Program using Interpolation of Markov Chains)</FONT></H1>\r
<P align=center> </P>\r
<P align=center><A href="http://www.ined.fr/"><IMG border=0 height=76 \r
-src="Computing Health Expectancies using IMaCh_fichiers/logo-ined.gif" \r
+src="logo-ined.gif" \r
width=151></A><IMG height=75 \r
-src="Computing Health Expectancies using IMaCh_fichiers/euroreves2.gif" \r
+src="euroreves2.gif" \r
width=151></P>\r
<H3 align=center><A href="http://www.ined.fr/"><FONT \r
color=#00006a>INED</FONT></A><FONT color=#00006a> and </FONT><A \r
<UL>\r
<LI><A \r
href="http://euroreves.ined.fr/imach/doc/imach.htm#intro">Introduction</A> \r
- <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#data">On what kind \r
- of data can it be used?</A> \r
+ <LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#data">What kind \r
+ of data can is required?</A> \r
<LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#datafile">The data \r
file</A> \r
<LI><A href="http://euroreves.ined.fr/imach/doc/imach.htm#biaspar">The \r
<P>By substitution of these parameters in the regression model, we obtain the \r
elementary transition probabilities:</P>\r
<P><IMG height=300 \r
-src="Computing Health Expectancies using IMaCh_fichiers/pebiaspar11.png" \r
+src="biaspar/pebiaspar11.png" \r
width=400></P>\r
<H5><FONT color=#ec5e5e size=3><B>- Transition probabilities</B></FONT><B>: \r
</B><A \r
disability will increase in the future (see the main publication if\r
you are interested in real data and results which are opposite).</P>\r
<P><IMG height=300 \r
-src="Computing Health Expectancies using IMaCh_fichiers/vbiaspar21.png" \r
+src="biaspar/vbiaspar21.png" \r
width=400></P>\r
<H5><FONT color=#ec5e5e size=3><B>-Convergence to the period prevalence of \r
disability</B></FONT><B>: </B><A \r
-href="Computing Health Expectancies using IMaCh_fichiers/pbiaspar11.png"><B>biaspar/pbiaspar11.png</B></A><BR><IMG \r
+href="biaspar/pbiaspar11.png"><B>biaspar/pbiaspar11.png</B></A><BR><IMG \r
height=300 \r
-src="Computing Health Expectancies using IMaCh_fichiers/pbiaspar11.png" \r
+src="biaspar/pbiaspar11.png" \r
width=400> </H5>\r
<P>This graph plots the conditional transition probabilities from an initial \r
state (1=healthy in red at the bottom, or 2=disabled in green on the top) at age \r
81 5.9775 (0.0873) 3.3484 (0.0933) 2.0222 (0.1230) 4.4520 (0.1320)\r
</PRE><PRE>For example 70 11.0180 (0.1277) 3.1950 (0.3635) 4.6500 (0.0871) 4.4807 (0.2187)\r
means\r
-e11=11.0180 e12=3.1950 e21=4.6500 e22=4.4807 </PRE><PRE><IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/expbiaspar21.png" width=400><IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/expbiaspar11.png" width=400></PRE>\r
+e11=11.0180 e12=3.1950 e21=4.6500 e22=4.4807 </PRE><PRE><IMG height=300 src="biaspar/expbiaspar21.png" width=400><IMG height=300 src="biaspar/expbiaspar11.png" width=400></PRE>\r
<P>For example, life expectancy of a healthy individual at age 70 is 11.0 in the \r
healthy state and 3.2 in the disability state (total of 14.2 years). If he was \r
disabled at age 70, his life expectancy will be shorter, 4.65 years in the \r
be spent in the disability state.</P>\r
<H5><FONT color=#ec5e5e size=3><B>-Total life expectancy by age and health \r
expectancies in states (1=healthy) and (2=disable)</B></FONT><B>: </B><A \r
-href="Computing Health Expectancies using IMaCh_fichiers/ebiaspar1.png"><B>biaspar/ebiaspar1.png</B></A></H5>\r
+href="biaspar/ebiaspar1.png"><B>biaspar/ebiaspar1.png</B></A></H5>\r
<P>This figure represents the health expectancies and the total life expectancy \r
-with a confidence interval (dashed line). </P><PRE> <IMG height=300 src="Computing Health Expectancies using IMaCh_fichiers/ebiaspar1.png" width=400></PRE>\r
+with a confidence interval (dashed line). </P><PRE> <IMG height=300 src="biaspar/ebiaspar1.png" width=400></PRE>\r
<P>Standard deviations (obtained from the information matrix of the model) of \r
these quantities are very useful. Cross-longitudinal surveys are costly and do \r
not involve huge samples, generally a few thousands; therefore it is very \r