| version 1.21, 2002/02/21 18:42:24 | version 1.85, 2003/06/17 13:12:43 | 
| Line 1 | Line 1 | 
|  | /* $Id$ | 
| /*********************** Imach ************************************** | $State$ | 
| This program computes Healthy Life Expectancies from cross-longitudinal | $Log$ | 
| data. Cross-longitudinal consist in a first survey ("cross") where | Revision 1.85  2003/06/17 13:12:43  brouard | 
| individuals from different ages are interviewed on their health status | * imach.c (Repository): Check when date of death was earlier that | 
| or degree of  disability. At least a second wave of interviews | current date of interview. It may happen when the death was just | 
| ("longitudinal") should  measure each new individual health status. | prior to the death. In this case, dh was negative and likelihood | 
| Health expectancies are computed from the transistions observed between | was wrong (infinity). We still send an "Error" but patch by | 
| waves and are computed for each degree of severity of disability (number | assuming that the date of death was just one stepm after the | 
| of life states). More degrees you consider, more time is necessary to | interview. | 
| reach the Maximum Likelihood of the parameters involved in the model. | (Repository): Because some people have very long ID (first column) | 
| The simplest model is the multinomial logistic model where pij is | we changed int to long in num[] and we added a new lvector for | 
| the probabibility to be observed in state j at the second wave conditional | memory allocation. But we also truncated to 8 characters (left | 
| to be observed in state i at the first wave. Therefore the model is: | truncation) | 
| log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex' | (Repository): No more line truncation errors. | 
| is a covariate. If you want to have a more complex model than "constant and |  | 
| age", you should modify the program where the markup | Revision 1.84  2003/06/13 21:44:43  brouard | 
| *Covariates have to be included here again* invites you to do it. | * imach.c (Repository): Replace "freqsummary" at a correct | 
| More covariates you add, less is the speed of the convergence. | place. It differs from routine "prevalence" which may be called | 
|  | many times. Probs is memory consuming and must be used with | 
| The advantage that this computer programme claims, comes from that if the | parcimony. | 
| delay between waves is not identical for each individual, or if some | Version 0.95a2 (should output exactly the same maximization than 0.8a2) | 
| individual missed an interview, the information is not rounded or lost, but |  | 
| taken into account using an interpolation or extrapolation. | Revision 1.83  2003/06/10 13:39:11  lievre | 
| hPijx is the probability to be | *** empty log message *** | 
| observed in state i at age x+h conditional to the observed state i at age |  | 
| x. The delay 'h' can be split into an exact number (nh*stepm) of | Revision 1.82  2003/06/05 15:57:20  brouard | 
| unobserved intermediate  states. This elementary transition (by month or | Add log in  imach.c and  fullversion number is now printed. | 
| quarter trimester, semester or year) is model as a multinomial logistic. |  | 
| The hPx matrix is simply the matrix product of nh*stepm elementary matrices | */ | 
| and the contribution of each individual to the likelihood is simply hPijx. | /* | 
|  | Interpolated Markov Chain | 
| Also this programme outputs the covariance matrix of the parameters but also |  | 
| of the life expectancies. It also computes the prevalence limits. | Short summary of the programme: | 
|  |  | 
| Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | This program computes Healthy Life Expectancies from | 
| Institut national d'études démographiques, Paris. | cross-longitudinal data. Cross-longitudinal data consist in: -1- a | 
| This software have been partly granted by Euro-REVES, a concerted action | first survey ("cross") where individuals from different ages are | 
| from the European Union. | interviewed on their health status or degree of disability (in the | 
| It is copyrighted identically to a GNU software product, ie programme and | case of a health survey which is our main interest) -2- at least a | 
| software can be distributed freely for non commercial use. Latest version | second wave of interviews ("longitudinal") which measure each change | 
| can be accessed at http://euroreves.ined.fr/imach . | (if any) in individual health status.  Health expectancies are | 
| **********************************************************************/ | computed from the time spent in each health state according to a | 
|  | model. More health states you consider, more time is necessary to reach the | 
| #include <math.h> | Maximum Likelihood of the parameters involved in the model.  The | 
| #include <stdio.h> | simplest model is the multinomial logistic model where pij is the | 
| #include <stdlib.h> | probability to be observed in state j at the second wave | 
| #include <unistd.h> | conditional to be observed in state i at the first wave. Therefore | 
|  | the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where | 
| #define MAXLINE 256 | 'age' is age and 'sex' is a covariate. If you want to have a more | 
| #define FILENAMELENGTH 80 | complex model than "constant and age", you should modify the program | 
| /*#define DEBUG*/ | where the markup *Covariates have to be included here again* invites | 
| #define windows | you to do it.  More covariates you add, slower the | 
| #define GLOCK_ERROR_NOPATH              -1      /* empty path */ | convergence. | 
| #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */ |  | 
|  | The advantage of this computer programme, compared to a simple | 
| #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | multinomial logistic model, is clear when the delay between waves is not | 
| #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | identical for each individual. Also, if a individual missed an | 
|  | intermediate interview, the information is lost, but taken into | 
| #define NINTERVMAX 8 | account using an interpolation or extrapolation. | 
| #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ |  | 
| #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | hPijx is the probability to be observed in state i at age x+h | 
| #define NCOVMAX 8 /* Maximum number of covariates */ | conditional to the observed state i at age x. The delay 'h' can be | 
| #define MAXN 20000 | split into an exact number (nh*stepm) of unobserved intermediate | 
| #define YEARM 12. /* Number of months per year */ | states. This elementary transition (by month, quarter, | 
| #define AGESUP 130 | semester or year) is modelled as a multinomial logistic.  The hPx | 
| #define AGEBASE 40 | matrix is simply the matrix product of nh*stepm elementary matrices | 
|  | and the contribution of each individual to the likelihood is simply | 
|  | hPijx. | 
| int erreur; /* Error number */ |  | 
| int nvar; | Also this programme outputs the covariance matrix of the parameters but also | 
| int cptcovn, cptcovage=0, cptcoveff=0,cptcov; | of the life expectancies. It also computes the stable prevalence. | 
| int npar=NPARMAX; |  | 
| int nlstate=2; /* Number of live states */ | Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). | 
| int ndeath=1; /* Number of dead states */ | Institut national d'études démographiques, Paris. | 
| int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | This software have been partly granted by Euro-REVES, a concerted action | 
| int popbased=0; | from the European Union. | 
|  | It is copyrighted identically to a GNU software product, ie programme and | 
| int *wav; /* Number of waves for this individuual 0 is possible */ | software can be distributed freely for non commercial use. Latest version | 
| int maxwav; /* Maxim number of waves */ | can be accessed at http://euroreves.ined.fr/imach . | 
| int jmin, jmax; /* min, max spacing between 2 waves */ |  | 
| int mle, weightopt; | Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach | 
| int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so | 
| int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ |  | 
| double jmean; /* Mean space between 2 waves */ | **********************************************************************/ | 
| double **oldm, **newm, **savm; /* Working pointers to matrices */ | /* | 
| double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ | main | 
| FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf; | read parameterfile | 
| FILE *ficgp, *fichtm,*ficresprob,*ficpop; | read datafile | 
| FILE *ficreseij; | concatwav | 
| char filerese[FILENAMELENGTH]; | freqsummary | 
| FILE  *ficresvij; | if (mle >= 1) | 
| char fileresv[FILENAMELENGTH]; | mlikeli | 
| FILE  *ficresvpl; | print results files | 
| char fileresvpl[FILENAMELENGTH]; | if mle==1 | 
|  | computes hessian | 
| #define NR_END 1 | read end of parameter file: agemin, agemax, bage, fage, estepm | 
| #define FREE_ARG char* | begin-prev-date,... | 
| #define FTOL 1.0e-10 | open gnuplot file | 
|  | open html file | 
| #define NRANSI | stable prevalence | 
| #define ITMAX 200 | for age prevalim() | 
|  | h Pij x | 
| #define TOL 2.0e-4 | variance of p varprob | 
|  | forecasting if prevfcast==1 prevforecast call prevalence() | 
| #define CGOLD 0.3819660 | health expectancies | 
| #define ZEPS 1.0e-10 | Variance-covariance of DFLE | 
| #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | prevalence() | 
|  | movingaverage() | 
| #define GOLD 1.618034 | varevsij() | 
| #define GLIMIT 100.0 | if popbased==1 varevsij(,popbased) | 
| #define TINY 1.0e-20 | total life expectancies | 
|  | Variance of stable prevalence | 
| static double maxarg1,maxarg2; | end | 
| #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | */ | 
| #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) |  | 
|  |  | 
| #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) |  | 
| #define rint(a) floor(a+0.5) |  | 
|  | #include <math.h> | 
| static double sqrarg; | #include <stdio.h> | 
| #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | #include <stdlib.h> | 
| #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | #include <unistd.h> | 
|  |  | 
| int imx; | #define MAXLINE 256 | 
| int stepm; | #define GNUPLOTPROGRAM "gnuplot" | 
| /* Stepm, step in month: minimum step interpolation*/ | /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ | 
|  | #define FILENAMELENGTH 132 | 
| int m,nb; | /*#define DEBUG*/ | 
| int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | /*#define windows*/ | 
| double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | #define GLOCK_ERROR_NOPATH              -1      /* empty path */ | 
| double **pmmij, ***probs, ***mobaverage; | #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */ | 
| double dateintmean=0; |  | 
|  | #define MAXPARM 30 /* Maximum number of parameters for the optimization */ | 
| double *weight; | #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */ | 
| int **s; /* Status */ |  | 
| double *agedc, **covar, idx; | #define NINTERVMAX 8 | 
| int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | #define NLSTATEMAX 8 /* Maximum number of live states (for func) */ | 
|  | #define NDEATHMAX 8 /* Maximum number of dead states (for func) */ | 
| double ftol=FTOL; /* Tolerance for computing Max Likelihood */ | #define NCOVMAX 8 /* Maximum number of covariates */ | 
| double ftolhess; /* Tolerance for computing hessian */ | #define MAXN 20000 | 
|  | #define YEARM 12. /* Number of months per year */ | 
| /**************** split *************************/ | #define AGESUP 130 | 
| static  int split( char *path, char *dirc, char *name ) | #define AGEBASE 40 | 
| { | #ifdef unix | 
| char *s;                             /* pointer */ | #define DIRSEPARATOR '/' | 
| int  l1, l2;                         /* length counters */ | #define ODIRSEPARATOR '\\' | 
|  | #else | 
| l1 = strlen( path );                 /* length of path */ | #define DIRSEPARATOR '\\' | 
| if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | #define ODIRSEPARATOR '/' | 
| s = strrchr( path, '\\' );           /* find last / */ | #endif | 
| if ( s == NULL ) {                   /* no directory, so use current */ |  | 
| #if     defined(__bsd__)                /* get current working directory */ | /* $Id$ */ | 
| extern char       *getwd( ); | /* $State$ */ | 
|  |  | 
| if ( getwd( dirc ) == NULL ) { | char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES "; | 
| #else | char fullversion[]="$Revision$ $Date$"; | 
| extern char       *getcwd( ); | int erreur; /* Error number */ | 
|  | int nvar; | 
| if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; | 
| #endif | int npar=NPARMAX; | 
| return( GLOCK_ERROR_GETCWD ); | int nlstate=2; /* Number of live states */ | 
| } | int ndeath=1; /* Number of dead states */ | 
| strcpy( name, path );             /* we've got it */ | int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ | 
| } else {                             /* strip direcotry from path */ | int popbased=0; | 
| s++;                              /* after this, the filename */ |  | 
| l2 = strlen( s );                 /* length of filename */ | int *wav; /* Number of waves for this individuual 0 is possible */ | 
| if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | int maxwav; /* Maxim number of waves */ | 
| strcpy( name, s );                /* save file name */ | int jmin, jmax; /* min, max spacing between 2 waves */ | 
| strncpy( dirc, path, l1 - l2 );   /* now the directory */ | int mle, weightopt; | 
| dirc[l1-l2] = 0;                  /* add zero */ | int **mw; /* mw[mi][i] is number of the mi wave for this individual */ | 
| } | int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ | 
| l1 = strlen( dirc );                 /* length of directory */ | int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between | 
| if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } | * wave mi and wave mi+1 is not an exact multiple of stepm. */ | 
| return( 0 );                         /* we're done */ | double jmean; /* Mean space between 2 waves */ | 
| } | double **oldm, **newm, **savm; /* Working pointers to matrices */ | 
|  | double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ | 
|  | FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; | 
| /******************************************/ | FILE *ficlog, *ficrespow; | 
|  | int globpr; /* Global variable for printing or not */ | 
| void replace(char *s, char*t) | double fretone; /* Only one call to likelihood */ | 
| { | long ipmx; /* Number of contributions */ | 
| int i; | double sw; /* Sum of weights */ | 
| int lg=20; | char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */ | 
| i=0; | FILE *ficresilk; | 
| lg=strlen(t); | FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; | 
| for(i=0; i<= lg; i++) { | FILE *ficresprobmorprev; | 
| (s[i] = t[i]); | FILE *fichtm; /* Html File */ | 
| if (t[i]== '\\') s[i]='/'; | FILE *ficreseij; | 
| } | char filerese[FILENAMELENGTH]; | 
| } | FILE  *ficresvij; | 
|  | char fileresv[FILENAMELENGTH]; | 
| int nbocc(char *s, char occ) | FILE  *ficresvpl; | 
| { | char fileresvpl[FILENAMELENGTH]; | 
| int i,j=0; | char title[MAXLINE]; | 
| int lg=20; | char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH]; | 
| i=0; | char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH]; | 
| lg=strlen(s); |  | 
| for(i=0; i<= lg; i++) { | char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; | 
| if  (s[i] == occ ) j++; | char filelog[FILENAMELENGTH]; /* Log file */ | 
| } | char filerest[FILENAMELENGTH]; | 
| return j; | char fileregp[FILENAMELENGTH]; | 
| } | char popfile[FILENAMELENGTH]; | 
|  |  | 
| void cutv(char *u,char *v, char*t, char occ) | char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH]; | 
| { |  | 
| int i,lg,j,p=0; | #define NR_END 1 | 
| i=0; | #define FREE_ARG char* | 
| for(j=0; j<=strlen(t)-1; j++) { | #define FTOL 1.0e-10 | 
| if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; |  | 
| } | #define NRANSI | 
|  | #define ITMAX 200 | 
| lg=strlen(t); |  | 
| for(j=0; j<p; j++) { | #define TOL 2.0e-4 | 
| (u[j] = t[j]); |  | 
| } | #define CGOLD 0.3819660 | 
| u[p]='\0'; | #define ZEPS 1.0e-10 | 
|  | #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); | 
| for(j=0; j<= lg; j++) { |  | 
| if (j>=(p+1))(v[j-p-1] = t[j]); | #define GOLD 1.618034 | 
| } | #define GLIMIT 100.0 | 
| } | #define TINY 1.0e-20 | 
|  |  | 
| /********************** nrerror ********************/ | static double maxarg1,maxarg2; | 
|  | #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) | 
| void nrerror(char error_text[]) | #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) | 
| { |  | 
| fprintf(stderr,"ERREUR ...\n"); | #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) | 
| fprintf(stderr,"%s\n",error_text); | #define rint(a) floor(a+0.5) | 
| exit(1); |  | 
| } | static double sqrarg; | 
| /*********************** vector *******************/ | #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) | 
| double *vector(int nl, int nh) | #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} | 
| { |  | 
| double *v; | int imx; | 
| v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); | int stepm; | 
| if (!v) nrerror("allocation failure in vector"); | /* Stepm, step in month: minimum step interpolation*/ | 
| return v-nl+NR_END; |  | 
| } | int estepm; | 
|  | /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ | 
| /************************ free vector ******************/ |  | 
| void free_vector(double*v, int nl, int nh) | int m,nb; | 
| { | long *num; | 
| free((FREE_ARG)(v+nl-NR_END)); | int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage; | 
| } | double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; | 
|  | double **pmmij, ***probs; | 
| /************************ivector *******************************/ | double dateintmean=0; | 
| int *ivector(long nl,long nh) |  | 
| { | double *weight; | 
| int *v; | int **s; /* Status */ | 
| v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | double *agedc, **covar, idx; | 
| if (!v) nrerror("allocation failure in ivector"); | int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff; | 
| return v-nl+NR_END; |  | 
| } | double ftol=FTOL; /* Tolerance for computing Max Likelihood */ | 
|  | double ftolhess; /* Tolerance for computing hessian */ | 
| /******************free ivector **************************/ |  | 
| void free_ivector(int *v, long nl, long nh) | /**************** split *************************/ | 
| { | static  int split( char *path, char *dirc, char *name, char *ext, char *finame ) | 
| free((FREE_ARG)(v+nl-NR_END)); | { | 
| } | char  *ss;                            /* pointer */ | 
|  | int   l1, l2;                         /* length counters */ | 
| /******************* imatrix *******************************/ |  | 
| int **imatrix(long nrl, long nrh, long ncl, long nch) | l1 = strlen(path );                   /* length of path */ | 
| /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ | if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); | 
| { | ss= strrchr( path, DIRSEPARATOR );            /* find last / */ | 
| long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | if ( ss == NULL ) {                   /* no directory, so use current */ | 
| int **m; | /*if(strrchr(path, ODIRSEPARATOR )==NULL) | 
|  | printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ | 
| /* allocate pointers to rows */ | /* get current working directory */ | 
| m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | /*    extern  char* getcwd ( char *buf , int len);*/ | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | if ( getcwd( dirc, FILENAME_MAX ) == NULL ) { | 
| m += NR_END; | return( GLOCK_ERROR_GETCWD ); | 
| m -= nrl; | } | 
|  | strcpy( name, path );               /* we've got it */ | 
|  | } else {                              /* strip direcotry from path */ | 
| /* allocate rows and set pointers to them */ | ss++;                               /* after this, the filename */ | 
| m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | l2 = strlen( ss );                  /* length of filename */ | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); | 
| m[nrl] += NR_END; | strcpy( name, ss );         /* save file name */ | 
| m[nrl] -= ncl; | strncpy( dirc, path, l1 - l2 );     /* now the directory */ | 
|  | dirc[l1-l2] = 0;                    /* add zero */ | 
| for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | } | 
|  | l1 = strlen( dirc );                  /* length of directory */ | 
| /* return pointer to array of pointers to rows */ | /*#ifdef windows | 
| return m; | if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; } | 
| } | #else | 
|  | if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; } | 
| /****************** free_imatrix *************************/ | #endif | 
| void free_imatrix(m,nrl,nrh,ncl,nch) | */ | 
| int **m; | ss = strrchr( name, '.' );            /* find last / */ | 
| long nch,ncl,nrh,nrl; | ss++; | 
| /* free an int matrix allocated by imatrix() */ | strcpy(ext,ss);                       /* save extension */ | 
| { | l1= strlen( name); | 
| free((FREE_ARG) (m[nrl]+ncl-NR_END)); | l2= strlen(ss)+1; | 
| free((FREE_ARG) (m+nrl-NR_END)); | strncpy( finame, name, l1-l2); | 
| } | finame[l1-l2]= 0; | 
|  | return( 0 );                          /* we're done */ | 
| /******************* matrix *******************************/ | } | 
| double **matrix(long nrl, long nrh, long ncl, long nch) |  | 
| { |  | 
| long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | /******************************************/ | 
| double **m; |  | 
|  | void replace(char *s, char*t) | 
| m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | { | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | int i; | 
| m += NR_END; | int lg=20; | 
| m -= nrl; | i=0; | 
|  | lg=strlen(t); | 
| m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | for(i=0; i<= lg; i++) { | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | (s[i] = t[i]); | 
| m[nrl] += NR_END; | if (t[i]== '\\') s[i]='/'; | 
| m[nrl] -= ncl; | } | 
|  | } | 
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |  | 
| return m; | int nbocc(char *s, char occ) | 
| } | { | 
|  | int i,j=0; | 
| /*************************free matrix ************************/ | int lg=20; | 
| void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | i=0; | 
| { | lg=strlen(s); | 
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | for(i=0; i<= lg; i++) { | 
| free((FREE_ARG)(m+nrl-NR_END)); | if  (s[i] == occ ) j++; | 
| } | } | 
|  | return j; | 
| /******************* ma3x *******************************/ | } | 
| double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |  | 
| { | void cutv(char *u,char *v, char*t, char occ) | 
| long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; | { | 
| double ***m; | /* cuts string t into u and v where u is ended by char occ excluding it | 
|  | and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2) | 
| m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | gives u="abcedf" and v="ghi2j" */ | 
| if (!m) nrerror("allocation failure 1 in matrix()"); | int i,lg,j,p=0; | 
| m += NR_END; | i=0; | 
| m -= nrl; | for(j=0; j<=strlen(t)-1; j++) { | 
|  | if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; | 
| m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | } | 
| if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |  | 
| m[nrl] += NR_END; | lg=strlen(t); | 
| m[nrl] -= ncl; | for(j=0; j<p; j++) { | 
|  | (u[j] = t[j]); | 
| for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | } | 
|  | u[p]='\0'; | 
| m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); |  | 
| if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | for(j=0; j<= lg; j++) { | 
| m[nrl][ncl] += NR_END; | if (j>=(p+1))(v[j-p-1] = t[j]); | 
| m[nrl][ncl] -= nll; | } | 
| for (j=ncl+1; j<=nch; j++) | } | 
| m[nrl][j]=m[nrl][j-1]+nlay; |  | 
|  | /********************** nrerror ********************/ | 
| for (i=nrl+1; i<=nrh; i++) { |  | 
| m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | void nrerror(char error_text[]) | 
| for (j=ncl+1; j<=nch; j++) | { | 
| m[i][j]=m[i][j-1]+nlay; | fprintf(stderr,"ERREUR ...\n"); | 
| } | fprintf(stderr,"%s\n",error_text); | 
| return m; | exit(EXIT_FAILURE); | 
| } | } | 
|  | /*********************** vector *******************/ | 
| /*************************free ma3x ************************/ | double *vector(int nl, int nh) | 
| void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | { | 
| { | double *v; | 
| free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); | 
| free((FREE_ARG)(m[nrl]+ncl-NR_END)); | if (!v) nrerror("allocation failure in vector"); | 
| free((FREE_ARG)(m+nrl-NR_END)); | return v-nl+NR_END; | 
| } | } | 
|  |  | 
| /***************** f1dim *************************/ | /************************ free vector ******************/ | 
| extern int ncom; | void free_vector(double*v, int nl, int nh) | 
| extern double *pcom,*xicom; | { | 
| extern double (*nrfunc)(double []); | free((FREE_ARG)(v+nl-NR_END)); | 
|  | } | 
| double f1dim(double x) |  | 
| { | /************************ivector *******************************/ | 
| int j; | int *ivector(long nl,long nh) | 
| double f; | { | 
| double *xt; | int *v; | 
|  | v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); | 
| xt=vector(1,ncom); | if (!v) nrerror("allocation failure in ivector"); | 
| for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | return v-nl+NR_END; | 
| f=(*nrfunc)(xt); | } | 
| free_vector(xt,1,ncom); |  | 
| return f; | /******************free ivector **************************/ | 
| } | void free_ivector(int *v, long nl, long nh) | 
|  | { | 
| /*****************brent *************************/ | free((FREE_ARG)(v+nl-NR_END)); | 
| double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) | } | 
| { |  | 
| int iter; | /************************lvector *******************************/ | 
| double a,b,d,etemp; | long *lvector(long nl,long nh) | 
| double fu,fv,fw,fx; | { | 
| double ftemp; | long *v; | 
| double p,q,r,tol1,tol2,u,v,w,x,xm; | v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long))); | 
| double e=0.0; | if (!v) nrerror("allocation failure in ivector"); | 
|  | return v-nl+NR_END; | 
| a=(ax < cx ? ax : cx); | } | 
| b=(ax > cx ? ax : cx); |  | 
| x=w=v=bx; | /******************free lvector **************************/ | 
| fw=fv=fx=(*f)(x); | void free_lvector(long *v, long nl, long nh) | 
| for (iter=1;iter<=ITMAX;iter++) { | { | 
| xm=0.5*(a+b); | free((FREE_ARG)(v+nl-NR_END)); | 
| tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | } | 
| /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ |  | 
| printf(".");fflush(stdout); | /******************* imatrix *******************************/ | 
| #ifdef DEBUG | int **imatrix(long nrl, long nrh, long ncl, long nch) | 
| printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ | 
| /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | { | 
| #endif | long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; | 
| if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | int **m; | 
| *xmin=x; |  | 
| return fx; | /* allocate pointers to rows */ | 
| } | m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); | 
| ftemp=fu; | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| if (fabs(e) > tol1) { | m += NR_END; | 
| r=(x-w)*(fx-fv); | m -= nrl; | 
| q=(x-v)*(fx-fw); |  | 
| p=(x-v)*q-(x-w)*r; |  | 
| q=2.0*(q-r); | /* allocate rows and set pointers to them */ | 
| if (q > 0.0) p = -p; | m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); | 
| q=fabs(q); | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| etemp=e; | m[nrl] += NR_END; | 
| e=d; | m[nrl] -= ncl; | 
| if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |  | 
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; | 
| else { |  | 
| d=p/q; | /* return pointer to array of pointers to rows */ | 
| u=x+d; | return m; | 
| if (u-a < tol2 || b-u < tol2) | } | 
| d=SIGN(tol1,xm-x); |  | 
| } | /****************** free_imatrix *************************/ | 
| } else { | void free_imatrix(m,nrl,nrh,ncl,nch) | 
| d=CGOLD*(e=(x >= xm ? a-x : b-x)); | int **m; | 
| } | long nch,ncl,nrh,nrl; | 
| u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | /* free an int matrix allocated by imatrix() */ | 
| fu=(*f)(u); | { | 
| if (fu <= fx) { | free((FREE_ARG) (m[nrl]+ncl-NR_END)); | 
| if (u >= x) a=x; else b=x; | free((FREE_ARG) (m+nrl-NR_END)); | 
| SHFT(v,w,x,u) | } | 
| SHFT(fv,fw,fx,fu) |  | 
| } else { | /******************* matrix *******************************/ | 
| if (u < x) a=u; else b=u; | double **matrix(long nrl, long nrh, long ncl, long nch) | 
| if (fu <= fw || w == x) { | { | 
| v=w; | long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; | 
| w=u; | double **m; | 
| fv=fw; |  | 
| fw=fu; | m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | 
| } else if (fu <= fv || v == x || v == w) { | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| v=u; | m += NR_END; | 
| fv=fu; | m -= nrl; | 
| } |  | 
| } | m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | 
| } | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| nrerror("Too many iterations in brent"); | m[nrl] += NR_END; | 
| *xmin=x; | m[nrl] -= ncl; | 
| return fx; |  | 
| } | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | 
|  | return m; | 
| /****************** mnbrak ***********************/ | /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) | 
|  | */ | 
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | } | 
| double (*func)(double)) |  | 
| { | /*************************free matrix ************************/ | 
| double ulim,u,r,q, dum; | void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) | 
| double fu; | { | 
|  | free((FREE_ARG)(m[nrl]+ncl-NR_END)); | 
| *fa=(*func)(*ax); | free((FREE_ARG)(m+nrl-NR_END)); | 
| *fb=(*func)(*bx); | } | 
| if (*fb > *fa) { |  | 
| SHFT(dum,*ax,*bx,dum) | /******************* ma3x *******************************/ | 
| SHFT(dum,*fb,*fa,dum) | double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) | 
| } | { | 
| *cx=(*bx)+GOLD*(*bx-*ax); | long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; | 
| *fc=(*func)(*cx); | double ***m; | 
| while (*fb > *fc) { |  | 
| r=(*bx-*ax)*(*fb-*fc); | m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); | 
| q=(*bx-*cx)*(*fb-*fa); | if (!m) nrerror("allocation failure 1 in matrix()"); | 
| u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | m += NR_END; | 
| (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | m -= nrl; | 
| ulim=(*bx)+GLIMIT*(*cx-*bx); |  | 
| if ((*bx-u)*(u-*cx) > 0.0) { | m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); | 
| fu=(*func)(u); | if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); | 
| } else if ((*cx-u)*(u-ulim) > 0.0) { | m[nrl] += NR_END; | 
| fu=(*func)(u); | m[nrl] -= ncl; | 
| if (fu < *fc) { |  | 
| SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; | 
| SHFT(*fb,*fc,fu,(*func)(u)) |  | 
| } | m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); | 
| } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); | 
| u=ulim; | m[nrl][ncl] += NR_END; | 
| fu=(*func)(u); | m[nrl][ncl] -= nll; | 
| } else { | for (j=ncl+1; j<=nch; j++) | 
| u=(*cx)+GOLD*(*cx-*bx); | m[nrl][j]=m[nrl][j-1]+nlay; | 
| fu=(*func)(u); |  | 
| } | for (i=nrl+1; i<=nrh; i++) { | 
| SHFT(*ax,*bx,*cx,u) | m[i][ncl]=m[i-1l][ncl]+ncol*nlay; | 
| SHFT(*fa,*fb,*fc,fu) | for (j=ncl+1; j<=nch; j++) | 
| } | m[i][j]=m[i][j-1]+nlay; | 
| } | } | 
|  | return m; | 
| /*************** linmin ************************/ | /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) | 
|  | &(m[i][j][k]) <=> *((*(m+i) + j)+k) | 
| int ncom; | */ | 
| double *pcom,*xicom; | } | 
| double (*nrfunc)(double []); |  | 
|  | /*************************free ma3x ************************/ | 
| void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) | 
| { | { | 
| double brent(double ax, double bx, double cx, | free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); | 
| double (*f)(double), double tol, double *xmin); | free((FREE_ARG)(m[nrl]+ncl-NR_END)); | 
| double f1dim(double x); | free((FREE_ARG)(m+nrl-NR_END)); | 
| void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | } | 
| double *fc, double (*func)(double)); |  | 
| int j; | /***************** f1dim *************************/ | 
| double xx,xmin,bx,ax; | extern int ncom; | 
| double fx,fb,fa; | extern double *pcom,*xicom; | 
|  | extern double (*nrfunc)(double []); | 
| ncom=n; |  | 
| pcom=vector(1,n); | double f1dim(double x) | 
| xicom=vector(1,n); | { | 
| nrfunc=func; | int j; | 
| for (j=1;j<=n;j++) { | double f; | 
| pcom[j]=p[j]; | double *xt; | 
| xicom[j]=xi[j]; |  | 
| } | xt=vector(1,ncom); | 
| ax=0.0; | for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; | 
| xx=1.0; | f=(*nrfunc)(xt); | 
| mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | free_vector(xt,1,ncom); | 
| *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | return f; | 
| #ifdef DEBUG | } | 
| printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |  | 
| #endif | /*****************brent *************************/ | 
| for (j=1;j<=n;j++) { | double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) | 
| xi[j] *= xmin; | { | 
| p[j] += xi[j]; | int iter; | 
| } | double a,b,d,etemp; | 
| free_vector(xicom,1,n); | double fu,fv,fw,fx; | 
| free_vector(pcom,1,n); | double ftemp; | 
| } | double p,q,r,tol1,tol2,u,v,w,x,xm; | 
|  | double e=0.0; | 
| /*************** powell ************************/ |  | 
| void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | a=(ax < cx ? ax : cx); | 
| double (*func)(double [])) | b=(ax > cx ? ax : cx); | 
| { | x=w=v=bx; | 
| void linmin(double p[], double xi[], int n, double *fret, | fw=fv=fx=(*f)(x); | 
| double (*func)(double [])); | for (iter=1;iter<=ITMAX;iter++) { | 
| int i,ibig,j; | xm=0.5*(a+b); | 
| double del,t,*pt,*ptt,*xit; | tol2=2.0*(tol1=tol*fabs(x)+ZEPS); | 
| double fp,fptt; | /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ | 
| double *xits; | printf(".");fflush(stdout); | 
| pt=vector(1,n); | fprintf(ficlog,".");fflush(ficlog); | 
| ptt=vector(1,n); | #ifdef DEBUG | 
| xit=vector(1,n); | printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | 
| xits=vector(1,n); | fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); | 
| *fret=(*func)(p); | /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ | 
| for (j=1;j<=n;j++) pt[j]=p[j]; | #endif | 
| for (*iter=1;;++(*iter)) { | if (fabs(x-xm) <= (tol2-0.5*(b-a))){ | 
| fp=(*fret); | *xmin=x; | 
| ibig=0; | return fx; | 
| del=0.0; | } | 
| printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | ftemp=fu; | 
| for (i=1;i<=n;i++) | if (fabs(e) > tol1) { | 
| printf(" %d %.12f",i, p[i]); | r=(x-w)*(fx-fv); | 
| printf("\n"); | q=(x-v)*(fx-fw); | 
| for (i=1;i<=n;i++) { | p=(x-v)*q-(x-w)*r; | 
| for (j=1;j<=n;j++) xit[j]=xi[j][i]; | q=2.0*(q-r); | 
| fptt=(*fret); | if (q > 0.0) p = -p; | 
| #ifdef DEBUG | q=fabs(q); | 
| printf("fret=%lf \n",*fret); | etemp=e; | 
| #endif | e=d; | 
| printf("%d",i);fflush(stdout); | if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) | 
| linmin(p,xit,n,fret,func); | d=CGOLD*(e=(x >= xm ? a-x : b-x)); | 
| if (fabs(fptt-(*fret)) > del) { | else { | 
| del=fabs(fptt-(*fret)); | d=p/q; | 
| ibig=i; | u=x+d; | 
| } | if (u-a < tol2 || b-u < tol2) | 
| #ifdef DEBUG | d=SIGN(tol1,xm-x); | 
| printf("%d %.12e",i,(*fret)); | } | 
| for (j=1;j<=n;j++) { | } else { | 
| xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | d=CGOLD*(e=(x >= xm ? a-x : b-x)); | 
| printf(" x(%d)=%.12e",j,xit[j]); | } | 
| } | u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); | 
| for(j=1;j<=n;j++) | fu=(*f)(u); | 
| printf(" p=%.12e",p[j]); | if (fu <= fx) { | 
| printf("\n"); | if (u >= x) a=x; else b=x; | 
| #endif | SHFT(v,w,x,u) | 
| } | SHFT(fv,fw,fx,fu) | 
| if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | } else { | 
| #ifdef DEBUG | if (u < x) a=u; else b=u; | 
| int k[2],l; | if (fu <= fw || w == x) { | 
| k[0]=1; | v=w; | 
| k[1]=-1; | w=u; | 
| printf("Max: %.12e",(*func)(p)); | fv=fw; | 
| for (j=1;j<=n;j++) | fw=fu; | 
| printf(" %.12e",p[j]); | } else if (fu <= fv || v == x || v == w) { | 
| printf("\n"); | v=u; | 
| for(l=0;l<=1;l++) { | fv=fu; | 
| for (j=1;j<=n;j++) { | } | 
| ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | } | 
| printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | } | 
| } | nrerror("Too many iterations in brent"); | 
| printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | *xmin=x; | 
| } | return fx; | 
| #endif | } | 
|  |  | 
|  | /****************** mnbrak ***********************/ | 
| free_vector(xit,1,n); |  | 
| free_vector(xits,1,n); | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, | 
| free_vector(ptt,1,n); | double (*func)(double)) | 
| free_vector(pt,1,n); | { | 
| return; | double ulim,u,r,q, dum; | 
| } | double fu; | 
| if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |  | 
| for (j=1;j<=n;j++) { | *fa=(*func)(*ax); | 
| ptt[j]=2.0*p[j]-pt[j]; | *fb=(*func)(*bx); | 
| xit[j]=p[j]-pt[j]; | if (*fb > *fa) { | 
| pt[j]=p[j]; | SHFT(dum,*ax,*bx,dum) | 
| } | SHFT(dum,*fb,*fa,dum) | 
| fptt=(*func)(ptt); | } | 
| if (fptt < fp) { | *cx=(*bx)+GOLD*(*bx-*ax); | 
| t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | *fc=(*func)(*cx); | 
| if (t < 0.0) { | while (*fb > *fc) { | 
| linmin(p,xit,n,fret,func); | r=(*bx-*ax)*(*fb-*fc); | 
| for (j=1;j<=n;j++) { | q=(*bx-*cx)*(*fb-*fa); | 
| xi[j][ibig]=xi[j][n]; | u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ | 
| xi[j][n]=xit[j]; | (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); | 
| } | ulim=(*bx)+GLIMIT*(*cx-*bx); | 
| #ifdef DEBUG | if ((*bx-u)*(u-*cx) > 0.0) { | 
| printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | fu=(*func)(u); | 
| for(j=1;j<=n;j++) | } else if ((*cx-u)*(u-ulim) > 0.0) { | 
| printf(" %.12e",xit[j]); | fu=(*func)(u); | 
| printf("\n"); | if (fu < *fc) { | 
| #endif | SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) | 
| } | SHFT(*fb,*fc,fu,(*func)(u)) | 
| } | } | 
| } | } else if ((u-ulim)*(ulim-*cx) >= 0.0) { | 
| } | u=ulim; | 
|  | fu=(*func)(u); | 
| /**** Prevalence limit ****************/ | } else { | 
|  | u=(*cx)+GOLD*(*cx-*bx); | 
| double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | fu=(*func)(u); | 
| { | } | 
| /* Computes the prevalence limit in each live state at age x by left multiplying the unit | SHFT(*ax,*bx,*cx,u) | 
| matrix by transitions matrix until convergence is reached */ | SHFT(*fa,*fb,*fc,fu) | 
|  | } | 
| int i, ii,j,k; | } | 
| double min, max, maxmin, maxmax,sumnew=0.; |  | 
| double **matprod2(); | /*************** linmin ************************/ | 
| double **out, cov[NCOVMAX], **pmij(); |  | 
| double **newm; | int ncom; | 
| double agefin, delaymax=50 ; /* Max number of years to converge */ | double *pcom,*xicom; | 
|  | double (*nrfunc)(double []); | 
| for (ii=1;ii<=nlstate+ndeath;ii++) |  | 
| for (j=1;j<=nlstate+ndeath;j++){ | void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) | 
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | { | 
| } | double brent(double ax, double bx, double cx, | 
|  | double (*f)(double), double tol, double *xmin); | 
| cov[1]=1.; | double f1dim(double x); | 
|  | void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, | 
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | double *fc, double (*func)(double)); | 
| for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | int j; | 
| newm=savm; | double xx,xmin,bx,ax; | 
| /* Covariates have to be included here again */ | double fx,fb,fa; | 
| cov[2]=agefin; |  | 
|  | ncom=n; | 
| for (k=1; k<=cptcovn;k++) { | pcom=vector(1,n); | 
| cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | xicom=vector(1,n); | 
| /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/ | nrfunc=func; | 
| } | for (j=1;j<=n;j++) { | 
| for (k=1; k<=cptcovage;k++) | pcom[j]=p[j]; | 
| cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | xicom[j]=xi[j]; | 
| for (k=1; k<=cptcovprod;k++) | } | 
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | ax=0.0; | 
|  | xx=1.0; | 
| /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); | 
| /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); | 
|  | #ifdef DEBUG | 
| out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | 
|  | fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); | 
| savm=oldm; | #endif | 
| oldm=newm; | for (j=1;j<=n;j++) { | 
| maxmax=0.; | xi[j] *= xmin; | 
| for(j=1;j<=nlstate;j++){ | p[j] += xi[j]; | 
| min=1.; | } | 
| max=0.; | free_vector(xicom,1,n); | 
| for(i=1; i<=nlstate; i++) { | free_vector(pcom,1,n); | 
| sumnew=0; | } | 
| for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |  | 
| prlim[i][j]= newm[i][j]/(1-sumnew); | /*************** powell ************************/ | 
| max=FMAX(max,prlim[i][j]); | void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, | 
| min=FMIN(min,prlim[i][j]); | double (*func)(double [])) | 
| } | { | 
| maxmin=max-min; | void linmin(double p[], double xi[], int n, double *fret, | 
| maxmax=FMAX(maxmax,maxmin); | double (*func)(double [])); | 
| } | int i,ibig,j; | 
| if(maxmax < ftolpl){ | double del,t,*pt,*ptt,*xit; | 
| return prlim; | double fp,fptt; | 
| } | double *xits; | 
| } | pt=vector(1,n); | 
| } | ptt=vector(1,n); | 
|  | xit=vector(1,n); | 
| /*************** transition probabilities ***************/ | xits=vector(1,n); | 
|  | *fret=(*func)(p); | 
| double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | for (j=1;j<=n;j++) pt[j]=p[j]; | 
| { | for (*iter=1;;++(*iter)) { | 
| double s1, s2; | fp=(*fret); | 
| /*double t34;*/ | ibig=0; | 
| int i,j,j1, nc, ii, jj; | del=0.0; | 
|  | printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | 
| for(i=1; i<= nlstate; i++){ | fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret); | 
| for(j=1; j<i;j++){ | fprintf(ficrespow,"%d %.12f",*iter,*fret); | 
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | for (i=1;i<=n;i++) { | 
| /*s2 += param[i][j][nc]*cov[nc];*/ | printf(" %d %.12f",i, p[i]); | 
| s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | fprintf(ficlog," %d %.12lf",i, p[i]); | 
| /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ | fprintf(ficrespow," %.12lf", p[i]); | 
| } | } | 
| ps[i][j]=s2; | printf("\n"); | 
| /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | fprintf(ficlog,"\n"); | 
| } | fprintf(ficrespow,"\n"); | 
| for(j=i+1; j<=nlstate+ndeath;j++){ | for (i=1;i<=n;i++) { | 
| for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | for (j=1;j<=n;j++) xit[j]=xi[j][i]; | 
| s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | fptt=(*fret); | 
| /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | #ifdef DEBUG | 
| } | printf("fret=%lf \n",*fret); | 
| ps[i][j]=(s2); | fprintf(ficlog,"fret=%lf \n",*fret); | 
| } | #endif | 
| } | printf("%d",i);fflush(stdout); | 
| /*ps[3][2]=1;*/ | fprintf(ficlog,"%d",i);fflush(ficlog); | 
|  | linmin(p,xit,n,fret,func); | 
| for(i=1; i<= nlstate; i++){ | if (fabs(fptt-(*fret)) > del) { | 
| s1=0; | del=fabs(fptt-(*fret)); | 
| for(j=1; j<i; j++) | ibig=i; | 
| s1+=exp(ps[i][j]); | } | 
| for(j=i+1; j<=nlstate+ndeath; j++) | #ifdef DEBUG | 
| s1+=exp(ps[i][j]); | printf("%d %.12e",i,(*fret)); | 
| ps[i][i]=1./(s1+1.); | fprintf(ficlog,"%d %.12e",i,(*fret)); | 
| for(j=1; j<i; j++) | for (j=1;j<=n;j++) { | 
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); | 
| for(j=i+1; j<=nlstate+ndeath; j++) | printf(" x(%d)=%.12e",j,xit[j]); | 
| ps[i][j]= exp(ps[i][j])*ps[i][i]; | fprintf(ficlog," x(%d)=%.12e",j,xit[j]); | 
| /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | } | 
| } /* end i */ | for(j=1;j<=n;j++) { | 
|  | printf(" p=%.12e",p[j]); | 
| for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | fprintf(ficlog," p=%.12e",p[j]); | 
| for(jj=1; jj<= nlstate+ndeath; jj++){ | } | 
| ps[ii][jj]=0; | printf("\n"); | 
| ps[ii][ii]=1; | fprintf(ficlog,"\n"); | 
| } | #endif | 
| } | } | 
|  | if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { | 
|  | #ifdef DEBUG | 
| /*   for(ii=1; ii<= nlstate+ndeath; ii++){ | int k[2],l; | 
| for(jj=1; jj<= nlstate+ndeath; jj++){ | k[0]=1; | 
| printf("%lf ",ps[ii][jj]); | k[1]=-1; | 
| } | printf("Max: %.12e",(*func)(p)); | 
| printf("\n "); | fprintf(ficlog,"Max: %.12e",(*func)(p)); | 
| } | for (j=1;j<=n;j++) { | 
| printf("\n ");printf("%lf ",cov[2]);*/ | printf(" %.12e",p[j]); | 
| /* | fprintf(ficlog," %.12e",p[j]); | 
| for(i=1; i<= npar; i++) printf("%f ",x[i]); | } | 
| goto end;*/ | printf("\n"); | 
| return ps; | fprintf(ficlog,"\n"); | 
| } | for(l=0;l<=1;l++) { | 
|  | for (j=1;j<=n;j++) { | 
| /**************** Product of 2 matrices ******************/ | ptt[j]=p[j]+(p[j]-pt[j])*k[l]; | 
|  | printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | 
| double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); | 
| { | } | 
| /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | 
| b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); | 
| /* in, b, out are matrice of pointers which should have been initialized | } | 
| before: only the contents of out is modified. The function returns | #endif | 
| a pointer to pointers identical to out */ |  | 
| long i, j, k; |  | 
| for(i=nrl; i<= nrh; i++) | free_vector(xit,1,n); | 
| for(k=ncolol; k<=ncoloh; k++) | free_vector(xits,1,n); | 
| for(j=ncl,out[i][k]=0.; j<=nch; j++) | free_vector(ptt,1,n); | 
| out[i][k] +=in[i][j]*b[j][k]; | free_vector(pt,1,n); | 
|  | return; | 
| return out; | } | 
| } | if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); | 
|  | for (j=1;j<=n;j++) { | 
|  | ptt[j]=2.0*p[j]-pt[j]; | 
| /************* Higher Matrix Product ***************/ | xit[j]=p[j]-pt[j]; | 
|  | pt[j]=p[j]; | 
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | } | 
| { | fptt=(*func)(ptt); | 
| /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month | if (fptt < fp) { | 
| duration (i.e. until | t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); | 
| age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. | if (t < 0.0) { | 
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | linmin(p,xit,n,fret,func); | 
| (typically every 2 years instead of every month which is too big). | for (j=1;j<=n;j++) { | 
| Model is determined by parameters x and covariates have to be | xi[j][ibig]=xi[j][n]; | 
| included manually here. | xi[j][n]=xit[j]; | 
|  | } | 
| */ | #ifdef DEBUG | 
|  | printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | 
| int i, j, d, h, k; | fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); | 
| double **out, cov[NCOVMAX]; | for(j=1;j<=n;j++){ | 
| double **newm; | printf(" %.12e",xit[j]); | 
|  | fprintf(ficlog," %.12e",xit[j]); | 
| /* Hstepm could be zero and should return the unit matrix */ | } | 
| for (i=1;i<=nlstate+ndeath;i++) | printf("\n"); | 
| for (j=1;j<=nlstate+ndeath;j++){ | fprintf(ficlog,"\n"); | 
| oldm[i][j]=(i==j ? 1.0 : 0.0); | #endif | 
| po[i][j][0]=(i==j ? 1.0 : 0.0); | } | 
| } | } | 
| /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | } | 
| for(h=1; h <=nhstepm; h++){ | } | 
| for(d=1; d <=hstepm; d++){ |  | 
| newm=savm; | /**** Prevalence limit (stable prevalence)  ****************/ | 
| /* Covariates have to be included here again */ |  | 
| cov[1]=1.; | double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij) | 
| cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | { | 
| for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | /* Computes the prevalence limit in each live state at age x by left multiplying the unit | 
| for (k=1; k<=cptcovage;k++) | matrix by transitions matrix until convergence is reached */ | 
| cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; |  | 
| for (k=1; k<=cptcovprod;k++) | int i, ii,j,k; | 
| cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | double min, max, maxmin, maxmax,sumnew=0.; | 
|  | double **matprod2(); | 
|  | double **out, cov[NCOVMAX], **pmij(); | 
| /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | double **newm; | 
| /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | double agefin, delaymax=50 ; /* Max number of years to converge */ | 
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |  | 
| pmij(pmmij,cov,ncovmodel,x,nlstate)); | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| savm=oldm; | for (j=1;j<=nlstate+ndeath;j++){ | 
| oldm=newm; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| } | } | 
| for(i=1; i<=nlstate+ndeath; i++) |  | 
| for(j=1;j<=nlstate+ndeath;j++) { | cov[1]=1.; | 
| po[i][j][h]=newm[i][j]; |  | 
| /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | 
| */ | for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ | 
| } | newm=savm; | 
| } /* end h */ | /* Covariates have to be included here again */ | 
| return po; | cov[2]=agefin; | 
| } |  | 
|  | for (k=1; k<=cptcovn;k++) { | 
|  | cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | 
| /*************** log-likelihood *************/ | /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/ | 
| double func( double *x) | } | 
| { | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
| int i, ii, j, k, mi, d, kk; | for (k=1; k<=cptcovprod;k++) | 
| double l, ll[NLSTATEMAX], cov[NCOVMAX]; | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
| double **out; |  | 
| double sw; /* Sum of weights */ | /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ | 
| double lli; /* Individual log likelihood */ | /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ | 
| long ipmx; | /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ | 
| /*extern weight */ | out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); | 
| /* We are differentiating ll according to initial status */ |  | 
| /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | savm=oldm; | 
| /*for(i=1;i<imx;i++) | oldm=newm; | 
| printf(" %d\n",s[4][i]); | maxmax=0.; | 
| */ | for(j=1;j<=nlstate;j++){ | 
| cov[1]=1.; | min=1.; | 
|  | max=0.; | 
| for(k=1; k<=nlstate; k++) ll[k]=0.; | for(i=1; i<=nlstate; i++) { | 
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | sumnew=0; | 
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; | 
| for(mi=1; mi<= wav[i]-1; mi++){ | prlim[i][j]= newm[i][j]/(1-sumnew); | 
| for (ii=1;ii<=nlstate+ndeath;ii++) | max=FMAX(max,prlim[i][j]); | 
| for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0); | min=FMIN(min,prlim[i][j]); | 
| for(d=0; d<dh[mi][i]; d++){ | } | 
| newm=savm; | maxmin=max-min; | 
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | maxmax=FMAX(maxmax,maxmin); | 
| for (kk=1; kk<=cptcovage;kk++) { | } | 
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | if(maxmax < ftolpl){ | 
| } | return prlim; | 
|  | } | 
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | } | 
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | } | 
| savm=oldm; |  | 
| oldm=newm; | /*************** transition probabilities ***************/ | 
|  |  | 
|  | double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) | 
| } /* end mult */ | { | 
|  | double s1, s2; | 
| lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); | /*double t34;*/ | 
| /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ | int i,j,j1, nc, ii, jj; | 
| ipmx +=1; |  | 
| sw += weight[i]; | for(i=1; i<= nlstate; i++){ | 
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | for(j=1; j<i;j++){ | 
| } /* end of wave */ | for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | 
| } /* end of individual */ | /*s2 += param[i][j][nc]*cov[nc];*/ | 
|  | s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | 
| for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/ | 
| /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | } | 
| l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | ps[i][j]=s2; | 
| return -l; | /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/ | 
| } | } | 
|  | for(j=i+1; j<=nlstate+ndeath;j++){ | 
|  | for (nc=1, s2=0.;nc <=ncovmodel; nc++){ | 
| /*********** Maximum Likelihood Estimation ***************/ | s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc]; | 
|  | /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/ | 
| void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | } | 
| { | ps[i][j]=s2; | 
| int i,j, iter; | } | 
| double **xi,*delti; | } | 
| double fret; | /*ps[3][2]=1;*/ | 
| xi=matrix(1,npar,1,npar); |  | 
| for (i=1;i<=npar;i++) | for(i=1; i<= nlstate; i++){ | 
| for (j=1;j<=npar;j++) | s1=0; | 
| xi[i][j]=(i==j ? 1.0 : 0.0); | for(j=1; j<i; j++) | 
| printf("Powell\n"); | s1+=exp(ps[i][j]); | 
| powell(p,xi,npar,ftol,&iter,&fret,func); | for(j=i+1; j<=nlstate+ndeath; j++) | 
|  | s1+=exp(ps[i][j]); | 
| printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | ps[i][i]=1./(s1+1.); | 
| fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | for(j=1; j<i; j++) | 
|  | ps[i][j]= exp(ps[i][j])*ps[i][i]; | 
| } | for(j=i+1; j<=nlstate+ndeath; j++) | 
|  | ps[i][j]= exp(ps[i][j])*ps[i][i]; | 
| /**** Computes Hessian and covariance matrix ***/ | /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ | 
| void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | } /* end i */ | 
| { |  | 
| double  **a,**y,*x,pd; | for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ | 
| double **hess; | for(jj=1; jj<= nlstate+ndeath; jj++){ | 
| int i, j,jk; | ps[ii][jj]=0; | 
| int *indx; | ps[ii][ii]=1; | 
|  | } | 
| double hessii(double p[], double delta, int theta, double delti[]); | } | 
| double hessij(double p[], double delti[], int i, int j); |  | 
| void lubksb(double **a, int npar, int *indx, double b[]) ; |  | 
| void ludcmp(double **a, int npar, int *indx, double *d) ; | /*   for(ii=1; ii<= nlstate+ndeath; ii++){ | 
|  | for(jj=1; jj<= nlstate+ndeath; jj++){ | 
| hess=matrix(1,npar,1,npar); | printf("%lf ",ps[ii][jj]); | 
|  | } | 
| printf("\nCalculation of the hessian matrix. Wait...\n"); | printf("\n "); | 
| for (i=1;i<=npar;i++){ | } | 
| printf("%d",i);fflush(stdout); | printf("\n ");printf("%lf ",cov[2]);*/ | 
| hess[i][i]=hessii(p,ftolhess,i,delti); | /* | 
| /*printf(" %f ",p[i]);*/ | for(i=1; i<= npar; i++) printf("%f ",x[i]); | 
| /*printf(" %lf ",hess[i][i]);*/ | goto end;*/ | 
| } | return ps; | 
|  | } | 
| for (i=1;i<=npar;i++) { |  | 
| for (j=1;j<=npar;j++)  { | /**************** Product of 2 matrices ******************/ | 
| if (j>i) { |  | 
| printf(".%d%d",i,j);fflush(stdout); | double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b) | 
| hess[i][j]=hessij(p,delti,i,j); | { | 
| hess[j][i]=hess[i][j]; | /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times | 
| /*printf(" %lf ",hess[i][j]);*/ | b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ | 
| } | /* in, b, out are matrice of pointers which should have been initialized | 
| } | before: only the contents of out is modified. The function returns | 
| } | a pointer to pointers identical to out */ | 
| printf("\n"); | long i, j, k; | 
|  | for(i=nrl; i<= nrh; i++) | 
| printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | for(k=ncolol; k<=ncoloh; k++) | 
|  | for(j=ncl,out[i][k]=0.; j<=nch; j++) | 
| a=matrix(1,npar,1,npar); | out[i][k] +=in[i][j]*b[j][k]; | 
| y=matrix(1,npar,1,npar); |  | 
| x=vector(1,npar); | return out; | 
| indx=ivector(1,npar); | } | 
| for (i=1;i<=npar;i++) |  | 
| for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; |  | 
| ludcmp(a,npar,indx,&pd); | /************* Higher Matrix Product ***************/ | 
|  |  | 
| for (j=1;j<=npar;j++) { | double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | 
| for (i=1;i<=npar;i++) x[i]=0; | { | 
| x[j]=1; | /* Computes the transition matrix starting at age 'age' over | 
| lubksb(a,npar,indx,x); | 'nhstepm*hstepm*stepm' months (i.e. until | 
| for (i=1;i<=npar;i++){ | age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying | 
| matcov[i][j]=x[i]; | nhstepm*hstepm matrices. | 
| } | Output is stored in matrix po[i][j][h] for h every 'hstepm' step | 
| } | (typically every 2 years instead of every month which is too big | 
|  | for the memory). | 
| printf("\n#Hessian matrix#\n"); | Model is determined by parameters x and covariates have to be | 
| for (i=1;i<=npar;i++) { | included manually here. | 
| for (j=1;j<=npar;j++) { |  | 
| printf("%.3e ",hess[i][j]); | */ | 
| } |  | 
| printf("\n"); | int i, j, d, h, k; | 
| } | double **out, cov[NCOVMAX]; | 
|  | double **newm; | 
| /* Recompute Inverse */ |  | 
| for (i=1;i<=npar;i++) | /* Hstepm could be zero and should return the unit matrix */ | 
| for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | for (i=1;i<=nlstate+ndeath;i++) | 
| ludcmp(a,npar,indx,&pd); | for (j=1;j<=nlstate+ndeath;j++){ | 
|  | oldm[i][j]=(i==j ? 1.0 : 0.0); | 
| /*  printf("\n#Hessian matrix recomputed#\n"); | po[i][j][0]=(i==j ? 1.0 : 0.0); | 
|  | } | 
| for (j=1;j<=npar;j++) { | /* Even if hstepm = 1, at least one multiplication by the unit matrix */ | 
| for (i=1;i<=npar;i++) x[i]=0; | for(h=1; h <=nhstepm; h++){ | 
| x[j]=1; | for(d=1; d <=hstepm; d++){ | 
| lubksb(a,npar,indx,x); | newm=savm; | 
| for (i=1;i<=npar;i++){ | /* Covariates have to be included here again */ | 
| y[i][j]=x[i]; | cov[1]=1.; | 
| printf("%.3e ",y[i][j]); | cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM; | 
| } | for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; | 
| printf("\n"); | for (k=1; k<=cptcovage;k++) | 
| } | cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
| */ | for (k=1; k<=cptcovprod;k++) | 
|  | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
| free_matrix(a,1,npar,1,npar); |  | 
| free_matrix(y,1,npar,1,npar); |  | 
| free_vector(x,1,npar); | /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ | 
| free_ivector(indx,1,npar); | /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ | 
| free_matrix(hess,1,npar,1,npar); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, | 
|  | pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
|  | savm=oldm; | 
| } | oldm=newm; | 
|  | } | 
| /*************** hessian matrix ****************/ | for(i=1; i<=nlstate+ndeath; i++) | 
| double hessii( double x[], double delta, int theta, double delti[]) | for(j=1;j<=nlstate+ndeath;j++) { | 
| { | po[i][j][h]=newm[i][j]; | 
| int i; | /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]); | 
| int l=1, lmax=20; | */ | 
| double k1,k2; | } | 
| double p2[NPARMAX+1]; | } /* end h */ | 
| double res; | return po; | 
| double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | } | 
| double fx; |  | 
| int k=0,kmax=10; |  | 
| double l1; | /*************** log-likelihood *************/ | 
|  | double func( double *x) | 
| fx=func(x); | { | 
| for (i=1;i<=npar;i++) p2[i]=x[i]; | int i, ii, j, k, mi, d, kk; | 
| for(l=0 ; l <=lmax; l++){ | double l, ll[NLSTATEMAX], cov[NCOVMAX]; | 
| l1=pow(10,l); | double **out; | 
| delts=delt; | double sw; /* Sum of weights */ | 
| for(k=1 ; k <kmax; k=k+1){ | double lli; /* Individual log likelihood */ | 
| delt = delta*(l1*k); | int s1, s2; | 
| p2[theta]=x[theta] +delt; | double bbh, survp; | 
| k1=func(p2)-fx; | long ipmx; | 
| p2[theta]=x[theta]-delt; | /*extern weight */ | 
| k2=func(p2)-fx; | /* We are differentiating ll according to initial status */ | 
| /*res= (k1-2.0*fx+k2)/delt/delt; */ | /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | 
| res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | /*for(i=1;i<imx;i++) | 
|  | printf(" %d\n",s[4][i]); | 
| #ifdef DEBUG | */ | 
| printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | cov[1]=1.; | 
| #endif |  | 
| /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | for(k=1; k<=nlstate; k++) ll[k]=0.; | 
| if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ |  | 
| k=kmax; | if(mle==1){ | 
| } | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| k=kmax; l=lmax*10.; | for(mi=1; mi<= wav[i]-1; mi++){ | 
| } | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | for (j=1;j<=nlstate+ndeath;j++){ | 
| delts=delt; | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| } | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| } | } | 
| } | for(d=0; d<dh[mi][i]; d++){ | 
| delti[theta]=delts; | newm=savm; | 
| return res; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
|  | for (kk=1; kk<=cptcovage;kk++) { | 
| } | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
|  | } | 
| double hessij( double x[], double delti[], int thetai,int thetaj) | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| { | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| int i; | savm=oldm; | 
| int l=1, l1, lmax=20; | oldm=newm; | 
| double k1,k2,k3,k4,res,fx; | } /* end mult */ | 
| double p2[NPARMAX+1]; |  | 
| int k; | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
|  | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| fx=func(x); | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
| for (k=1; k<=2; k++) { | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| for (i=1;i<=npar;i++) p2[i]=x[i]; | * the nearest (and in case of equal distance, to the lowest) interval but now | 
| p2[thetai]=x[thetai]+delti[thetai]/k; | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| k1=func(p2)-fx; | * probability in order to take into account the bias as a fraction of the way | 
|  | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| p2[thetai]=x[thetai]+delti[thetai]/k; | * -stepm/2 to stepm/2 . | 
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | * For stepm=1 the results are the same as for previous versions of Imach. | 
| k2=func(p2)-fx; | * For stepm > 1 the results are less biased than in previous versions. | 
|  | */ | 
| p2[thetai]=x[thetai]-delti[thetai]/k; | s1=s[mw[mi][i]][i]; | 
| p2[thetaj]=x[thetaj]+delti[thetaj]/k; | s2=s[mw[mi+1][i]][i]; | 
| k3=func(p2)-fx; | bbh=(double)bh[mi][i]/(double)stepm; | 
|  | /* bias is positive if real duration | 
| p2[thetai]=x[thetai]-delti[thetai]/k; | * is higher than the multiple of stepm and negative otherwise. | 
| p2[thetaj]=x[thetaj]-delti[thetaj]/k; | */ | 
| k4=func(p2)-fx; | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | 
| res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | if( s2 > nlstate){ | 
| #ifdef DEBUG | /* i.e. if s2 is a death state and if the date of death is known then the contribution | 
| printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | to the likelihood is the probability to die between last step unit time and current | 
| #endif | step unit time, which is also the differences between probability to die before dh | 
| } | and probability to die before dh-stepm . | 
| return res; | In version up to 0.92 likelihood was computed | 
| } | as if date of death was unknown. Death was treated as any other | 
|  | health state: the date of the interview describes the actual state | 
| /************** Inverse of matrix **************/ | and not the date of a change in health state. The former idea was | 
| void ludcmp(double **a, int n, int *indx, double *d) | to consider that at each interview the state was recorded | 
| { | (healthy, disable or death) and IMaCh was corrected; but when we | 
| int i,imax,j,k; | introduced the exact date of death then we should have modified | 
| double big,dum,sum,temp; | the contribution of an exact death to the likelihood. This new | 
| double *vv; | contribution is smaller and very dependent of the step unit | 
|  | stepm. It is no more the probability to die between last interview | 
| vv=vector(1,n); | and month of death but the probability to survive from last | 
| *d=1.0; | interview up to one month before death multiplied by the | 
| for (i=1;i<=n;i++) { | probability to die within a month. Thanks to Chris | 
| big=0.0; | Jackson for correcting this bug.  Former versions increased | 
| for (j=1;j<=n;j++) | mortality artificially. The bad side is that we add another loop | 
| if ((temp=fabs(a[i][j])) > big) big=temp; | which slows down the processing. The difference can be up to 10% | 
| if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | lower mortality. | 
| vv[i]=1.0/big; | */ | 
| } | lli=log(out[s1][s2] - savm[s1][s2]); | 
| for (j=1;j<=n;j++) { | }else{ | 
| for (i=1;i<j;i++) { | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | 
| sum=a[i][j]; | /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ | 
| for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | } | 
| a[i][j]=sum; | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| } | /*if(lli ==000.0)*/ | 
| big=0.0; | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| for (i=j;i<=n;i++) { | ipmx +=1; | 
| sum=a[i][j]; | sw += weight[i]; | 
| for (k=1;k<j;k++) | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| sum -= a[i][k]*a[k][j]; | } /* end of wave */ | 
| a[i][j]=sum; | } /* end of individual */ | 
| if ( (dum=vv[i]*fabs(sum)) >= big) { | }  else if(mle==2){ | 
| big=dum; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| imax=i; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| } | for(mi=1; mi<= wav[i]-1; mi++){ | 
| } | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| if (j != imax) { | for (j=1;j<=nlstate+ndeath;j++){ | 
| for (k=1;k<=n;k++) { | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| dum=a[imax][k]; | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| a[imax][k]=a[j][k]; | } | 
| a[j][k]=dum; | for(d=0; d<=dh[mi][i]; d++){ | 
| } | newm=savm; | 
| *d = -(*d); | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| vv[imax]=vv[j]; | for (kk=1; kk<=cptcovage;kk++) { | 
| } | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| indx[j]=imax; | } | 
| if (a[j][j] == 0.0) a[j][j]=TINY; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| if (j != n) { | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| dum=1.0/(a[j][j]); | savm=oldm; | 
| for (i=j+1;i<=n;i++) a[i][j] *= dum; | oldm=newm; | 
| } | } /* end mult */ | 
| } |  | 
| free_vector(vv,1,n);  /* Doesn't work */ | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
| ; | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| } | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
|  | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| void lubksb(double **a, int n, int *indx, double b[]) | * the nearest (and in case of equal distance, to the lowest) interval but now | 
| { | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| int i,ii=0,ip,j; | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| double sum; | * probability in order to take into account the bias as a fraction of the way | 
|  | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| for (i=1;i<=n;i++) { | * -stepm/2 to stepm/2 . | 
| ip=indx[i]; | * For stepm=1 the results are the same as for previous versions of Imach. | 
| sum=b[ip]; | * For stepm > 1 the results are less biased than in previous versions. | 
| b[ip]=b[i]; | */ | 
| if (ii) | s1=s[mw[mi][i]][i]; | 
| for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | s2=s[mw[mi+1][i]][i]; | 
| else if (sum) ii=i; | bbh=(double)bh[mi][i]/(double)stepm; | 
| b[i]=sum; | /* bias is positive if real duration | 
| } | * is higher than the multiple of stepm and negative otherwise. | 
| for (i=n;i>=1;i--) { | */ | 
| sum=b[i]; | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | 
| for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | 
| b[i]=sum/a[i][i]; | /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ | 
| } | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| } | /*if(lli ==000.0)*/ | 
|  | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| /************ Frequencies ********************/ | ipmx +=1; | 
| void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2) | sw += weight[i]; | 
| {  /* Some frequencies */ | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
|  | } /* end of wave */ | 
| int i, m, jk, k1,i1, j1, bool, z1,z2,j; | } /* end of individual */ | 
| double ***freq; /* Frequencies */ | }  else if(mle==3){  /* exponential inter-extrapolation */ | 
| double *pp; | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| double pos, k2, dateintsum=0,k2cpt=0; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| FILE *ficresp; | for(mi=1; mi<= wav[i]-1; mi++){ | 
| char fileresp[FILENAMELENGTH]; | for (ii=1;ii<=nlstate+ndeath;ii++) | 
|  | for (j=1;j<=nlstate+ndeath;j++){ | 
| pp=vector(1,nlstate); | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| strcpy(fileresp,"p"); | } | 
| strcat(fileresp,fileres); | for(d=0; d<dh[mi][i]; d++){ | 
| if((ficresp=fopen(fileresp,"w"))==NULL) { | newm=savm; | 
| printf("Problem with prevalence resultfile: %s\n", fileresp); | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| exit(0); | for (kk=1; kk<=cptcovage;kk++) { | 
| } | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | } | 
| j1=0; | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
|  | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| j=cptcoveff; | savm=oldm; | 
| if (cptcovn<1) {j=1;ncodemax[1]=1;} | oldm=newm; | 
|  | } /* end mult */ | 
| for(k1=1; k1<=j;k1++){ |  | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | 
| j1++; | /* But now since version 0.9 we anticipate for bias and large stepm. | 
| /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | * If stepm is larger than one month (smallest stepm) and if the exact delay | 
| scanf("%d", i);*/ | * (in months) between two waves is not a multiple of stepm, we rounded to | 
| for (i=-1; i<=nlstate+ndeath; i++) | * the nearest (and in case of equal distance, to the lowest) interval but now | 
| for (jk=-1; jk<=nlstate+ndeath; jk++) | * we keep into memory the bias bh[mi][i] and also the previous matrix product | 
| for(m=agemin; m <= agemax+3; m++) | * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | 
| freq[i][jk][m]=0; | * probability in order to take into account the bias as a fraction of the way | 
|  | * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | 
| dateintsum=0; | * -stepm/2 to stepm/2 . | 
| k2cpt=0; | * For stepm=1 the results are the same as for previous versions of Imach. | 
| for (i=1; i<=imx; i++) { | * For stepm > 1 the results are less biased than in previous versions. | 
| bool=1; | */ | 
| if  (cptcovn>0) { | s1=s[mw[mi][i]][i]; | 
| for (z1=1; z1<=cptcoveff; z1++) | s2=s[mw[mi+1][i]][i]; | 
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | bbh=(double)bh[mi][i]/(double)stepm; | 
| bool=0; | /* bias is positive if real duration | 
| } | * is higher than the multiple of stepm and negative otherwise. | 
| if (bool==1) { | */ | 
| for(m=firstpass; m<=lastpass; m++){ | /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ | 
| k2=anint[m][i]+(mint[m][i]/12.); | lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | 
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | 
| if(agev[m][i]==0) agev[m][i]=agemax+1; | /*if(lli ==000.0)*/ | 
| if(agev[m][i]==1) agev[m][i]=agemax+2; | /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | 
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | ipmx +=1; | 
| freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; | sw += weight[i]; | 
| if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) { | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| dateintsum=dateintsum+k2; | } /* end of wave */ | 
| k2cpt++; | } /* end of individual */ | 
| } | }else if (mle==4){  /* ml=4 no inter-extrapolation */ | 
|  | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| } | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| } | for(mi=1; mi<= wav[i]-1; mi++){ | 
| } | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| } | for (j=1;j<=nlstate+ndeath;j++){ | 
| if  (cptcovn>0) { | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| fprintf(ficresp, "\n#********** Variable "); | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | } | 
| fprintf(ficresp, "**********\n#"); | for(d=0; d<dh[mi][i]; d++){ | 
| } | newm=savm; | 
| for(i=1; i<=nlstate;i++) | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | for (kk=1; kk<=cptcovage;kk++) { | 
| fprintf(ficresp, "\n"); | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
|  | } | 
| for(i=(int)agemin; i <= (int)agemax+3; i++){ |  | 
| if(i==(int)agemax+3) | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| printf("Total"); | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| else | savm=oldm; | 
| printf("Age %d", i); | oldm=newm; | 
| for(jk=1; jk <=nlstate ; jk++){ | } /* end mult */ | 
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |  | 
| pp[jk] += freq[jk][m][i]; | s1=s[mw[mi][i]][i]; | 
| } | s2=s[mw[mi+1][i]][i]; | 
| for(jk=1; jk <=nlstate ; jk++){ | if( s2 > nlstate){ | 
| for(m=-1, pos=0; m <=0 ; m++) | lli=log(out[s1][s2] - savm[s1][s2]); | 
| pos += freq[jk][m][i]; | }else{ | 
| if(pp[jk]>=1.e-10) | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ | 
| printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | } | 
| else | ipmx +=1; | 
| printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | sw += weight[i]; | 
| } | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
|  | /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ | 
| for(jk=1; jk <=nlstate ; jk++){ | } /* end of wave */ | 
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | } /* end of individual */ | 
| pp[jk] += freq[jk][m][i]; | }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */ | 
| } | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
|  | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
| for(jk=1,pos=0; jk <=nlstate ; jk++) | for(mi=1; mi<= wav[i]-1; mi++){ | 
| pos += pp[jk]; | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| for(jk=1; jk <=nlstate ; jk++){ | for (j=1;j<=nlstate+ndeath;j++){ | 
| if(pos>=1.e-5) | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| else | } | 
| printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | for(d=0; d<dh[mi][i]; d++){ | 
| if( i <= (int) agemax){ | newm=savm; | 
| if(pos>=1.e-5){ | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); | for (kk=1; kk<=cptcovage;kk++) { | 
| probs[i][jk][j1]= pp[jk]/pos; | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | } | 
| } |  | 
| else | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| } | savm=oldm; | 
| } | oldm=newm; | 
| for(jk=-1; jk <=nlstate+ndeath; jk++) | } /* end mult */ | 
| for(m=-1; m <=nlstate+ndeath; m++) |  | 
| if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | s1=s[mw[mi][i]][i]; | 
| if(i <= (int) agemax) | s2=s[mw[mi+1][i]][i]; | 
| fprintf(ficresp,"\n"); | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ | 
| printf("\n"); | ipmx +=1; | 
| } | sw += weight[i]; | 
| } | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
| } | /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/ | 
| dateintmean=dateintsum/k2cpt; | } /* end of wave */ | 
|  | } /* end of individual */ | 
| fclose(ficresp); | } /* End of if */ | 
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | 
| free_vector(pp,1,nlstate); | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | 
|  | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | 
| /* End of Freq */ | return -l; | 
| } | } | 
|  |  | 
| /************ Prevalence ********************/ | /*************** log-likelihood *************/ | 
| void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) | double funcone( double *x) | 
| {  /* Some frequencies */ | { | 
|  | int i, ii, j, k, mi, d, kk; | 
| int i, m, jk, k1, i1, j1, bool, z1,z2,j; | double l, ll[NLSTATEMAX], cov[NCOVMAX]; | 
| double ***freq; /* Frequencies */ | double **out; | 
| double *pp; | double lli; /* Individual log likelihood */ | 
| double pos, k2; | int s1, s2; | 
|  | double bbh, survp; | 
| pp=vector(1,nlstate); | /*extern weight */ | 
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | /* We are differentiating ll according to initial status */ | 
|  | /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ | 
| freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | /*for(i=1;i<imx;i++) | 
| j1=0; | printf(" %d\n",s[4][i]); | 
|  | */ | 
| j=cptcoveff; | cov[1]=1.; | 
| if (cptcovn<1) {j=1;ncodemax[1]=1;} |  | 
|  | for(k=1; k<=nlstate; k++) ll[k]=0.; | 
| for(k1=1; k1<=j;k1++){ |  | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | 
| j1++; | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | 
|  | for(mi=1; mi<= wav[i]-1; mi++){ | 
| for (i=-1; i<=nlstate+ndeath; i++) | for (ii=1;ii<=nlstate+ndeath;ii++) | 
| for (jk=-1; jk<=nlstate+ndeath; jk++) | for (j=1;j<=nlstate+ndeath;j++){ | 
| for(m=agemin; m <= agemax+3; m++) | oldm[ii][j]=(ii==j ? 1.0 : 0.0); | 
| freq[i][jk][m]=0; | savm[ii][j]=(ii==j ? 1.0 : 0.0); | 
|  | } | 
| for (i=1; i<=imx; i++) { | for(d=0; d<dh[mi][i]; d++){ | 
| bool=1; | newm=savm; | 
| if  (cptcovn>0) { | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | 
| for (z1=1; z1<=cptcoveff; z1++) | for (kk=1; kk<=cptcovage;kk++) { | 
| if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | 
| bool=0; | } | 
| } | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | 
| if (bool==1) { | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | 
| for(m=firstpass; m<=lastpass; m++){ | savm=oldm; | 
| k2=anint[m][i]+(mint[m][i]/12.); | oldm=newm; | 
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | } /* end mult */ | 
| if(agev[m][i]==0) agev[m][i]=agemax+1; |  | 
| if(agev[m][i]==1) agev[m][i]=agemax+2; | s1=s[mw[mi][i]][i]; | 
| freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; | s2=s[mw[mi+1][i]][i]; | 
| freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i]; | bbh=(double)bh[mi][i]/(double)stepm; | 
| } | /* bias is positive if real duration | 
| } | * is higher than the multiple of stepm and negative otherwise. | 
| } | */ | 
| } | if( s2 > nlstate && (mle <5) ){  /* Jackson */ | 
|  | lli=log(out[s1][s2] - savm[s1][s2]); | 
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | } else if (mle==1){ | 
| for(jk=1; jk <=nlstate ; jk++){ | lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | 
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | } else if(mle==2){ | 
| pp[jk] += freq[jk][m][i]; | lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | 
| } | } else if(mle==3){  /* exponential inter-extrapolation */ | 
| for(jk=1; jk <=nlstate ; jk++){ | lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | 
| for(m=-1, pos=0; m <=0 ; m++) | } else if (mle==4){  /* mle=4 no inter-extrapolation */ | 
| pos += freq[jk][m][i]; | lli=log(out[s1][s2]); /* Original formula */ | 
| } | } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */ | 
|  | lli=log(out[s1][s2]); /* Original formula */ | 
| for(jk=1; jk <=nlstate ; jk++){ | } /* End of if */ | 
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | ipmx +=1; | 
| pp[jk] += freq[jk][m][i]; | sw += weight[i]; | 
| } | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | 
|  | /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ | 
| for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; | if(globpr){ | 
|  | fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \ | 
| for(jk=1; jk <=nlstate ; jk++){ | i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); | 
| if( i <= (int) agemax){ | for(k=1,l=0.; k<=nlstate; k++) | 
| if(pos>=1.e-5){ | fprintf(ficresilk," %10.6f",ll[k]); | 
| probs[i][jk][j1]= pp[jk]/pos; | fprintf(ficresilk,"\n"); | 
| } | } | 
| } | } /* end of wave */ | 
| } | } /* end of individual */ | 
|  | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | 
| } | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | 
| } | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | 
| } | return -l; | 
|  | } | 
|  |  | 
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); |  | 
| free_vector(pp,1,nlstate); | void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) | 
|  | { | 
| }  /* End of Freq */ | /* This routine should help understanding what is done with the selection of individuals/waves and | 
|  | to check the exact contribution to the likelihood. | 
| /************* Waves Concatenation ***************/ | Plotting could be done. | 
|  | */ | 
| void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm) | int k; | 
| { | if(globpr !=0){ /* Just counts and sums no printings */ | 
| /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | strcpy(fileresilk,"ilk"); | 
| Death is a valid wave (if date is known). | strcat(fileresilk,fileres); | 
| mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i | if((ficresilk=fopen(fileresilk,"w"))==NULL) { | 
| dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i] | printf("Problem with resultfile: %s\n", fileresilk); | 
| and mw[mi+1][i]. dh depends on stepm. | fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); | 
| */ | } | 
|  | fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state"); | 
| int i, mi, m; | fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav "); | 
| /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ | 
| double sum=0., jmean=0.;*/ | for(k=1; k<=nlstate; k++) | 
|  | fprintf(ficresilk," ll[%d]",k); | 
| int j, k=0,jk, ju, jl; | fprintf(ficresilk,"\n"); | 
| double sum=0.; | } | 
| jmin=1e+5; |  | 
| jmax=-1; | *fretone=(*funcone)(p); | 
| jmean=0.; | if(globpr !=0) | 
| for(i=1; i<=imx; i++){ | fclose(ficresilk); | 
| mi=0; | return; | 
| m=firstpass; | } | 
| while(s[m][i] <= nlstate){ |  | 
| if(s[m][i]>=1) | /*********** Maximum Likelihood Estimation ***************/ | 
| mw[++mi][i]=m; |  | 
| if(m >=lastpass) | void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) | 
| break; | { | 
| else | int i,j, iter; | 
| m++; | double **xi; | 
| }/* end while */ | double fret; | 
| if (s[m][i] > nlstate){ | double fretone; /* Only one call to likelihood */ | 
| mi++;     /* Death is another wave */ | char filerespow[FILENAMELENGTH]; | 
| /* if(mi==0)  never been interviewed correctly before death */ | xi=matrix(1,npar,1,npar); | 
| /* Only death is a correct wave */ | for (i=1;i<=npar;i++) | 
| mw[mi][i]=m; | for (j=1;j<=npar;j++) | 
| } | xi[i][j]=(i==j ? 1.0 : 0.0); | 
|  | printf("Powell\n");  fprintf(ficlog,"Powell\n"); | 
| wav[i]=mi; | strcpy(filerespow,"pow"); | 
| if(mi==0) | strcat(filerespow,fileres); | 
| printf("Warning, no any valid information for:%d line=%d\n",num[i],i); | if((ficrespow=fopen(filerespow,"w"))==NULL) { | 
| } | printf("Problem with resultfile: %s\n", filerespow); | 
|  | fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); | 
| for(i=1; i<=imx; i++){ | } | 
| for(mi=1; mi<wav[i];mi++){ | fprintf(ficrespow,"# Powell\n# iter -2*LL"); | 
| if (stepm <=0) | for (i=1;i<=nlstate;i++) | 
| dh[mi][i]=1; | for(j=1;j<=nlstate+ndeath;j++) | 
| else{ | if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); | 
| if (s[mw[mi+1][i]][i] > nlstate) { | fprintf(ficrespow,"\n"); | 
| if (agedc[i] < 2*AGESUP) { |  | 
| j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | powell(p,xi,npar,ftol,&iter,&fret,func); | 
| if(j==0) j=1;  /* Survives at least one month after exam */ |  | 
| k=k+1; | fclose(ficrespow); | 
| if (j >= jmax) jmax=j; | printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | 
| if (j <= jmin) jmin=j; | fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | 
| sum=sum+j; | fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | 
| /* if (j<10) printf("j=%d num=%d ",j,i); */ |  | 
| } | } | 
| } |  | 
| else{ | /**** Computes Hessian and covariance matrix ***/ | 
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) | 
| k=k+1; | { | 
| if (j >= jmax) jmax=j; | double  **a,**y,*x,pd; | 
| else if (j <= jmin)jmin=j; | double **hess; | 
| /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | int i, j,jk; | 
| sum=sum+j; | int *indx; | 
| } |  | 
| jk= j/stepm; | double hessii(double p[], double delta, int theta, double delti[]); | 
| jl= j -jk*stepm; | double hessij(double p[], double delti[], int i, int j); | 
| ju= j -(jk+1)*stepm; | void lubksb(double **a, int npar, int *indx, double b[]) ; | 
| if(jl <= -ju) | void ludcmp(double **a, int npar, int *indx, double *d) ; | 
| dh[mi][i]=jk; |  | 
| else | hess=matrix(1,npar,1,npar); | 
| dh[mi][i]=jk+1; |  | 
| if(dh[mi][i]==0) | printf("\nCalculation of the hessian matrix. Wait...\n"); | 
| dh[mi][i]=1; /* At least one step */ | fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); | 
| } | for (i=1;i<=npar;i++){ | 
| } | printf("%d",i);fflush(stdout); | 
| } | fprintf(ficlog,"%d",i);fflush(ficlog); | 
| jmean=sum/k; | hess[i][i]=hessii(p,ftolhess,i,delti); | 
| printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | /*printf(" %f ",p[i]);*/ | 
| } | /*printf(" %lf ",hess[i][i]);*/ | 
| /*********** Tricode ****************************/ | } | 
| void tricode(int *Tvar, int **nbcode, int imx) |  | 
| { | for (i=1;i<=npar;i++) { | 
| int Ndum[20],ij=1, k, j, i; | for (j=1;j<=npar;j++)  { | 
| int cptcode=0; | if (j>i) { | 
| cptcoveff=0; | printf(".%d%d",i,j);fflush(stdout); | 
|  | fprintf(ficlog,".%d%d",i,j);fflush(ficlog); | 
| for (k=0; k<19; k++) Ndum[k]=0; | hess[i][j]=hessij(p,delti,i,j); | 
| for (k=1; k<=7; k++) ncodemax[k]=0; | hess[j][i]=hess[i][j]; | 
|  | /*printf(" %lf ",hess[i][j]);*/ | 
| for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | } | 
| for (i=1; i<=imx; i++) { | } | 
| ij=(int)(covar[Tvar[j]][i]); | } | 
| Ndum[ij]++; | printf("\n"); | 
| /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | fprintf(ficlog,"\n"); | 
| if (ij > cptcode) cptcode=ij; |  | 
| } | printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); | 
|  | fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); | 
| for (i=0; i<=cptcode; i++) { |  | 
| if(Ndum[i]!=0) ncodemax[j]++; | a=matrix(1,npar,1,npar); | 
| } | y=matrix(1,npar,1,npar); | 
| ij=1; | x=vector(1,npar); | 
|  | indx=ivector(1,npar); | 
|  | for (i=1;i<=npar;i++) | 
| for (i=1; i<=ncodemax[j]; i++) { | for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; | 
| for (k=0; k<=19; k++) { | ludcmp(a,npar,indx,&pd); | 
| if (Ndum[k] != 0) { |  | 
| nbcode[Tvar[j]][ij]=k; | for (j=1;j<=npar;j++) { | 
| ij++; | for (i=1;i<=npar;i++) x[i]=0; | 
| } | x[j]=1; | 
| if (ij > ncodemax[j]) break; | lubksb(a,npar,indx,x); | 
| } | for (i=1;i<=npar;i++){ | 
| } | matcov[i][j]=x[i]; | 
| } | } | 
|  | } | 
| for (k=0; k<19; k++) Ndum[k]=0; |  | 
|  | printf("\n#Hessian matrix#\n"); | 
| for (i=1; i<=ncovmodel-2; i++) { | fprintf(ficlog,"\n#Hessian matrix#\n"); | 
| ij=Tvar[i]; | for (i=1;i<=npar;i++) { | 
| Ndum[ij]++; | for (j=1;j<=npar;j++) { | 
| } | printf("%.3e ",hess[i][j]); | 
|  | fprintf(ficlog,"%.3e ",hess[i][j]); | 
| ij=1; | } | 
| for (i=1; i<=10; i++) { | printf("\n"); | 
| if((Ndum[i]!=0) && (i<=ncov)){ | fprintf(ficlog,"\n"); | 
| Tvaraff[ij]=i; | } | 
| ij++; |  | 
| } | /* Recompute Inverse */ | 
| } | for (i=1;i<=npar;i++) | 
|  | for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; | 
| cptcoveff=ij-1; | ludcmp(a,npar,indx,&pd); | 
| } |  | 
|  | /*  printf("\n#Hessian matrix recomputed#\n"); | 
| /*********** Health Expectancies ****************/ |  | 
|  | for (j=1;j<=npar;j++) { | 
| void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij) | for (i=1;i<=npar;i++) x[i]=0; | 
| { | x[j]=1; | 
| /* Health expectancies */ | lubksb(a,npar,indx,x); | 
| int i, j, nhstepm, hstepm, h; | for (i=1;i<=npar;i++){ | 
| double age, agelim,hf; | y[i][j]=x[i]; | 
| double ***p3mat; | printf("%.3e ",y[i][j]); | 
|  | fprintf(ficlog,"%.3e ",y[i][j]); | 
| fprintf(ficreseij,"# Health expectancies\n"); | } | 
| fprintf(ficreseij,"# Age"); | printf("\n"); | 
| for(i=1; i<=nlstate;i++) | fprintf(ficlog,"\n"); | 
| for(j=1; j<=nlstate;j++) | } | 
| fprintf(ficreseij," %1d-%1d",i,j); | */ | 
| fprintf(ficreseij,"\n"); |  | 
|  | free_matrix(a,1,npar,1,npar); | 
| hstepm=1*YEARM; /*  Every j years of age (in month) */ | free_matrix(y,1,npar,1,npar); | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | free_vector(x,1,npar); | 
|  | free_ivector(indx,1,npar); | 
| agelim=AGESUP; | free_matrix(hess,1,npar,1,npar); | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |  | 
| /* nhstepm age range expressed in number of stepm */ |  | 
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); | } | 
| /* Typically if 20 years = 20*12/6=40 stepm */ |  | 
| if (stepm >= YEARM) hstepm=1; | /*************** hessian matrix ****************/ | 
| nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */ | double hessii( double x[], double delta, int theta, double delti[]) | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | { | 
| /* Computed by stepm unit matrices, product of hstepm matrices, stored | int i; | 
| in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | int l=1, lmax=20; | 
| hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | double k1,k2; | 
|  | double p2[NPARMAX+1]; | 
|  | double res; | 
| for(i=1; i<=nlstate;i++) | double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4; | 
| for(j=1; j<=nlstate;j++) | double fx; | 
| for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){ | int k=0,kmax=10; | 
| eij[i][j][(int)age] +=p3mat[i][j][h]; | double l1; | 
| } |  | 
|  | fx=func(x); | 
| hf=1; | for (i=1;i<=npar;i++) p2[i]=x[i]; | 
| if (stepm >= YEARM) hf=stepm/YEARM; | for(l=0 ; l <=lmax; l++){ | 
| fprintf(ficreseij,"%.0f",age ); | l1=pow(10,l); | 
| for(i=1; i<=nlstate;i++) | delts=delt; | 
| for(j=1; j<=nlstate;j++){ | for(k=1 ; k <kmax; k=k+1){ | 
| fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]); | delt = delta*(l1*k); | 
| } | p2[theta]=x[theta] +delt; | 
| fprintf(ficreseij,"\n"); | k1=func(p2)-fx; | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | p2[theta]=x[theta]-delt; | 
| } | k2=func(p2)-fx; | 
| } | /*res= (k1-2.0*fx+k2)/delt/delt; */ | 
|  | res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */ | 
| /************ Variance ******************/ |  | 
| void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | #ifdef DEBUG | 
| { | printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | 
| /* Variance of health expectancies */ | fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); | 
| /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | #endif | 
| double **newm; | /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ | 
| double **dnewm,**doldm; | if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ | 
| int i, j, nhstepm, hstepm, h; | k=kmax; | 
| int k, cptcode; | } | 
| double *xp; | else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ | 
| double **gp, **gm; | k=kmax; l=lmax*10.; | 
| double ***gradg, ***trgradg; | } | 
| double ***p3mat; | else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ | 
| double age,agelim; | delts=delt; | 
| int theta; | } | 
|  | } | 
| fprintf(ficresvij,"# Covariances of life expectancies\n"); | } | 
| fprintf(ficresvij,"# Age"); | delti[theta]=delts; | 
| for(i=1; i<=nlstate;i++) | return res; | 
| for(j=1; j<=nlstate;j++) |  | 
| fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | } | 
| fprintf(ficresvij,"\n"); |  | 
|  | double hessij( double x[], double delti[], int thetai,int thetaj) | 
| xp=vector(1,npar); | { | 
| dnewm=matrix(1,nlstate,1,npar); | int i; | 
| doldm=matrix(1,nlstate,1,nlstate); | int l=1, l1, lmax=20; | 
|  | double k1,k2,k3,k4,res,fx; | 
| hstepm=1*YEARM; /* Every year of age */ | double p2[NPARMAX+1]; | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | int k; | 
| agelim = AGESUP; |  | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | fx=func(x); | 
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | for (k=1; k<=2; k++) { | 
| if (stepm >= YEARM) hstepm=1; | for (i=1;i<=npar;i++) p2[i]=x[i]; | 
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | p2[thetai]=x[thetai]+delti[thetai]/k; | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | p2[thetaj]=x[thetaj]+delti[thetaj]/k; | 
| gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | k1=func(p2)-fx; | 
| gp=matrix(0,nhstepm,1,nlstate); |  | 
| gm=matrix(0,nhstepm,1,nlstate); | p2[thetai]=x[thetai]+delti[thetai]/k; | 
|  | p2[thetaj]=x[thetaj]-delti[thetaj]/k; | 
| for(theta=1; theta <=npar; theta++){ | k2=func(p2)-fx; | 
| for(i=1; i<=npar; i++){ /* Computes gradient */ |  | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | p2[thetai]=x[thetai]-delti[thetai]/k; | 
| } | p2[thetaj]=x[thetaj]+delti[thetaj]/k; | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | k3=func(p2)-fx; | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |  | 
|  | p2[thetai]=x[thetai]-delti[thetai]/k; | 
| if (popbased==1) { | p2[thetaj]=x[thetaj]-delti[thetaj]/k; | 
| for(i=1; i<=nlstate;i++) | k4=func(p2)-fx; | 
| prlim[i][i]=probs[(int)age][i][ij]; | res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */ | 
| } | #ifdef DEBUG | 
|  | printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | 
| for(j=1; j<= nlstate; j++){ | fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); | 
| for(h=0; h<=nhstepm; h++){ | #endif | 
| for(i=1, gp[h][j]=0.;i<=nlstate;i++) | } | 
| gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | return res; | 
| } | } | 
| } |  | 
|  | /************** Inverse of matrix **************/ | 
| for(i=1; i<=npar; i++) /* Computes gradient */ | void ludcmp(double **a, int n, int *indx, double *d) | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | { | 
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | int i,imax,j,k; | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | double big,dum,sum,temp; | 
|  | double *vv; | 
| if (popbased==1) { |  | 
| for(i=1; i<=nlstate;i++) | vv=vector(1,n); | 
| prlim[i][i]=probs[(int)age][i][ij]; | *d=1.0; | 
| } | for (i=1;i<=n;i++) { | 
|  | big=0.0; | 
| for(j=1; j<= nlstate; j++){ | for (j=1;j<=n;j++) | 
| for(h=0; h<=nhstepm; h++){ | if ((temp=fabs(a[i][j])) > big) big=temp; | 
| for(i=1, gm[h][j]=0.;i<=nlstate;i++) | if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); | 
| gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | vv[i]=1.0/big; | 
| } | } | 
| } | for (j=1;j<=n;j++) { | 
|  | for (i=1;i<j;i++) { | 
| for(j=1; j<= nlstate; j++) | sum=a[i][j]; | 
| for(h=0; h<=nhstepm; h++){ | for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; | 
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | a[i][j]=sum; | 
| } | } | 
| } /* End theta */ | big=0.0; | 
|  | for (i=j;i<=n;i++) { | 
| trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); | sum=a[i][j]; | 
|  | for (k=1;k<j;k++) | 
| for(h=0; h<=nhstepm; h++) | sum -= a[i][k]*a[k][j]; | 
| for(j=1; j<=nlstate;j++) | a[i][j]=sum; | 
| for(theta=1; theta <=npar; theta++) | if ( (dum=vv[i]*fabs(sum)) >= big) { | 
| trgradg[h][j][theta]=gradg[h][theta][j]; | big=dum; | 
|  | imax=i; | 
| for(i=1;i<=nlstate;i++) | } | 
| for(j=1;j<=nlstate;j++) | } | 
| vareij[i][j][(int)age] =0.; | if (j != imax) { | 
| for(h=0;h<=nhstepm;h++){ | for (k=1;k<=n;k++) { | 
| for(k=0;k<=nhstepm;k++){ | dum=a[imax][k]; | 
| matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); | a[imax][k]=a[j][k]; | 
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | a[j][k]=dum; | 
| for(i=1;i<=nlstate;i++) | } | 
| for(j=1;j<=nlstate;j++) | *d = -(*d); | 
| vareij[i][j][(int)age] += doldm[i][j]; | vv[imax]=vv[j]; | 
| } | } | 
| } | indx[j]=imax; | 
| h=1; | if (a[j][j] == 0.0) a[j][j]=TINY; | 
| if (stepm >= YEARM) h=stepm/YEARM; | if (j != n) { | 
| fprintf(ficresvij,"%.0f ",age ); | dum=1.0/(a[j][j]); | 
| for(i=1; i<=nlstate;i++) | for (i=j+1;i<=n;i++) a[i][j] *= dum; | 
| for(j=1; j<=nlstate;j++){ | } | 
| fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]); | } | 
| } | free_vector(vv,1,n);  /* Doesn't work */ | 
| fprintf(ficresvij,"\n"); | ; | 
| free_matrix(gp,0,nhstepm,1,nlstate); | } | 
| free_matrix(gm,0,nhstepm,1,nlstate); |  | 
| free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | void lubksb(double **a, int n, int *indx, double b[]) | 
| free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | { | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | int i,ii=0,ip,j; | 
| } /* End age */ | double sum; | 
|  |  | 
| free_vector(xp,1,npar); | for (i=1;i<=n;i++) { | 
| free_matrix(doldm,1,nlstate,1,npar); | ip=indx[i]; | 
| free_matrix(dnewm,1,nlstate,1,nlstate); | sum=b[ip]; | 
|  | b[ip]=b[i]; | 
| } | if (ii) | 
|  | for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; | 
| /************ Variance of prevlim ******************/ | else if (sum) ii=i; | 
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | b[i]=sum; | 
| { | } | 
| /* Variance of prevalence limit */ | for (i=n;i>=1;i--) { | 
| /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | sum=b[i]; | 
| double **newm; | for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; | 
| double **dnewm,**doldm; | b[i]=sum/a[i][i]; | 
| int i, j, nhstepm, hstepm; | } | 
| int k, cptcode; | } | 
| double *xp; |  | 
| double *gp, *gm; | /************ Frequencies ********************/ | 
| double **gradg, **trgradg; | void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint) | 
| double age,agelim; | {  /* Some frequencies */ | 
| int theta; |  | 
|  | int i, m, jk, k1,i1, j1, bool, z1,z2,j; | 
| fprintf(ficresvpl,"# Standard deviation of prevalences limit\n"); | int first; | 
| fprintf(ficresvpl,"# Age"); | double ***freq; /* Frequencies */ | 
| for(i=1; i<=nlstate;i++) | double *pp, **prop; | 
| fprintf(ficresvpl," %1d-%1d",i,i); | double pos,posprop, k2, dateintsum=0,k2cpt=0; | 
| fprintf(ficresvpl,"\n"); | FILE *ficresp; | 
|  | char fileresp[FILENAMELENGTH]; | 
| xp=vector(1,npar); |  | 
| dnewm=matrix(1,nlstate,1,npar); | pp=vector(1,nlstate); | 
| doldm=matrix(1,nlstate,1,nlstate); | prop=matrix(1,nlstate,iagemin,iagemax+3); | 
|  | strcpy(fileresp,"p"); | 
| hstepm=1*YEARM; /* Every year of age */ | strcat(fileresp,fileres); | 
| hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | if((ficresp=fopen(fileresp,"w"))==NULL) { | 
| agelim = AGESUP; | printf("Problem with prevalence resultfile: %s\n", fileresp); | 
| for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); | 
| nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | exit(0); | 
| if (stepm >= YEARM) hstepm=1; | } | 
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3); | 
| gradg=matrix(1,npar,1,nlstate); | j1=0; | 
| gp=vector(1,nlstate); |  | 
| gm=vector(1,nlstate); | j=cptcoveff; | 
|  | if (cptcovn<1) {j=1;ncodemax[1]=1;} | 
| for(theta=1; theta <=npar; theta++){ |  | 
| for(i=1; i<=npar; i++){ /* Computes gradient */ | first=1; | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); |  | 
| } | for(k1=1; k1<=j;k1++){ | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| for(i=1;i<=nlstate;i++) | j1++; | 
| gp[i] = prlim[i][i]; | /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); | 
|  | scanf("%d", i);*/ | 
| for(i=1; i<=npar; i++) /* Computes gradient */ | for (i=-1; i<=nlstate+ndeath; i++) | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for (jk=-1; jk<=nlstate+ndeath; jk++) | 
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | for(m=iagemin; m <= iagemax+3; m++) | 
| for(i=1;i<=nlstate;i++) | freq[i][jk][m]=0; | 
| gm[i] = prlim[i][i]; |  | 
|  | for (i=1; i<=nlstate; i++) | 
| for(i=1;i<=nlstate;i++) | for(m=iagemin; m <= iagemax+3; m++) | 
| gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | prop[i][m]=0; | 
| } /* End theta */ |  | 
|  | dateintsum=0; | 
| trgradg =matrix(1,nlstate,1,npar); | k2cpt=0; | 
|  | for (i=1; i<=imx; i++) { | 
| for(j=1; j<=nlstate;j++) | bool=1; | 
| for(theta=1; theta <=npar; theta++) | if  (cptcovn>0) { | 
| trgradg[j][theta]=gradg[theta][j]; | for (z1=1; z1<=cptcoveff; z1++) | 
|  | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | 
| for(i=1;i<=nlstate;i++) | bool=0; | 
| varpl[i][(int)age] =0.; | } | 
| matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | if (bool==1){ | 
| matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | for(m=firstpass; m<=lastpass; m++){ | 
| for(i=1;i<=nlstate;i++) | k2=anint[m][i]+(mint[m][i]/12.); | 
| varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ | 
|  | if(agev[m][i]==0) agev[m][i]=iagemax+1; | 
| fprintf(ficresvpl,"%.0f ",age ); | if(agev[m][i]==1) agev[m][i]=iagemax+2; | 
| for(i=1; i<=nlstate;i++) | if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; | 
| fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | if (m<lastpass) { | 
| fprintf(ficresvpl,"\n"); | freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | 
| free_vector(gp,1,nlstate); | freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; | 
| free_vector(gm,1,nlstate); | } | 
| free_matrix(gradg,1,npar,1,nlstate); |  | 
| free_matrix(trgradg,1,nlstate,1,npar); | if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) { | 
| } /* End age */ | dateintsum=dateintsum+k2; | 
|  | k2cpt++; | 
| free_vector(xp,1,npar); | } | 
| free_matrix(doldm,1,nlstate,1,npar); | /*}*/ | 
| free_matrix(dnewm,1,nlstate,1,nlstate); | } | 
|  | } | 
| } | } | 
|  |  | 
| /************ Variance of one-step probabilities  ******************/ | /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ | 
| void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij) |  | 
| { | if  (cptcovn>0) { | 
| int i, j; | fprintf(ficresp, "\n#********** Variable "); | 
| int k=0, cptcode; | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| double **dnewm,**doldm; | fprintf(ficresp, "**********\n#"); | 
| double *xp; | } | 
| double *gp, *gm; | for(i=1; i<=nlstate;i++) | 
| double **gradg, **trgradg; | fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); | 
| double age,agelim, cov[NCOVMAX]; | fprintf(ficresp, "\n"); | 
| int theta; |  | 
| char fileresprob[FILENAMELENGTH]; | for(i=iagemin; i <= iagemax+3; i++){ | 
|  | if(i==iagemax+3){ | 
| strcpy(fileresprob,"prob"); | fprintf(ficlog,"Total"); | 
| strcat(fileresprob,fileres); | }else{ | 
| if((ficresprob=fopen(fileresprob,"w"))==NULL) { | if(first==1){ | 
| printf("Problem with resultfile: %s\n", fileresprob); | first=0; | 
| } | printf("See log file for details...\n"); | 
| printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob); | } | 
|  | fprintf(ficlog,"Age %d", i); | 
|  | } | 
| xp=vector(1,npar); | for(jk=1; jk <=nlstate ; jk++){ | 
| dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | 
| doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath)); | pp[jk] += freq[jk][m][i]; | 
|  | } | 
| cov[1]=1; | for(jk=1; jk <=nlstate ; jk++){ | 
| for (age=bage; age<=fage; age ++){ | for(m=-1, pos=0; m <=0 ; m++) | 
| cov[2]=age; | pos += freq[jk][m][i]; | 
| gradg=matrix(1,npar,1,9); | if(pp[jk]>=1.e-10){ | 
| trgradg=matrix(1,9,1,npar); | if(first==1){ | 
| gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); | printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | 
| gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath)); | } | 
|  | fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); | 
| for(theta=1; theta <=npar; theta++){ | }else{ | 
| for(i=1; i<=npar; i++) | if(first==1) | 
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | 
|  | fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); | 
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | } | 
|  | } | 
| k=0; |  | 
| for(i=1; i<= (nlstate+ndeath); i++){ | for(jk=1; jk <=nlstate ; jk++){ | 
| for(j=1; j<=(nlstate+ndeath);j++){ | for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | 
| k=k+1; | pp[jk] += freq[jk][m][i]; | 
| gp[k]=pmmij[i][j]; | } | 
| } | for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ | 
| } | pos += pp[jk]; | 
|  | posprop += prop[jk][i]; | 
| for(i=1; i<=npar; i++) | } | 
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | for(jk=1; jk <=nlstate ; jk++){ | 
|  | if(pos>=1.e-5){ | 
|  | if(first==1) | 
| pmij(pmmij,cov,ncovmodel,xp,nlstate); | printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | 
| k=0; | fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); | 
| for(i=1; i<=(nlstate+ndeath); i++){ | }else{ | 
| for(j=1; j<=(nlstate+ndeath);j++){ | if(first==1) | 
| k=k+1; | printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | 
| gm[k]=pmmij[i][j]; | fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); | 
| } | } | 
| } | if( i <= iagemax){ | 
|  | if(pos>=1.e-5){ | 
| for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++) | fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); | 
| gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta]; | /*probs[i][jk][j1]= pp[jk]/pos;*/ | 
| } | /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | 
|  | } | 
| for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++) | else | 
| for(theta=1; theta <=npar; theta++) | fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); | 
| trgradg[j][theta]=gradg[theta][j]; | } | 
|  | } | 
| matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov); |  | 
| matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg); | for(jk=-1; jk <=nlstate+ndeath; jk++) | 
|  | for(m=-1; m <=nlstate+ndeath; m++) | 
| pmij(pmmij,cov,ncovmodel,x,nlstate); | if(freq[jk][m][i] !=0 ) { | 
|  | if(first==1) | 
| k=0; | printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); | 
| for(i=1; i<=(nlstate+ndeath); i++){ | fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); | 
| for(j=1; j<=(nlstate+ndeath);j++){ | } | 
| k=k+1; | if(i <= iagemax) | 
| gm[k]=pmmij[i][j]; | fprintf(ficresp,"\n"); | 
| } | if(first==1) | 
| } | printf("Others in log...\n"); | 
|  | fprintf(ficlog,"\n"); | 
| /*printf("\n%d ",(int)age); | } | 
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){ | } | 
|  | } | 
|  | dateintmean=dateintsum/k2cpt; | 
| printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |  | 
| }*/ | fclose(ficresp); | 
|  | free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3); | 
| fprintf(ficresprob,"\n%d ",(int)age); | free_vector(pp,1,nlstate); | 
|  | free_matrix(prop,1,nlstate,iagemin, iagemax+3); | 
| for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){ | /* End of Freq */ | 
| if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]); | } | 
| if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]); |  | 
| } | /************ Prevalence ********************/ | 
|  | void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) | 
| free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | { | 
| free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people | 
| free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | in each health status at the date of interview (if between dateprev1 and dateprev2). | 
| free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | We still use firstpass and lastpass as another selection. | 
| } | */ | 
| free_vector(xp,1,npar); |  | 
| fclose(ficresprob); | int i, m, jk, k1, i1, j1, bool, z1,z2,j; | 
| exit(0); | double ***freq; /* Frequencies */ | 
| } | double *pp, **prop; | 
|  | double pos,posprop; | 
| /***********************************************/ | double  y2; /* in fractional years */ | 
| /**************** Main Program *****************/ | int iagemin, iagemax; | 
| /***********************************************/ |  | 
|  | iagemin= (int) agemin; | 
| /*int main(int argc, char *argv[])*/ | iagemax= (int) agemax; | 
| int main() | /*pp=vector(1,nlstate);*/ | 
| { | prop=matrix(1,nlstate,iagemin,iagemax+3); | 
|  | /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ | 
| int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; | j1=0; | 
| double agedeb, agefin,hf; |  | 
| double agemin=1.e20, agemax=-1.e20; | j=cptcoveff; | 
|  | if (cptcovn<1) {j=1;ncodemax[1]=1;} | 
| double fret; |  | 
| double **xi,tmp,delta; | for(k1=1; k1<=j;k1++){ | 
|  | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| double dum; /* Dummy variable */ | j1++; | 
| double ***p3mat; |  | 
| int *indx; | for (i=1; i<=nlstate; i++) | 
| char line[MAXLINE], linepar[MAXLINE]; | for(m=iagemin; m <= iagemax+3; m++) | 
| char title[MAXLINE]; | prop[i][m]=0.0; | 
| char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH]; |  | 
| char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH]; | for (i=1; i<=imx; i++) { /* Each individual */ | 
| char filerest[FILENAMELENGTH]; | bool=1; | 
| char fileregp[FILENAMELENGTH]; | if  (cptcovn>0) { | 
| char popfile[FILENAMELENGTH]; | for (z1=1; z1<=cptcoveff; z1++) | 
| char path[80],pathc[80],pathcd[80],pathtot[80],model[20]; | if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) | 
| int firstobs=1, lastobs=10; | bool=0; | 
| int sdeb, sfin; /* Status at beginning and end */ | } | 
| int c,  h , cpt,l; | if (bool==1) { | 
| int ju,jl, mi; | for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ | 
| int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ | 
| int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; | if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ | 
| int mobilav=0,popforecast=0; | if(agev[m][i]==0) agev[m][i]=iagemax+1; | 
| int hstepm, nhstepm; | if(agev[m][i]==1) agev[m][i]=iagemax+2; | 
| int *popage;/*boolprev=0 if date and zero if wave*/ | if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); | 
| double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2; | if (s[m][i]>0 && s[m][i]<=nlstate) { | 
|  | /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ | 
| double bage, fage, age, agelim, agebase; | prop[s[m][i]][(int)agev[m][i]] += weight[i]; | 
| double ftolpl=FTOL; | prop[s[m][i]][iagemax+3] += weight[i]; | 
| double **prlim; | } | 
| double *severity; | } | 
| double ***param; /* Matrix of parameters */ | } /* end selection of waves */ | 
| double  *p; | } | 
| double **matcov; /* Matrix of covariance */ | } | 
| double ***delti3; /* Scale */ | for(i=iagemin; i <= iagemax+3; i++){ | 
| double *delti; /* Scale */ |  | 
| double ***eij, ***vareij; | for(jk=1,posprop=0; jk <=nlstate ; jk++) { | 
| double **varpl; /* Variances of prevalence limits by age */ | posprop += prop[jk][i]; | 
| double *epj, vepp; | } | 
| double kk1, kk2; |  | 
| double *popeffectif,*popcount; | for(jk=1; jk <=nlstate ; jk++){ | 
| double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate; | if( i <=  iagemax){ | 
| double yp,yp1,yp2; | if(posprop>=1.e-5){ | 
|  | probs[i][jk][j1]= prop[jk][i]/posprop; | 
| char version[80]="Imach version 64b, May 2001, INED-EUROREVES "; | } | 
| char *alph[]={"a","a","b","c","d","e"}, str[4]; | } | 
|  | }/* end jk */ | 
|  | }/* end i */ | 
| char z[1]="c", occ; | } /* end i1 */ | 
| #include <sys/time.h> | } /* end k1 */ | 
| #include <time.h> |  | 
| char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ | 
|  | /*free_vector(pp,1,nlstate);*/ | 
| /* long total_usecs; | free_matrix(prop,1,nlstate, iagemin,iagemax+3); | 
| struct timeval start_time, end_time; | }  /* End of prevalence */ | 
|  |  | 
| gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | /************* Waves Concatenation ***************/ | 
|  |  | 
|  | void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm) | 
| printf("\nIMACH, Version 0.7"); | { | 
| printf("\nEnter the parameter file name: "); | /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. | 
|  | Death is a valid wave (if date is known). | 
| #ifdef windows | mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i | 
| scanf("%s",pathtot); | dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] | 
| getcwd(pathcd, size); | and mw[mi+1][i]. dh depends on stepm. | 
| /*cygwin_split_path(pathtot,path,optionfile); | */ | 
| printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ |  | 
| /* cutv(path,optionfile,pathtot,'\\');*/ | int i, mi, m; | 
|  | /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; | 
| split(pathtot, path,optionfile); | double sum=0., jmean=0.;*/ | 
| chdir(path); | int first; | 
| replace(pathc,path); | int j, k=0,jk, ju, jl; | 
| #endif | double sum=0.; | 
| #ifdef unix | first=0; | 
| scanf("%s",optionfile); | jmin=1e+5; | 
| #endif | jmax=-1; | 
|  | jmean=0.; | 
| /*-------- arguments in the command line --------*/ | for(i=1; i<=imx; i++){ | 
|  | mi=0; | 
| strcpy(fileres,"r"); | m=firstpass; | 
| strcat(fileres, optionfile); | while(s[m][i] <= nlstate){ | 
|  | if(s[m][i]>=1) | 
| /*---------arguments file --------*/ | mw[++mi][i]=m; | 
|  | if(m >=lastpass) | 
| if((ficpar=fopen(optionfile,"r"))==NULL)    { | break; | 
| printf("Problem with optionfile %s\n",optionfile); | else | 
| goto end; | m++; | 
| } | }/* end while */ | 
|  | if (s[m][i] > nlstate){ | 
| strcpy(filereso,"o"); | mi++;     /* Death is another wave */ | 
| strcat(filereso,fileres); | /* if(mi==0)  never been interviewed correctly before death */ | 
| if((ficparo=fopen(filereso,"w"))==NULL) { | /* Only death is a correct wave */ | 
| printf("Problem with Output resultfile: %s\n", filereso);goto end; | mw[mi][i]=m; | 
| } | } | 
|  |  | 
| /* Reads comments: lines beginning with '#' */ | wav[i]=mi; | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | if(mi==0){ | 
| ungetc(c,ficpar); | if(first==0){ | 
| fgets(line, MAXLINE, ficpar); | printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i); | 
| puts(line); | first=1; | 
| fputs(line,ficparo); | } | 
| } | if(first==1){ | 
| ungetc(c,ficpar); | fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i); | 
|  | } | 
| fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | } /* end mi==0 */ | 
| printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model); | } /* End individuals */ | 
| fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model); |  | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(i=1; i<=imx; i++){ | 
| ungetc(c,ficpar); | for(mi=1; mi<wav[i];mi++){ | 
| fgets(line, MAXLINE, ficpar); | if (stepm <=0) | 
| puts(line); | dh[mi][i]=1; | 
| fputs(line,ficparo); | else{ | 
| } | if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ | 
| ungetc(c,ficpar); | if (agedc[i] < 2*AGESUP) { | 
|  | j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); | 
|  | if(j==0) j=1;  /* Survives at least one month after exam */ | 
| covar=matrix(0,NCOVMAX,1,n); | else if(j<0){ | 
| cptcovn=0; | printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | j=1; /* Careful Patch */ | 
|  | printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm); | 
| ncovmodel=2+cptcovn; | printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm); | 
|  | } | 
| /* Read guess parameters */ | k=k+1; | 
| /* Reads comments: lines beginning with '#' */ | if (j >= jmax) jmax=j; | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | if (j <= jmin) jmin=j; | 
| ungetc(c,ficpar); | sum=sum+j; | 
| fgets(line, MAXLINE, ficpar); | /*if (j<0) printf("j=%d num=%d \n",j,i);*/ | 
| puts(line); | /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | 
| fputs(line,ficparo); | } | 
| } | } | 
| ungetc(c,ficpar); | else{ | 
|  | j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | 
| param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | 
| for(i=1; i <=nlstate; i++) | k=k+1; | 
| for(j=1; j <=nlstate+ndeath-1; j++){ | if (j >= jmax) jmax=j; | 
| fscanf(ficpar,"%1d%1d",&i1,&j1); | else if (j <= jmin)jmin=j; | 
| fprintf(ficparo,"%1d%1d",i1,j1); | /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | 
| printf("%1d%1d",i,j); | /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ | 
| for(k=1; k<=ncovmodel;k++){ | if(j<0){ | 
| fscanf(ficpar," %lf",¶m[i][j][k]); | printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| printf(" %lf",param[i][j][k]); | fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); | 
| fprintf(ficparo," %lf",param[i][j][k]); | } | 
| } | sum=sum+j; | 
| fscanf(ficpar,"\n"); | } | 
| printf("\n"); | jk= j/stepm; | 
| fprintf(ficparo,"\n"); | jl= j -jk*stepm; | 
| } | ju= j -(jk+1)*stepm; | 
|  | if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ | 
| npar= (nlstate+ndeath-1)*nlstate*ncovmodel; | if(jl==0){ | 
|  | dh[mi][i]=jk; | 
| p=param[1][1]; | bh[mi][i]=0; | 
|  | }else{ /* We want a negative bias in order to only have interpolation ie | 
| /* Reads comments: lines beginning with '#' */ | * at the price of an extra matrix product in likelihood */ | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | dh[mi][i]=jk+1; | 
| ungetc(c,ficpar); | bh[mi][i]=ju; | 
| fgets(line, MAXLINE, ficpar); | } | 
| puts(line); | }else{ | 
| fputs(line,ficparo); | if(jl <= -ju){ | 
| } | dh[mi][i]=jk; | 
| ungetc(c,ficpar); | bh[mi][i]=jl;       /* bias is positive if real duration | 
|  | * is higher than the multiple of stepm and negative otherwise. | 
| delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | */ | 
| delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */ | } | 
| for(i=1; i <=nlstate; i++){ | else{ | 
| for(j=1; j <=nlstate+ndeath-1; j++){ | dh[mi][i]=jk+1; | 
| fscanf(ficpar,"%1d%1d",&i1,&j1); | bh[mi][i]=ju; | 
| printf("%1d%1d",i,j); | } | 
| fprintf(ficparo,"%1d%1d",i1,j1); | if(dh[mi][i]==0){ | 
| for(k=1; k<=ncovmodel;k++){ | dh[mi][i]=1; /* At least one step */ | 
| fscanf(ficpar,"%le",&delti3[i][j][k]); | bh[mi][i]=ju; /* At least one step */ | 
| printf(" %le",delti3[i][j][k]); | /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ | 
| fprintf(ficparo," %le",delti3[i][j][k]); | } | 
| } | } /* end if mle */ | 
| fscanf(ficpar,"\n"); | } | 
| printf("\n"); | } /* end wave */ | 
| fprintf(ficparo,"\n"); | } | 
| } | jmean=sum/k; | 
| } | printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | 
| delti=delti3[1][1]; | fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | 
|  | } | 
| /* Reads comments: lines beginning with '#' */ |  | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | /*********** Tricode ****************************/ | 
| ungetc(c,ficpar); | void tricode(int *Tvar, int **nbcode, int imx) | 
| fgets(line, MAXLINE, ficpar); | { | 
| puts(line); |  | 
| fputs(line,ficparo); | int Ndum[20],ij=1, k, j, i, maxncov=19; | 
| } | int cptcode=0; | 
| ungetc(c,ficpar); | cptcoveff=0; | 
|  |  | 
| matcov=matrix(1,npar,1,npar); | for (k=0; k<maxncov; k++) Ndum[k]=0; | 
| for(i=1; i <=npar; i++){ | for (k=1; k<=7; k++) ncodemax[k]=0; | 
| fscanf(ficpar,"%s",&str); |  | 
| printf("%s",str); | for (j=1; j<=(cptcovn+2*cptcovprod); j++) { | 
| fprintf(ficparo,"%s",str); | for (i=1; i<=imx; i++) { /*reads the data file to get the maximum | 
| for(j=1; j <=i; j++){ | modality*/ | 
| fscanf(ficpar," %le",&matcov[i][j]); | ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/ | 
| printf(" %.5le",matcov[i][j]); | Ndum[ij]++; /*store the modality */ | 
| fprintf(ficparo," %.5le",matcov[i][j]); | /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ | 
| } | if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable | 
| fscanf(ficpar,"\n"); | Tvar[j]. If V=sex and male is 0 and | 
| printf("\n"); | female is 1, then  cptcode=1.*/ | 
| fprintf(ficparo,"\n"); | } | 
| } |  | 
| for(i=1; i <=npar; i++) | for (i=0; i<=cptcode; i++) { | 
| for(j=i+1;j<=npar;j++) | if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */ | 
| matcov[i][j]=matcov[j][i]; | } | 
|  |  | 
| printf("\n"); | ij=1; | 
|  | for (i=1; i<=ncodemax[j]; i++) { | 
|  | for (k=0; k<= maxncov; k++) { | 
| /*-------- data file ----------*/ | if (Ndum[k] != 0) { | 
| if((ficres =fopen(fileres,"w"))==NULL) { | nbcode[Tvar[j]][ij]=k; | 
| printf("Problem with resultfile: %s\n", fileres);goto end; | /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ | 
| } |  | 
| fprintf(ficres,"#%s\n",version); | ij++; | 
|  | } | 
| if((fic=fopen(datafile,"r"))==NULL)    { | if (ij > ncodemax[j]) break; | 
| printf("Problem with datafile: %s\n", datafile);goto end; | } | 
| } | } | 
|  | } | 
| n= lastobs; |  | 
| severity = vector(1,maxwav); | for (k=0; k< maxncov; k++) Ndum[k]=0; | 
| outcome=imatrix(1,maxwav+1,1,n); |  | 
| num=ivector(1,n); | for (i=1; i<=ncovmodel-2; i++) { | 
| moisnais=vector(1,n); | /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ | 
| annais=vector(1,n); | ij=Tvar[i]; | 
| moisdc=vector(1,n); | Ndum[ij]++; | 
| andc=vector(1,n); | } | 
| agedc=vector(1,n); |  | 
| cod=ivector(1,n); | ij=1; | 
| weight=vector(1,n); | for (i=1; i<= maxncov; i++) { | 
| for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | if((Ndum[i]!=0) && (i<=ncovcol)){ | 
| mint=matrix(1,maxwav,1,n); | Tvaraff[ij]=i; /*For printing */ | 
| anint=matrix(1,maxwav,1,n); | ij++; | 
| s=imatrix(1,maxwav+1,1,n); | } | 
| adl=imatrix(1,maxwav+1,1,n); | } | 
| tab=ivector(1,NCOVMAX); |  | 
| ncodemax=ivector(1,8); | cptcoveff=ij-1; /*Number of simple covariates*/ | 
|  | } | 
| i=1; |  | 
| while (fgets(line, MAXLINE, fic) != NULL)    { | /*********** Health Expectancies ****************/ | 
| if ((i >= firstobs) && (i <=lastobs)) { |  | 
|  | void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov ) | 
| for (j=maxwav;j>=1;j--){ |  | 
| cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | { | 
| strcpy(line,stra); | /* Health expectancies */ | 
| cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | int i, j, nhstepm, hstepm, h, nstepm, k, cptj; | 
| cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | double age, agelim, hf; | 
| } | double ***p3mat,***varhe; | 
|  | double **dnewm,**doldm; | 
| cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | double *xp; | 
| cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); | double **gp, **gm; | 
|  | double ***gradg, ***trgradg; | 
| cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | int theta; | 
| cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); |  | 
|  | varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); | 
| cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | xp=vector(1,npar); | 
| for (j=ncov;j>=1;j--){ | dnewm=matrix(1,nlstate*nlstate,1,npar); | 
| cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); | 
| } |  | 
| num[i]=atol(stra); | fprintf(ficreseij,"# Health expectancies\n"); | 
|  | fprintf(ficreseij,"# Age"); | 
| /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | for(i=1; i<=nlstate;i++) | 
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | for(j=1; j<=nlstate;j++) | 
|  | fprintf(ficreseij," %1d-%1d (SE)",i,j); | 
| i=i+1; | fprintf(ficreseij,"\n"); | 
| } |  | 
| } | if(estepm < stepm){ | 
| /* printf("ii=%d", ij); | printf ("Problem %d lower than %d\n",estepm, stepm); | 
| scanf("%d",i);*/ | } | 
| imx=i-1; /* Number of individuals */ | else  hstepm=estepm; | 
|  | /* We compute the life expectancy from trapezoids spaced every estepm months | 
| /* for (i=1; i<=imx; i++){ | * This is mainly to measure the difference between two models: for example | 
| if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | * if stepm=24 months pijx are given only every 2 years and by summing them | 
| if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | * we are calculating an estimate of the Life Expectancy assuming a linear | 
| if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | * progression in between and thus overestimating or underestimating according | 
| } | * to the curvature of the survival function. If, for the same date, we | 
|  | * estimate the model with stepm=1 month, we can keep estepm to 24 months | 
| for (i=1; i<=imx; i++) | * to compare the new estimate of Life expectancy with the same linear | 
| if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/ | * hypothesis. A more precise result, taking into account a more precise | 
|  | * curvature will be obtained if estepm is as small as stepm. */ | 
| /* Calculation of the number of parameter from char model*/ |  | 
| Tvar=ivector(1,15); | /* For example we decided to compute the life expectancy with the smallest unit */ | 
| Tprod=ivector(1,15); | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | 
| Tvaraff=ivector(1,15); | nhstepm is the number of hstepm from age to agelim | 
| Tvard=imatrix(1,15,1,2); | nstepm is the number of stepm from age to agelin. | 
| Tage=ivector(1,15); | Look at hpijx to understand the reason of that which relies in memory size | 
|  | and note for a fixed period like estepm months */ | 
| if (strlen(model) >1){ | /* We decided (b) to get a life expectancy respecting the most precise curvature of the | 
| j=0, j1=0, k1=1, k2=1; | survival function given by stepm (the optimization length). Unfortunately it | 
| j=nbocc(model,'+'); | means that if the survival funtion is printed only each two years of age and if | 
| j1=nbocc(model,'*'); | you sum them up and add 1 year (area under the trapezoids) you won't get the same | 
| cptcovn=j+1; | results. So we changed our mind and took the option of the best precision. | 
| cptcovprod=j1; | */ | 
|  | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | 
|  |  | 
| strcpy(modelsav,model); | agelim=AGESUP; | 
| if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
| printf("Error. Non available option model=%s ",model); | /* nhstepm age range expressed in number of stepm */ | 
| goto end; | nstepm=(int) rint((agelim-age)*YEARM/stepm); | 
| } | /* Typically if 20 years nstepm = 20*12/6=40 stepm */ | 
|  | /* if (stepm >= YEARM) hstepm=1;*/ | 
| for(i=(j+1); i>=1;i--){ | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | 
| cutv(stra,strb,modelsav,'+'); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); | gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); | 
| /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | gp=matrix(0,nhstepm,1,nlstate*nlstate); | 
| /*scanf("%d",i);*/ | gm=matrix(0,nhstepm,1,nlstate*nlstate); | 
| if (strchr(strb,'*')) { |  | 
| cutv(strd,strc,strb,'*'); | /* Computed by stepm unit matrices, product of hstepm matrices, stored | 
| if (strcmp(strc,"age")==0) { | in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ | 
| cptcovprod--; | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij); | 
| cutv(strb,stre,strd,'V'); |  | 
| Tvar[i]=atoi(stre); |  | 
| cptcovage++; | hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | 
| Tage[cptcovage]=i; |  | 
| /*printf("stre=%s ", stre);*/ | /* Computing Variances of health expectancies */ | 
| } |  | 
| else if (strcmp(strd,"age")==0) { | for(theta=1; theta <=npar; theta++){ | 
| cptcovprod--; | for(i=1; i<=npar; i++){ | 
| cutv(strb,stre,strc,'V'); | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| Tvar[i]=atoi(stre); | } | 
| cptcovage++; | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| Tage[cptcovage]=i; |  | 
| } | cptj=0; | 
| else { | for(j=1; j<= nlstate; j++){ | 
| cutv(strb,stre,strc,'V'); | for(i=1; i<=nlstate; i++){ | 
| Tvar[i]=ncov+k1; | cptj=cptj+1; | 
| cutv(strb,strc,strd,'V'); | for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){ | 
| Tprod[k1]=i; | gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | 
| Tvard[k1][1]=atoi(strc); | } | 
| Tvard[k1][2]=atoi(stre); | } | 
| Tvar[cptcovn+k2]=Tvard[k1][1]; | } | 
| Tvar[cptcovn+k2+1]=Tvard[k1][2]; |  | 
| for (k=1; k<=lastobs;k++) |  | 
| covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | for(i=1; i<=npar; i++) | 
| k1++; | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
| k2=k2+2; | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| } |  | 
| } | cptj=0; | 
| else { | for(j=1; j<= nlstate; j++){ | 
| /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | for(i=1;i<=nlstate;i++){ | 
| /*  scanf("%d",i);*/ | cptj=cptj+1; | 
| cutv(strd,strc,strb,'V'); | for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){ | 
| Tvar[i]=atoi(strc); |  | 
| } | gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.; | 
| strcpy(modelsav,stra); | } | 
| /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | } | 
| scanf("%d",i);*/ | } | 
| } | for(j=1; j<= nlstate*nlstate; j++) | 
| } | for(h=0; h<=nhstepm-1; h++){ | 
|  | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | 
| /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | } | 
| printf("cptcovprod=%d ", cptcovprod); | } | 
| scanf("%d ",i);*/ |  | 
| fclose(fic); | /* End theta */ | 
|  |  | 
| /*  if(mle==1){*/ | trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); | 
| if (weightopt != 1) { /* Maximisation without weights*/ |  | 
| for(i=1;i<=n;i++) weight[i]=1.0; | for(h=0; h<=nhstepm-1; h++) | 
| } | for(j=1; j<=nlstate*nlstate;j++) | 
| /*-calculation of age at interview from date of interview and age at death -*/ | for(theta=1; theta <=npar; theta++) | 
| agev=matrix(1,maxwav,1,imx); | trgradg[h][j][theta]=gradg[h][theta][j]; | 
|  |  | 
| for (i=1; i<=imx; i++) |  | 
| for(m=2; (m<= maxwav); m++) | for(i=1;i<=nlstate*nlstate;i++) | 
| if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){ | for(j=1;j<=nlstate*nlstate;j++) | 
| anint[m][i]=9999; | varhe[i][j][(int)age] =0.; | 
| s[m][i]=-1; |  | 
| } | printf("%d|",(int)age);fflush(stdout); | 
|  | fprintf(ficlog,"%d|",(int)age);fflush(ficlog); | 
| for (i=1; i<=imx; i++)  { | for(h=0;h<=nhstepm-1;h++){ | 
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | for(k=0;k<=nhstepm-1;k++){ | 
| for(m=1; (m<= maxwav); m++){ | matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); | 
| if(s[m][i] >0){ | matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); | 
| if (s[m][i] == nlstate+1) { | for(i=1;i<=nlstate*nlstate;i++) | 
| if(agedc[i]>0) | for(j=1;j<=nlstate*nlstate;j++) | 
| if(moisdc[i]!=99 && andc[i]!=9999) | varhe[i][j][(int)age] += doldm[i][j]*hf*hf; | 
| agev[m][i]=agedc[i]; | } | 
| else { | } | 
| if (andc[i]!=9999){ | /* Computing expectancies */ | 
| printf("Warning negative age at death: %d line:%d\n",num[i],i); | for(i=1; i<=nlstate;i++) | 
| agev[m][i]=-1; | for(j=1; j<=nlstate;j++) | 
| } | for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ | 
| } | eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; | 
| } |  | 
| else if(s[m][i] !=9){ /* Should no more exist */ | /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ | 
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |  | 
| if(mint[m][i]==99 || anint[m][i]==9999) | } | 
| agev[m][i]=1; |  | 
| else if(agev[m][i] <agemin){ | fprintf(ficreseij,"%3.0f",age ); | 
| agemin=agev[m][i]; | cptj=0; | 
| /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | for(i=1; i<=nlstate;i++) | 
| } | for(j=1; j<=nlstate;j++){ | 
| else if(agev[m][i] >agemax){ | cptj++; | 
| agemax=agev[m][i]; | fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) ); | 
| /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | } | 
| } | fprintf(ficreseij,"\n"); | 
| /*agev[m][i]=anint[m][i]-annais[i];*/ |  | 
| /*   agev[m][i] = age[i]+2*m;*/ | free_matrix(gm,0,nhstepm,1,nlstate*nlstate); | 
| } | free_matrix(gp,0,nhstepm,1,nlstate*nlstate); | 
| else { /* =9 */ | free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); | 
| agev[m][i]=1; | free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); | 
| s[m][i]=-1; | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| } | } | 
| } | printf("\n"); | 
| else /*= 0 Unknown */ | fprintf(ficlog,"\n"); | 
| agev[m][i]=1; |  | 
| } | free_vector(xp,1,npar); | 
|  | free_matrix(dnewm,1,nlstate*nlstate,1,npar); | 
| } | free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); | 
| for (i=1; i<=imx; i++)  { | free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); | 
| for(m=1; (m<= maxwav); m++){ | } | 
| if (s[m][i] > (nlstate+ndeath)) { |  | 
| printf("Error: Wrong value in nlstate or ndeath\n"); | /************ Variance ******************/ | 
| goto end; | void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav) | 
| } | { | 
| } | /* Variance of health expectancies */ | 
| } | /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ | 
|  | /* double **newm;*/ | 
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | double **dnewm,**doldm; | 
|  | double **dnewmp,**doldmp; | 
| free_vector(severity,1,maxwav); | int i, j, nhstepm, hstepm, h, nstepm ; | 
| free_imatrix(outcome,1,maxwav+1,1,n); | int k, cptcode; | 
| free_vector(moisnais,1,n); | double *xp; | 
| free_vector(annais,1,n); | double **gp, **gm;  /* for var eij */ | 
| /* free_matrix(mint,1,maxwav,1,n); | double ***gradg, ***trgradg; /*for var eij */ | 
| free_matrix(anint,1,maxwav,1,n);*/ | double **gradgp, **trgradgp; /* for var p point j */ | 
| free_vector(moisdc,1,n); | double *gpp, *gmp; /* for var p point j */ | 
| free_vector(andc,1,n); | double **varppt; /* for var p point j nlstate to nlstate+ndeath */ | 
|  | double ***p3mat; | 
|  | double age,agelim, hf; | 
| wav=ivector(1,imx); | double ***mobaverage; | 
| dh=imatrix(1,lastpass-firstpass+1,1,imx); | int theta; | 
| mw=imatrix(1,lastpass-firstpass+1,1,imx); | char digit[4]; | 
|  | char digitp[25]; | 
| /* Concatenates waves */ |  | 
| concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm); | char fileresprobmorprev[FILENAMELENGTH]; | 
|  |  | 
|  | if(popbased==1){ | 
| Tcode=ivector(1,100); | if(mobilav!=0) | 
| nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | strcpy(digitp,"-populbased-mobilav-"); | 
| ncodemax[1]=1; | else strcpy(digitp,"-populbased-nomobil-"); | 
| if (cptcovn > 0) tricode(Tvar,nbcode,imx); | } | 
|  | else | 
| codtab=imatrix(1,100,1,10); | strcpy(digitp,"-stablbased-"); | 
| h=0; |  | 
| m=pow(2,cptcoveff); | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
| for(k=1;k<=cptcoveff; k++){ | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | 
| for(i=1; i <=(m/pow(2,k));i++){ | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
| for(j=1; j <= ncodemax[k]; j++){ | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
| for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | } | 
| h++; | } | 
| if (h>m) h=1;codtab[h][k]=j; |  | 
| } | strcpy(fileresprobmorprev,"prmorprev"); | 
| } | sprintf(digit,"%-d",ij); | 
| } | /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ | 
| } | strcat(fileresprobmorprev,digit); /* Tvar to be done */ | 
|  | strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ | 
| /* Calculates basic frequencies. Computes observed prevalence at single age | strcat(fileresprobmorprev,fileres); | 
| and prints on file fileres'p'. */ | if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { | 
|  | printf("Problem with resultfile: %s\n", fileresprobmorprev); | 
|  | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); | 
|  | } | 
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | 
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | 
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); | 
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fprintf(ficresprobmorprev,"# Age cov=%-d",ij); | 
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | 
|  | fprintf(ficresprobmorprev," p.%-d SE",j); | 
| /* For Powell, parameters are in a vector p[] starting at p[1] | for(i=1; i<=nlstate;i++) | 
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); | 
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | } | 
|  | fprintf(ficresprobmorprev,"\n"); | 
| if(mle==1){ | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { | 
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | printf("Problem with gnuplot file: %s\n", optionfilegnuplot); | 
| } | fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot); | 
|  | exit(0); | 
| /*--------- results files --------------*/ | } | 
| fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model); | else{ | 
|  | fprintf(ficgp,"\n# Routine varevsij"); | 
|  | } | 
| jk=1; | if((fichtm=fopen(optionfilehtm,"a"))==NULL) { | 
| fprintf(ficres,"# Parameters\n"); | printf("Problem with html file: %s\n", optionfilehtm); | 
| printf("# Parameters\n"); | fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); | 
| for(i=1,jk=1; i <=nlstate; i++){ | exit(0); | 
| for(k=1; k <=(nlstate+ndeath); k++){ | } | 
| if (k != i) | else{ | 
| { | fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); | 
| printf("%d%d ",i,k); | fprintf(fichtm,"\n<br>%s  <br>\n",digitp); | 
| fprintf(ficres,"%1d%1d ",i,k); | } | 
| for(j=1; j <=ncovmodel; j++){ | varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| printf("%f ",p[jk]); |  | 
| fprintf(ficres,"%f ",p[jk]); | fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n"); | 
| jk++; | fprintf(ficresvij,"# Age"); | 
| } | for(i=1; i<=nlstate;i++) | 
| printf("\n"); | for(j=1; j<=nlstate;j++) | 
| fprintf(ficres,"\n"); | fprintf(ficresvij," Cov(e%1d, e%1d)",i,j); | 
| } | fprintf(ficresvij,"\n"); | 
| } |  | 
| } | xp=vector(1,npar); | 
| if(mle==1){ | dnewm=matrix(1,nlstate,1,npar); | 
| /* Computing hessian and covariance matrix */ | doldm=matrix(1,nlstate,1,nlstate); | 
| ftolhess=ftol; /* Usually correct */ | dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); | 
| hesscov(matcov, p, npar, delti, ftolhess, func); | doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| } |  | 
| fprintf(ficres,"# Scales\n"); | gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); | 
| printf("# Scales\n"); | gpp=vector(nlstate+1,nlstate+ndeath); | 
| for(i=1,jk=1; i <=nlstate; i++){ | gmp=vector(nlstate+1,nlstate+ndeath); | 
| for(j=1; j <=nlstate+ndeath; j++){ | trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ | 
| if (j!=i) { |  | 
| fprintf(ficres,"%1d%1d",i,j); | if(estepm < stepm){ | 
| printf("%1d%1d",i,j); | printf ("Problem %d lower than %d\n",estepm, stepm); | 
| for(k=1; k<=ncovmodel;k++){ | } | 
| printf(" %.5e",delti[jk]); | else  hstepm=estepm; | 
| fprintf(ficres," %.5e",delti[jk]); | /* For example we decided to compute the life expectancy with the smallest unit */ | 
| jk++; | /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. | 
| } | nhstepm is the number of hstepm from age to agelim | 
| printf("\n"); | nstepm is the number of stepm from age to agelin. | 
| fprintf(ficres,"\n"); | Look at hpijx to understand the reason of that which relies in memory size | 
| } | and note for a fixed period like k years */ | 
| } | /* We decided (b) to get a life expectancy respecting the most precise curvature of the | 
| } | survival function given by stepm (the optimization length). Unfortunately it | 
|  | means that if the survival funtion is printed every two years of age and if | 
| k=1; | you sum them up and add 1 year (area under the trapezoids) you won't get the same | 
| fprintf(ficres,"# Covariance\n"); | results. So we changed our mind and took the option of the best precision. | 
| printf("# Covariance\n"); | */ | 
| for(i=1;i<=npar;i++){ | hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ | 
| /*  if (k>nlstate) k=1; | agelim = AGESUP; | 
| i1=(i-1)/(ncovmodel*nlstate)+1; | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
| fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
| printf("%s%d%d",alph[k],i1,tab[i]);*/ | nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ | 
| fprintf(ficres,"%3d",i); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| printf("%3d",i); | gradg=ma3x(0,nhstepm,1,npar,1,nlstate); | 
| for(j=1; j<=i;j++){ | gp=matrix(0,nhstepm,1,nlstate); | 
| fprintf(ficres," %.5e",matcov[i][j]); | gm=matrix(0,nhstepm,1,nlstate); | 
| printf(" %.5e",matcov[i][j]); |  | 
| } |  | 
| fprintf(ficres,"\n"); | for(theta=1; theta <=npar; theta++){ | 
| printf("\n"); | for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ | 
| k++; | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| } | } | 
|  | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| ungetc(c,ficpar); |  | 
| fgets(line, MAXLINE, ficpar); | if (popbased==1) { | 
| puts(line); | if(mobilav ==0){ | 
| fputs(line,ficparo); | for(i=1; i<=nlstate;i++) | 
| } | prlim[i][i]=probs[(int)age][i][ij]; | 
| ungetc(c,ficpar); | }else{ /* mobilav */ | 
|  | for(i=1; i<=nlstate;i++) | 
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage); | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
|  | } | 
| if (fage <= 2) { | } | 
| bage = agemin; |  | 
| fage = agemax; | for(j=1; j<= nlstate; j++){ | 
| } | for(h=0; h<=nhstepm; h++){ | 
|  | for(i=1, gp[h][j]=0.;i<=nlstate;i++) | 
| fprintf(ficres,"# agemin agemax for life expectancy.\n"); | gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | 
|  | } | 
| fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage); | } | 
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage); | /* This for computing probability of death (h=1 means | 
|  | computed over hstepm matrices product = hstepm*stepm months) | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | as a weighted average of prlim. | 
| ungetc(c,ficpar); | */ | 
| fgets(line, MAXLINE, ficpar); | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| puts(line); | for(i=1,gpp[j]=0.; i<= nlstate; i++) | 
| fputs(line,ficparo); | gpp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| } | } | 
| ungetc(c,ficpar); | /* end probability of death */ | 
|  |  | 
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ | 
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | 
|  | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ |  | 
| ungetc(c,ficpar); | if (popbased==1) { | 
| fgets(line, MAXLINE, ficpar); | if(mobilav ==0){ | 
| puts(line); | for(i=1; i<=nlstate;i++) | 
| fputs(line,ficparo); | prlim[i][i]=probs[(int)age][i][ij]; | 
| } | }else{ /* mobilav */ | 
| ungetc(c,ficpar); | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
|  | } | 
| dateprev1=anprev1+mprev1/12.+jprev1/365.; | } | 
| dateprev2=anprev2+mprev2/12.+jprev2/365.; |  | 
|  | for(j=1; j<= nlstate; j++){ | 
| fscanf(ficpar,"pop_based=%d\n",&popbased); | for(h=0; h<=nhstepm; h++){ | 
| fprintf(ficparo,"pop_based=%d\n",popbased); | for(i=1, gm[h][j]=0.;i<=nlstate;i++) | 
| fprintf(ficres,"pop_based=%d\n",popbased); | gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | 
|  | } | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | } | 
| ungetc(c,ficpar); | /* This for computing probability of death (h=1 means | 
| fgets(line, MAXLINE, ficpar); | computed over hstepm matrices product = hstepm*stepm months) | 
| puts(line); | as a weighted average of prlim. | 
| fputs(line,ficparo); | */ | 
| } | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| ungetc(c,ficpar); | for(i=1,gmp[j]=0.; i<= nlstate; i++) | 
| fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2); | gmp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); | } | 
| fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); | /* end probability of death */ | 
|  |  | 
| freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2); | for(j=1; j<= nlstate; j++) /* vareij */ | 
|  | for(h=0; h<=nhstepm; h++){ | 
| /*------------ gnuplot -------------*/ | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | 
| chdir(pathcd); | } | 
| if((ficgp=fopen("graph.plt","w"))==NULL) { |  | 
| printf("Problem with file graph.gp");goto end; | for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ | 
| } | gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; | 
| #ifdef windows | } | 
| fprintf(ficgp,"cd \"%s\" \n",pathc); |  | 
| #endif | } /* End theta */ | 
| m=pow(2,cptcoveff); |  | 
|  | trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ | 
| /* 1eme*/ |  | 
| for (cpt=1; cpt<= nlstate ; cpt ++) { | for(h=0; h<=nhstepm; h++) /* veij */ | 
| for (k1=1; k1<= m ; k1 ++) { | for(j=1; j<=nlstate;j++) | 
|  | for(theta=1; theta <=npar; theta++) | 
| #ifdef windows | trgradg[h][j][theta]=gradg[h][theta][j]; | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1); |  | 
| #endif | for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ | 
| #ifdef unix | for(theta=1; theta <=npar; theta++) | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres); | trgradgp[j][theta]=gradgp[theta][j]; | 
| #endif |  | 
|  |  | 
| for (i=1; i<= nlstate ; i ++) { | hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */ | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | for(i=1;i<=nlstate;i++) | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | for(j=1;j<=nlstate;j++) | 
| } | vareij[i][j][(int)age] =0.; | 
| fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); |  | 
| for (i=1; i<= nlstate ; i ++) { | for(h=0;h<=nhstepm;h++){ | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | for(k=0;k<=nhstepm;k++){ | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); | 
| } | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); | 
| fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); | for(i=1;i<=nlstate;i++) | 
| for (i=1; i<= nlstate ; i ++) { | for(j=1;j<=nlstate;j++) | 
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | } | 
| } | } | 
| fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); |  | 
| #ifdef unix | /* pptj */ | 
| fprintf(ficgp,"\nset ter gif small size 400,300"); | matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); | 
| #endif | matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); | 
| fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1); | for(j=nlstate+1;j<=nlstate+ndeath;j++) | 
| } | for(i=nlstate+1;i<=nlstate+ndeath;i++) | 
| } | varppt[j][i]=doldmp[j][i]; | 
| /*2 eme*/ | /* end ppptj */ | 
|  | /*  x centered again */ | 
| for (k1=1; k1<= m ; k1 ++) { | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); | 
| fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage); | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); | 
|  |  | 
| for (i=1; i<= nlstate+1 ; i ++) { | if (popbased==1) { | 
| k=2*i; | if(mobilav ==0){ | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); | for(i=1; i<=nlstate;i++) | 
| for (j=1; j<= nlstate+1 ; j ++) { | prlim[i][i]=probs[(int)age][i][ij]; | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | }else{ /* mobilav */ | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | for(i=1; i<=nlstate;i++) | 
| } | prlim[i][i]=mobaverage[(int)age][i][ij]; | 
| if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | } | 
| else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | } | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); |  | 
| for (j=1; j<= nlstate+1 ; j ++) { | /* This for computing probability of death (h=1 means | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | computed over hstepm (estepm) matrices product = hstepm*stepm months) | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | as a weighted average of prlim. | 
| } | */ | 
| fprintf(ficgp,"\" t\"\" w l 0,"); | for(j=nlstate+1;j<=nlstate+ndeath;j++){ | 
| fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); | for(i=1,gmp[j]=0.;i<= nlstate; i++) | 
| for (j=1; j<= nlstate+1 ; j ++) { | gmp[j] += prlim[i][i]*p3mat[i][j][1]; | 
| if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | } | 
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | /* end probability of death */ | 
| } |  | 
| if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); | 
| else fprintf(ficgp,"\" t\"\" w l 0,"); | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | 
| } | fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); | 
| fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1); | for(i=1; i<=nlstate;i++){ | 
| } | fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); | 
|  | } | 
| /*3eme*/ | } | 
|  | fprintf(ficresprobmorprev,"\n"); | 
| for (k1=1; k1<= m ; k1 ++) { |  | 
| for (cpt=1; cpt<= nlstate ; cpt ++) { | fprintf(ficresvij,"%.0f ",age ); | 
| k=2+nlstate*(cpt-1); | for(i=1; i<=nlstate;i++) | 
| fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt); | for(j=1; j<=nlstate;j++){ | 
| for (i=1; i< nlstate ; i ++) { | fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); | 
| fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1); | } | 
| } | fprintf(ficresvij,"\n"); | 
| fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1); | free_matrix(gp,0,nhstepm,1,nlstate); | 
| } | free_matrix(gm,0,nhstepm,1,nlstate); | 
| } | free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); | 
|  | free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); | 
| /* CV preval stat */ | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
| for (k1=1; k1<= m ; k1 ++) { | } /* End age */ | 
| for (cpt=1; cpt<nlstate ; cpt ++) { | free_vector(gpp,nlstate+1,nlstate+ndeath); | 
| k=3; | free_vector(gmp,nlstate+1,nlstate+ndeath); | 
| fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1); | free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); | 
| for (i=1; i< nlstate ; i ++) | free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ | 
| fprintf(ficgp,"+$%d",k+i+1); | fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); | 
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ | 
|  | fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); | 
| l=3+(nlstate+ndeath)*cpt; | /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ | 
| fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); | /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ | 
| for (i=1; i< nlstate ; i ++) { | /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ | 
| l=3+(nlstate+ndeath)*cpt; | fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev); | 
| fprintf(ficgp,"+$%d",l+i+1); | fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev); | 
| } | fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev); | 
| fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); | 
| fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1); | fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit); | 
| } | /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); | 
| } | */ | 
|  | fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); | 
| /* proba elementaires */ |  | 
| for(i=1,jk=1; i <=nlstate; i++){ | free_vector(xp,1,npar); | 
| for(k=1; k <=(nlstate+ndeath); k++){ | free_matrix(doldm,1,nlstate,1,nlstate); | 
| if (k != i) { | free_matrix(dnewm,1,nlstate,1,npar); | 
| for(j=1; j <=ncovmodel; j++){ | free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/ | free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); | 
| /*fprintf(ficgp,"%s",alph[1]);*/ | free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | 
| fprintf(ficgp,"p%d=%f ",jk,p[jk]); | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
| jk++; | fclose(ficresprobmorprev); | 
| fprintf(ficgp,"\n"); | fclose(ficgp); | 
| } | fclose(fichtm); | 
| } | }  /* end varevsij */ | 
| } |  | 
| } | /************ Variance of prevlim ******************/ | 
|  | void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | 
| for(jk=1; jk <=m; jk++) { | { | 
| fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax); | /* Variance of prevalence limit */ | 
| i=1; | /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ | 
| for(k2=1; k2<=nlstate; k2++) { | double **newm; | 
| k3=i; | double **dnewm,**doldm; | 
| for(k=1; k<=(nlstate+ndeath); k++) { | int i, j, nhstepm, hstepm; | 
| if (k != k2){ | int k, cptcode; | 
| fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | double *xp; | 
| ij=1; | double *gp, *gm; | 
| for(j=3; j <=ncovmodel; j++) { | double **gradg, **trgradg; | 
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | double age,agelim; | 
| fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | int theta; | 
| ij++; |  | 
| } | fprintf(ficresvpl,"# Standard deviation of stable prevalences \n"); | 
| else | fprintf(ficresvpl,"# Age"); | 
| fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | for(i=1; i<=nlstate;i++) | 
| } | fprintf(ficresvpl," %1d-%1d",i,i); | 
| fprintf(ficgp,")/(1"); | fprintf(ficresvpl,"\n"); | 
|  |  | 
| for(k1=1; k1 <=nlstate; k1++){ | xp=vector(1,npar); | 
| fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | dnewm=matrix(1,nlstate,1,npar); | 
| ij=1; | doldm=matrix(1,nlstate,1,nlstate); | 
| for(j=3; j <=ncovmodel; j++){ |  | 
| if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | hstepm=1*YEARM; /* Every year of age */ | 
| fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ | 
| ij++; | agelim = AGESUP; | 
| } | for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ | 
| else | nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
| fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | if (stepm >= YEARM) hstepm=1; | 
| } | nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | 
| fprintf(ficgp,")"); | gradg=matrix(1,npar,1,nlstate); | 
| } | gp=vector(1,nlstate); | 
| fprintf(ficgp,") t \"p%d%d\" ", k2,k); | gm=vector(1,nlstate); | 
| if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); |  | 
| i=i+ncovmodel; | for(theta=1; theta <=npar; theta++){ | 
| } | for(i=1; i<=npar; i++){ /* Computes gradient */ | 
| } | xp[i] = x[i] + (i==theta ?delti[theta]:0); | 
| } | } | 
| fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
| } | for(i=1;i<=nlstate;i++) | 
|  | gp[i] = prlim[i][i]; | 
| fclose(ficgp); |  | 
| /* end gnuplot */ | for(i=1; i<=npar; i++) /* Computes gradient */ | 
|  | xp[i] = x[i] - (i==theta ?delti[theta]:0); | 
| chdir(path); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | 
|  | for(i=1;i<=nlstate;i++) | 
| free_ivector(wav,1,imx); | gm[i] = prlim[i][i]; | 
| free_imatrix(dh,1,lastpass-firstpass+1,1,imx); |  | 
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | for(i=1;i<=nlstate;i++) | 
| free_ivector(num,1,n); | gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; | 
| free_vector(agedc,1,n); | } /* End theta */ | 
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ |  | 
| fclose(ficparo); | trgradg =matrix(1,nlstate,1,npar); | 
| fclose(ficres); |  | 
| /*  }*/ | for(j=1; j<=nlstate;j++) | 
|  | for(theta=1; theta <=npar; theta++) | 
| /*________fin mle=1_________*/ | trgradg[j][theta]=gradg[theta][j]; | 
|  |  | 
|  | for(i=1;i<=nlstate;i++) | 
|  | varpl[i][(int)age] =0.; | 
| /* No more information from the sample is required now */ | matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); | 
| /* Reads comments: lines beginning with '#' */ | matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); | 
| while((c=getc(ficpar))=='#' && c!= EOF){ | for(i=1;i<=nlstate;i++) | 
| ungetc(c,ficpar); | varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ | 
| fgets(line, MAXLINE, ficpar); |  | 
| puts(line); | fprintf(ficresvpl,"%.0f ",age ); | 
| fputs(line,ficparo); | for(i=1; i<=nlstate;i++) | 
| } | fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); | 
| ungetc(c,ficpar); | fprintf(ficresvpl,"\n"); | 
|  | free_vector(gp,1,nlstate); | 
| fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage); | free_vector(gm,1,nlstate); | 
| printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage); | free_matrix(gradg,1,npar,1,nlstate); | 
| fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage); | free_matrix(trgradg,1,nlstate,1,npar); | 
| /*--------- index.htm --------*/ | } /* End age */ | 
|  |  | 
| strcpy(optionfilehtm,optionfile); | free_vector(xp,1,npar); | 
| strcat(optionfilehtm,".htm"); | free_matrix(doldm,1,nlstate,1,npar); | 
| if((fichtm=fopen(optionfilehtm,"w"))==NULL)    { | free_matrix(dnewm,1,nlstate,1,nlstate); | 
| printf("Problem with %s \n",optionfilehtm);goto end; |  | 
| } | } | 
|  |  | 
| fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\"> | /************ Variance of one-step probabilities  ******************/ | 
| Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br> | void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax) | 
| Total number of observations=%d <br> | { | 
| Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br> | int i, j=0,  i1, k1, l1, t, tj; | 
| <hr  size=\"2\" color=\"#EC5E5E\"> | int k2, l2, j1,  z1; | 
| <li>Outputs files<br><br>\n | int k=0,l, cptcode; | 
| - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n | int first=1, first1; | 
| - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br> | double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; | 
| - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br> | double **dnewm,**doldm; | 
| - Transition probabilities: <a href=\"pij%s\">pij%s</a><br> | double *xp; | 
| - Copy of the parameter file: <a href=\"o%s\">o%s</a><br> | double *gp, *gm; | 
| - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br> | double **gradg, **trgradg; | 
| - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br> | double **mu; | 
| - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br> | double age,agelim, cov[NCOVMAX]; | 
| - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br> | double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ | 
| - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br> | int theta; | 
| <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres); | char fileresprob[FILENAMELENGTH]; | 
|  | char fileresprobcov[FILENAMELENGTH]; | 
| fprintf(fichtm," <li>Graphs</li><p>"); | char fileresprobcor[FILENAMELENGTH]; | 
|  |  | 
| m=cptcoveff; | double ***varpij; | 
| if (cptcovn < 1) {m=1;ncodemax[1]=1;} |  | 
|  | strcpy(fileresprob,"prob"); | 
| j1=0; | strcat(fileresprob,fileres); | 
| for(k1=1; k1<=m;k1++){ | if((ficresprob=fopen(fileresprob,"w"))==NULL) { | 
| for(i1=1; i1<=ncodemax[k1];i1++){ | printf("Problem with resultfile: %s\n", fileresprob); | 
| j1++; | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); | 
| if (cptcovn > 0) { | } | 
| fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | strcpy(fileresprobcov,"probcov"); | 
| for (cpt=1; cpt<=cptcoveff;cpt++) | strcat(fileresprobcov,fileres); | 
| fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]); | if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { | 
| fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | printf("Problem with resultfile: %s\n", fileresprobcov); | 
| } | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); | 
| fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br> | } | 
| <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1); | strcpy(fileresprobcor,"probcor"); | 
| for(cpt=1; cpt<nlstate;cpt++){ | strcat(fileresprobcor,fileres); | 
| fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br> | if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { | 
| <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1); | printf("Problem with resultfile: %s\n", fileresprobcor); | 
| } | fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); | 
| for(cpt=1; cpt<=nlstate;cpt++) { | } | 
| fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident | printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | 
| interval) in state (%d): v%s%d%d.gif <br> | fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); | 
| <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1); | printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | 
| } | fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); | 
| for(cpt=1; cpt<=nlstate;cpt++) { | printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | 
| fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br> | fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); | 
| <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1); |  | 
| } | fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); | 
| fprintf(fichtm,"\n<br>- Total life expectancy by age and | fprintf(ficresprob,"# Age"); | 
| health expectancies in states (1) and (2): e%s%d.gif<br> | fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); | 
| <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1); | fprintf(ficresprobcov,"# Age"); | 
| fprintf(fichtm,"\n</body>"); | fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); | 
| } | fprintf(ficresprobcov,"# Age"); | 
| } |  | 
| fclose(fichtm); |  | 
|  | for(i=1; i<=nlstate;i++) | 
| /*--------------- Prevalence limit --------------*/ | for(j=1; j<=(nlstate+ndeath);j++){ | 
|  | fprintf(ficresprob," p%1d-%1d (SE)",i,j); | 
| strcpy(filerespl,"pl"); | fprintf(ficresprobcov," p%1d-%1d ",i,j); | 
| strcat(filerespl,fileres); | fprintf(ficresprobcor," p%1d-%1d ",i,j); | 
| if((ficrespl=fopen(filerespl,"w"))==NULL) { | } | 
| printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end; | /* fprintf(ficresprob,"\n"); | 
| } | fprintf(ficresprobcov,"\n"); | 
| printf("Computing prevalence limit: result on file '%s' \n", filerespl); | fprintf(ficresprobcor,"\n"); | 
| fprintf(ficrespl,"#Prevalence limit\n"); | */ | 
| fprintf(ficrespl,"#Age "); | xp=vector(1,npar); | 
| for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | 
| fprintf(ficrespl,"\n"); | doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | 
|  | mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); | 
| prlim=matrix(1,nlstate,1,nlstate); | varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); | 
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | first=1; | 
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { | 
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | printf("Problem with gnuplot file: %s\n", optionfilegnuplot); | 
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot); | 
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | exit(0); | 
| k=0; | } | 
| agebase=agemin; | else{ | 
| agelim=agemax; | fprintf(ficgp,"\n# Routine varprob"); | 
| ftolpl=1.e-10; | } | 
| i1=cptcoveff; | if((fichtm=fopen(optionfilehtm,"a"))==NULL) { | 
| if (cptcovn < 1){i1=1;} | printf("Problem with html file: %s\n", optionfilehtm); | 
|  | fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm); | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | exit(0); | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | } | 
| k=k+1; | else{ | 
| /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); | 
| fprintf(ficrespl,"\n#******"); | fprintf(fichtm,"\n"); | 
| for(j=1;j<=cptcoveff;j++) |  | 
| fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n"); | 
| fprintf(ficrespl,"******\n"); | fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); | 
|  | fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n"); | 
| for (age=agebase; age<=agelim; age++){ |  | 
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | } | 
| fprintf(ficrespl,"%.0f",age ); |  | 
| for(i=1; i<=nlstate;i++) | cov[1]=1; | 
| fprintf(ficrespl," %.5f", prlim[i][i]); | tj=cptcoveff; | 
| fprintf(ficrespl,"\n"); | if (cptcovn<1) {tj=1;ncodemax[1]=1;} | 
| } | j1=0; | 
| } | for(t=1; t<=tj;t++){ | 
| } | for(i1=1; i1<=ncodemax[t];i1++){ | 
| fclose(ficrespl); | j1++; | 
|  | if  (cptcovn>0) { | 
| /*------------- h Pij x at various ages ------------*/ | fprintf(ficresprob, "\n#********** Variable "); | 
|  | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| strcpy(filerespij,"pij");  strcat(filerespij,fileres); | fprintf(ficresprob, "**********\n#\n"); | 
| if((ficrespij=fopen(filerespij,"w"))==NULL) { | fprintf(ficresprobcov, "\n#********** Variable "); | 
| printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| } | fprintf(ficresprobcov, "**********\n#\n"); | 
| printf("Computing pij: result on file '%s' \n", filerespij); |  | 
|  | fprintf(ficgp, "\n#********** Variable "); | 
| stepsize=(int) (stepm+YEARM-1)/YEARM; | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| /*if (stepm<=24) stepsize=2;*/ | fprintf(ficgp, "**********\n#\n"); | 
|  |  | 
| agelim=AGESUP; |  | 
| hstepm=stepsize*YEARM; /* Every year of age */ | fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); | 
| hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
|  | fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
| k=0; |  | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | fprintf(ficresprobcor, "\n#********** Variable "); | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | 
| k=k+1; | fprintf(ficresprobcor, "**********\n#"); | 
| fprintf(ficrespij,"\n#****** "); | } | 
| for(j=1;j<=cptcoveff;j++) |  | 
| fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | for (age=bage; age<=fage; age ++){ | 
| fprintf(ficrespij,"******\n"); | cov[2]=age; | 
|  | for (k=1; k<=cptcovn;k++) { | 
| for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]]; | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | } | 
| nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for (k=1; k<=cptcovprod;k++) | 
| oldm=oldms;savm=savms; | cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |  | 
| fprintf(ficrespij,"# Age"); | gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); | 
| for(i=1; i<=nlstate;i++) | trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | 
| for(j=1; j<=nlstate+ndeath;j++) | gp=vector(1,(nlstate)*(nlstate+ndeath)); | 
| fprintf(ficrespij," %1d-%1d",i,j); | gm=vector(1,(nlstate)*(nlstate+ndeath)); | 
| fprintf(ficrespij,"\n"); |  | 
| for (h=0; h<=nhstepm; h++){ | for(theta=1; theta <=npar; theta++){ | 
| fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | for(i=1; i<=npar; i++) | 
| for(i=1; i<=nlstate;i++) | xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); | 
| for(j=1; j<=nlstate+ndeath;j++) |  | 
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | pmij(pmmij,cov,ncovmodel,xp,nlstate); | 
| fprintf(ficrespij,"\n"); |  | 
| } | k=0; | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | for(i=1; i<= (nlstate); i++){ | 
| fprintf(ficrespij,"\n"); | for(j=1; j<=(nlstate+ndeath);j++){ | 
| } | k=k+1; | 
| } | gp[k]=pmmij[i][j]; | 
| } | } | 
|  | } | 
| /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/ |  | 
|  | for(i=1; i<=npar; i++) | 
| fclose(ficrespij); | xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); | 
|  |  | 
| if(stepm == 1) { | pmij(pmmij,cov,ncovmodel,xp,nlstate); | 
| /*---------- Forecasting ------------------*/ | k=0; | 
| calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; | for(i=1; i<=(nlstate); i++){ | 
|  | for(j=1; j<=(nlstate+ndeath);j++){ | 
| /*printf("calage= %f", calagedate);*/ | k=k+1; | 
|  | gm[k]=pmmij[i][j]; | 
| prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | } | 
|  | } | 
|  |  | 
| strcpy(fileresf,"f"); | for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) | 
| strcat(fileresf,fileres); | gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; | 
| if((ficresf=fopen(fileresf,"w"))==NULL) { | } | 
| printf("Problem with forecast resultfile: %s\n", fileresf);goto end; |  | 
| } | for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) | 
| printf("Computing forecasting: result on file '%s' \n", fileresf); | for(theta=1; theta <=npar; theta++) | 
|  | trgradg[j][theta]=gradg[theta][j]; | 
| free_matrix(mint,1,maxwav,1,n); |  | 
| free_matrix(anint,1,maxwav,1,n); | matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); | 
| free_matrix(agev,1,maxwav,1,imx); | matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); | 
| /* Mobile average */ | free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); | 
|  | free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); | 
| if (cptcoveff==0) ncodemax[cptcoveff]=1; | free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | 
|  | free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); | 
| if (mobilav==1) { |  | 
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | pmij(pmmij,cov,ncovmodel,x,nlstate); | 
| for (agedeb=bage+3; agedeb<=fage-2; agedeb++) |  | 
| for (i=1; i<=nlstate;i++) | k=0; | 
| for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++) | for(i=1; i<=(nlstate); i++){ | 
| mobaverage[(int)agedeb][i][cptcod]=0.; | for(j=1; j<=(nlstate+ndeath);j++){ | 
|  | k=k+1; | 
| for (agedeb=bage+4; agedeb<=fage; agedeb++){ | mu[k][(int) age]=pmmij[i][j]; | 
| for (i=1; i<=nlstate;i++){ | } | 
| for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | } | 
| for (cpt=0;cpt<=4;cpt++){ | for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) | 
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod]; | for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) | 
| } | varpij[i][j][(int)age] = doldm[i][j]; | 
| mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5; |  | 
| } | /*printf("\n%d ",(int)age); | 
| } | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | 
| } | printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | 
| } | fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); | 
|  | }*/ | 
| stepsize=(int) (stepm+YEARM-1)/YEARM; |  | 
| if (stepm<=12) stepsize=1; | fprintf(ficresprob,"\n%d ",(int)age); | 
|  | fprintf(ficresprobcov,"\n%d ",(int)age); | 
| agelim=AGESUP; | fprintf(ficresprobcor,"\n%d ",(int)age); | 
| /*hstepm=stepsize*YEARM; *//* Every year of age */ |  | 
| hstepm=1; | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) | 
| hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */ | fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); | 
| yp1=modf(dateintmean,&yp); | for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ | 
| anprojmean=yp; | fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); | 
| yp2=modf((yp1*12),&yp); | fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); | 
| mprojmean=yp; | } | 
| yp1=modf((yp2*30.5),&yp); | i=0; | 
| jprojmean=yp; | for (k=1; k<=(nlstate);k++){ | 
| if(jprojmean==0) jprojmean=1; | for (l=1; l<=(nlstate+ndeath);l++){ | 
| if(mprojmean==0) jprojmean=1; | i=i++; | 
|  | fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); | 
| fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); | fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); | 
|  | for (j=1; j<=i;j++){ | 
| if (popforecast==1) { | fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); | 
| if((ficpop=fopen(popfile,"r"))==NULL)    { | fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); | 
| printf("Problem with population file : %s\n",popfile);goto end; | } | 
| } | } | 
| popage=ivector(0,AGESUP); | }/* end of loop for state */ | 
| popeffectif=vector(0,AGESUP); | } /* end of loop for age */ | 
| popcount=vector(0,AGESUP); |  | 
|  | /* Confidence intervalle of pij  */ | 
| i=1; | /* | 
| while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) | fprintf(ficgp,"\nset noparametric;unset label"); | 
| { | fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); | 
| i=i+1; | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | 
| } | fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); | 
| imx=i; | fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); | 
|  | fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); | 
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); | 
| } | */ | 
|  |  | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ | 
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | first1=1; | 
| k=k+1; | for (k2=1; k2<=(nlstate);k2++){ | 
| fprintf(ficresf,"\n#******"); | for (l2=1; l2<=(nlstate+ndeath);l2++){ | 
| for(j=1;j<=cptcoveff;j++) { | if(l2==k2) continue; | 
| fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | j=(k2-1)*(nlstate+ndeath)+l2; | 
| } | for (k1=1; k1<=(nlstate);k1++){ | 
| fprintf(ficresf,"******\n"); | for (l1=1; l1<=(nlstate+ndeath);l1++){ | 
| fprintf(ficresf,"# StartingAge FinalAge"); | if(l1==k1) continue; | 
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); | i=(k1-1)*(nlstate+ndeath)+l1; | 
| if (popforecast==1)  fprintf(ficresf," [Population]"); | if(i<=j) continue; | 
|  | for (age=bage; age<=fage; age ++){ | 
| for (cpt=0; cpt<4;cpt++) { | if ((int)age %5==0){ | 
| fprintf(ficresf,"\n"); | v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; | 
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); | v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; | 
|  | cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; | 
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */ | mu1=mu[i][(int) age]/stepm*YEARM ; | 
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | mu2=mu[j][(int) age]/stepm*YEARM; | 
| nhstepm = nhstepm/hstepm; | c12=cv12/sqrt(v1*v2); | 
| /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/ | /* Computing eigen value of matrix of covariance */ | 
|  | lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | 
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; | 
| oldm=oldms;savm=savms; | /* Eigen vectors */ | 
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); | 
|  | /*v21=sqrt(1.-v11*v11); *//* error */ | 
| for (h=0; h<=nhstepm; h++){ | v21=(lc1-v1)/cv12*v11; | 
| if (h==(int) (calagedate+YEARM*cpt)) { | v12=-v21; | 
| fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm); | v22=v11; | 
| } | tnalp=v21/v11; | 
| for(j=1; j<=nlstate+ndeath;j++) { | if(first1==1){ | 
| kk1=0.;kk2=0; | first1=0; | 
| for(i=1; i<=nlstate;i++) { | printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | 
| if (mobilav==1) | } | 
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); | 
| else { | /*printf(fignu*/ | 
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ | 
| /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/ | /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ | 
| } | if(first==1){ | 
|  | first=0; | 
| if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb]; | fprintf(ficgp,"\nset parametric;unset label"); | 
| } | fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); | 
|  | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); | 
| if (h==(int)(calagedate+12*cpt)){ | fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2); | 
| fprintf(ficresf," %.3f", kk1); | fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2); | 
|  | fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); | 
| if (popforecast==1) fprintf(ficresf," [%.f]", kk2); | fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2); | 
| } | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | 
| } | fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | 
| } | fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | 
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | 
| } | mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | 
| } | }else{ | 
| } | first=0; | 
| } | fprintf(fichtm," %d (%.3f),",(int) age, c12); | 
| if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); | 
| if (popforecast==1) { | fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); | 
| free_ivector(popage,0,AGESUP); | fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ | 
| free_vector(popeffectif,0,AGESUP); | mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ | 
| free_vector(popcount,0,AGESUP); | mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); | 
| } | }/* if first */ | 
| free_imatrix(s,1,maxwav+1,1,n); | } /* age mod 5 */ | 
| free_vector(weight,1,n); | } /* end loop age */ | 
| fclose(ficresf); | fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2); | 
| }/* End forecasting */ | first=1; | 
| else{ | } /*l12 */ | 
| erreur=108; | } /* k12 */ | 
| printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm); | } /*l1 */ | 
| } | }/* k1 */ | 
|  | } /* loop covariates */ | 
| /*---------- Health expectancies and variances ------------*/ | } | 
|  | free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); | 
| strcpy(filerest,"t"); | free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); | 
| strcat(filerest,fileres); | free_vector(xp,1,npar); | 
| if((ficrest=fopen(filerest,"w"))==NULL) { | fclose(ficresprob); | 
| printf("Problem with total LE resultfile: %s\n", filerest);goto end; | fclose(ficresprobcov); | 
| } | fclose(ficresprobcor); | 
| printf("Computing Total LEs with variances: file '%s' \n", filerest); | fclose(ficgp); | 
|  | fclose(fichtm); | 
|  | } | 
| strcpy(filerese,"e"); |  | 
| strcat(filerese,fileres); |  | 
| if((ficreseij=fopen(filerese,"w"))==NULL) { | /******************* Printing html file ***********/ | 
| printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \ | 
| } | int lastpass, int stepm, int weightopt, char model[],\ | 
| printf("Computing Health Expectancies: result on file '%s' \n", filerese); | int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ | 
|  | int popforecast, int estepm ,\ | 
| strcpy(fileresv,"v"); | double jprev1, double mprev1,double anprev1, \ | 
| strcat(fileresv,fileres); | double jprev2, double mprev2,double anprev2){ | 
| if((ficresvij=fopen(fileresv,"w"))==NULL) { | int jj1, k1, i1, cpt; | 
| printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | /*char optionfilehtm[FILENAMELENGTH];*/ | 
| } | if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { | 
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | printf("Problem with %s \n",optionfilehtm), exit(0); | 
|  | fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); | 
| k=0; | } | 
| for(cptcov=1;cptcov<=i1;cptcov++){ |  | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \ | 
| k=k+1; | - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \ | 
| fprintf(ficrest,"\n#****** "); | - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \ | 
| for(j=1;j<=cptcoveff;j++) | - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \ | 
| fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | - Life expectancies by age and initial health status (estepm=%2d months): \ | 
| fprintf(ficrest,"******\n"); | <a href=\"e%s\">e%s</a> <br>\n</li>", \ | 
|  | jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres); | 
| fprintf(ficreseij,"\n#****** "); |  | 
| for(j=1;j<=cptcoveff;j++) | fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); | 
| fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]); |  | 
| fprintf(ficreseij,"******\n"); | m=cptcoveff; | 
|  | if (cptcovn < 1) {m=1;ncodemax[1]=1;} | 
| fprintf(ficresvij,"\n#****** "); |  | 
| for(j=1;j<=cptcoveff;j++) | jj1=0; | 
| fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]); | for(k1=1; k1<=m;k1++){ | 
| fprintf(ficresvij,"******\n"); | for(i1=1; i1<=ncodemax[k1];i1++){ | 
|  | jj1++; | 
| eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | if (cptcovn > 0) { | 
| oldm=oldms;savm=savms; | fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | 
| evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k); | for (cpt=1; cpt<=cptcoveff;cpt++) | 
| vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | 
| oldm=oldms;savm=savms; | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
| varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | } | 
|  | /* Pij */ | 
| fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \ | 
| for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | 
| fprintf(ficrest,"\n"); | /* Quasi-incidences */ | 
|  | fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ | 
| hf=1; | before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \ | 
| if (stepm >= YEARM) hf=stepm/YEARM; | <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | 
| epj=vector(1,nlstate+1); | /* Stable prevalence in each health state */ | 
| for(age=bage; age <=fage ;age++){ | for(cpt=1; cpt<nlstate;cpt++){ | 
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \ | 
| if (popbased==1) { | <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | 
| for(i=1; i<=nlstate;i++) | } | 
| prlim[i][i]=probs[(int)age][i][k]; | for(cpt=1; cpt<=nlstate;cpt++) { | 
| } | fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \ | 
|  | <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | 
| fprintf(ficrest," %.0f",age); | } | 
| for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | fprintf(fichtm,"\n<br>- Total life expectancy by age and \ | 
| for(i=1, epj[j]=0.;i <=nlstate;i++) { | health expectancies in states (1) and (2): e%s%d.png<br>\ | 
| epj[j] += prlim[i][i]*hf*eij[i][j][(int)age]; | <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); | 
| } | } /* end i1 */ | 
| epj[nlstate+1] +=epj[j]; | }/* End k1 */ | 
| } | fprintf(fichtm,"</ul>"); | 
| for(i=1, vepp=0.;i <=nlstate;i++) |  | 
| for(j=1;j <=nlstate;j++) |  | 
| vepp += vareij[i][j][(int)age]; | fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\ | 
| fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp)); | - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\ | 
| for(j=1;j <=nlstate;j++){ | - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\ | 
| fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age])); | - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\ | 
| } | - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\ | 
| fprintf(ficrest,"\n"); | - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\ | 
| } | - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\ | 
| } | - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres); | 
| } |  | 
|  | /*  if(popforecast==1) fprintf(fichtm,"\n */ | 
|  | /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ | 
|  | /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ | 
|  | /*      <br>",fileres,fileres,fileres,fileres); */ | 
| fclose(ficreseij); | /*  else  */ | 
| fclose(ficresvij); | /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ | 
| fclose(ficrest); | fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); | 
| fclose(ficpar); |  | 
| free_vector(epj,1,nlstate+1); | m=cptcoveff; | 
| /*  scanf("%d ",i); */ | if (cptcovn < 1) {m=1;ncodemax[1]=1;} | 
|  |  | 
| /*------- Variance limit prevalence------*/ | jj1=0; | 
|  | for(k1=1; k1<=m;k1++){ | 
| strcpy(fileresvpl,"vpl"); | for(i1=1; i1<=ncodemax[k1];i1++){ | 
| strcat(fileresvpl,fileres); | jj1++; | 
| if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | if (cptcovn > 0) { | 
| printf("Problem with variance prev lim resultfile: %s\n", fileresvpl); | fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); | 
| exit(0); | for (cpt=1; cpt<=cptcoveff;cpt++) | 
| } | fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]); | 
| printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl); | fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); | 
|  | } | 
| k=0; | for(cpt=1; cpt<=nlstate;cpt++) { | 
| for(cptcov=1;cptcov<=i1;cptcov++){ | fprintf(fichtm,"<br>- Observed and period prevalence (with confident\ | 
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | interval) in state (%d): v%s%d%d.png <br>\ | 
| k=k+1; | <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1); | 
| fprintf(ficresvpl,"\n#****** "); | } | 
| for(j=1;j<=cptcoveff;j++) | } /* end i1 */ | 
| fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | }/* End k1 */ | 
| fprintf(ficresvpl,"******\n"); | fprintf(fichtm,"</ul>"); | 
|  | fclose(fichtm); | 
| varpl=matrix(1,nlstate,(int) bage, (int) fage); | } | 
| oldm=oldms;savm=savms; |  | 
| varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | /******************* Gnuplot file **************/ | 
| } | void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ | 
| } |  | 
|  | int m,cpt,k1,i,k,j,jk,k2,k3,ij,l; | 
| fclose(ficresvpl); | int ng; | 
|  | if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { | 
| /*---------- End : free ----------------*/ | printf("Problem with file %s",optionfilegnuplot); | 
| free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | fprintf(ficlog,"Problem with file %s",optionfilegnuplot); | 
|  | } | 
| free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |  | 
| free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | /*#ifdef windows */ | 
|  | fprintf(ficgp,"cd \"%s\" \n",pathc); | 
|  | /*#endif */ | 
| free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | m=pow(2,cptcoveff); | 
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |  | 
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | /* 1eme*/ | 
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | for (cpt=1; cpt<= nlstate ; cpt ++) { | 
|  | for (k1=1; k1<= m ; k1 ++) { | 
| free_matrix(matcov,1,npar,1,npar); | fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | 
| free_vector(delti,1,npar); | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1); | 
|  |  | 
| free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | for (i=1; i<= nlstate ; i ++) { | 
|  | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
| if(erreur >0) | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| printf("End of Imach with error %d\n",erreur); | } | 
| else   printf("End of Imach\n"); | fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1); | 
| /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */ | for (i=1; i<= nlstate ; i ++) { | 
|  | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
| /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/ | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| /*printf("Total time was %d uSec.\n", total_usecs);*/ | } | 
| /*------ End -----------*/ | fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); | 
|  | for (i=1; i<= nlstate ; i ++) { | 
|  | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | 
| end: | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| #ifdef windows | } | 
| chdir(pathcd); | fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1)); | 
| #endif | } | 
|  | } | 
| system("..\\gp37mgw\\wgnuplot graph.plt"); | /*2 eme*/ | 
|  |  | 
| #ifdef windows | for (k1=1; k1<= m ; k1 ++) { | 
| while (z[0] != 'q') { | fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1); | 
| chdir(pathcd); | fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage); | 
| printf("\nType e to edit output files, c to start again, and q for exiting: "); |  | 
| scanf("%s",z); | for (i=1; i<= nlstate+1 ; i ++) { | 
| if (z[0] == 'c') system("./imach"); | k=2*i; | 
| else if (z[0] == 'e') { | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1); | 
| chdir(path); | for (j=1; j<= nlstate+1 ; j ++) { | 
| system(optionfilehtm); | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
| } | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
| else if (z[0] == 'q') exit(0); | } | 
| } | if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,"); | 
| #endif | else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1); | 
| } | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1); | 
|  | for (j=1; j<= nlstate+1 ; j ++) { | 
|  | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
|  | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
|  | } | 
|  | fprintf(ficgp,"\" t\"\" w l 0,"); | 
|  | fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1); | 
|  | for (j=1; j<= nlstate+1 ; j ++) { | 
|  | if (j==i) fprintf(ficgp," \%%lf (\%%lf)"); | 
|  | else fprintf(ficgp," \%%*lf (\%%*lf)"); | 
|  | } | 
|  | if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0"); | 
|  | else fprintf(ficgp,"\" t\"\" w l 0,"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*3eme*/ | 
|  |  | 
|  | for (k1=1; k1<= m ; k1 ++) { | 
|  | for (cpt=1; cpt<= nlstate ; cpt ++) { | 
|  | k=2+nlstate*(2*cpt-2); | 
|  | fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | 
|  | fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt); | 
|  | /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | 
|  | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | 
|  | fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | 
|  | fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); | 
|  | for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); | 
|  | fprintf(ficgp,"\" t \"e%d1\" w l",cpt); | 
|  |  | 
|  | */ | 
|  | for (i=1; i< nlstate ; i ++) { | 
|  | fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* CV preval stable (period) */ | 
|  | for (k1=1; k1<= m ; k1 ++) { | 
|  | for (cpt=1; cpt<=nlstate ; cpt ++) { | 
|  | k=3; | 
|  | fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1); | 
|  | fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1); | 
|  |  | 
|  | for (i=1; i< nlstate ; i ++) | 
|  | fprintf(ficgp,"+$%d",k+i+1); | 
|  | fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1); | 
|  |  | 
|  | l=3+(nlstate+ndeath)*cpt; | 
|  | fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1); | 
|  | for (i=1; i< nlstate ; i ++) { | 
|  | l=3+(nlstate+ndeath)*cpt; | 
|  | fprintf(ficgp,"+$%d",l+i+1); | 
|  | } | 
|  | fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* proba elementaires */ | 
|  | for(i=1,jk=1; i <=nlstate; i++){ | 
|  | for(k=1; k <=(nlstate+ndeath); k++){ | 
|  | if (k != i) { | 
|  | for(j=1; j <=ncovmodel; j++){ | 
|  | fprintf(ficgp,"p%d=%f ",jk,p[jk]); | 
|  | jk++; | 
|  | fprintf(ficgp,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/ | 
|  | for(jk=1; jk <=m; jk++) { | 
|  | fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); | 
|  | if (ng==2) | 
|  | fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); | 
|  | else | 
|  | fprintf(ficgp,"\nset title \"Probability\"\n"); | 
|  | fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar); | 
|  | i=1; | 
|  | for(k2=1; k2<=nlstate; k2++) { | 
|  | k3=i; | 
|  | for(k=1; k<=(nlstate+ndeath); k++) { | 
|  | if (k != k2){ | 
|  | if(ng==2) | 
|  | fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); | 
|  | else | 
|  | fprintf(ficgp," exp(p%d+p%d*x",i,i+1); | 
|  | ij=1; | 
|  | for(j=3; j <=ncovmodel; j++) { | 
|  | if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | 
|  | fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | 
|  | ij++; | 
|  | } | 
|  | else | 
|  | fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | 
|  | } | 
|  | fprintf(ficgp,")/(1"); | 
|  |  | 
|  | for(k1=1; k1 <=nlstate; k1++){ | 
|  | fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); | 
|  | ij=1; | 
|  | for(j=3; j <=ncovmodel; j++){ | 
|  | if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { | 
|  | fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); | 
|  | ij++; | 
|  | } | 
|  | else | 
|  | fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]); | 
|  | } | 
|  | fprintf(ficgp,")"); | 
|  | } | 
|  | fprintf(ficgp,") t \"p%d%d\" ", k2,k); | 
|  | if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); | 
|  | i=i+ncovmodel; | 
|  | } | 
|  | } /* end k */ | 
|  | } /* end k2 */ | 
|  | } /* end jk */ | 
|  | } /* end ng */ | 
|  | fclose(ficgp); | 
|  | }  /* end gnuplot */ | 
|  |  | 
|  |  | 
|  | /*************** Moving average **************/ | 
|  | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ | 
|  |  | 
|  | int i, cpt, cptcod; | 
|  | int modcovmax =1; | 
|  | int mobilavrange, mob; | 
|  | double age; | 
|  |  | 
|  | modcovmax=2*cptcoveff;/* Max number of modalities. We suppose | 
|  | a covariate has 2 modalities */ | 
|  | if (cptcovn<1) modcovmax=1; /* At least 1 pass */ | 
|  |  | 
|  | if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ | 
|  | if(mobilav==1) mobilavrange=5; /* default */ | 
|  | else mobilavrange=mobilav; | 
|  | for (age=bage; age<=fage; age++) | 
|  | for (i=1; i<=nlstate;i++) | 
|  | for (cptcod=1;cptcod<=modcovmax;cptcod++) | 
|  | mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; | 
|  | /* We keep the original values on the extreme ages bage, fage and for | 
|  | fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 | 
|  | we use a 5 terms etc. until the borders are no more concerned. | 
|  | */ | 
|  | for (mob=3;mob <=mobilavrange;mob=mob+2){ | 
|  | for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ | 
|  | for (i=1; i<=nlstate;i++){ | 
|  | for (cptcod=1;cptcod<=modcovmax;cptcod++){ | 
|  | mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; | 
|  | for (cpt=1;cpt<=(mob-1)/2;cpt++){ | 
|  | mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; | 
|  | mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; | 
|  | } | 
|  | mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; | 
|  | } | 
|  | } | 
|  | }/* end age */ | 
|  | }/* end mob */ | 
|  | }else return -1; | 
|  | return 0; | 
|  | }/* End movingaverage */ | 
|  |  | 
|  |  | 
|  | /************** Forecasting ******************/ | 
|  | prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ | 
|  | /* proj1, year, month, day of starting projection | 
|  | agemin, agemax range of age | 
|  | dateprev1 dateprev2 range of dates during which prevalence is computed | 
|  | anproj2 year of en of projection (same day and month as proj1). | 
|  | */ | 
|  | int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; | 
|  | int *popage; | 
|  | double agec; /* generic age */ | 
|  | double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | 
|  | double *popeffectif,*popcount; | 
|  | double ***p3mat; | 
|  | double ***mobaverage; | 
|  | char fileresf[FILENAMELENGTH]; | 
|  |  | 
|  | agelim=AGESUP; | 
|  | prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
|  |  | 
|  | strcpy(fileresf,"f"); | 
|  | strcat(fileresf,fileres); | 
|  | if((ficresf=fopen(fileresf,"w"))==NULL) { | 
|  | printf("Problem with forecast resultfile: %s\n", fileresf); | 
|  | fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); | 
|  | } | 
|  | printf("Computing forecasting: result on file '%s' \n", fileresf); | 
|  | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf); | 
|  |  | 
|  | if (cptcoveff==0) ncodemax[cptcoveff]=1; | 
|  |  | 
|  | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | 
|  | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
|  | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
|  | } | 
|  | } | 
|  |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
|  | if (stepm<=12) stepsize=1; | 
|  | if(estepm < stepm){ | 
|  | printf ("Problem %d lower than %d\n",estepm, stepm); | 
|  | } | 
|  | else  hstepm=estepm; | 
|  |  | 
|  | hstepm=hstepm/stepm; | 
|  | yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and | 
|  | fractional in yp1 */ | 
|  | anprojmean=yp; | 
|  | yp2=modf((yp1*12),&yp); | 
|  | mprojmean=yp; | 
|  | yp1=modf((yp2*30.5),&yp); | 
|  | jprojmean=yp; | 
|  | if(jprojmean==0) jprojmean=1; | 
|  | if(mprojmean==0) jprojmean=1; | 
|  |  | 
|  | i1=cptcoveff; | 
|  | if (cptcovn < 1){i1=1;} | 
|  |  | 
|  | fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); | 
|  |  | 
|  | fprintf(ficresf,"#****** Routine prevforecast **\n"); | 
|  |  | 
|  | /*            if (h==(int)(YEARM*yearp)){ */ | 
|  | for(cptcov=1, k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficresf,"\n#******"); | 
|  | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
|  | fprintf(ficresf,"******\n"); | 
|  | fprintf(ficresf,"# Covariate valuofcovar yearproj age"); | 
|  | for(j=1; j<=nlstate+ndeath;j++){ | 
|  | for(i=1; i<=nlstate;i++) | 
|  | fprintf(ficresf," p%d%d",i,j); | 
|  | fprintf(ficresf," p.%d",j); | 
|  | } | 
|  | for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { | 
|  | fprintf(ficresf,"\n"); | 
|  | fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); | 
|  |  | 
|  | for (agec=fage; agec>=(ageminpar-1); agec--){ | 
|  | nhstepm=(int) rint((agelim-agec)*YEARM/stepm); | 
|  | nhstepm = nhstepm/hstepm; | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  |  | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h*hstepm/YEARM*stepm ==yearp) { | 
|  | fprintf(ficresf,"\n"); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); | 
|  | } | 
|  | for(j=1; j<=nlstate+ndeath;j++) { | 
|  | ppij=0.; | 
|  | for(i=1; i<=nlstate;i++) { | 
|  | if (mobilav==1) | 
|  | ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; | 
|  | else { | 
|  | ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; | 
|  | } | 
|  | if (h*hstepm/YEARM*stepm== yearp) { | 
|  | fprintf(ficresf," %.3f", p3mat[i][j][h]); | 
|  | } | 
|  | } /* end i */ | 
|  | if (h*hstepm/YEARM*stepm==yearp) { | 
|  | fprintf(ficresf," %.3f", ppij); | 
|  | } | 
|  | }/* end j */ | 
|  | } /* end h */ | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | } /* end agec */ | 
|  | } /* end yearp */ | 
|  | } /* end cptcod */ | 
|  | } /* end  cptcov */ | 
|  |  | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | fclose(ficresf); | 
|  | } | 
|  |  | 
|  | /************** Forecasting *****not tested NB*************/ | 
|  | populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | 
|  |  | 
|  | int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | 
|  | int *popage; | 
|  | double calagedatem, agelim, kk1, kk2; | 
|  | double *popeffectif,*popcount; | 
|  | double ***p3mat,***tabpop,***tabpopprev; | 
|  | double ***mobaverage; | 
|  | char filerespop[FILENAMELENGTH]; | 
|  |  | 
|  | tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | agelim=AGESUP; | 
|  | calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | 
|  |  | 
|  | prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
|  |  | 
|  |  | 
|  | strcpy(filerespop,"pop"); | 
|  | strcat(filerespop,fileres); | 
|  | if((ficrespop=fopen(filerespop,"w"))==NULL) { | 
|  | printf("Problem with forecast resultfile: %s\n", filerespop); | 
|  | fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); | 
|  | } | 
|  | printf("Computing forecasting: result on file '%s' \n", filerespop); | 
|  | fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); | 
|  |  | 
|  | if (cptcoveff==0) ncodemax[cptcoveff]=1; | 
|  |  | 
|  | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ | 
|  | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
|  | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
|  | } | 
|  | } | 
|  |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
|  | if (stepm<=12) stepsize=1; | 
|  |  | 
|  | agelim=AGESUP; | 
|  |  | 
|  | hstepm=1; | 
|  | hstepm=hstepm/stepm; | 
|  |  | 
|  | if (popforecast==1) { | 
|  | if((ficpop=fopen(popfile,"r"))==NULL) { | 
|  | printf("Problem with population file : %s\n",popfile);exit(0); | 
|  | fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); | 
|  | } | 
|  | popage=ivector(0,AGESUP); | 
|  | popeffectif=vector(0,AGESUP); | 
|  | popcount=vector(0,AGESUP); | 
|  |  | 
|  | i=1; | 
|  | while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; | 
|  |  | 
|  | imx=i; | 
|  | for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | 
|  | } | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i2;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrespop,"\n#******"); | 
|  | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
|  | fprintf(ficrespop,"******\n"); | 
|  | fprintf(ficrespop,"# Age"); | 
|  | for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); | 
|  | if (popforecast==1)  fprintf(ficrespop," [Population]"); | 
|  |  | 
|  | for (cpt=0; cpt<=0;cpt++) { | 
|  | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | 
|  |  | 
|  | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | 
|  | nhstepm = nhstepm/hstepm; | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  |  | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h==(int) (calagedatem+YEARM*cpt)) { | 
|  | fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | 
|  | } | 
|  | for(j=1; j<=nlstate+ndeath;j++) { | 
|  | kk1=0.;kk2=0; | 
|  | for(i=1; i<=nlstate;i++) { | 
|  | if (mobilav==1) | 
|  | kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | 
|  | else { | 
|  | kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | 
|  | } | 
|  | } | 
|  | if (h==(int)(calagedatem+12*cpt)){ | 
|  | tabpop[(int)(agedeb)][j][cptcod]=kk1; | 
|  | /*fprintf(ficrespop," %.3f", kk1); | 
|  | if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | 
|  | } | 
|  | } | 
|  | for(i=1; i<=nlstate;i++){ | 
|  | kk1=0.; | 
|  | for(j=1; j<=nlstate;j++){ | 
|  | kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | 
|  | } | 
|  | tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; | 
|  | } | 
|  |  | 
|  | if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) | 
|  | fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | } | 
|  | } | 
|  |  | 
|  | /******/ | 
|  |  | 
|  | for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | 
|  | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | 
|  | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | 
|  | nhstepm = nhstepm/hstepm; | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | if (h==(int) (calagedatem+YEARM*cpt)) { | 
|  | fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | 
|  | } | 
|  | for(j=1; j<=nlstate+ndeath;j++) { | 
|  | kk1=0.;kk2=0; | 
|  | for(i=1; i<=nlstate;i++) { | 
|  | kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | 
|  | } | 
|  | if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); | 
|  | } | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | if (popforecast==1) { | 
|  | free_ivector(popage,0,AGESUP); | 
|  | free_vector(popeffectif,0,AGESUP); | 
|  | free_vector(popcount,0,AGESUP); | 
|  | } | 
|  | free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | fclose(ficrespop); | 
|  | } /* End of popforecast */ | 
|  |  | 
|  | /***********************************************/ | 
|  | /**************** Main Program *****************/ | 
|  | /***********************************************/ | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); | 
|  | int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod; | 
|  | int jj; | 
|  | int numlinepar=0; /* Current linenumber of parameter file */ | 
|  | double agedeb, agefin,hf; | 
|  | double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | 
|  |  | 
|  | double fret; | 
|  | double **xi,tmp,delta; | 
|  |  | 
|  | double dum; /* Dummy variable */ | 
|  | double ***p3mat; | 
|  | double ***mobaverage; | 
|  | int *indx; | 
|  | char line[MAXLINE], linepar[MAXLINE]; | 
|  | char path[132],pathc[132],pathcd[132],pathtot[132],model[132]; | 
|  | int firstobs=1, lastobs=10; | 
|  | int sdeb, sfin; /* Status at beginning and end */ | 
|  | int c,  h , cpt,l; | 
|  | int ju,jl, mi; | 
|  | int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | 
|  | int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; | 
|  | int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ | 
|  | int mobilav=0,popforecast=0; | 
|  | int hstepm, nhstepm; | 
|  | double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; | 
|  | double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; | 
|  |  | 
|  | double bage, fage, age, agelim, agebase; | 
|  | double ftolpl=FTOL; | 
|  | double **prlim; | 
|  | double *severity; | 
|  | double ***param; /* Matrix of parameters */ | 
|  | double  *p; | 
|  | double **matcov; /* Matrix of covariance */ | 
|  | double ***delti3; /* Scale */ | 
|  | double *delti; /* Scale */ | 
|  | double ***eij, ***vareij; | 
|  | double **varpl; /* Variances of prevalence limits by age */ | 
|  | double *epj, vepp; | 
|  | double kk1, kk2; | 
|  | double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; | 
|  |  | 
|  | char *alph[]={"a","a","b","c","d","e"}, str[4]; | 
|  |  | 
|  |  | 
|  | char z[1]="c", occ; | 
|  | #include <sys/time.h> | 
|  | #include <time.h> | 
|  | char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80]; | 
|  | char *strt, *strtend; | 
|  | char *stratrunc; | 
|  | int lstra; | 
|  |  | 
|  | long total_usecs; | 
|  | struct timeval start_time, end_time, curr_time; | 
|  | struct timezone tzp; | 
|  | extern int gettimeofday(); | 
|  | struct tm tmg, tm, *gmtime(), *localtime(); | 
|  | long time_value; | 
|  | extern long time(); | 
|  |  | 
|  | /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ | 
|  | (void) gettimeofday(&start_time,&tzp); | 
|  | tm = *localtime(&start_time.tv_sec); | 
|  | tmg = *gmtime(&start_time.tv_sec); | 
|  | strt=asctime(&tm); | 
|  | /*  printf("Localtime (at start)=%s",strt); */ | 
|  | /*  tp.tv_sec = tp.tv_sec +86400; */ | 
|  | /*  tm = *localtime(&start_time.tv_sec); */ | 
|  | /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */ | 
|  | /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */ | 
|  | /*   tmg.tm_hour=tmg.tm_hour + 1; */ | 
|  | /*   tp.tv_sec = mktime(&tmg); */ | 
|  | /*   strt=asctime(&tmg); */ | 
|  | /*   printf("Time(after) =%s",strt);  */ | 
|  | /*  (void) time (&time_value); | 
|  | *  printf("time=%d,t-=%d\n",time_value,time_value-86400); | 
|  | *  tm = *localtime(&time_value); | 
|  | *  strt=asctime(&tm); | 
|  | *  printf("tim_value=%d,asctime=%s\n",time_value,strt); | 
|  | */ | 
|  |  | 
|  | getcwd(pathcd, size); | 
|  |  | 
|  | printf("\n%s\n%s",version,fullversion); | 
|  | if(argc <=1){ | 
|  | printf("\nEnter the parameter file name: "); | 
|  | scanf("%s",pathtot); | 
|  | } | 
|  | else{ | 
|  | strcpy(pathtot,argv[1]); | 
|  | } | 
|  | /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/ | 
|  | /*cygwin_split_path(pathtot,path,optionfile); | 
|  | printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ | 
|  | /* cutv(path,optionfile,pathtot,'\\');*/ | 
|  |  | 
|  | split(pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  | printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  | chdir(path); | 
|  | replace(pathc,path); | 
|  |  | 
|  | /*-------- arguments in the command line --------*/ | 
|  |  | 
|  | /* Log file */ | 
|  | strcat(filelog, optionfilefiname); | 
|  | strcat(filelog,".log");    /* */ | 
|  | if((ficlog=fopen(filelog,"w"))==NULL)    { | 
|  | printf("Problem with logfile %s\n",filelog); | 
|  | goto end; | 
|  | } | 
|  | fprintf(ficlog,"Log filename:%s\n",filelog); | 
|  | fprintf(ficlog,"\n%s\n%s",version,fullversion); | 
|  | fprintf(ficlog,"\nEnter the parameter file name: "); | 
|  | fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); | 
|  | printf("Localtime (at start)=%s",strt); | 
|  | fprintf(ficlog,"Localtime (at start)=%s",strt); | 
|  | fflush(ficlog); | 
|  |  | 
|  | /* */ | 
|  | strcpy(fileres,"r"); | 
|  | strcat(fileres, optionfilefiname); | 
|  | strcat(fileres,".txt");    /* Other files have txt extension */ | 
|  |  | 
|  | /*---------arguments file --------*/ | 
|  |  | 
|  | if((ficpar=fopen(optionfile,"r"))==NULL)    { | 
|  | printf("Problem with optionfile %s\n",optionfile); | 
|  | fprintf(ficlog,"Problem with optionfile %s\n",optionfile); | 
|  | fflush(ficlog); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | strcpy(filereso,"o"); | 
|  | strcat(filereso,fileres); | 
|  | if((ficparo=fopen(filereso,"w"))==NULL) { | 
|  | printf("Problem with Output resultfile: %s\n", filereso); | 
|  | fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); | 
|  | fflush(ficlog); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | numlinepar=0; | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); | 
|  | numlinepar++; | 
|  | printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); | 
|  | fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | 
|  | fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); | 
|  | fflush(ficlog); | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  |  | 
|  | covar=matrix(0,NCOVMAX,1,n); | 
|  | cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/ | 
|  | if (strlen(model)>1) cptcovn=nbocc(model,'+')+1; | 
|  |  | 
|  | ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */ | 
|  | nvar=ncovmodel-1; /* Suppressing age as a basic covariate */ | 
|  |  | 
|  | /* Read guess parameters */ | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | j=0; | 
|  | for(jj=1; jj <=nlstate+ndeath; jj++){ | 
|  | if(jj==i) continue; | 
|  | j++; | 
|  | fscanf(ficpar,"%1d%1d",&i1,&j1); | 
|  | if ((i1 != i) && (j1 != j)){ | 
|  | printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); | 
|  | exit(1); | 
|  | } | 
|  | fprintf(ficparo,"%1d%1d",i1,j1); | 
|  | if(mle==1) | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficlog,"%1d%1d",i,j); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | fscanf(ficpar," %lf",¶m[i][j][k]); | 
|  | if(mle==1){ | 
|  | printf(" %lf",param[i][j][k]); | 
|  | fprintf(ficlog," %lf",param[i][j][k]); | 
|  | } | 
|  | else | 
|  | fprintf(ficlog," %lf",param[i][j][k]); | 
|  | fprintf(ficparo," %lf",param[i][j][k]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | } | 
|  | fflush(ficlog); | 
|  |  | 
|  | npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ | 
|  |  | 
|  | p=param[1][1]; | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); | 
|  | /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */ | 
|  | for(i=1; i <=nlstate; i++){ | 
|  | for(j=1; j <=nlstate+ndeath-1; j++){ | 
|  | fscanf(ficpar,"%1d%1d",&i1,&j1); | 
|  | if ((i1-i)*(j1-j)!=0){ | 
|  | printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); | 
|  | exit(1); | 
|  | } | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficparo,"%1d%1d",i1,j1); | 
|  | fprintf(ficlog,"%1d%1d",i1,j1); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | fscanf(ficpar,"%le",&delti3[i][j][k]); | 
|  | printf(" %le",delti3[i][j][k]); | 
|  | fprintf(ficparo," %le",delti3[i][j][k]); | 
|  | fprintf(ficlog," %le",delti3[i][j][k]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | printf("\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | } | 
|  | } | 
|  | fflush(ficlog); | 
|  |  | 
|  | delti=delti3[1][1]; | 
|  |  | 
|  |  | 
|  | /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ | 
|  |  | 
|  | /* Reads comments: lines beginning with '#' */ | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | numlinepar++; | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | fputs(line,ficlog); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | matcov=matrix(1,npar,1,npar); | 
|  | for(i=1; i <=npar; i++){ | 
|  | fscanf(ficpar,"%s",&str); | 
|  | if(mle==1) | 
|  | printf("%s",str); | 
|  | fprintf(ficlog,"%s",str); | 
|  | fprintf(ficparo,"%s",str); | 
|  | for(j=1; j <=i; j++){ | 
|  | fscanf(ficpar," %le",&matcov[i][j]); | 
|  | if(mle==1){ | 
|  | printf(" %.5le",matcov[i][j]); | 
|  | } | 
|  | fprintf(ficlog," %.5le",matcov[i][j]); | 
|  | fprintf(ficparo," %.5le",matcov[i][j]); | 
|  | } | 
|  | fscanf(ficpar,"\n"); | 
|  | numlinepar++; | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficparo,"\n"); | 
|  | } | 
|  | for(i=1; i <=npar; i++) | 
|  | for(j=i+1;j<=npar;j++) | 
|  | matcov[i][j]=matcov[j][i]; | 
|  |  | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  |  | 
|  | fflush(ficlog); | 
|  |  | 
|  | /*-------- Rewriting paramater file ----------*/ | 
|  | strcpy(rfileres,"r");    /* "Rparameterfile */ | 
|  | strcat(rfileres,optionfilefiname);    /* Parameter file first name*/ | 
|  | strcat(rfileres,".");    /* */ | 
|  | strcat(rfileres,optionfilext);    /* Other files have txt extension */ | 
|  | if((ficres =fopen(rfileres,"w"))==NULL) { | 
|  | printf("Problem writing new parameter file: %s\n", fileres);goto end; | 
|  | fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end; | 
|  | } | 
|  | fprintf(ficres,"#%s\n",version); | 
|  |  | 
|  | /*-------- data file ----------*/ | 
|  | if((fic=fopen(datafile,"r"))==NULL)    { | 
|  | printf("Problem with datafile: %s\n", datafile);goto end; | 
|  | fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end; | 
|  | } | 
|  |  | 
|  | n= lastobs; | 
|  | severity = vector(1,maxwav); | 
|  | outcome=imatrix(1,maxwav+1,1,n); | 
|  | num=lvector(1,n); | 
|  | moisnais=vector(1,n); | 
|  | annais=vector(1,n); | 
|  | moisdc=vector(1,n); | 
|  | andc=vector(1,n); | 
|  | agedc=vector(1,n); | 
|  | cod=ivector(1,n); | 
|  | weight=vector(1,n); | 
|  | for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ | 
|  | mint=matrix(1,maxwav,1,n); | 
|  | anint=matrix(1,maxwav,1,n); | 
|  | s=imatrix(1,maxwav+1,1,n); | 
|  | tab=ivector(1,NCOVMAX); | 
|  | ncodemax=ivector(1,8); | 
|  |  | 
|  | i=1; | 
|  | while (fgets(line, MAXLINE, fic) != NULL)    { | 
|  | if ((i >= firstobs) && (i <=lastobs)) { | 
|  |  | 
|  | for (j=maxwav;j>=1;j--){ | 
|  | cutv(stra, strb,line,' '); s[j][i]=atoi(strb); | 
|  | strcpy(line,stra); | 
|  | cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | } | 
|  |  | 
|  | cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  |  | 
|  | cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  |  | 
|  | cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | for (j=ncovcol;j>=1;j--){ | 
|  | cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra); | 
|  | } | 
|  | lstra=strlen(stra); | 
|  | if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ | 
|  | stratrunc = &(stra[lstra-9]); | 
|  | num[i]=atol(stratrunc); | 
|  | } | 
|  | else | 
|  | num[i]=atol(stra); | 
|  |  | 
|  | /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ | 
|  | printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ | 
|  |  | 
|  | i=i+1; | 
|  | } | 
|  | } | 
|  | /* printf("ii=%d", ij); | 
|  | scanf("%d",i);*/ | 
|  | imx=i-1; /* Number of individuals */ | 
|  |  | 
|  | /* for (i=1; i<=imx; i++){ | 
|  | if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3; | 
|  | if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3; | 
|  | if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3; | 
|  | }*/ | 
|  | /*  for (i=1; i<=imx; i++){ | 
|  | if (s[4][i]==9)  s[4][i]=-1; | 
|  | printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | 
|  |  | 
|  | for (i=1; i<=imx; i++) | 
|  |  | 
|  | /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08; | 
|  | else weight[i]=1;*/ | 
|  |  | 
|  | /* Calculation of the number of parameter from char model*/ | 
|  | Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ | 
|  | Tprod=ivector(1,15); | 
|  | Tvaraff=ivector(1,15); | 
|  | Tvard=imatrix(1,15,1,2); | 
|  | Tage=ivector(1,15); | 
|  |  | 
|  | if (strlen(model) >1){ /* If there is at least 1 covariate */ | 
|  | j=0, j1=0, k1=1, k2=1; | 
|  | j=nbocc(model,'+'); /* j=Number of '+' */ | 
|  | j1=nbocc(model,'*'); /* j1=Number of '*' */ | 
|  | cptcovn=j+1; | 
|  | cptcovprod=j1; /*Number of products */ | 
|  |  | 
|  | strcpy(modelsav,model); | 
|  | if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){ | 
|  | printf("Error. Non available option model=%s ",model); | 
|  | fprintf(ficlog,"Error. Non available option model=%s ",model); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* This loop fills the array Tvar from the string 'model'.*/ | 
|  |  | 
|  | for(i=(j+1); i>=1;i--){ | 
|  | cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ | 
|  | if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ | 
|  | /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ | 
|  | /*scanf("%d",i);*/ | 
|  | if (strchr(strb,'*')) {  /* Model includes a product */ | 
|  | cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/ | 
|  | if (strcmp(strc,"age")==0) { /* Vn*age */ | 
|  | cptcovprod--; | 
|  | cutv(strb,stre,strd,'V'); | 
|  | Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/ | 
|  | cptcovage++; | 
|  | Tage[cptcovage]=i; | 
|  | /*printf("stre=%s ", stre);*/ | 
|  | } | 
|  | else if (strcmp(strd,"age")==0) { /* or age*Vn */ | 
|  | cptcovprod--; | 
|  | cutv(strb,stre,strc,'V'); | 
|  | Tvar[i]=atoi(stre); | 
|  | cptcovage++; | 
|  | Tage[cptcovage]=i; | 
|  | } | 
|  | else {  /* Age is not in the model */ | 
|  | cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/ | 
|  | Tvar[i]=ncovcol+k1; | 
|  | cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */ | 
|  | Tprod[k1]=i; | 
|  | Tvard[k1][1]=atoi(strc); /* m*/ | 
|  | Tvard[k1][2]=atoi(stre); /* n */ | 
|  | Tvar[cptcovn+k2]=Tvard[k1][1]; | 
|  | Tvar[cptcovn+k2+1]=Tvard[k1][2]; | 
|  | for (k=1; k<=lastobs;k++) | 
|  | covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k]; | 
|  | k1++; | 
|  | k2=k2+2; | 
|  | } | 
|  | } | 
|  | else { /* no more sum */ | 
|  | /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ | 
|  | /*  scanf("%d",i);*/ | 
|  | cutv(strd,strc,strb,'V'); | 
|  | Tvar[i]=atoi(strc); | 
|  | } | 
|  | strcpy(modelsav,stra); | 
|  | /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); | 
|  | scanf("%d",i);*/ | 
|  | } /* end of loop + */ | 
|  | } /* end model */ | 
|  |  | 
|  | /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. | 
|  | If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ | 
|  |  | 
|  | /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); | 
|  | printf("cptcovprod=%d ", cptcovprod); | 
|  | fprintf(ficlog,"cptcovprod=%d ", cptcovprod); | 
|  |  | 
|  | scanf("%d ",i); | 
|  | fclose(fic);*/ | 
|  |  | 
|  | /*  if(mle==1){*/ | 
|  | if (weightopt != 1) { /* Maximisation without weights*/ | 
|  | for(i=1;i<=n;i++) weight[i]=1.0; | 
|  | } | 
|  | /*-calculation of age at interview from date of interview and age at death -*/ | 
|  | agev=matrix(1,maxwav,1,imx); | 
|  |  | 
|  | for (i=1; i<=imx; i++) { | 
|  | for(m=2; (m<= maxwav); m++) { | 
|  | if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ | 
|  | anint[m][i]=9999; | 
|  | s[m][i]=-1; | 
|  | } | 
|  | if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ | 
|  | printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | 
|  | fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i); | 
|  | s[m][i]=-1; | 
|  | } | 
|  | if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ | 
|  | printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); | 
|  | fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); | 
|  | s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i=1; i<=imx; i++)  { | 
|  | agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | 
|  | for(m=firstpass; (m<= lastpass); m++){ | 
|  | if(s[m][i] >0){ | 
|  | if (s[m][i] >= nlstate+1) { | 
|  | if(agedc[i]>0) | 
|  | if((int)moisdc[i]!=99 && (int)andc[i]!=9999) | 
|  | agev[m][i]=agedc[i]; | 
|  | /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ | 
|  | else { | 
|  | if ((int)andc[i]!=9999){ | 
|  | printf("Warning negative age at death: %ld line:%d\n",num[i],i); | 
|  | fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i); | 
|  | agev[m][i]=-1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if(s[m][i] !=9){ /* Standard case, age in fractional | 
|  | years but with the precision of a | 
|  | month */ | 
|  | agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | 
|  | if((int)mint[m][i]==99 || (int)anint[m][i]==9999) | 
|  | agev[m][i]=1; | 
|  | else if(agev[m][i] <agemin){ | 
|  | agemin=agev[m][i]; | 
|  | /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/ | 
|  | } | 
|  | else if(agev[m][i] >agemax){ | 
|  | agemax=agev[m][i]; | 
|  | /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/ | 
|  | } | 
|  | /*agev[m][i]=anint[m][i]-annais[i];*/ | 
|  | /*     agev[m][i] = age[i]+2*m;*/ | 
|  | } | 
|  | else { /* =9 */ | 
|  | agev[m][i]=1; | 
|  | s[m][i]=-1; | 
|  | } | 
|  | } | 
|  | else /*= 0 Unknown */ | 
|  | agev[m][i]=1; | 
|  | } | 
|  |  | 
|  | } | 
|  | for (i=1; i<=imx; i++)  { | 
|  | for(m=firstpass; (m<=lastpass); m++){ | 
|  | if (s[m][i] > (nlstate+ndeath)) { | 
|  | printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | 
|  | fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*for (i=1; i<=imx; i++){ | 
|  | for (m=firstpass; (m<lastpass); m++){ | 
|  | printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); | 
|  | } | 
|  |  | 
|  | }*/ | 
|  |  | 
|  | printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | 
|  | fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | 
|  |  | 
|  | free_vector(severity,1,maxwav); | 
|  | free_imatrix(outcome,1,maxwav+1,1,n); | 
|  | free_vector(moisnais,1,n); | 
|  | free_vector(annais,1,n); | 
|  | /* free_matrix(mint,1,maxwav,1,n); | 
|  | free_matrix(anint,1,maxwav,1,n);*/ | 
|  | free_vector(moisdc,1,n); | 
|  | free_vector(andc,1,n); | 
|  |  | 
|  |  | 
|  | wav=ivector(1,imx); | 
|  | dh=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  | bh=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  | mw=imatrix(1,lastpass-firstpass+1,1,imx); | 
|  |  | 
|  | /* Concatenates waves */ | 
|  | concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm); | 
|  |  | 
|  | /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ | 
|  |  | 
|  | Tcode=ivector(1,100); | 
|  | nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); | 
|  | ncodemax[1]=1; | 
|  | if (cptcovn > 0) tricode(Tvar,nbcode,imx); | 
|  |  | 
|  | codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of | 
|  | the estimations*/ | 
|  | h=0; | 
|  | m=pow(2,cptcoveff); | 
|  |  | 
|  | for(k=1;k<=cptcoveff; k++){ | 
|  | for(i=1; i <=(m/pow(2,k));i++){ | 
|  | for(j=1; j <= ncodemax[k]; j++){ | 
|  | for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){ | 
|  | h++; | 
|  | if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j; | 
|  | /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); | 
|  | codtab[1][2]=1;codtab[2][2]=2; */ | 
|  | /* for(i=1; i <=m ;i++){ | 
|  | for(k=1; k <=cptcovn; k++){ | 
|  | printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | scanf("%d",i);*/ | 
|  |  | 
|  | /* Calculates basic frequencies. Computes observed prevalence at single age | 
|  | and prints on file fileres'p'. */ | 
|  | freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); | 
|  |  | 
|  | pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | 
|  | oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | 
|  |  | 
|  |  | 
|  | /* For Powell, parameters are in a vector p[] starting at p[1] | 
|  | so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | 
|  | p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | 
|  |  | 
|  | globpr=0; /* To get ipmx number of contributions and sum of weights*/ | 
|  | likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | 
|  | printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | 
|  | for (k=1; k<=npar;k++) | 
|  | printf(" %d %8.5f",k,p[k]); | 
|  | printf("\n"); | 
|  | globpr=1; /* to print the contributions */ | 
|  | likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ | 
|  | printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); | 
|  | for (k=1; k<=npar;k++) | 
|  | printf(" %d %8.5f",k,p[k]); | 
|  | printf("\n"); | 
|  | if(mle>=1){ /* Could be 1 or 2 */ | 
|  | mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | 
|  | } | 
|  |  | 
|  | /*--------- results files --------------*/ | 
|  | fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); | 
|  |  | 
|  |  | 
|  | jk=1; | 
|  | fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); | 
|  | for(i=1,jk=1; i <=nlstate; i++){ | 
|  | for(k=1; k <=(nlstate+ndeath); k++){ | 
|  | if (k != i) | 
|  | { | 
|  | printf("%d%d ",i,k); | 
|  | fprintf(ficlog,"%d%d ",i,k); | 
|  | fprintf(ficres,"%1d%1d ",i,k); | 
|  | for(j=1; j <=ncovmodel; j++){ | 
|  | printf("%f ",p[jk]); | 
|  | fprintf(ficlog,"%f ",p[jk]); | 
|  | fprintf(ficres,"%f ",p[jk]); | 
|  | jk++; | 
|  | } | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficres,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | if(mle!=0){ | 
|  | /* Computing hessian and covariance matrix */ | 
|  | ftolhess=ftol; /* Usually correct */ | 
|  | hesscov(matcov, p, npar, delti, ftolhess, func); | 
|  | } | 
|  | fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); | 
|  | printf("# Scales (for hessian or gradient estimation)\n"); | 
|  | fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); | 
|  | for(i=1,jk=1; i <=nlstate; i++){ | 
|  | for(j=1; j <=nlstate+ndeath; j++){ | 
|  | if (j!=i) { | 
|  | fprintf(ficres,"%1d%1d",i,j); | 
|  | printf("%1d%1d",i,j); | 
|  | fprintf(ficlog,"%1d%1d",i,j); | 
|  | for(k=1; k<=ncovmodel;k++){ | 
|  | printf(" %.5e",delti[jk]); | 
|  | fprintf(ficlog," %.5e",delti[jk]); | 
|  | fprintf(ficres," %.5e",delti[jk]); | 
|  | jk++; | 
|  | } | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | fprintf(ficres,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | if(mle==1) | 
|  | printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n"); | 
|  | for(i=1,k=1;i<=npar;i++){ | 
|  | /*  if (k>nlstate) k=1; | 
|  | i1=(i-1)/(ncovmodel*nlstate)+1; | 
|  | fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]); | 
|  | printf("%s%d%d",alph[k],i1,tab[i]); | 
|  | */ | 
|  | fprintf(ficres,"%3d",i); | 
|  | if(mle==1) | 
|  | printf("%3d",i); | 
|  | fprintf(ficlog,"%3d",i); | 
|  | for(j=1; j<=i;j++){ | 
|  | fprintf(ficres," %.5e",matcov[i][j]); | 
|  | if(mle==1) | 
|  | printf(" %.5e",matcov[i][j]); | 
|  | fprintf(ficlog," %.5e",matcov[i][j]); | 
|  | } | 
|  | fprintf(ficres,"\n"); | 
|  | if(mle==1) | 
|  | printf("\n"); | 
|  | fprintf(ficlog,"\n"); | 
|  | k++; | 
|  | } | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | estepm=0; | 
|  | fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); | 
|  | if (estepm==0 || estepm < stepm) estepm=stepm; | 
|  | if (fage <= 2) { | 
|  | bage = ageminpar; | 
|  | fage = agemaxpar; | 
|  | } | 
|  |  | 
|  | fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); | 
|  | fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | 
|  | fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | 
|  | fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  | fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  |  | 
|  | dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; | 
|  | dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; | 
|  |  | 
|  | fscanf(ficpar,"pop_based=%d\n",&popbased); | 
|  | fprintf(ficparo,"pop_based=%d\n",popbased); | 
|  | fprintf(ficres,"pop_based=%d\n",popbased); | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); | 
|  | fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | 
|  | /* day and month of proj2 are not used but only year anproj2.*/ | 
|  |  | 
|  | while((c=getc(ficpar))=='#' && c!= EOF){ | 
|  | ungetc(c,ficpar); | 
|  | fgets(line, MAXLINE, ficpar); | 
|  | puts(line); | 
|  | fputs(line,ficparo); | 
|  | } | 
|  | ungetc(c,ficpar); | 
|  |  | 
|  | fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1); | 
|  | fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | 
|  | fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1); | 
|  |  | 
|  | freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); | 
|  | /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ | 
|  |  | 
|  | /*------------ gnuplot -------------*/ | 
|  | strcpy(optionfilegnuplot,optionfilefiname); | 
|  | strcat(optionfilegnuplot,".gp"); | 
|  | if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { | 
|  | printf("Problem with file %s",optionfilegnuplot); | 
|  | } | 
|  | else{ | 
|  | fprintf(ficgp,"\n# %s\n", version); | 
|  | fprintf(ficgp,"# %s\n", optionfilegnuplot); | 
|  | fprintf(ficgp,"set missing 'NaNq'\n"); | 
|  | } | 
|  | fclose(ficgp); | 
|  | printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p); | 
|  | /*--------- index.htm --------*/ | 
|  |  | 
|  | strcpy(optionfilehtm,optionfile); | 
|  | strcat(optionfilehtm,".htm"); | 
|  | if((fichtm=fopen(optionfilehtm,"w"))==NULL)    { | 
|  | printf("Problem with %s \n",optionfilehtm), exit(0); | 
|  | } | 
|  |  | 
|  | fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\ | 
|  | Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\ | 
|  | \n\ | 
|  | Total number of observations=%d <br>\n\ | 
|  | Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ | 
|  | Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\ | 
|  | <hr  size=\"2\" color=\"#EC5E5E\">\ | 
|  | <ul><li><h4>Parameter files</h4>\n\ | 
|  | - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\ | 
|  | - Log file of the run: <a href=\"%s\">%s</a><br>\n\ | 
|  | - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\ | 
|  | version,title,datafile,firstpass,lastpass,stepm, weightopt,\ | 
|  | model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\ | 
|  | filelog,filelog,optionfilegnuplot,optionfilegnuplot); | 
|  | fclose(fichtm); | 
|  |  | 
|  | printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\ | 
|  | model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\ | 
|  | jprev1,mprev1,anprev1,jprev2,mprev2,anprev2); | 
|  |  | 
|  | /*------------ free_vector  -------------*/ | 
|  | chdir(path); | 
|  |  | 
|  | free_ivector(wav,1,imx); | 
|  | free_imatrix(dh,1,lastpass-firstpass+1,1,imx); | 
|  | free_imatrix(bh,1,lastpass-firstpass+1,1,imx); | 
|  | free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | 
|  | free_lvector(num,1,n); | 
|  | free_vector(agedc,1,n); | 
|  | /*free_matrix(covar,0,NCOVMAX,1,n);*/ | 
|  | /*free_matrix(covar,1,NCOVMAX,1,n);*/ | 
|  | fclose(ficparo); | 
|  | fclose(ficres); | 
|  |  | 
|  |  | 
|  | /*--------------- Prevalence limit  (stable prevalence) --------------*/ | 
|  |  | 
|  | strcpy(filerespl,"pl"); | 
|  | strcat(filerespl,fileres); | 
|  | if((ficrespl=fopen(filerespl,"w"))==NULL) { | 
|  | printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | 
|  | fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end; | 
|  | } | 
|  | printf("Computing stable prevalence: result on file '%s' \n", filerespl); | 
|  | fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl); | 
|  | fprintf(ficrespl,"#Stable prevalence \n"); | 
|  | fprintf(ficrespl,"#Age "); | 
|  | for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); | 
|  | fprintf(ficrespl,"\n"); | 
|  |  | 
|  | prlim=matrix(1,nlstate,1,nlstate); | 
|  |  | 
|  | agebase=ageminpar; | 
|  | agelim=agemaxpar; | 
|  | ftolpl=1.e-10; | 
|  | i1=cptcoveff; | 
|  | if (cptcovn < 1){i1=1;} | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/ | 
|  | fprintf(ficrespl,"\n#******"); | 
|  | printf("\n#******"); | 
|  | fprintf(ficlog,"\n#******"); | 
|  | for(j=1;j<=cptcoveff;j++) { | 
|  | fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | } | 
|  | fprintf(ficrespl,"******\n"); | 
|  | printf("******\n"); | 
|  | fprintf(ficlog,"******\n"); | 
|  |  | 
|  | for (age=agebase; age<=agelim; age++){ | 
|  | prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | 
|  | fprintf(ficrespl,"%.0f ",age ); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | fprintf(ficrespl," %.5f", prlim[i][i]); | 
|  | fprintf(ficrespl,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | fclose(ficrespl); | 
|  |  | 
|  | /*------------- h Pij x at various ages ------------*/ | 
|  |  | 
|  | strcpy(filerespij,"pij");  strcat(filerespij,fileres); | 
|  | if((ficrespij=fopen(filerespij,"w"))==NULL) { | 
|  | printf("Problem with Pij resultfile: %s\n", filerespij);goto end; | 
|  | fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end; | 
|  | } | 
|  | printf("Computing pij: result on file '%s' \n", filerespij); | 
|  | fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); | 
|  |  | 
|  | stepsize=(int) (stepm+YEARM-1)/YEARM; | 
|  | /*if (stepm<=24) stepsize=2;*/ | 
|  |  | 
|  | agelim=AGESUP; | 
|  | hstepm=stepsize*YEARM; /* Every year of age */ | 
|  | hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ | 
|  |  | 
|  | /* hstepm=1;   aff par mois*/ | 
|  |  | 
|  | fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrespij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficrespij,"******\n"); | 
|  |  | 
|  | for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ | 
|  | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ | 
|  | nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ | 
|  |  | 
|  | /*        nhstepm=nhstepm*YEARM; aff par mois*/ | 
|  |  | 
|  | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | oldm=oldms;savm=savms; | 
|  | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | 
|  | fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=nlstate+ndeath;j++) | 
|  | fprintf(ficrespij," %1d-%1d",i,j); | 
|  | fprintf(ficrespij,"\n"); | 
|  | for (h=0; h<=nhstepm; h++){ | 
|  | fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | 
|  | for(i=1; i<=nlstate;i++) | 
|  | for(j=1; j<=nlstate+ndeath;j++) | 
|  | fprintf(ficrespij," %.5f", p3mat[i][j][h]); | 
|  | fprintf(ficrespij,"\n"); | 
|  | } | 
|  | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | 
|  | fprintf(ficrespij,"\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax); | 
|  |  | 
|  | fclose(ficrespij); | 
|  |  | 
|  | probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | /*---------- Forecasting ------------------*/ | 
|  | /*if((stepm == 1) && (strcmp(model,".")==0)){*/ | 
|  | if(prevfcast==1){ | 
|  | /*    if(stepm ==1){*/ | 
|  | prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); | 
|  | /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ | 
|  | /*      }  */ | 
|  | /*      else{ */ | 
|  | /*        erreur=108; */ | 
|  | /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | 
|  | /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ | 
|  | /*      } */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /*---------- Health expectancies and variances ------------*/ | 
|  |  | 
|  | strcpy(filerest,"t"); | 
|  | strcat(filerest,fileres); | 
|  | if((ficrest=fopen(filerest,"w"))==NULL) { | 
|  | printf("Problem with total LE resultfile: %s\n", filerest);goto end; | 
|  | fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; | 
|  | } | 
|  | printf("Computing Total LEs with variances: file '%s' \n", filerest); | 
|  | fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); | 
|  |  | 
|  |  | 
|  | strcpy(filerese,"e"); | 
|  | strcat(filerese,fileres); | 
|  | if((ficreseij=fopen(filerese,"w"))==NULL) { | 
|  | printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | 
|  | fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); | 
|  | } | 
|  | printf("Computing Health Expectancies: result on file '%s' \n", filerese); | 
|  | fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese); | 
|  |  | 
|  | strcpy(fileresv,"v"); | 
|  | strcat(fileresv,fileres); | 
|  | if((ficresvij=fopen(fileresv,"w"))==NULL) { | 
|  | printf("Problem with variance resultfile: %s\n", fileresv);exit(0); | 
|  | fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); | 
|  | } | 
|  | printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | 
|  | fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | 
|  |  | 
|  | /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ | 
|  | prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); | 
|  | /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ | 
|  | ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); | 
|  | */ | 
|  |  | 
|  | if (mobilav!=0) { | 
|  | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ | 
|  | fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); | 
|  | printf(" Error in movingaverage mobilav=%d\n",mobilav); | 
|  | } | 
|  | } | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficrest,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficrest,"******\n"); | 
|  |  | 
|  | fprintf(ficreseij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficreseij,"******\n"); | 
|  |  | 
|  | fprintf(ficresvij,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficresvij,"******\n"); | 
|  |  | 
|  | eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov); | 
|  |  | 
|  | vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav); | 
|  | if(popbased==1){ | 
|  | varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav); | 
|  | } | 
|  |  | 
|  |  | 
|  | fprintf(ficrest,"#Total LEs with variances: e.. (std) "); | 
|  | for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); | 
|  | fprintf(ficrest,"\n"); | 
|  |  | 
|  | epj=vector(1,nlstate+1); | 
|  | for(age=bage; age <=fage ;age++){ | 
|  | prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | 
|  | if (popbased==1) { | 
|  | if(mobilav ==0){ | 
|  | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=probs[(int)age][i][k]; | 
|  | }else{ /* mobilav */ | 
|  | for(i=1; i<=nlstate;i++) | 
|  | prlim[i][i]=mobaverage[(int)age][i][k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(ficrest," %4.0f",age); | 
|  | for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ | 
|  | for(i=1, epj[j]=0.;i <=nlstate;i++) { | 
|  | epj[j] += prlim[i][i]*eij[i][j][(int)age]; | 
|  | /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ | 
|  | } | 
|  | epj[nlstate+1] +=epj[j]; | 
|  | } | 
|  |  | 
|  | for(i=1, vepp=0.;i <=nlstate;i++) | 
|  | for(j=1;j <=nlstate;j++) | 
|  | vepp += vareij[i][j][(int)age]; | 
|  | fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); | 
|  | for(j=1;j <=nlstate;j++){ | 
|  | fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); | 
|  | } | 
|  | fprintf(ficrest,"\n"); | 
|  | } | 
|  | free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); | 
|  | free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); | 
|  | free_vector(epj,1,nlstate+1); | 
|  | } | 
|  | } | 
|  | free_vector(weight,1,n); | 
|  | free_imatrix(Tvard,1,15,1,2); | 
|  | free_imatrix(s,1,maxwav+1,1,n); | 
|  | free_matrix(anint,1,maxwav,1,n); | 
|  | free_matrix(mint,1,maxwav,1,n); | 
|  | free_ivector(cod,1,n); | 
|  | free_ivector(tab,1,NCOVMAX); | 
|  | fclose(ficreseij); | 
|  | fclose(ficresvij); | 
|  | fclose(ficrest); | 
|  | fclose(ficpar); | 
|  |  | 
|  | /*------- Variance of stable prevalence------*/ | 
|  |  | 
|  | strcpy(fileresvpl,"vpl"); | 
|  | strcat(fileresvpl,fileres); | 
|  | if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { | 
|  | printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl); | 
|  | exit(0); | 
|  | } | 
|  | printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl); | 
|  |  | 
|  | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | 
|  | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | 
|  | k=k+1; | 
|  | fprintf(ficresvpl,"\n#****** "); | 
|  | for(j=1;j<=cptcoveff;j++) | 
|  | fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | 
|  | fprintf(ficresvpl,"******\n"); | 
|  |  | 
|  | varpl=matrix(1,nlstate,(int) bage, (int) fage); | 
|  | oldm=oldms;savm=savms; | 
|  | varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k); | 
|  | free_matrix(varpl,1,nlstate,(int) bage, (int)fage); | 
|  | } | 
|  | } | 
|  |  | 
|  | fclose(ficresvpl); | 
|  |  | 
|  | /*---------- End : free ----------------*/ | 
|  | free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  | free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | 
|  |  | 
|  | free_matrix(covar,0,NCOVMAX,1,n); | 
|  | free_matrix(matcov,1,npar,1,npar); | 
|  | /*free_vector(delti,1,npar);*/ | 
|  | free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | 
|  | free_matrix(agev,1,maxwav,1,imx); | 
|  | free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); | 
|  | if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  | free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | 
|  |  | 
|  | free_ivector(ncodemax,1,8); | 
|  | free_ivector(Tvar,1,15); | 
|  | free_ivector(Tprod,1,15); | 
|  | free_ivector(Tvaraff,1,15); | 
|  | free_ivector(Tage,1,15); | 
|  | free_ivector(Tcode,1,100); | 
|  |  | 
|  | /*  fclose(fichtm);*/ | 
|  | /*  fclose(ficgp);*/ /* ALready done */ | 
|  |  | 
|  |  | 
|  | if(erreur >0){ | 
|  | printf("End of Imach with error or warning %d\n",erreur); | 
|  | fprintf(ficlog,"End of Imach with error or warning %d\n",erreur); | 
|  | }else{ | 
|  | printf("End of Imach\n"); | 
|  | fprintf(ficlog,"End of Imach\n"); | 
|  | } | 
|  | printf("See log file on %s\n",filelog); | 
|  | fclose(ficlog); | 
|  | /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */ | 
|  | (void) gettimeofday(&end_time,&tzp); | 
|  | tm = *localtime(&end_time.tv_sec); | 
|  | tmg = *gmtime(&end_time.tv_sec); | 
|  | strtend=asctime(&tm); | 
|  | printf("Localtime at start %s and at end=%s",strt, strtend); | 
|  | fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); | 
|  | /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/ | 
|  |  | 
|  | printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec); | 
|  | fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec); | 
|  | /*  printf("Total time was %d uSec.\n", total_usecs);*/ | 
|  | /*------ End -----------*/ | 
|  |  | 
|  | end: | 
|  | #ifdef windows | 
|  | /* chdir(pathcd);*/ | 
|  | #endif | 
|  | /*system("wgnuplot graph.plt");*/ | 
|  | /*system("../gp37mgw/wgnuplot graph.plt");*/ | 
|  | /*system("cd ../gp37mgw");*/ | 
|  | /* system("..\\gp37mgw\\wgnuplot graph.plt");*/ | 
|  | strcpy(plotcmd,GNUPLOTPROGRAM); | 
|  | strcat(plotcmd," "); | 
|  | strcat(plotcmd,optionfilegnuplot); | 
|  | printf("Starting graphs with: %s",plotcmd);fflush(stdout); | 
|  | system(plotcmd); | 
|  | printf(" Wait..."); | 
|  |  | 
|  | /*#ifdef windows*/ | 
|  | while (z[0] != 'q') { | 
|  | /* chdir(path); */ | 
|  | printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: "); | 
|  | scanf("%s",z); | 
|  | if (z[0] == 'c') system("./imach"); | 
|  | else if (z[0] == 'e') system(optionfilehtm); | 
|  | else if (z[0] == 'g') system(plotcmd); | 
|  | else if (z[0] == 'q') exit(0); | 
|  | } | 
|  | /*#endif */ | 
|  | } | 
|  |  | 
|  |  |