--- /dev/null
+COMMENT: RANDOM NUMBER GENERATOR
+ ***********************
+
+ PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY
+ DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1),
+ RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR
+ INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
+ DECLARATIONS OF RAN1, RAN2 AND RAN3 MUST BE GLOBAL,
+ THE ALGORITHM RETURNS X(N)/2**56, WHERE
+ X(N) = X(N-1) + X(N-127) (MOO 2**56),
+ SINCE 1 + X + X**127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT
+ LEAST 2**127 - 1 > 10**38, SEE KNUTH (1969), PP. 26, 34, 464,
+ X(N) IS STORED IN A LONG REAL WORD AS
+ RAN3 = X(N)/2**56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
+ IS EXACT;
+
+ LONG REAL PROCEDURE RANDOM(INTEGER VALUE NAUGHT);
+ BEGIN
+ LONG REAL RAN1; INTEGER RAN2; LONG REAL ARRAY RAN3 (0::126);
+ INTEGER R; LOGICAL INIT;
+ INIT := FALSE;
+ IF INIT THEN GO TO L3;
+ R := ABS(NAUGHT) REM 8190 + 1;
+ RAN2 := 127; WHILE RAN2 > 0 DO
+ BEGIN RAN2 := RAN2 - 1; RAN1 := -2L**55;
+ FOR I := 1 UNTIL 7 DO
+ BEGIN R := (1756*R) REM 8191;
+ RAN1 := (RAN1 + (R DIV 32) )*( 1/256) ;
+ END;
+ RAN3 (RAN2) := RAN1
+ END;
+ INIT := TRUE;
+ L3: RAN2 := IF RAN2 = 0 THEN 126 ELSE RAN2 - 1;
+ RAN1 := RAN1 + RAN3 (RAN2);
+ RAN3 (RAN2) := RAN1 := IF RAN1 < 0L THEN RAN1 + 0.5L
+ ELSE RAN1 - 0.5L;
+ RAN1 + 0.5L
+ END RANDOM.