for (kk=1; kk<=cptcovage;kk++) {
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
}
-
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
savm=oldm;
oldm=newm;
-
-
} /* end mult */
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
*/
s1=s[mw[mi][i]][i];
s2=s[mw[mi+1][i]][i];
- bbh=(double)bh[mi][i]/(double)stepm;
-
- /* lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
-
+ bbh=(double)bh[mi][i]/(double)stepm;
+ /* bias is positive if real duration
+ * is higher than the multiple of stepm and negative otherwise.
+ */
+ /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
+ lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
+ /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
+ /*if(lli ==000.0)*/
+ /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
+ ipmx +=1;
+ sw += weight[i];
+ ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
+ } /* end of wave */
+ } /* end of individual */
+ } else if(mle==2){
+ for (i=1,ipmx=0, sw=0.; i<=imx; i++){
+ for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
+ for(mi=1; mi<= wav[i]-1; mi++){
+ for (ii=1;ii<=nlstate+ndeath;ii++)
+ for (j=1;j<=nlstate+ndeath;j++){
+ oldm[ii][j]=(ii==j ? 1.0 : 0.0);
+ savm[ii][j]=(ii==j ? 1.0 : 0.0);
+ }
+ for(d=0; d<=dh[mi][i]; d++){
+ newm=savm;
+ cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
+ for (kk=1; kk<=cptcovage;kk++) {
+ cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
+ }
+ out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
+ 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
+ savm=oldm;
+ oldm=newm;
+ } /* end mult */
+
+ /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
+ /* But now since version 0.9 we anticipate for bias and large stepm.
+ * If stepm is larger than one month (smallest stepm) and if the exact delay
+ * (in months) between two waves is not a multiple of stepm, we rounded to
+ * the nearest (and in case of equal distance, to the lowest) interval but now
+ * we keep into memory the bias bh[mi][i] and also the previous matrix product
+ * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
+ * probability in order to take into account the bias as a fraction of the way
+ * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
+ * -stepm/2 to stepm/2 .
+ * For stepm=1 the results are the same as for previous versions of Imach.
+ * For stepm > 1 the results are less biased than in previous versions.
+ */
+ s1=s[mw[mi][i]][i];
+ s2=s[mw[mi+1][i]][i];
+ bbh=(double)bh[mi][i]/(double)stepm;
+ /* bias is positive if real duration
+ * is higher than the multiple of stepm and negative otherwise.
+ */
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
-
- /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/
+ /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
+ /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
+ /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
+ /*if(lli ==000.0)*/
+ /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
+ ipmx +=1;
+ sw += weight[i];
+ ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
+ } /* end of wave */
+ } /* end of individual */
+ } else if(mle==3){ /* exponential inter-extrapolation */
+ for (i=1,ipmx=0, sw=0.; i<=imx; i++){
+ for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
+ for(mi=1; mi<= wav[i]-1; mi++){
+ for (ii=1;ii<=nlstate+ndeath;ii++)
+ for (j=1;j<=nlstate+ndeath;j++){
+ oldm[ii][j]=(ii==j ? 1.0 : 0.0);
+ savm[ii][j]=(ii==j ? 1.0 : 0.0);
+ }
+ for(d=0; d<dh[mi][i]; d++){
+ newm=savm;
+ cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
+ for (kk=1; kk<=cptcovage;kk++) {
+ cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
+ }
+ out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
+ 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
+ savm=oldm;
+ oldm=newm;
+ } /* end mult */
+
+ /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
+ /* But now since version 0.9 we anticipate for bias and large stepm.
+ * If stepm is larger than one month (smallest stepm) and if the exact delay
+ * (in months) between two waves is not a multiple of stepm, we rounded to
+ * the nearest (and in case of equal distance, to the lowest) interval but now
+ * we keep into memory the bias bh[mi][i] and also the previous matrix product
+ * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
+ * probability in order to take into account the bias as a fraction of the way
+ * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
+ * -stepm/2 to stepm/2 .
+ * For stepm=1 the results are the same as for previous versions of Imach.
+ * For stepm > 1 the results are less biased than in previous versions.
+ */
+ s1=s[mw[mi][i]][i];
+ s2=s[mw[mi+1][i]][i];
+ bbh=(double)bh[mi][i]/(double)stepm;
+ /* bias is positive if real duration
+ * is higher than the multiple of stepm and negative otherwise.
+ */
+ /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
+ lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
/*if(lli ==000.0)*/
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
} /* end of wave */
} /* end of individual */
- } else{
+ }else{ /* ml=4 no inter-extrapolation */
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
for(mi=1; mi<= wav[i]-1; mi++){
jk= j/stepm;
jl= j -jk*stepm;
ju= j -(jk+1)*stepm;
- if(jl <= -ju){
- dh[mi][i]=jk;
- bh[mi][i]=jl;
- }
- else{
- dh[mi][i]=jk+1;
- bh[mi][i]=ju;
- }
- if(dh[mi][i]==0){
- dh[mi][i]=1; /* At least one step */
- bh[mi][i]=ju; /* At least one step */
- printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
+ if(mle <=1){
+ if(jl==0){
+ dh[mi][i]=jk;
+ bh[mi][i]=0;
+ }else{ /* We want a negative bias in order to only have interpolation ie
+ * at the price of an extra matrix product in likelihood */
+ dh[mi][i]=jk+1;
+ bh[mi][i]=ju;
+ }
+ }else{
+ if(jl <= -ju){
+ dh[mi][i]=jk;
+ bh[mi][i]=jl; /* bias is positive if real duration
+ * is higher than the multiple of stepm and negative otherwise.
+ */
+ }
+ else{
+ dh[mi][i]=jk+1;
+ bh[mi][i]=ju;
+ }
+ if(dh[mi][i]==0){
+ dh[mi][i]=1; /* At least one step */
+ bh[mi][i]=ju; /* At least one step */
+ printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
+ }
+ if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
}
- if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
- }
- }
+ } /* end if mle */
+ } /* end wave */
}
jmean=sum/k;
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);