/* $Id$
$State$
$Log$
+ Revision 1.248 2016/09/07 14:10:18 brouard
+ *** empty log message ***
+
Revision 1.247 2016/09/02 11:11:21 brouard
*** empty log message ***
j=cptcoveff; /* Only dummy covariates of the model */
if (cptcovn<1) {j=1;ncodemax[1]=1;}
- first=1;
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
reference=low_education V1=0,V2=0
high_educ V1=0 V2=1
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff
*/
-
+ dateintsum=0;
+ k2cpt=0;
+
+ for (j = 0; j <= cptcoveff; j+=cptcoveff){
+ first=1;
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
posproptt=0.;
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
/* } */
/* } */
- dateintsum=0;
- k2cpt=0;
+ /* dateintsum=0; */
+ /* k2cpt=0; */
+
/* For that combination of covariate j1, we count and print the frequencies in one pass */
for (iind=1; iind<=imx; iind++) { /* For each individual iind */
bool=1;
+ if(j !=0){
if(anyvaryingduminmodel==0){ /* If All fixed covariates */
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
/* for (z1=1; z1<= nqfveff; z1++) { */
} /* end z1 */
} /* cptcovn > 0 */
} /* end any */
+ }/* end j==0 */
if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
/* for(m=firstpass; m<=lastpass; m++){ */
for(mi=1; mi<wav[iind];mi++){ /* For that wave */
m=mw[mi][iind];
+ if(j!=0){
if(anyvaryingduminmodel==1){ /* Some are varying covariates */
for (z1=1; z1<=cptcoveff; z1++) {
if( Fixed[Tmodelind[z1]]==1){
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
- bool=0;
+ bool=0; /* not selected */
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
bool=0;
}
}
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */
+ } /* end j==0 */
/* bool =0 we keep that guy which corresponds to the combination of dummy values */
if(bool==1){
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
}
} /* end if between passes */
- if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
- dateintsum=dateintsum+k2;
+ if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
+ dateintsum=dateintsum+k2; /* on all covariates ?*/
k2cpt++;
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
}
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
pstamp(ficresp);
- if (cptcoveff>0){
+ if (cptcoveff>0 && j!=0){
fprintf(ficresp, "\n#********** Variable ");
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable ");
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable ");
}
fprintf(ficresphtmfr,"</table>\n");
} /* end selected combination of covariate j1 */
+ if(j==0){ /* We can estimate starting values from the occurences in each case */
+ for(jk=-1; jk <=nlstate+ndeath; jk++){
+ for(m=-1; m <=nlstate+ndeath; m++){
+ /* param[i]|j][k]= freq[jk][m][iagemax+3] */
+ if(freq[jk][m][iage] !=0 ) { /* minimizing output */
+ if(first==1){
+ printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
+ }
+ fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
+ }
+ }
+ } /* end loop jk */
+ }
+ } /* end j */
dateintmean=dateintsum/k2cpt;
fclose(ficresp);