log<em>(pij/pii)= aij +
                    147: bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
                    148: is a covariate. The advantage that this computer program claims,
                    149: comes from that if the delay between waves is not identical for
                    150: each individual, or if some individual missed an interview, the
                    151: information is not rounded or lost, but taken into account using
                    152: an interpolation or extrapolation. <i>hPijx</i> is the
                    153: probability to be observed in state <i>i</i> at age <i>x+h</i>
                    154: conditional to the observed state <i>i</i> at age <i>x</i>. The
                    155: delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
                    156: of unobserved intermediate states. This elementary transition (by
                    157: month or quarter trimester, semester or year) is modeled as a
                    158: multinomial logistic. The <i>hPx</i> matrix is simply the matrix
                    159: product of <i>nh*stepm</i> elementary matrices and the
                    160: contribution of each individual to the likelihood is simply <i>hPijx</i>.
                    161: <br>
                    162: </p>
                    163: 
                    164: <p>The program presented in this manual is a quite general
                    165: program named <strong>IMaCh</strong> (for <strong>I</strong>nterpolated
                    166: <strong>MA</strong>rkov <strong>CH</strong>ain), designed to
                    167: analyse transition data from longitudinal surveys. The first step
                    168: is the parameters estimation of a transition probabilities model
                    169: between an initial status and a final status. From there, the
                    170: computer program produces some indicators such as observed and
                    171: stationary prevalence, life expectancies and their variances and
                    172: graphs. Our transition model consists in absorbing and
                    173: non-absorbing states with the possibility of return across the
                    174: non-absorbing states. The main advantage of this package,
                    175: compared to other programs for the analysis of transition data
                    176: (For example: Proc Catmod of SAS<sup>®</sup>) is that the whole
                    177: individual information is used even if an interview is missing, a
                    178: status or a date is unknown or when the delay between waves is
                    179: not identical for each individual. The program can be executed
                    180: according to parameters: selection of a sub-sample, number of
                    181: absorbing and non-absorbing states, number of waves taken in
                    182: account (the user inputs the first and the last interview), a
                    183: tolerance level for the maximization function, the periodicity of
                    184: the transitions (we can compute annual, quaterly or monthly
                    185: transitions), covariates in the model. It works on Windows or on
                    186: Unix.<br>
                    187: </p>
                    188: 
                    189: <hr>
                    190: 
                    191: <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New
                    192: Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of
                    193: Aging and Health</i>. Vol 10, No. 2. </p>
                    194: 
                    195: <hr>
                    196: 
                    197: <h2><a name="data"><font color="#00006A">On what kind of data can
                    198: it be used?</font></a></h2>
                    199: 
                    200: <p>The minimum data required for a transition model is the
                    201: recording of a set of individuals interviewed at a first date and
                    202: interviewed again at least one another time. From the
                    203: observations of an individual, we obtain a follow-up over time of
                    204: the occurrence of a specific event. In this documentation, the
                    205: event is related to health status at older ages, but the program
                    206: can be applied on a lot of longitudinal studies in different
                    207: contexts. To build the data file explained into the next section,
                    208: you must have the month and year of each interview and the
                    209: corresponding health status. But in order to get age, date of
                    210: birth (month and year) is required (missing values is allowed for
                    211: month). Date of death (month and year) is an important
                    212: information also required if the individual is dead. Shorter
                    213: steps (i.e. a month) will more closely take into account the
                    214: survival time after the last interview.</p>
                    215: 
                    216: <hr>
                    217: 
                    218: <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>
                    219: 
                    220: <p>In this example, 8,000 people have been interviewed in a
                    221: cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).
                    222: Some people missed 1, 2 or 3 interviews. Health statuses are
                    223: healthy (1) and disable (2). The survey is not a real one. It is
                    224: a simulation of the American Longitudinal Survey on Aging. The
                    225: disability state is defined if the individual missed one of four
                    226: ADL (Activity of daily living, like bathing, eating, walking).
                    227: Therefore, even is the individuals interviewed in the sample are
                    228: virtual, the information brought with this sample is close to the
                    229: situation of the United States. Sex is not recorded is this
                    230: sample.</p>
                    231: 
                    232: <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>
                    233: in this first example) is an individual record which fields are: </p>
                    234: 
                    235: <ul>
                    236:     <li><b>Index number</b>: positive number (field 1) </li>
                    237:     <li><b>First covariate</b> positive number (field 2) </li>
                    238:     <li><b>Second covariate</b> positive number (field 3) </li>
                    239:     <li><a name="Weight"><b>Weight</b></a>: positive number
                    240:         (field 4) . In most surveys individuals are weighted
                    241:         according to the stratification of the sample.</li>
                    242:     <li><b>Date of birth</b>: coded as mm/yyyy. Missing dates are
                    243:         coded as 99/9999 (field 5) </li>
                    244:     <li><b>Date of death</b>: coded as mm/yyyy. Missing dates are
                    245:         coded as 99/9999 (field 6) </li>
                    246:     <li><b>Date of first interview</b>: coded as mm/yyyy. Missing
                    247:         dates are coded as 99/9999 (field 7) </li>
                    248:     <li><b>Status at first interview</b>: positive number.
                    249:         Missing values ar coded -1. (field 8) </li>
                    250:     <li><b>Date of second interview</b>: coded as mm/yyyy.
                    251:         Missing dates are coded as 99/9999 (field 9) </li>
                    252:     <li><strong>Status at second interview</strong> positive
                    253:         number. Missing values ar coded -1. (field 10) </li>
                    254:     <li><b>Date of third interview</b>: coded as mm/yyyy. Missing
                    255:         dates are coded as 99/9999 (field 11) </li>
                    256:     <li><strong>Status at third interview</strong> positive
                    257:         number. Missing values ar coded -1. (field 12) </li>
                    258:     <li><b>Date of fourth interview</b>: coded as mm/yyyy.
                    259:         Missing dates are coded as 99/9999 (field 13) </li>
                    260:     <li><strong>Status at fourth interview</strong> positive
                    261:         number. Missing values are coded -1. (field 14) </li>
                    262:     <li>etc</li>
                    263: </ul>
                    264: 
                    265: <p>&nbsp;</p>
                    266: 
                    267: <p>If your longitudinal survey do not include information about
                    268: weights or covariates, you must fill the column with a number
                    269: (e.g. 1) because a missing field is not allowed.</p>
                    270: 
                    271: <hr>
                    272: 
                    273: <h2><font color="#00006A">Your first example parameter file</font><a
                    274: href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>
                    275: 
1.3     ! lievre    276: <h2><a name="biaspar"></a>#Imach version 0.64b, May 2001,
1.2       lievre    277: INED-EUROREVES </h2>
                    278: 
                    279: <p>This is a comment. Comments start with a '#'.</p>
                    280: 
                    281: <h4><font color="#FF0000">First uncommented line</font></h4>
                    282: 
                    283: <pre>title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4</pre>
                    284: 
                    285: <ul>
                    286:     <li><b>title=</b> 1st_example is title of the run. </li>
                    287:     <li><b>datafile=</b>data1.txt is the name of the data set.
                    288:         Our example is a six years follow-up survey. It consists
                    289:         in a baseline followed by 3 reinterviews. </li>
                    290:     <li><b>lastobs=</b> 8600 the program is able to run on a
                    291:         subsample where the last observation number is lastobs.
                    292:         It can be set a bigger number than the real number of
                    293:         observations (e.g. 100000). In this example, maximisation
                    294:         will be done on the 8600 first records. </li>
                    295:     <li><b>firstpass=1</b> , <b>lastpass=4 </b>In case of more
                    296:         than two interviews in the survey, the program can be run
                    297:         on selected transitions periods. firstpass=1 means the
                    298:         first interview included in the calculation is the
                    299:         baseline survey. lastpass=4 means that the information
                    300:         brought by the 4th interview is taken into account.</li>
                    301: </ul>
                    302: 
                    303: <p>&nbsp;</p>
                    304: 
                    305: <h4><a name="biaspar-2"><font color="#FF0000">Second uncommented
                    306: line</font></a></h4>
                    307: 
                    308: <pre>ftol=1.e-08 stepm=1 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
                    309: 
                    310: <ul>
                    311:     <li><b>ftol=1e-8</b> Convergence tolerance on the function
                    312:         value in the maximisation of the likelihood. Choosing a
                    313:         correct value for ftol is difficult. 1e-8 is a correct
                    314:         value for a 32 bits computer.</li>
                    315:     <li><b>stepm=1</b> Time unit in months for interpolation.
                    316:         Examples:<ul>
                    317:             <li>If stepm=1, the unit is a month </li>
                    318:             <li>If stepm=4, the unit is a trimester</li>
                    319:             <li>If stepm=12, the unit is a year </li>
                    320:             <li>If stepm=24, the unit is two years</li>
                    321:             <li>... </li>
                    322:         </ul>
                    323:     </li>
                    324:     <li><b>ncov=2</b> Number of covariates in the datafile. The
                    325:         intercept and the age parameter are counting for 2
                    326:         covariates.</li>
                    327:     <li><b>nlstate=2</b> Number of non-absorbing (alive) states.
                    328:         Here we have two alive states: disability-free is coded 1
                    329:         and disability is coded 2. </li>
                    330:     <li><b>ndeath=1</b> Number of absorbing states. The absorbing
                    331:         state death is coded 3. </li>
                    332:     <li><b>maxwav=4</b> Number of waves in the datafile.</li>
                    333:     <li><a name="mle"><b>mle</b></a><b>=1</b> Option for the
                    334:         Maximisation Likelihood Estimation. <ul>
                    335:             <li>If mle=1 the program does the maximisation and
                    336:                 the calculation of health expectancies </li>
                    337:             <li>If mle=0 the program only does the calculation of
                    338:                 the health expectancies. </li>
                    339:         </ul>
                    340:     </li>
                    341:     <li><b>weight=0</b> Possibility to add weights. <ul>
                    342:             <li>If weight=0 no weights are included </li>
                    343:             <li>If weight=1 the maximisation integrates the
                    344:                 weights which are in field <a href="#Weight">4</a></li>
                    345:         </ul>
                    346:     </li>
                    347: </ul>
                    348: 
                    349: <h4><font color="#FF0000">Covariates</font></h4>
                    350: 
                    351: <p>Intercept and age are systematically included in the model.
                    352: Additional covariates can be included with the command </p>
                    353: 
                    354: <pre>model=<em>list of covariates</em></pre>
                    355: 
                    356: <ul>
                    357:     <li>if<strong> model=. </strong>then no covariates are
                    358:         included</li>
                    359:     <li>if <strong>model=V1</strong> the model includes the first
                    360:         covariate (field 2)</li>
                    361:     <li>if <strong>model=V2 </strong>the model includes the
                    362:         second covariate (field 3)</li>
                    363:     <li>if <strong>model=V1+V2 </strong>the model includes the
                    364:         first and the second covariate (fields 2 and 3)</li>
                    365:     <li>if <strong>model=V1*V2 </strong>the model includes the
                    366:         product of the first and the second covariate (fields 2
                    367:         and 3)</li>
1.3     ! lievre    368:     <li>if <strong>model=V1+V1*age</strong> the model includes
        !           369:         the product covariate*age</li>
1.2       lievre    370: </ul>
                    371: 
                    372: <h4><font color="#FF0000">Guess values for optimization</font><font
                    373: color="#00006A"> </font></h4>
                    374: 
                    375: <p>You must write the initial guess values of the parameters for
                    376: optimization. The number of parameters, <em>N</em> depends on the
                    377: number of absorbing states and non-absorbing states and on the
                    378: number of covariates. <br>
                    379: <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
                    380: <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncov</em>&nbsp;. <br>
                    381: <br>
                    382: Thus in the simple case with 2 covariates (the model is log
                    383: (pij/pii) = aij + bij * age where intercept and age are the two
                    384: covariates), and 2 health degrees (1 for disability-free and 2
                    385: for disability) and 1 absorbing state (3), you must enter 8
                    386: initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
                    387: start with zeros as in this example, but if you have a more
                    388: precise set (for example from an earlier run) you can enter it
                    389: and it will speed up them<br>
                    390: Each of the four lines starts with indices &quot;ij&quot;: <br>
                    391: <br>
                    392: <b>ij aij bij</b> </p>
                    393: 
                    394: <blockquote>
                    395:     <pre># Guess values of aij and bij in log (pij/pii) = aij + bij * age
                    396: 12 -14.155633  0.110794 
                    397: 13  -7.925360  0.032091 
                    398: 21  -1.890135 -0.029473 
                    399: 23  -6.234642  0.022315 </pre>
                    400: </blockquote>
                    401: 
                    402: <p>or, to simplify: </p>
                    403: 
                    404: <blockquote>
                    405:     <pre>12 0.0 0.0
                    406: 13 0.0 0.0
                    407: 21 0.0 0.0
                    408: 23 0.0 0.0</pre>
                    409: </blockquote>
                    410: 
                    411: <h4><font color="#FF0000">Guess values for computing variances</font></h4>
                    412: 
                    413: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
                    414: used as an input to get the vairous output data files (Health
                    415: expectancies, stationary prevalence etc.) and figures without
                    416: rerunning the rather long maximisation phase (mle=0). </p>
                    417: 
                    418: <p>The scales are small values for the evaluation of numerical
                    419: derivatives. These derivatives are used to compute the hessian
                    420: matrix of the parameters, that is the inverse of the covariance
                    421: matrix, and the variances of health expectancies. Each line
                    422: consists in indices &quot;ij&quot; followed by the initial scales
                    423: (zero to simplify) associated with aij and bij. </p>
                    424: 
                    425: <ul>
                    426:     <li>If mle=1 you can enter zeros:</li>
                    427: </ul>
                    428: 
                    429: <blockquote>
                    430:     <pre># Scales (for hessian or gradient estimation)
                    431: 12 0. 0. 
                    432: 13 0. 0. 
                    433: 21 0. 0. 
                    434: 23 0. 0. </pre>
                    435: </blockquote>
                    436: 
                    437: <ul>
                    438:     <li>If mle=0 you must enter a covariance matrix (usually
                    439:         obtained from an earlier run).</li>
                    440: </ul>
                    441: 
                    442: <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>
                    443: 
                    444: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
                    445: used as an input to get the vairous output data files (Health
                    446: expectancies, stationary prevalence etc.) and figures without
                    447: rerunning the rather long maximisation phase (mle=0). </p>
                    448: 
                    449: <p>Each line starts with indices &quot;ijk&quot; followed by the
                    450: covariances between aij and bij: </p>
                    451: 
                    452: <pre>
                    453:    121 Var(a12) 
                    454:    122 Cov(b12,a12)  Var(b12) 
                    455:           ...
                    456:    232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23) </pre>
                    457: 
                    458: <ul>
                    459:     <li>If mle=1 you can enter zeros. </li>
                    460: </ul>
                    461: 
                    462: <blockquote>
                    463:     <pre># Covariance matrix
                    464: 121 0.
                    465: 122 0. 0.
                    466: 131 0. 0. 0. 
                    467: 132 0. 0. 0. 0. 
                    468: 211 0. 0. 0. 0. 0. 
                    469: 212 0. 0. 0. 0. 0. 0. 
                    470: 231 0. 0. 0. 0. 0. 0. 0. 
                    471: 232 0. 0. 0. 0. 0. 0. 0. 0.</pre>
                    472: </blockquote>
                    473: 
                    474: <ul>
                    475:     <li>If mle=0 you must enter a covariance matrix (usually
                    476:         obtained from an earlier run).<br>
                    477:         </li>
                    478: </ul>
                    479: 
                    480: <h4><a name="biaspar-l"></a><font color="#FF0000">last
                    481: uncommented line</font></h4>
                    482: 
                    483: <pre>agemin=70 agemax=100 bage=50 fage=100</pre>
                    484: 
                    485: <p>Once we obtained the estimated parameters, the program is able
                    486: to calculated stationary prevalence, transitions probabilities
                    487: and life expectancies at any age. Choice of age ranges is useful
                    488: for extrapolation. In our data file, ages varies from age 70 to
                    489: 102. Setting bage=50 and fage=100, makes the program computing
                    490: life expectancy from age bage to age fage. As we use a model, we
                    491: can compute life expectancy on a wider age range than the age
                    492: range from the data. But the model can be rather wrong on big
                    493: intervals.</p>
                    494: 
                    495: <p>Similarly, it is possible to get extrapolated stationary
                    496: prevalence by age raning from agemin to agemax. </p>
                    497: 
                    498: <ul>
                    499:     <li><b>agemin=</b> Minimum age for calculation of the
                    500:         stationary prevalence </li>
                    501:     <li><b>agemax=</b> Maximum age for calculation of the
                    502:         stationary prevalence </li>
                    503:     <li><b>bage=</b> Minimum age for calculation of the health
                    504:         expectancies </li>
                    505:     <li><b>fage=</b> Maximum ages for calculation of the health
                    506:         expectancies </li>
                    507: </ul>
                    508: 
                    509: <hr>
                    510: 
                    511: <h2><a name="running"></a><font color="#00006A">Running Imach
                    512: with this example</font></h2>
                    513: 
                    514: <p>We assume that you entered your <a href="biaspar.txt">1st_example
                    515: parameter file</a> as explained <a href="#biaspar">above</a>. To
                    516: run the program you should click on the imach.exe icon and enter
                    517: the name of the parameter file which is for example <a
                    518: href="C:\usr\imach\mle\biaspar.txt">C:\usr\imach\mle\biaspar.txt</a>
                    519: (you also can click on the biaspar.txt icon located in <br>
                    520: <a href="C:\usr\imach\mle">C:\usr\imach\mle</a> and put it with
                    521: the mouse on the imach window).<br>
                    522: </p>
                    523: 
                    524: <p>The time to converge depends on the step unit that you used (1
                    525: month is cpu consuming), on the number of cases, and on the
                    526: number of variables.</p>
                    527: 
                    528: <p>The program outputs many files. Most of them are files which
                    529: will be plotted for better understanding.</p>
                    530: 
                    531: <hr>
                    532: 
                    533: <h2><a name="output"><font color="#00006A">Output of the program
                    534: and graphs</font> </a></h2>
                    535: 
                    536: <p>Once the optimization is finished, some graphics can be made
                    537: with a grapher. We use Gnuplot which is an interactive plotting
1.3     ! lievre    538: program copyrighted but freely distributed. A gnuplot reference
        !           539: manual is available <a href="http://www.gnuplot.org/">here</a>. <br>
1.2       lievre    540: When the running is finished, the user should enter a caracter
                    541: for plotting and output editing. </p>
                    542: 
                    543: <p>These caracters are:</p>
                    544: 
                    545: <ul>
                    546:     <li>'c' to start again the program from the beginning.</li>
1.3     ! lievre    547:     <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>
        !           548:         file to edit the output files and graphs. </li>
1.2       lievre    549:     <li>'q' for exiting.</li>
                    550: </ul>
                    551: 
                    552: <h5><font size="4"><strong>Results files </strong></font><br>
                    553: <br>
                    554: <font color="#EC5E5E" size="3"><strong>- </strong></font><a
                    555: name="Observed prevalence in each state"><font color="#EC5E5E"
                    556: size="3"><strong>Observed prevalence in each state</strong></font></a><font
                    557: color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:
                    558: </b><a href="prbiaspar.txt"><b>prbiaspar.txt</b></a><br>
                    559: </h5>
                    560: 
                    561: <p>The first line is the title and displays each field of the
                    562: file. The first column is age. The fields 2 and 6 are the
                    563: proportion of individuals in states 1 and 2 respectively as
                    564: observed during the first exam. Others fields are the numbers of
                    565: people in states 1, 2 or more. The number of columns increases if
                    566: the number of states is higher than 2.<br>
                    567: The header of the file is </p>
                    568: 
                    569: <pre># Age Prev(1) N(1) N Age Prev(2) N(2) N
                    570: 70 1.00000 631 631 70 0.00000 0 631
                    571: 71 0.99681 625 627 71 0.00319 2 627 
                    572: 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>
                    573: 
                    574: <p>It means that at age 70, the prevalence in state 1 is 1.000
                    575: and in state 2 is 0.00 . At age 71 the number of individuals in
                    576: state 1 is 625 and in state 2 is 2, hence the total number of
                    577: people aged 71 is 625+2=627. <br>
                    578: </p>
                    579: 
                    580: <h5><font color="#EC5E5E" size="3"><b>- Estimated parameters and
                    581: covariance matrix</b></font><b>: </b><a href="rbiaspar.txt"><b>rbiaspar.txt</b></a></h5>
                    582: 
                    583: <p>This file contains all the maximisation results: </p>
                    584: 
1.3     ! lievre    585: <pre> -2 log likelihood= 21660.918613445392
        !           586:  Estimated parameters: a12 = -12.290174 b12 = 0.092161 
        !           587:                        a13 = -9.155590  b13 = 0.046627 
        !           588:                        a21 = -2.629849  b21 = -0.022030 
        !           589:                        a23 = -7.958519  b23 = 0.042614  
        !           590:  Covariance matrix: Var(a12) = 1.47453e-001
        !           591:                     Var(b12) = 2.18676e-005
        !           592:                     Var(a13) = 2.09715e-001
        !           593:                     Var(b13) = 3.28937e-005  
        !           594:                     Var(a21) = 9.19832e-001
        !           595:                     Var(b21) = 1.29229e-004
        !           596:                     Var(a23) = 4.48405e-001
        !           597:                     Var(b23) = 5.85631e-005 
1.2       lievre    598:  </pre>
                    599: 
1.3     ! lievre    600: <p>By substitution of these parameters in the regression model,
        !           601: we obtain the elementary transition probabilities:</p>
        !           602: 
        !           603: <p><img src="pebiaspar1.gif" width="400" height="300"></p>
        !           604: 
1.2       lievre    605: <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:
                    606: </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>
                    607: 
                    608: <p>Here are the transitions probabilities Pij(x, x+nh) where nh
                    609: is a multiple of 2 years. The first column is the starting age x
                    610: (from age 50 to 100), the second is age (x+nh) and the others are
                    611: the transition probabilities p11, p12, p13, p21, p22, p23. For
                    612: example, line 5 of the file is: </p>
                    613: 
1.3     ! lievre    614: <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>
1.2       lievre    615: 
                    616: <p>and this means: </p>
                    617: 
1.3     ! lievre    618: <pre>p11(100,106)=0.02655
        !           619: p12(100,106)=0.17622
        !           620: p13(100,106)=0.79722
        !           621: p21(100,106)=0.01809
        !           622: p22(100,106)=0.13678
        !           623: p22(100,106)=0.84513 </pre>
1.2       lievre    624: 
                    625: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
                    626: name="Stationary prevalence in each state"><font color="#EC5E5E"
                    627: size="3"><b>Stationary prevalence in each state</b></font></a><b>:
                    628: </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>
                    629: 
1.3     ! lievre    630: <pre>#Prevalence
        !           631: #Age 1-1 2-2
        !           632: 
        !           633: #************ 
        !           634: 70 0.90134 0.09866
        !           635: 71 0.89177 0.10823 
        !           636: 72 0.88139 0.11861 
        !           637: 73 0.87015 0.12985 </pre>
1.2       lievre    638: 
1.3     ! lievre    639: <p>At age 70 the stationary prevalence is 0.90134 in state 1 and
        !           640: 0.09866 in state 2. This stationary prevalence differs from
1.2       lievre    641: observed prevalence. Here is the point. The observed prevalence
                    642: at age 70 results from the incidence of disability, incidence of
                    643: recovery and mortality which occurred in the past of the cohort.
                    644: Stationary prevalence results from a simulation with actual
                    645: incidences and mortality (estimated from this cross-longitudinal
                    646: survey). It is the best predictive value of the prevalence in the
                    647: future if &quot;nothing changes in the future&quot;. This is
                    648: exactly what demographers do with a Life table. Life expectancy
                    649: is the expected mean time to survive if observed mortality rates
                    650: (incidence of mortality) &quot;remains constant&quot; in the
                    651: future. </p>
                    652: 
                    653: <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of
                    654: stationary prevalence</b></font><b>: </b><a
                    655: href="vplrbiaspar.txt"><b>vplrbiaspar.txt</b></a></h5>
                    656: 
                    657: <p>The stationary prevalence has to be compared with the observed
                    658: prevalence by age. But both are statistical estimates and
                    659: subjected to stochastic errors due to the size of the sample, the
                    660: design of the survey, and, for the stationary prevalence to the
                    661: model used and fitted. It is possible to compute the standard
                    662: deviation of the stationary prevalence at each age.</p>
                    663: 
1.3     ! lievre    664: <h5><font color="#EC5E5E" size="3">-Observed and stationary
1.2       lievre    665: prevalence in state (2=disable) with the confident interval</font>:<b>
1.3     ! lievre    666: </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>
1.2       lievre    667: 
1.3     ! lievre    668: <p>This graph exhibits the stationary prevalence in state (2)
        !           669: with the confidence interval in red. The green curve is the
        !           670: observed prevalence (or proportion of individuals in state (2)).
        !           671: Without discussing the results (it is not the purpose here), we
        !           672: observe that the green curve is rather below the stationary
        !           673: prevalence. It suggests an increase of the disability prevalence
        !           674: in the future.</p>
        !           675: 
        !           676: <p><img src="vbiaspar21.gif" width="400" height="300"></p>
        !           677: 
        !           678: <h5><font color="#EC5E5E" size="3"><b>-Convergence to the
        !           679: stationary prevalence of disability</b></font><b>: </b><a
        !           680: href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>
        !           681: <img src="pbiaspar11.gif" width="400" height="300"> </h5>
1.2       lievre    682: 
                    683: <p>This graph plots the conditional transition probabilities from
                    684: an initial state (1=healthy in red at the bottom, or 2=disable in
                    685: green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
                    686: age <em>x+h. </em>Conditional means at the condition to be alive
                    687: at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
                    688: curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
                    689: + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
                    690: prevalence of disability</em>. In order to get the stationary
                    691: prevalence at age 70 we should start the process at an earlier
                    692: age, i.e.50. If the disability state is defined by severe
                    693: disability criteria with only a few chance to recover, then the
                    694: incidence of recovery is low and the time to convergence is
                    695: probably longer. But we don't have experience yet.</p>
                    696: 
                    697: <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age
                    698: and initial health status</b></font><b>: </b><a
                    699: href="erbiaspar.txt"><b>erbiaspar.txt</b></a></h5>
                    700: 
                    701: <pre># Health expectancies 
                    702: # Age 1-1 1-2 2-1 2-2 
1.3     ! lievre    703: 70 10.9226 3.0401 5.6488 6.2122 
        !           704: 71 10.4384 3.0461 5.2477 6.1599 
        !           705: 72 9.9667 3.0502 4.8663 6.1025 
        !           706: 73 9.5077 3.0524 4.5044 6.0401 </pre>
1.2       lievre    707: 
1.3     ! lievre    708: <pre>For example 70 10.9226 3.0401 5.6488 6.2122 means:
        !           709: e11=10.9226 e12=3.0401 e21=5.6488 e22=6.2122</pre>
1.2       lievre    710: 
1.3     ! lievre    711: <pre><img src="expbiaspar21.gif" width="400" height="300"><img
        !           712: src="expbiaspar11.gif" width="400" height="300"></pre>
1.2       lievre    713: 
                    714: <p>For example, life expectancy of a healthy individual at age 70
1.3     ! lievre    715: is 10.92 in the healthy state and 3.04 in the disability state
        !           716: (=13.96 years). If he was disable at age 70, his life expectancy
        !           717: will be shorter, 5.64 in the healthy state and 6.21 in the
        !           718: disability state (=11.85 years). The total life expectancy is a
        !           719: weighted mean of both, 13.96 and 11.85; weight is the proportion
1.2       lievre    720: of people disabled at age 70. In order to get a pure period index
                    721: (i.e. based only on incidences) we use the <a
                    722: href="#Stationary prevalence in each state">computed or
                    723: stationary prevalence</a> at age 70 (i.e. computed from
                    724: incidences at earlier ages) instead of the <a
                    725: href="#Observed prevalence in each state">observed prevalence</a>
                    726: (for example at first exam) (<a href="#Health expectancies">see
                    727: below</a>).</p>
                    728: 
                    729: <h5><font color="#EC5E5E" size="3"><b>- Variances of life
                    730: expectancies by age and initial health status</b></font><b>: </b><a
                    731: href="vrbiaspar.txt"><b>vrbiaspar.txt</b></a></h5>
                    732: 
                    733: <p>For example, the covariances of life expectancies Cov(ei,ej)
                    734: at age 50 are (line 3) </p>
                    735: 
1.3     ! lievre    736: <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>
1.2       lievre    737: 
                    738: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
                    739: name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health
                    740: expectancies</b></font></a><font color="#EC5E5E" size="3"><b>
                    741: with standard errors in parentheses</b></font><b>: </b><a
                    742: href="trbiaspar.txt"><font face="Courier New"><b>trbiaspar.txt</b></font></a></h5>
                    743: 
                    744: <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>
                    745: 
1.3     ! lievre    746: <pre>70 13.76 (0.22) 10.40 (0.20) 3.35 (0.14) </pre>
1.2       lievre    747: 
1.3     ! lievre    748: <p>Thus, at age 70 the total life expectancy, e..=13.76years is
        !           749: the weighted mean of e1.=13.96 and e2.=11.85 by the stationary
        !           750: prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
        !           751: state 2, respectively (the sum is equal to one). e.1=10.40 is the
1.2       lievre    752: Disability-free life expectancy at age 70 (it is again a weighted
1.3     ! lievre    753: mean of e11 and e21). e.2=3.35 is also the life expectancy at age
1.2       lievre    754: 70 to be spent in the disability state.</p>
                    755: 
1.3     ! lievre    756: <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by
1.2       lievre    757: age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:
1.3     ! lievre    758: </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>
1.2       lievre    759: 
                    760: <p>This figure represents the health expectancies and the total
                    761: life expectancy with the confident interval in dashed curve. </p>
                    762: 
1.3     ! lievre    763: <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>
1.2       lievre    764: 
                    765: <p>Standard deviations (obtained from the information matrix of
                    766: the model) of these quantities are very useful.
                    767: Cross-longitudinal surveys are costly and do not involve huge
                    768: samples, generally a few thousands; therefore it is very
                    769: important to have an idea of the standard deviation of our
                    770: estimates. It has been a big challenge to compute the Health
                    771: Expectancy standard deviations. Don't be confuse: life expectancy
                    772: is, as any expected value, the mean of a distribution; but here
                    773: we are not computing the standard deviation of the distribution,
                    774: but the standard deviation of the estimate of the mean.</p>
                    775: 
                    776: <p>Our health expectancies estimates vary according to the sample
                    777: size (and the standard deviations give confidence intervals of
                    778: the estimate) but also according to the model fitted. Let us
                    779: explain it in more details.</p>
                    780: 
                    781: <p>Choosing a model means ar least two kind of choices. First we
                    782: have to decide the number of disability states. Second we have to
                    783: design, within the logit model family, the model: variables,
                    784: covariables, confonding factors etc. to be included.</p>
                    785: 
                    786: <p>More disability states we have, better is our demographical
                    787: approach of the disability process, but smaller are the number of
                    788: transitions between each state and higher is the noise in the
                    789: measurement. We do not have enough experiments of the various
                    790: models to summarize the advantages and disadvantages, but it is
                    791: important to say that even if we had huge and unbiased samples,
                    792: the total life expectancy computed from a cross-longitudinal
                    793: survey, varies with the number of states. If we define only two
                    794: states, alive or dead, we find the usual life expectancy where it
                    795: is assumed that at each age, people are at the same risk to die.
                    796: If we are differentiating the alive state into healthy and
                    797: disable, and as the mortality from the disability state is higher
                    798: than the mortality from the healthy state, we are introducing
                    799: heterogeneity in the risk of dying. The total mortality at each
                    800: age is the weighted mean of the mortality in each state by the
                    801: prevalence in each state. Therefore if the proportion of people
                    802: at each age and in each state is different from the stationary
                    803: equilibrium, there is no reason to find the same total mortality
                    804: at a particular age. Life expectancy, even if it is a very useful
                    805: tool, has a very strong hypothesis of homogeneity of the
                    806: population. Our main purpose is not to measure differential
                    807: mortality but to measure the expected time in a healthy or
                    808: disability state in order to maximise the former and minimize the
                    809: latter. But the differential in mortality complexifies the
                    810: measurement.</p>
                    811: 
                    812: <p>Incidences of disability or recovery are not affected by the
                    813: number of states if these states are independant. But incidences
                    814: estimates are dependant on the specification of the model. More
                    815: covariates we added in the logit model better is the model, but
                    816: some covariates are not well measured, some are confounding
                    817: factors like in any statistical model. The procedure to &quot;fit
                    818: the best model' is similar to logistic regression which itself is
                    819: similar to regression analysis. We haven't yet been sofar because
                    820: we also have a severe limitation which is the speed of the
                    821: convergence. On a Pentium III, 500 MHz, even the simplest model,
                    822: estimated by month on 8,000 people may take 4 hours to converge.
                    823: Also, the program is not yet a statistical package, which permits
                    824: a simple writing of the variables and the model to take into
                    825: account in the maximisation. The actual program allows only to
1.3     ! lievre    826: add simple variables like age+sex or age+sex+ age*sex but will
1.2       lievre    827: never be general enough. But what is to remember, is that
                    828: incidences or probability of change from one state to another is
                    829: affected by the variables specified into the model.</p>
                    830: 
                    831: <p>Also, the age range of the people interviewed has a link with
                    832: the age range of the life expectancy which can be estimated by
                    833: extrapolation. If your sample ranges from age 70 to 95, you can
                    834: clearly estimate a life expectancy at age 70 and trust your
                    835: confidence interval which is mostly based on your sample size,
                    836: but if you want to estimate the life expectancy at age 50, you
                    837: should rely in your model, but fitting a logistic model on a age
                    838: range of 70-95 and estimating probabilties of transition out of
                    839: this age range, say at age 50 is very dangerous. At least you
                    840: should remember that the confidence interval given by the
                    841: standard deviation of the health expectancies, are under the
                    842: strong assumption that your model is the 'true model', which is
                    843: probably not the case.</p>
                    844: 
                    845: <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter
                    846: file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>
                    847: 
                    848: <p>This copy of the parameter file can be useful to re-run the
                    849: program while saving the old output files. </p>
                    850: 
                    851: <hr>
                    852: 
                    853: <h2><a name="example" </a><font color="#00006A">Trying an example</font></a></h2>
                    854: 
                    855: <p>Since you know how to run the program, it is time to test it
                    856: on your own computer. Try for example on a parameter file named <a
1.3     ! lievre    857: href="..\mytry\imachpar.txt">imachpar.txt</a> which is a copy of <font
        !           858: size="2" face="Courier New">mypar.txt</font> included in the
        !           859: subdirectory of imach, <font size="2" face="Courier New">mytry</font>.
        !           860: Edit it to change the name of the data file to <font size="2"
        !           861: face="Courier New">..\data\mydata.txt</font> if you don't want to
        !           862: copy it on the same directory. The file <font face="Courier New">mydata.txt</font>
        !           863: is a smaller file of 3,000 people but still with 4 waves. </p>
1.2       lievre    864: 
                    865: <p>Click on the imach.exe icon to open a window. Answer to the
                    866: question:'<strong>Enter the parameter file name:'</strong></p>
                    867: 
                    868: <table border="1">
                    869:     <tr>
1.3     ! lievre    870:         <td width="100%"><strong>IMACH, Version 0.64b</strong><p><strong>Enter
1.2       lievre    871:         the parameter file name: ..\mytry\imachpar.txt</strong></p>
                    872:         </td>
                    873:     </tr>
                    874: </table>
                    875: 
                    876: <p>Most of the data files or image files generated, will use the
                    877: 'imachpar' string into their name. The running time is about 2-3
                    878: minutes on a Pentium III. If the execution worked correctly, the
                    879: outputs files are created in the current directory, and should be
                    880: the same as the mypar files initially included in the directory <font
                    881: size="2" face="Courier New">mytry</font>.</p>
                    882: 
                    883: <ul>
                    884:     <li><pre><u>Output on the screen</u> The output screen looks like <a
                    885: href="imachrun.LOG">this Log file</a>
                    886: #
                    887: 
                    888: title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3
                    889: ftol=1.000000e-008 stepm=24 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
                    890:     </li>
                    891:     <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92
                    892: 
                    893: Warning, no any valid information for:126 line=126
                    894: Warning, no any valid information for:2307 line=2307
                    895: Delay (in months) between two waves Min=21 Max=51 Mean=24.495826
                    896: <font face="Times New Roman">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</font>
                    897: Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14
                    898:  prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1
                    899: Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>
                    900:     </li>
                    901: </ul>
                    902: 
                    903: <p>&nbsp;</p>
                    904: 
                    905: <ul>
                    906:     <li>Maximisation with the Powell algorithm. 8 directions are
                    907:         given corresponding to the 8 parameters. this can be
                    908:         rather long to get convergence.<br>
                    909:         <font size="1" face="Courier New"><br>
                    910:         Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
                    911:         0.000000000000 3<br>
                    912:         0.000000000000 4 0.000000000000 5 0.000000000000 6
                    913:         0.000000000000 7 <br>
                    914:         0.000000000000 8 0.000000000000<br>
                    915:         1..........2.................3..........4.................5.........<br>
                    916:         6................7........8...............<br>
                    917:         Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
                    918:         <br>
                    919:         2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
                    920:         5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
                    921:         8 0.051272038506<br>
                    922:         1..............2...........3..............4...........<br>
                    923:         5..........6................7...........8.........<br>
                    924:         #Number of iterations = 23, -2 Log likelihood =
                    925:         6744.954042573691<br>
                    926:         # Parameters<br>
                    927:         12 -12.966061 0.135117 <br>
                    928:         13 -7.401109 0.067831 <br>
                    929:         21 -0.672648 -0.006627 <br>
                    930:         23 -5.051297 0.051271 </font><br>
                    931:         </li>
                    932:     <li><pre><font size="2">Calculation of the hessian matrix. Wait...
                    933: 12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78
                    934: 
                    935: Inverting the hessian to get the covariance matrix. Wait...
                    936: 
                    937: #Hessian matrix#
                    938: 3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 
                    939: 2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 
                    940: -4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 
                    941: -3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 
                    942: -1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 
                    943: -1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 
                    944: 3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 
                    945: 3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 
                    946: # Scales
                    947: 12 1.00000e-004 1.00000e-006
                    948: 13 1.00000e-004 1.00000e-006
                    949: 21 1.00000e-003 1.00000e-005
                    950: 23 1.00000e-004 1.00000e-005
                    951: # Covariance
                    952:   1 5.90661e-001
                    953:   2 -7.26732e-003 8.98810e-005
                    954:   3 8.80177e-002 -1.12706e-003 5.15824e-001
                    955:   4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005
                    956:   5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000
                    957:   6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004
                    958:   7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000
                    959:   8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004
                    960: # agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).
                    961: 
                    962: 
                    963: agemin=70 agemax=100 bage=50 fage=100
                    964: Computing prevalence limit: result on file 'plrmypar.txt' 
                    965: Computing pij: result on file 'pijrmypar.txt' 
                    966: Computing Health Expectancies: result on file 'ermypar.txt' 
                    967: Computing Variance-covariance of DFLEs: file 'vrmypar.txt' 
                    968: Computing Total LEs with variances: file 'trmypar.txt' 
                    969: Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' 
                    970: End of Imach
                    971: </font></pre>
                    972:     </li>
                    973: </ul>
                    974: 
                    975: <p><font size="3">Once the running is finished, the program
                    976: requires a caracter:</font></p>
                    977: 
                    978: <table border="1">
                    979:     <tr>
1.3     ! lievre    980:         <td width="100%"><strong>Type e to edit output files, c
        !           981:         to start again, and q for exiting:</strong></td>
1.2       lievre    982:     </tr>
                    983: </table>
                    984: 
1.3     ! lievre    985: <p><font size="3">First you should enter <strong>e </strong>to
        !           986: edit the master file mypar.htm. </font></p>
1.2       lievre    987: 
                    988: <ul>
                    989:     <li><u>Outputs files</u> <br>
1.3     ! lievre    990:         <br>
1.2       lievre    991:         - Observed prevalence in each state: <a
1.3     ! lievre    992:         href="..\mytry\prmypar.txt">pmypar.txt</a> <br>
1.2       lievre    993:         - Estimated parameters and the covariance matrix: <a
                    994:         href="..\mytry\rmypar.txt">rmypar.txt</a> <br>
                    995:         - Stationary prevalence in each state: <a
                    996:         href="..\mytry\plrmypar.txt">plrmypar.txt</a> <br>
                    997:         - Transition probabilities: <a
                    998:         href="..\mytry\pijrmypar.txt">pijrmypar.txt</a> <br>
                    999:         - Copy of the parameter file: <a
                   1000:         href="..\mytry\ormypar.txt">ormypar.txt</a> <br>
                   1001:         - Life expectancies by age and initial health status: <a
                   1002:         href="..\mytry\ermypar.txt">ermypar.txt</a> <br>
                   1003:         - Variances of life expectancies by age and initial
                   1004:         health status: <a href="..\mytry\vrmypar.txt">vrmypar.txt</a>
                   1005:         <br>
                   1006:         - Health expectancies with their variances: <a
                   1007:         href="..\mytry\trmypar.txt">trmypar.txt</a> <br>
                   1008:         - Standard deviation of stationary prevalence: <a
                   1009:         href="..\mytry\vplrmypar.txt">vplrmypar.txt</a> <br>
                   1010:         <br>
                   1011:         </li>
                   1012:     <li><u>Graphs</u> <br>
                   1013:         <br>
1.3     ! lievre   1014:         -<a href="../mytry/pemypar1.gif">One-step transition
        !          1015:         probabilities</a><br>
        !          1016:         -<a href="../mytry/pmypar11.gif">Convergence to the
        !          1017:         stationary prevalence</a><br>
        !          1018:         -<a href="..\mytry\vmypar11.gif">Observed and stationary
1.2       lievre   1019:         prevalence in state (1) with the confident interval</a> <br>
1.3     ! lievre   1020:         -<a href="..\mytry\vmypar21.gif">Observed and stationary
1.2       lievre   1021:         prevalence in state (2) with the confident interval</a> <br>
1.3     ! lievre   1022:         -<a href="..\mytry\expmypar11.gif">Health life
        !          1023:         expectancies by age and initial health state (1)</a> <br>
        !          1024:         -<a href="..\mytry\expmypar21.gif">Health life
        !          1025:         expectancies by age and initial health state (2)</a> <br>
        !          1026:         -<a href="..\mytry\emypar1.gif">Total life expectancy by
1.2       lievre   1027:         age and health expectancies in states (1) and (2).</a> </li>
                   1028: </ul>
                   1029: 
                   1030: <p>This software have been partly granted by <a
                   1031: href="http://euroreves.ined.fr">Euro-REVES</a>, a concerted
                   1032: action from the European Union. It will be copyrighted
                   1033: identically to a GNU software product, i.e. program and software
                   1034: can be distributed freely for non commercial use. Sources are not
                   1035: widely distributed today. You can get them by asking us with a
                   1036: simple justification (name, email, institute) <a
                   1037: href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a
                   1038: href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>
                   1039: 
1.3     ! lievre   1040: <p>Latest version (0.64b of may 2001) can be accessed at <a
1.2       lievre   1041: href="http://euroeves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>
                   1042: </p>
                   1043: </body>
                   1044: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>