Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.109

version 1.41.2.2, 2003/06/13 07:45:28 version 1.109, 2006/01/24 19:37:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.108  2006/01/19 18:05:42  lievre
   first survey ("cross") where individuals from different ages are    Gnuplot problem appeared...
   interviewed on their health status or degree of disability (in the    To be fixed
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.107  2006/01/19 16:20:37  brouard
   (if any) in individual health status.  Health expectancies are    Test existence of gnuplot in imach path
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.106  2006/01/19 13:24:36  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Some cleaning and links added in html output
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.105  2006/01/05 20:23:19  lievre
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.104  2005/09/30 16:11:43  lievre
   complex model than "constant and age", you should modify the program    (Module): sump fixed, loop imx fixed, and simplifications.
   where the markup *Covariates have to be included here again* invites    (Module): If the status is missing at the last wave but we know
   you to do it.  More covariates you add, slower the    that the person is alive, then we can code his/her status as -2
   convergence.    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   The advantage of this computer programme, compared to a simple    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   multinomial logistic model, is clear when the delay between waves is not    the healthy state at last known wave). Version is 0.98
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.103  2005/09/30 15:54:49  lievre
   account using an interpolation or extrapolation.      (Module): sump fixed, loop imx fixed, and simplifications.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.102  2004/09/15 17:31:30  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Add the possibility to read data file including tab characters.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.101  2004/09/15 10:38:38  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Fix on curr_time
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx.    Add version for Mac OS X. Just define UNIX in Makefile
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.99  2004/06/05 08:57:40  brouard
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.98  2004/05/16 15:05:56  brouard
            Institut national d'études démographiques, Paris.    New version 0.97 . First attempt to estimate force of mortality
   This software have been partly granted by Euro-REVES, a concerted action    directly from the data i.e. without the need of knowing the health
   from the European Union.    state at each age, but using a Gompertz model: log u =a + b*age .
   It is copyrighted identically to a GNU software product, ie programme and    This is the basic analysis of mortality and should be done before any
   software can be distributed freely for non commercial use. Latest version    other analysis, in order to test if the mortality estimated from the
   can be accessed at http://euroreves.ined.fr/imach .    cross-longitudinal survey is different from the mortality estimated
   **********************************************************************/    from other sources like vital statistic data.
    
 #include <math.h>    The same imach parameter file can be used but the option for mle should be -3.
 #include <stdio.h>  
 #include <stdlib.h>    Agnès, who wrote this part of the code, tried to keep most of the
 #include <unistd.h>    former routines in order to include the new code within the former code.
   
 #define MAXLINE 256    The output is very simple: only an estimate of the intercept and of
 #define GNUPLOTPROGRAM "wgnuplot"    the slope with 95% confident intervals.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Current limitations:
 /*#define DEBUG*/    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /*#define windows*/    B) There is no computation of Life Expectancy nor Life Table.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    suppressed.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define NINTERVMAX 8    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    rewritten within the same printf. Workaround: many printfs.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.95  2003/07/08 07:54:34  brouard
 #define MAXN 20000    * imach.c (Repository):
 #define YEARM 12. /* Number of months per year */    (Repository): Using imachwizard code to output a more meaningful covariance
 #define AGESUP 130    matrix (cov(a12,c31) instead of numbers.
 #define AGEBASE 40  
     Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int erreur; /* Error number */  
 int nvar;    Revision 1.93  2003/06/25 16:33:55  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): On windows (cygwin) function asctime_r doesn't
 int npar=NPARMAX;    exist so I changed back to asctime which exists.
 int nlstate=2; /* Number of live states */    (Module): Version 0.96b
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.92  2003/06/25 16:30:45  brouard
 int popbased=0;    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.91  2003/06/25 15:30:29  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Duplicated warning errors corrected.
 int mle, weightopt;    (Repository): Elapsed time after each iteration is now output. It
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    helps to forecast when convergence will be reached. Elapsed time
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    is stamped in powell.  We created a new html file for the graphs
 double jmean; /* Mean space between 2 waves */    concerning matrix of covariance. It has extension -cov.htm.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.90  2003/06/24 12:34:15  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Some bugs corrected for windows. Also, when
 FILE *ficgp,*ficresprob,*ficpop;    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficreseij;    of the covariance matrix to be input.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.89  2003/06/24 12:30:52  brouard
   char fileresv[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
  FILE  *ficresvpl;    mle=-1 a template is output in file "or"mypar.txt with the design
   char fileresvpl[FILENAMELENGTH];    of the covariance matrix to be input.
   
 #define NR_END 1    Revision 1.88  2003/06/23 17:54:56  brouard
 #define FREE_ARG char*    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FTOL 1.0e-10  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define NRANSI    Version 0.96
 #define ITMAX 200  
     Revision 1.86  2003/06/17 20:04:08  brouard
 #define TOL 2.0e-4    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.85  2003/06/17 13:12:43  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define GOLD 1.618034    prior to the death. In this case, dh was negative and likelihood
 #define GLIMIT 100.0    was wrong (infinity). We still send an "Error" but patch by
 #define TINY 1.0e-20    assuming that the date of death was just one stepm after the
     interview.
 static double maxarg1,maxarg2;    (Repository): Because some people have very long ID (first column)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    we changed int to long in num[] and we added a new lvector for
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    memory allocation. But we also truncated to 8 characters (left
      truncation)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): No more line truncation errors.
 #define rint(a) floor(a+0.5)  
     Revision 1.84  2003/06/13 21:44:43  brouard
 static double sqrarg;    * imach.c (Repository): Replace "freqsummary" at a correct
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    place. It differs from routine "prevalence" which may be called
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    many times. Probs is memory consuming and must be used with
     parcimony.
 int imx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*
 double **pmmij, ***probs, ***mobaverage;     Interpolated Markov Chain
 double dateintmean=0;  
     Short summary of the programme:
 double *weight;    
 int **s; /* Status */    This program computes Healthy Life Expectancies from
 double *agedc, **covar, idx;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    case of a health survey which is our main interest) -2- at least a
 double ftolhess; /* Tolerance for computing hessian */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /**************** split *************************/    computed from the time spent in each health state according to a
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
    char *s;                             /* pointer */    simplest model is the multinomial logistic model where pij is the
    int  l1, l2;                         /* length counters */    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
    l1 = strlen( path );                 /* length of path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    'age' is age and 'sex' is a covariate. If you want to have a more
 #ifdef windows    complex model than "constant and age", you should modify the program
    s = strrchr( path, '\\' );           /* find last / */    where the markup *Covariates have to be included here again* invites
 #else    you to do it.  More covariates you add, slower the
    s = strrchr( path, '/' );            /* find last / */    convergence.
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    The advantage of this computer programme, compared to a simple
 #if     defined(__bsd__)                /* get current working directory */    multinomial logistic model, is clear when the delay between waves is not
       extern char       *getwd( );    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
       if ( getwd( dirc ) == NULL ) {    account using an interpolation or extrapolation.  
 #else  
       extern char       *getcwd( );    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    split into an exact number (nh*stepm) of unobserved intermediate
 #endif    states. This elementary transition (by month, quarter,
          return( GLOCK_ERROR_GETCWD );    semester or year) is modelled as a multinomial logistic.  The hPx
       }    matrix is simply the matrix product of nh*stepm elementary matrices
       strcpy( name, path );             /* we've got it */    and the contribution of each individual to the likelihood is simply
    } else {                             /* strip direcotry from path */    hPijx.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Also this programme outputs the covariance matrix of the parameters but also
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    of the life expectancies. It also computes the stable prevalence. 
       strcpy( name, s );                /* save file name */    
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       dirc[l1-l2] = 0;                  /* add zero */             Institut national d'études démographiques, Paris.
    }    This software have been partly granted by Euro-REVES, a concerted action
    l1 = strlen( dirc );                 /* length of directory */    from the European Union.
 #ifdef windows    It is copyrighted identically to a GNU software product, ie programme and
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    software can be distributed freely for non commercial use. Latest version
 #else    can be accessed at http://euroreves.ined.fr/imach .
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    s = strrchr( name, '.' );            /* find last / */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    s++;    
    strcpy(ext,s);                       /* save extension */    **********************************************************************/
    l1= strlen( name);  /*
    l2= strlen( s)+1;    main
    strncpy( finame, name, l1-l2);    read parameterfile
    finame[l1-l2]= 0;    read datafile
    return( 0 );                         /* we're done */    concatwav
 }    freqsummary
     if (mle >= 1)
       mlikeli
 /******************************************/    print results files
     if mle==1 
 void replace(char *s, char*t)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   int i;        begin-prev-date,...
   int lg=20;    open gnuplot file
   i=0;    open html file
   lg=strlen(t);    stable prevalence
   for(i=0; i<= lg; i++) {     for age prevalim()
     (s[i] = t[i]);    h Pij x
     if (t[i]== '\\') s[i]='/';    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 int nbocc(char *s, char occ)    prevalence()
 {     movingaverage()
   int i,j=0;    varevsij() 
   int lg=20;    if popbased==1 varevsij(,popbased)
   i=0;    total life expectancies
   lg=strlen(s);    Variance of stable prevalence
   for(i=0; i<= lg; i++) {   end
   if  (s[i] == occ ) j++;  */
   }  
   return j;  
 }  
    
 void cutv(char *u,char *v, char*t, char occ)  #include <math.h>
 {  #include <stdio.h>
   int i,lg,j,p=0;  #include <stdlib.h>
   i=0;  #include <string.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <unistd.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #include <limits.h>
   #include <sys/types.h>
   lg=strlen(t);  #include <sys/stat.h>
   for(j=0; j<p; j++) {  #include <errno.h>
     (u[j] = t[j]);  extern int errno;
   }  
      u[p]='\0';  /* #include <sys/time.h> */
   #include <time.h>
    for(j=0; j<= lg; j++) {  #include "timeval.h"
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /********************** nrerror ********************/  #define MAXLINE 256
   
 void nrerror(char error_text[])  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   fprintf(stderr,"ERREUR ...\n");  #define FILENAMELENGTH 132
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NINTERVMAX 8
   if (!v) nrerror("allocation failure in vector");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return v-nl+NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /************************ free vector ******************/  #define YEARM 12. /* Number of months per year */
 void free_vector(double*v, int nl, int nh)  #define AGESUP 130
 {  #define AGEBASE 40
   free((FREE_ARG)(v+nl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /************************ivector *******************************/  #define CHARSEPARATOR "/"
 int *ivector(long nl,long nh)  #define ODIRSEPARATOR '\\'
 {  #else
   int *v;  #define DIRSEPARATOR '\\'
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define CHARSEPARATOR "\\"
   if (!v) nrerror("allocation failure in ivector");  #define ODIRSEPARATOR '/'
   return v-nl+NR_END;  #endif
 }  
   /* $Id$ */
 /******************free ivector **************************/  /* $State$ */
 void free_ivector(int *v, long nl, long nh)  
 {  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   free((FREE_ARG)(v+nl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /******************* imatrix *******************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int npar=NPARMAX;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int **m;  int popbased=0;
    
   /* allocate pointers to rows */  int *wav; /* Number of waves for this individuual 0 is possible */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int maxwav; /* Maxim number of waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int jmin, jmax; /* min, max spacing between 2 waves */
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate rows and set pointers to them */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl] -= ncl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   /* return pointer to array of pointers to rows */  int globpr; /* Global variable for printing or not */
   return m;  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /****************** free_imatrix *************************/  char filerespow[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       int **m;  FILE *ficresilk;
       long nch,ncl,nrh,nrl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      /* free an int matrix allocated by imatrix() */  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *ficreseij;
   free((FREE_ARG) (m+nrl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* matrix *******************************/  FILE  *ficresvpl;
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerest[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileregp[FILENAMELENGTH];
   m[nrl] -= ncl;  char popfile[FILENAMELENGTH];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return m;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /*************************free matrix ************************/  extern int gettimeofday();
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern long time();
   free((FREE_ARG)(m+nrl-NR_END));  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /******************* ma3x *******************************/  long lval;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define NR_END 1
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define FREE_ARG char*
   double ***m;  #define FTOL 1.0e-10
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NRANSI 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200 
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4 
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CGOLD 0.3819660 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ZEPS 1.0e-10 
   m[nrl] += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl] -= ncl;  
   #define GOLD 1.618034 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static double maxarg1,maxarg2;
   m[nrl][ncl] += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl][ncl] -= nll;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=ncl+1; j<=nch; j++)    
     m[nrl][j]=m[nrl][j-1]+nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  static double sqrarg;
     for (j=ncl+1; j<=nch; j++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       m[i][j]=m[i][j-1]+nlay;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  int agegomp= AGEGOMP;
   return m;  
 }  int imx; 
   int stepm=1;
 /*************************free ma3x ************************/  /* Stepm, step in month: minimum step interpolation*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int estepm;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /***************** f1dim *************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 extern int ncom;  double **pmmij, ***probs;
 extern double *pcom,*xicom;  double *ageexmed,*agecens;
 extern double (*nrfunc)(double []);  double dateintmean=0;
    
 double f1dim(double x)  double *weight;
 {  int **s; /* Status */
   int j;  double *agedc, **covar, idx;
   double f;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *xt;  double *lsurv, *lpop, *tpop;
    
   xt=vector(1,ncom);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double ftolhess; /* Tolerance for computing hessian */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /**************** split *************************/
   return f;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /*****************brent *************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    */ 
 {    char  *ss;                            /* pointer */
   int iter;    int   l1, l2;                         /* length counters */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    l1 = strlen(path );                   /* length of path */
   double ftemp;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double p,q,r,tol1,tol2,u,v,w,x,xm;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double e=0.0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   a=(ax < cx ? ax : cx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   b=(ax > cx ? ax : cx);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   x=w=v=bx;      /* get current working directory */
   fw=fv=fx=(*f)(x);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (iter=1;iter<=ITMAX;iter++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     xm=0.5*(a+b);        return( GLOCK_ERROR_GETCWD );
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /* got dirc from getcwd*/
     printf(".");fflush(stdout);      printf(" DIRC = %s \n",dirc);
 #ifdef DEBUG    } else {                              /* strip direcotry from path */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      ss++;                               /* after this, the filename */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      l2 = strlen( ss );                  /* length of filename */
 #endif      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      strcpy( name, ss );         /* save file name */
       *xmin=x;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       return fx;      dirc[l1-l2] = 0;                    /* add zero */
     }      printf(" DIRC2 = %s \n",dirc);
     ftemp=fu;    }
     if (fabs(e) > tol1) {    /* We add a separator at the end of dirc if not exists */
       r=(x-w)*(fx-fv);    l1 = strlen( dirc );                  /* length of directory */
       q=(x-v)*(fx-fw);    if( dirc[l1-1] != DIRSEPARATOR ){
       p=(x-v)*q-(x-w)*r;      dirc[l1] =  DIRSEPARATOR;
       q=2.0*(q-r);      dirc[l1+1] = 0; 
       if (q > 0.0) p = -p;      printf(" DIRC3 = %s \n",dirc);
       q=fabs(q);    }
       etemp=e;    ss = strrchr( name, '.' );            /* find last / */
       e=d;    if (ss >0){
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      ss++;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      strcpy(ext,ss);                     /* save extension */
       else {      l1= strlen( name);
         d=p/q;      l2= strlen(ss)+1;
         u=x+d;      strncpy( finame, name, l1-l2);
         if (u-a < tol2 || b-u < tol2)      finame[l1-l2]= 0;
           d=SIGN(tol1,xm-x);    }
       }  
     } else {    return( 0 );                          /* we're done */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  /******************************************/
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  void replace_back_to_slash(char *s, char*t)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    int i;
         } else {    int lg=0;
           if (u < x) a=u; else b=u;    i=0;
           if (fu <= fw || w == x) {    lg=strlen(t);
             v=w;    for(i=0; i<= lg; i++) {
             w=u;      (s[i] = t[i]);
             fv=fw;      if (t[i]== '\\') s[i]='/';
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  int nbocc(char *s, char occ)
           }  {
         }    int i,j=0;
   }    int lg=20;
   nrerror("Too many iterations in brent");    i=0;
   *xmin=x;    lg=strlen(s);
   return fx;    for(i=0; i<= lg; i++) {
 }    if  (s[i] == occ ) j++;
     }
 /****************** mnbrak ***********************/    return j;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  void cutv(char *u,char *v, char*t, char occ)
 {  {
   double ulim,u,r,q, dum;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   double fu;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         gives u="abcedf" and v="ghi2j" */
   *fa=(*func)(*ax);    int i,lg,j,p=0;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    for(j=0; j<=strlen(t)-1; j++) {
     SHFT(dum,*ax,*bx,dum)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       SHFT(dum,*fb,*fa,dum)    }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    lg=strlen(t);
   *fc=(*func)(*cx);    for(j=0; j<p; j++) {
   while (*fb > *fc) {      (u[j] = t[j]);
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);       u[p]='\0';
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     for(j=0; j<= lg; j++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);      if (j>=(p+1))(v[j-p-1] = t[j]);
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /********************** nrerror ********************/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void nrerror(char error_text[])
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    fprintf(stderr,"ERREUR ...\n");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    fprintf(stderr,"%s\n",error_text);
       u=ulim;    exit(EXIT_FAILURE);
       fu=(*func)(u);  }
     } else {  /*********************** vector *******************/
       u=(*cx)+GOLD*(*cx-*bx);  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     }    double *v;
     SHFT(*ax,*bx,*cx,u)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
 }  }
   
 /*************** linmin ************************/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 int ncom;  {
 double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    int *v;
   double f1dim(double x);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (!v) nrerror("allocation failure in ivector");
               double *fc, double (*func)(double));    return v-nl+NR_END;
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
   ncom=n;  {
   pcom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xicom=vector(1,n);  }
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /************************lvector *******************************/
     pcom[j]=p[j];  long *lvector(long nl,long nh)
     xicom[j]=xi[j];  {
   }    long *v;
   ax=0.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xx=1.0;    if (!v) nrerror("allocation failure in ivector");
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    return v-nl+NR_END;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(v+nl-NR_END));
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /******************* imatrix *******************************/
   free_vector(pcom,1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************** powell ************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int **m; 
             double (*func)(double []))    
 {    /* allocate pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
               double (*func)(double []));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int i,ibig,j;    m += NR_END; 
   double del,t,*pt,*ptt,*xit;    m -= nrl; 
   double fp,fptt;    
   double *xits;    
   pt=vector(1,n);    /* allocate rows and set pointers to them */ 
   ptt=vector(1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   xit=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xits=vector(1,n);    m[nrl] += NR_END; 
   *fret=(*func)(p);    m[nrl] -= ncl; 
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     fp=(*fret);    
     ibig=0;    /* return pointer to array of pointers to rows */ 
     del=0.0;    return m; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  } 
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /****************** free_imatrix *************************/
     printf("\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (i=1;i<=n;i++) {        int **m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        long nch,ncl,nrh,nrl; 
       fptt=(*fret);       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
       printf("fret=%lf \n",*fret);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #endif    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("%d",i);fflush(stdout);  } 
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************* matrix *******************************/
         del=fabs(fptt-(*fret));  double **matrix(long nrl, long nrh, long ncl, long nch)
         ibig=i;  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #ifdef DEBUG    double **m;
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" x(%d)=%.12e",j,xit[j]);    m += NR_END;
       }    m -= nrl;
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       int k[2],l;    return m;
       k[0]=1;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       k[1]=-1;     */
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /*************************free matrix ************************/
       printf("\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(m+nrl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #endif  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       free_vector(ptt,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(pt,1,n);    m += NR_END;
       return;    m -= nrl;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ptt[j]=2.0*p[j]-pt[j];    m[nrl] += NR_END;
       xit[j]=p[j]-pt[j];    m[nrl] -= ncl;
       pt[j]=p[j];  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       if (t < 0.0) {    m[nrl][ncl] += NR_END;
         linmin(p,xit,n,fret,func);    m[nrl][ncl] -= nll;
         for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
           xi[j][ibig]=xi[j][n];      m[nrl][j]=m[nrl][j-1]+nlay;
           xi[j][n]=xit[j];    
         }    for (i=nrl+1; i<=nrh; i++) {
 #ifdef DEBUG      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      for (j=ncl+1; j<=nch; j++) 
         for(j=1;j<=n;j++)        m[i][j]=m[i][j-1]+nlay;
           printf(" %.12e",xit[j]);    }
         printf("\n");    return m; 
 #endif    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
   }  }
 }  
   /*************************free ma3x ************************/
 /**** Prevalence limit ****************/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m+nrl-NR_END));
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /*************** function subdirf ***********/
   double min, max, maxmin, maxmax,sumnew=0.;  char *subdirf(char fileres[])
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    /* Caution optionfilefiname is hidden */
   double **newm;    strcpy(tmpout,optionfilefiname);
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for (ii=1;ii<=nlstate+ndeath;ii++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
    cov[1]=1.;  {
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcpy(tmpout,optionfilefiname);
     newm=savm;    strcat(tmpout,"/");
     /* Covariates have to be included here again */    strcat(tmpout,preop);
      cov[2]=agefin;    strcat(tmpout,fileres);
      return tmpout;
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,"/");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,preop);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcat(tmpout,preop2);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /***************** f1dim *************************/
     for(j=1;j<=nlstate;j++){  extern int ncom; 
       min=1.;  extern double *pcom,*xicom;
       max=0.;  extern double (*nrfunc)(double []); 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;  double f1dim(double x) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  { 
         prlim[i][j]= newm[i][j]/(1-sumnew);    int j; 
         max=FMAX(max,prlim[i][j]);    double f;
         min=FMIN(min,prlim[i][j]);    double *xt; 
       }   
       maxmin=max-min;    xt=vector(1,ncom); 
       maxmax=FMAX(maxmax,maxmin);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     if(maxmax < ftolpl){    free_vector(xt,1,ncom); 
       return prlim;    return f; 
     }  } 
   }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*************** transition probabilities ***************/  { 
     int iter; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   double s1, s2;    double ftemp;
   /*double t34;*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int i,j,j1, nc, ii, jj;    double e=0.0; 
    
     for(i=1; i<= nlstate; i++){    a=(ax < cx ? ax : cx); 
     for(j=1; j<i;j++){    b=(ax > cx ? ax : cx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    x=w=v=bx; 
         /*s2 += param[i][j][nc]*cov[nc];*/    fw=fv=fx=(*f)(x); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (iter=1;iter<=ITMAX;iter++) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ps[i][j]=s2;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     for(j=i+1; j<=nlstate+ndeath;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       ps[i][j]=s2;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
   }        return fx; 
     /*ps[3][2]=1;*/      } 
       ftemp=fu;
   for(i=1; i<= nlstate; i++){      if (fabs(e) > tol1) { 
      s1=0;        r=(x-w)*(fx-fv); 
     for(j=1; j<i; j++)        q=(x-v)*(fx-fw); 
       s1+=exp(ps[i][j]);        p=(x-v)*q-(x-w)*r; 
     for(j=i+1; j<=nlstate+ndeath; j++)        q=2.0*(q-r); 
       s1+=exp(ps[i][j]);        if (q > 0.0) p = -p; 
     ps[i][i]=1./(s1+1.);        q=fabs(q); 
     for(j=1; j<i; j++)        etemp=e; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        e=d; 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        else { 
   } /* end i */          d=p/q; 
           u=x+d; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          if (u-a < tol2 || b-u < tol2) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            d=SIGN(tol1,xm-x); 
       ps[ii][jj]=0;        } 
       ps[ii][ii]=1;      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (fu <= fx) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (u >= x) a=x; else b=x; 
      printf("%lf ",ps[ii][jj]);        SHFT(v,w,x,u) 
    }          SHFT(fv,fw,fx,fu) 
     printf("\n ");          } else { 
     }            if (u < x) a=u; else b=u; 
     printf("\n ");printf("%lf ",cov[2]);*/            if (fu <= fw || w == x) { 
 /*              v=w; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);              w=u; 
   goto end;*/              fv=fw; 
     return ps;              fw=fu; 
 }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 /**************** Product of 2 matrices ******************/              fv=fu; 
             } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          } 
 {    } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    nrerror("Too many iterations in brent"); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *xmin=x; 
   /* in, b, out are matrice of pointers which should have been initialized    return fx; 
      before: only the contents of out is modified. The function returns  } 
      a pointer to pointers identical to out */  
   long i, j, k;  /****************** mnbrak ***********************/
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              double (*func)(double)) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     double ulim,u,r,q, dum;
   return out;    double fu; 
 }   
     *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /************* Higher Matrix Product ***************/    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        SHFT(dum,*fb,*fa,dum) 
 {        } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    *cx=(*bx)+GOLD*(*bx-*ax); 
      duration (i.e. until    *fc=(*func)(*cx); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    while (*fb > *fc) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      r=(*bx-*ax)*(*fb-*fc); 
      (typically every 2 years instead of every month which is too big).      q=(*bx-*cx)*(*fb-*fa); 
      Model is determined by parameters x and covariates have to be      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
      included manually here.        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
      */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   int i, j, d, h, k;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double **out, cov[NCOVMAX];        fu=(*func)(u); 
   double **newm;        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /* Hstepm could be zero and should return the unit matrix */            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=1;i<=nlstate+ndeath;i++)            } 
     for (j=1;j<=nlstate+ndeath;j++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        u=ulim; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } else { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        u=(*cx)+GOLD*(*cx-*bx); 
   for(h=1; h <=nhstepm; h++){        fu=(*func)(u); 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      SHFT(*ax,*bx,*cx,u) 
       /* Covariates have to be included here again */        SHFT(*fa,*fb,*fc,fu) 
       cov[1]=1.;        } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /*************** linmin ************************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  int ncom; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double *pcom,*xicom;
   double (*nrfunc)(double []); 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double brent(double ax, double bx, double cx, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                 double (*f)(double), double tol, double *xmin); 
       savm=oldm;    double f1dim(double x); 
       oldm=newm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     for(i=1; i<=nlstate+ndeath; i++)    int j; 
       for(j=1;j<=nlstate+ndeath;j++) {    double xx,xmin,bx,ax; 
         po[i][j][h]=newm[i][j];    double fx,fb,fa;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */    ncom=n; 
       }    pcom=vector(1,n); 
   } /* end h */    xicom=vector(1,n); 
   return po;    nrfunc=func; 
 }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
 /*************** log-likelihood *************/    } 
 double func( double *x)    ax=0.0; 
 {    xx=1.0; 
   int i, ii, j, k, mi, d, kk;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **out;  #ifdef DEBUG
   double sw; /* Sum of weights */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double lli; /* Individual log likelihood */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int s1, s2;  #endif
   long ipmx;    for (j=1;j<=n;j++) { 
   /*extern weight */      xi[j] *= xmin; 
   /* We are differentiating ll according to initial status */      p[j] += xi[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } 
   /*for(i=1;i<imx;i++)    free_vector(xicom,1,n); 
     printf(" %d\n",s[4][i]);    free_vector(pcom,1,n); 
   */  } 
   cov[1]=1.;  
   char *asc_diff_time(long time_sec, char ascdiff[])
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    long sec_left, days, hours, minutes;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    days = (time_sec) / (60*60*24);
     for(mi=1; mi<= wav[i]-1; mi++){    sec_left = (time_sec) % (60*60*24);
       for (ii=1;ii<=nlstate+ndeath;ii++)    hours = (sec_left) / (60*60) ;
         for (j=1;j<=nlstate+ndeath;j++){    sec_left = (sec_left) %(60*60);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    minutes = (sec_left) /60;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    sec_left = (sec_left) % (60);
         }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for(d=0; d<dh[mi][i]; d++){    return ascdiff;
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /*************** powell ************************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
          { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    void linmin(double p[], double xi[], int n, double *fret, 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                double (*func)(double [])); 
         savm=oldm;    int i,ibig,j; 
         oldm=newm;    double del,t,*pt,*ptt,*xit;
            double fp,fptt;
            double *xits;
       } /* end mult */    int niterf, itmp;
        
       s1=s[mw[mi][i]][i];    pt=vector(1,n); 
       s2=s[mw[mi+1][i]][i];    ptt=vector(1,n); 
       if( s2 > nlstate){    xit=vector(1,n); 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    xits=vector(1,n); 
            to the likelihood is the probability to die between last step unit time and current    *fret=(*func)(p); 
            step unit time, which is also the differences between probability to die before dh    for (j=1;j<=n;j++) pt[j]=p[j]; 
            and probability to die before dh-stepm .    for (*iter=1;;++(*iter)) { 
            In version up to 0.92 likelihood was computed      fp=(*fret); 
            as if date of death was unknown. Death was treated as any other      ibig=0; 
            health state: the date of the interview describes the actual state      del=0.0; 
            and not the date of a change in health state. The former idea was      last_time=curr_time;
            to consider that at each interview the state was recorded      (void) gettimeofday(&curr_time,&tzp);
            (healthy, disable or death) and IMaCh was corrected; but when we      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
            introduced the exact date of death then we should have modified      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
            the contribution of an exact death to the likelihood. This new      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
            contribution is smaller and very dependent of the step unit      */
            stepm. It is no more the probability to die between last interview     for (i=1;i<=n;i++) {
            and month of death but the probability to survive from last        printf(" %d %.12f",i, p[i]);
            interview up to one month before death multiplied by the        fprintf(ficlog," %d %.12lf",i, p[i]);
            probability to die within a month. Thanks to Chris        fprintf(ficrespow," %.12lf", p[i]);
            Jackson for correcting this bug.  Former versions increased      }
            mortality artificially. The bad side is that we add another loop      printf("\n");
            which slows down the processing. The difference can be up to 10%      fprintf(ficlog,"\n");
            lower mortality.      fprintf(ficrespow,"\n");fflush(ficrespow);
         */      if(*iter <=3){
         lli=log(out[s1][s2] - savm[s1][s2]);        tm = *localtime(&curr_time.tv_sec);
       }else{        strcpy(strcurr,asctime(&tm));
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  /*       asctime_r(&tm,strcurr); */
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        forecast_time=curr_time; 
       }        itmp = strlen(strcurr);
       ipmx +=1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       sw += weight[i];          strcurr[itmp-1]='\0';
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     } /* end of wave */        for(niterf=10;niterf<=30;niterf+=10){
   } /* end of individual */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*      asctime_r(&tmf,strfor); */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          strcpy(strfor,asctime(&tmf));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          itmp = strlen(strfor);
   /*exit(0);*/          if(strfor[itmp-1]=='\n')
   return -l;          strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 /*********** Maximum Likelihood Estimation ***************/      }
       for (i=1;i<=n;i++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 {        fptt=(*fret); 
   int i,j, iter;  #ifdef DEBUG
   double **xi,*delti;        printf("fret=%lf \n",*fret);
   double fret;        fprintf(ficlog,"fret=%lf \n",*fret);
   xi=matrix(1,npar,1,npar);  #endif
   for (i=1;i<=npar;i++)        printf("%d",i);fflush(stdout);
     for (j=1;j<=npar;j++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       xi[i][j]=(i==j ? 1.0 : 0.0);        linmin(p,xit,n,fret,func); 
   printf("Powell\n");        if (fabs(fptt-(*fret)) > del) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);          del=fabs(fptt-(*fret)); 
           ibig=i; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /**** Computes Hessian and covariance matrix ***/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          printf(" x(%d)=%.12e",j,xit[j]);
 {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double  **a,**y,*x,pd;        }
   double **hess;        for(j=1;j<=n;j++) {
   int i, j,jk;          printf(" p=%.12e",p[j]);
   int *indx;          fprintf(ficlog," p=%.12e",p[j]);
         }
   double hessii(double p[], double delta, int theta, double delti[]);        printf("\n");
   double hessij(double p[], double delti[], int i, int j);        fprintf(ficlog,"\n");
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #endif
   void ludcmp(double **a, int npar, int *indx, double *d) ;      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   hess=matrix(1,npar,1,npar);  #ifdef DEBUG
         int k[2],l;
   printf("\nCalculation of the hessian matrix. Wait...\n");        k[0]=1;
   for (i=1;i<=npar;i++){        k[1]=-1;
     printf("%d",i);fflush(stdout);        printf("Max: %.12e",(*func)(p));
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     /*printf(" %f ",p[i]);*/        for (j=1;j<=n;j++) {
     /*printf(" %lf ",hess[i][i]);*/          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
          }
   for (i=1;i<=npar;i++) {        printf("\n");
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"\n");
       if (j>i) {        for(l=0;l<=1;l++) {
         printf(".%d%d",i,j);fflush(stdout);          for (j=1;j<=n;j++) {
         hess[i][j]=hessij(p,delti,i,j);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         hess[j][i]=hess[i][j];                printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf(" %lf ",hess[i][j]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("\n");        }
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    
   a=matrix(1,npar,1,npar);        free_vector(xit,1,n); 
   y=matrix(1,npar,1,npar);        free_vector(xits,1,n); 
   x=vector(1,npar);        free_vector(ptt,1,n); 
   indx=ivector(1,npar);        free_vector(pt,1,n); 
   for (i=1;i<=npar;i++)        return; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++) x[i]=0;        xit[j]=p[j]-pt[j]; 
     x[j]=1;        pt[j]=p[j]; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      fptt=(*func)(ptt); 
       matcov[i][j]=x[i];      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
   printf("\n#Hessian matrix#\n");          for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {            xi[j][ibig]=xi[j][n]; 
     for (j=1;j<=npar;j++) {            xi[j][n]=xit[j]; 
       printf("%.3e ",hess[i][j]);          }
     }  #ifdef DEBUG
     printf("\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /* Recompute Inverse */            printf(" %.12e",xit[j]);
   for (i=1;i<=npar;i++)            fprintf(ficlog," %.12e",xit[j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          }
   ludcmp(a,npar,indx,&pd);          printf("\n");
           fprintf(ficlog,"\n");
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
         }
   for (j=1;j<=npar;j++) {      } 
     for (i=1;i<=npar;i++) x[i]=0;    } 
     x[j]=1;  } 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /**** Prevalence limit (stable prevalence)  ****************/
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     printf("\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   }       matrix by transitions matrix until convergence is reached */
   */  
     int i, ii,j,k;
   free_matrix(a,1,npar,1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   free_matrix(y,1,npar,1,npar);    double **matprod2();
   free_vector(x,1,npar);    double **out, cov[NCOVMAX], **pmij();
   free_ivector(indx,1,npar);    double **newm;
   free_matrix(hess,1,npar,1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
     for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])  
 {     cov[1]=1.;
   int i;   
   int l=1, lmax=20;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double k1,k2;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double p2[NPARMAX+1];      newm=savm;
   double res;      /* Covariates have to be included here again */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       cov[2]=agefin;
   double fx;    
   int k=0,kmax=10;        for (k=1; k<=cptcovn;k++) {
   double l1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovprod;k++)
     l1=pow(10,l);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       delt = delta*(l1*k);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       p2[theta]=x[theta] +delt;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       k1=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;      savm=oldm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      oldm=newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      maxmax=0.;
            for(j=1;j<=nlstate;j++){
 #ifdef DEBUG        min=1.;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        max=0.;
 #endif        for(i=1; i<=nlstate; i++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          sumnew=0;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         k=kmax;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          min=FMIN(min,prlim[i][j]);
         k=kmax; l=lmax*10.;        }
       }        maxmin=max-min;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        maxmax=FMAX(maxmax,maxmin);
         delts=delt;      }
       }      if(maxmax < ftolpl){
     }        return prlim;
   }      }
   delti[theta]=delts;    }
   return res;  }
    
 }  /*************** transition probabilities ***************/ 
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   int i;    double s1, s2;
   int l=1, l1, lmax=20;    /*double t34;*/
   double k1,k2,k3,k4,res,fx;    int i,j,j1, nc, ii, jj;
   double p2[NPARMAX+1];  
   int k;      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
   fx=func(x);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (k=1; k<=2; k++) {            /*s2 += param[i][j][nc]*cov[nc];*/
     for (i=1;i<=npar;i++) p2[i]=x[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }
     k1=func(p2)-fx;          ps[i][j]=s2;
    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=i+1; j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }
     k3=func(p2)-fx;          ps[i][j]=s2;
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      /*ps[3][2]=1;*/
     k4=func(p2)-fx;      
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for(i=1; i<= nlstate; i++){
 #ifdef DEBUG        s1=0;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(j=1; j<i; j++)
 #endif          s1+=exp(ps[i][j]);
   }        for(j=i+1; j<=nlstate+ndeath; j++)
   return res;          s1+=exp(ps[i][j]);
 }        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
 /************** Inverse of matrix **************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 void ludcmp(double **a, int n, int *indx, double *d)        for(j=i+1; j<=nlstate+ndeath; j++)
 {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int i,imax,j,k;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double big,dum,sum,temp;      } /* end i */
   double *vv;      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   vv=vector(1,n);        for(jj=1; jj<= nlstate+ndeath; jj++){
   *d=1.0;          ps[ii][jj]=0;
   for (i=1;i<=n;i++) {          ps[ii][ii]=1;
     big=0.0;        }
     for (j=1;j<=n;j++)      }
       if ((temp=fabs(a[i][j])) > big) big=temp;      
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for (j=1;j<=n;j++) {  /*         printf("ddd %lf ",ps[ii][jj]); */
     for (i=1;i<j;i++) {  /*       } */
       sum=a[i][j];  /*       printf("\n "); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*        } */
       a[i][j]=sum;  /*        printf("\n ");printf("%lf ",cov[2]); */
     }         /*
     big=0.0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=j;i<=n;i++) {        goto end;*/
       sum=a[i][j];      return ps;
       for (k=1;k<j;k++)  }
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /**************** Product of 2 matrices ******************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         imax=i;  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (j != imax) {    /* in, b, out are matrice of pointers which should have been initialized 
       for (k=1;k<=n;k++) {       before: only the contents of out is modified. The function returns
         dum=a[imax][k];       a pointer to pointers identical to out */
         a[imax][k]=a[j][k];    long i, j, k;
         a[j][k]=dum;    for(i=nrl; i<= nrh; i++)
       }      for(k=ncolol; k<=ncoloh; k++)
       *d = -(*d);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       vv[imax]=vv[j];          out[i][k] +=in[i][j]*b[j][k];
     }  
     indx[j]=imax;    return out;
     if (a[j][j] == 0.0) a[j][j]=TINY;  }
     if (j != n) {  
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /************* Higher Matrix Product ***************/
     }  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_vector(vv,1,n);  /* Doesn't work */  {
 ;    /* Computes the transition matrix starting at age 'age' over 
 }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 void lubksb(double **a, int n, int *indx, double b[])       nhstepm*hstepm matrices. 
 {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int i,ii=0,ip,j;       (typically every 2 years instead of every month which is too big 
   double sum;       for the memory).
         Model is determined by parameters x and covariates have to be 
   for (i=1;i<=n;i++) {       included manually here. 
     ip=indx[i];  
     sum=b[ip];       */
     b[ip]=b[i];  
     if (ii)    int i, j, d, h, k;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double **out, cov[NCOVMAX];
     else if (sum) ii=i;    double **newm;
     b[i]=sum;  
   }    /* Hstepm could be zero and should return the unit matrix */
   for (i=n;i>=1;i--) {    for (i=1;i<=nlstate+ndeath;i++)
     sum=b[i];      for (j=1;j<=nlstate+ndeath;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     b[i]=sum/a[i][i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 /************ Frequencies ********************/      for(d=1; d <=hstepm; d++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        newm=savm;
 {  /* Some frequencies */        /* Covariates have to be included here again */
          cov[1]=1.;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *pp;        for (k=1; k<=cptcovage;k++)
   double pos, k2, dateintsum=0,k2cpt=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   FILE *ficresp;        for (k=1; k<=cptcovprod;k++)
   char fileresp[FILENAMELENGTH];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   strcpy(fileresp,"p");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   strcat(fileresp,fileres);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   if((ficresp=fopen(fileresp,"w"))==NULL) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with prevalence resultfile: %s\n", fileresp);        savm=oldm;
     exit(0);        oldm=newm;
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for(i=1; i<=nlstate+ndeath; i++)
   j1=0;        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   j=cptcoveff;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           */
          }
   for(k1=1; k1<=j;k1++){    } /* end h */
     for(i1=1; i1<=ncodemax[k1];i1++){    return po;
       j1++;  }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)    /*************** log-likelihood *************/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double func( double *x)
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    int i, ii, j, k, mi, d, kk;
          double l, ll[NLSTATEMAX], cov[NCOVMAX];
       dateintsum=0;    double **out;
       k2cpt=0;    double sw; /* Sum of weights */
       for (i=1; i<=imx; i++) {    double lli; /* Individual log likelihood */
         bool=1;    int s1, s2;
         if  (cptcovn>0) {    double bbh, survp;
           for (z1=1; z1<=cptcoveff; z1++)    long ipmx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*extern weight */
               bool=0;    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if (bool==1) {    /*for(i=1;i<imx;i++) 
           for(m=firstpass; m<=lastpass; m++){      printf(" %d\n",s[4][i]);
             k2=anint[m][i]+(mint[m][i]/12.);    */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    cov[1]=1.;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for(k=1; k<=nlstate; k++) ll[k]=0.;
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    if(mle==1){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                      for(mi=1; mi<= wav[i]-1; mi++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          for (ii=1;ii<=nlstate+ndeath;ii++)
                 dateintsum=dateintsum+k2;            for (j=1;j<=nlstate+ndeath;j++){
                 k2cpt++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
       if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresp, "\n#********** Variable ");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            savm=oldm;
         fprintf(ficresp, "**********\n#");            oldm=newm;
       }          } /* end mult */
       for(i=1; i<=nlstate;i++)        
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficresp, "\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
                 * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if(i==(int)agemax+3)           * the nearest (and in case of equal distance, to the lowest) interval but now
           printf("Total");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         else           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           printf("Age %d", i);           * probability in order to take into account the bias as a fraction of the way
         for(jk=1; jk <=nlstate ; jk++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * -stepm/2 to stepm/2 .
             pp[jk] += freq[jk][m][i];           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pos=0; m <=0 ; m++)          s1=s[mw[mi][i]][i];
             pos += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
           if(pp[jk]>=1.e-10)          bbh=(double)bh[mi][i]/(double)stepm; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          /* bias bh is positive if real duration
           else           * is higher than the multiple of stepm and negative otherwise.
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
         for(jk=1; jk <=nlstate ; jk++){            /* i.e. if s2 is a death state and if the date of death is known 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)               then the contribution to the likelihood is the probability to 
             pp[jk] += freq[jk][m][i];               die between last step unit time and current  step unit time, 
         }               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
         for(jk=1,pos=0; jk <=nlstate ; jk++)               In version up to 0.92 likelihood was computed
           pos += pp[jk];          as if date of death was unknown. Death was treated as any other
         for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
           if(pos>=1.e-5)          and not the date of a change in health state. The former idea was
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          to consider that at each interview the state was recorded
           else          (healthy, disable or death) and IMaCh was corrected; but when we
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          introduced the exact date of death then we should have modified
           if( i <= (int) agemax){          the contribution of an exact death to the likelihood. This new
             if(pos>=1.e-5){          contribution is smaller and very dependent of the step unit
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          stepm. It is no more the probability to die between last interview
               probs[i][jk][j1]= pp[jk]/pos;          and month of death but the probability to survive from last
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          interview up to one month before death multiplied by the
             }          probability to die within a month. Thanks to Chris
             else          Jackson for correcting this bug.  Former versions increased
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          mortality artificially. The bad side is that we add another loop
           }          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
                    */
         for(jk=-1; jk <=nlstate+ndeath; jk++)            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)          } else if  (s2==-2) {
           fprintf(ficresp,"\n");            for (j=1,survp=0. ; j<=nlstate; j++) 
         printf("\n");              survp += out[s1][j];
       }            lli= survp;
     }          }
   }          
   dateintmean=dateintsum/k2cpt;          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
   fclose(ficresp);              survp += out[s1][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli= survp;
   free_vector(pp,1,nlstate);          }
            
   /* End of Freq */          else if  (s2==-5) {
 }            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
 /************ Prevalence ********************/            lli= survp;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          }
 {  /* Some frequencies */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          else{
   double ***freq; /* Frequencies */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *pp;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double pos, k2;          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   pp=vector(1,nlstate);          /*if(lli ==000.0)*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sw += weight[i];
   j1=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   j=cptcoveff;      } /* end of individual */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          for(d=0; d<=dh[mi][i]; d++){
                  newm=savm;
       for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         bool=1;            for (kk=1; kk<=cptcovage;kk++) {
         if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               bool=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (bool==1) {            oldm=newm;
           for(m=firstpass; m<=lastpass; m++){          } /* end mult */
             k2=anint[m][i]+(mint[m][i]/12.);        
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          s1=s[mw[mi][i]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s2=s[mw[mi+1][i]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          bbh=(double)bh[mi][i]/(double)stepm; 
               if (m<lastpass)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          ipmx +=1;
               else          sw += weight[i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        } /* end of wave */
             }      } /* end of individual */
           }    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
               pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
          for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
              pp[jk] += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      savm=oldm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            oldm=newm;
           } /* end mult */
          for(jk=1; jk <=nlstate ; jk++){                  
            if( i <= (int) agemax){          s1=s[mw[mi][i]][i];
              if(pos>=1.e-5){          s2=s[mw[mi+1][i]][i];
                probs[i][jk][j1]= pp[jk]/pos;          bbh=(double)bh[mi][i]/(double)stepm; 
              }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            }          ipmx +=1;
          }          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
     }      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(pp,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
 }  /* End of Freq */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************* Waves Concatenation ***************/            }
           for(d=0; d<dh[mi][i]; d++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (kk=1; kk<=cptcovage;kk++) {
      Death is a valid wave (if date is known).              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          
      and mw[mi+1][i]. dh depends on stepm.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   int i, mi, m;            oldm=newm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          } /* end mult */
      double sum=0., jmean=0.;*/        
           s1=s[mw[mi][i]][i];
   int j, k=0,jk, ju, jl;          s2=s[mw[mi+1][i]][i];
   double sum=0.;          if( s2 > nlstate){ 
   jmin=1e+5;            lli=log(out[s1][s2] - savm[s1][s2]);
   jmax=-1;          }else{
   jmean=0.;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=imx; i++){          }
     mi=0;          ipmx +=1;
     m=firstpass;          sw += weight[i];
     while(s[m][i] <= nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(s[m][i]>=1)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         mw[++mi][i]=m;        } /* end of wave */
       if(m >=lastpass)      } /* end of individual */
         break;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         m++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }/* end while */        for(mi=1; mi<= wav[i]-1; mi++){
     if (s[m][i] > nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       mi++;     /* Death is another wave */            for (j=1;j<=nlstate+ndeath;j++){
       /* if(mi==0)  never been interviewed correctly before death */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          /* Only death is a correct wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       mw[mi][i]=m;            }
     }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     wav[i]=mi;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if(mi==0)            for (kk=1; kk<=cptcovage;kk++) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
           
   for(i=1; i<=imx; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(mi=1; mi<wav[i];mi++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (stepm <=0)            savm=oldm;
         dh[mi][i]=1;            oldm=newm;
       else{          } /* end mult */
         if (s[mw[mi+1][i]][i] > nlstate) {        
           if (agedc[i] < 2*AGESUP) {          s1=s[mw[mi][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s2=s[mw[mi+1][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           if (j <= jmin) jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } /* end of wave */
           }      } /* end of individual */
         }    } /* End of if */
         else{    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           k=k+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           if (j >= jmax) jmax=j;    return -l;
           else if (j <= jmin)jmin=j;  }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;  /*************** log-likelihood *************/
         }  double funcone( double *x)
         jk= j/stepm;  {
         jl= j -jk*stepm;    /* Same as likeli but slower because of a lot of printf and if */
         ju= j -(jk+1)*stepm;    int i, ii, j, k, mi, d, kk;
         if(jl <= -ju)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           dh[mi][i]=jk;    double **out;
         else    double lli; /* Individual log likelihood */
           dh[mi][i]=jk+1;    double llt;
         if(dh[mi][i]==0)    int s1, s2;
           dh[mi][i]=1; /* At least one step */    double bbh, survp;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   jmean=sum/k;    /*for(i=1;i<imx;i++) 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      printf(" %d\n",s[4][i]);
  }    */
 /*********** Tricode ****************************/    cov[1]=1.;
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cptcoveff=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
   for (k=0; k<19; k++) Ndum[k]=0;        for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=1; k<=7; k++) ncodemax[k]=0;          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {          }
       ij=(int)(covar[Tvar[j]][i]);        for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;          newm=savm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (ij > cptcode) cptcode=ij;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
     for (i=0; i<=cptcode; i++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(Ndum[i]!=0) ncodemax[j]++;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
     ij=1;          oldm=newm;
         } /* end mult */
         
     for (i=1; i<=ncodemax[j]; i++) {        s1=s[mw[mi][i]][i];
       for (k=0; k<=19; k++) {        s2=s[mw[mi+1][i]][i];
         if (Ndum[k] != 0) {        bbh=(double)bh[mi][i]/(double)stepm; 
           nbcode[Tvar[j]][ij]=k;        /* bias is positive if real duration
                   * is higher than the multiple of stepm and negative otherwise.
           ij++;         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         if (ij > ncodemax[j]) break;          lli=log(out[s1][s2] - savm[s1][s2]);
       }          } else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }          } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  for (k=0; k<19; k++) Ndum[k]=0;        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  for (i=1; i<=ncovmodel-2; i++) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       ij=Tvar[i];          lli=log(out[s1][s2]); /* Original formula */
       Ndum[ij]++;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     }          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
  ij=1;        ipmx +=1;
  for (i=1; i<=10; i++) {        sw += weight[i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Tvaraff[ij]=i;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      ij++;        if(globpr){
    }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
  }   %10.6f %10.6f %10.6f ", \
                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     cptcoveff=ij-1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 /*********** Health Expectancies ****************/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          fprintf(ficresilk," %10.6f\n", -llt);
         }
 {      } /* end of wave */
   /* Health expectancies */    } /* end of individual */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double age, agelim, hf;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***p3mat,***varhe;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **dnewm,**doldm;    if(globpr==0){ /* First time we count the contributions and weights */
   double *xp;      gipmx=ipmx;
   double **gp, **gm;      gsw=sw;
   double ***gradg, ***trgradg;    }
   int theta;    return -l;
   }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);  /*************** function likelione ***********/
   doldm=matrix(1,nlstate*2,1,nlstate*2);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
   fprintf(ficreseij,"# Health expectancies\n");    /* This routine should help understanding what is done with 
   fprintf(ficreseij,"# Age");       the selection of individuals/waves and
   for(i=1; i<=nlstate;i++)       to check the exact contribution to the likelihood.
     for(j=1; j<=nlstate;j++)       Plotting could be done.
       fprintf(ficreseij," %1d-%1d (SE)",i,j);     */
   fprintf(ficreseij,"\n");    int k;
   
   if(estepm < stepm){    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf ("Problem %d lower than %d\n",estepm, stepm);      strcpy(fileresilk,"ilk"); 
   }      strcat(fileresilk,fileres);
   else  hstepm=estepm;        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* We compute the life expectancy from trapezoids spaced every estepm months        printf("Problem with resultfile: %s\n", fileresilk);
    * This is mainly to measure the difference between two models: for example        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    * if stepm=24 months pijx are given only every 2 years and by summing them      }
    * we are calculating an estimate of the Life Expectancy assuming a linear      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    * progression inbetween and thus overestimating or underestimating according      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    * to the curvature of the survival function. If, for the same date, we      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for(k=1; k<=nlstate; k++) 
    * to compare the new estimate of Life expectancy with the same linear        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    * hypothesis. A more precise result, taking into account a more precise      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
    * curvature will be obtained if estepm is as small as stepm. */    }
   
   /* For example we decided to compute the life expectancy with the smallest unit */    *fretone=(*funcone)(p);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    if(*globpri !=0){
      nhstepm is the number of hstepm from age to agelim      fclose(ficresilk);
      nstepm is the number of stepm from age to agelin.      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      Look at hpijx to understand the reason of that which relies in memory size      fflush(fichtm); 
      and note for a fixed period like estepm months */    } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return;
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /*********** Maximum Likelihood Estimation ***************/
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   agelim=AGESUP;    int i,j, iter;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **xi;
     /* nhstepm age range expressed in number of stepm */    double fret;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double fretone; /* Only one call to likelihood */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /*  char filerespow[FILENAMELENGTH];*/
     /* if (stepm >= YEARM) hstepm=1;*/    xi=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        xi[i][j]=(i==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      printf("Problem with resultfile: %s\n", filerespow);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     /* Computing Variances of health expectancies */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    powell(p,xi,npar,ftol,&iter,&fret,func);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    fclose(ficrespow);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       cptj=0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  /**** Computes Hessian and covariance matrix ***/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           }  {
         }    double  **a,**y,*x,pd;
       }    double **hess;
          int i, j,jk;
          int *indx;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
          void lubksb(double **a, int npar, int *indx, double b[]) ;
       cptj=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(j=1; j<= nlstate; j++){    double gompertz(double p[]);
         for(i=1;i<=nlstate;i++){    hess=matrix(1,npar,1,npar);
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    printf("\nCalculation of the hessian matrix. Wait...\n");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           }    for (i=1;i<=npar;i++){
         }      printf("%d",i);fflush(stdout);
       }      fprintf(ficlog,"%d",i);fflush(ficlog);
           
           hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
       for(j=1; j<= nlstate*2; j++)      /*  printf(" %f ",p[i]);
         for(h=0; h<=nhstepm-1; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    
     for (i=1;i<=npar;i++) {
      }      for (j=1;j<=npar;j++)  {
            if (j>i) { 
 /* End theta */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
      for(h=0; h<=nhstepm-1; h++)          hess[j][i]=hess[i][j];    
       for(j=1; j<=nlstate*2;j++)          /*printf(" %lf ",hess[i][j]);*/
         for(theta=1; theta <=npar; theta++)        }
         trgradg[h][j][theta]=gradg[h][theta][j];      }
     }
     printf("\n");
      for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"\n");
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(h=0;h<=nhstepm-1;h++){    
       for(k=0;k<=nhstepm-1;k++){    a=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    y=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    x=vector(1,npar);
         for(i=1;i<=nlstate*2;i++)    indx=ivector(1,npar);
           for(j=1;j<=nlstate*2;j++)    for (i=1;i<=npar;i++)
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }    ludcmp(a,npar,indx,&pd);
     }  
     for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
     /* Computing expectancies */      x[j]=1;
     for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        matcov[i][j]=x[i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }
              }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
     printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
     fprintf(ficreseij,"%3.0f",age );      for (j=1;j<=npar;j++) { 
     cptj=0;        printf("%.3e ",hess[i][j]);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(j=1; j<=nlstate;j++){      }
         cptj++;      printf("\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      fprintf(ficlog,"\n");
       }    }
     fprintf(ficreseij,"\n");  
        /* Recompute Inverse */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  printf("\n#Hessian matrix recomputed#\n");
   }  
   free_vector(xp,1,npar);    for (j=1;j<=npar;j++) {
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      x[j]=1;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
 /************ Variance ******************/        printf("%.3e ",y[i][j]);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        fprintf(ficlog,"%.3e ",y[i][j]);
 {      }
   /* Variance of health expectancies */      printf("\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fprintf(ficlog,"\n");
   double **newm;    }
   double **dnewm,**doldm;    */
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    free_matrix(a,1,npar,1,npar);
   double *xp;    free_matrix(y,1,npar,1,npar);
   double **gp, **gm;    free_vector(x,1,npar);
   double ***gradg, ***trgradg;    free_ivector(indx,1,npar);
   double ***p3mat;    free_matrix(hess,1,npar,1,npar);
   double age,agelim, hf;  
   int theta;  
   }
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  /*************** hessian matrix ****************/
   for(i=1; i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i;
   fprintf(ficresvij,"\n");    int l=1, lmax=20;
     double k1,k2;
   xp=vector(1,npar);    double p2[NPARMAX+1];
   dnewm=matrix(1,nlstate,1,npar);    double res;
   doldm=matrix(1,nlstate,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
   if(estepm < stepm){    int k=0,kmax=10;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double l1;
   }  
   else  hstepm=estepm;      fx=func(x);
   /* For example we decided to compute the life expectancy with the smallest unit */    for (i=1;i<=npar;i++) p2[i]=x[i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for(l=0 ; l <=lmax; l++){
      nhstepm is the number of hstepm from age to agelim      l1=pow(10,l);
      nstepm is the number of stepm from age to agelin.      delts=delt;
      Look at hpijx to understand the reason of that which relies in memory size      for(k=1 ; k <kmax; k=k+1){
      and note for a fixed period like k years */        delt = delta*(l1*k);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        p2[theta]=x[theta] +delt;
      survival function given by stepm (the optimization length). Unfortunately it        k1=func(p2)-fx;
      means that if the survival funtion is printed only each two years of age and if        p2[theta]=x[theta]-delt;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        k2=func(p2)-fx;
      results. So we changed our mind and took the option of the best precision.        /*res= (k1-2.0*fx+k2)/delt/delt; */
   */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     gp=matrix(0,nhstepm,1,nlstate);          k=kmax;
     gm=matrix(0,nhstepm,1,nlstate);        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(theta=1; theta <=npar; theta++){          k=kmax; l=lmax*10.;
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       }          delts=delt;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
     }
       if (popbased==1) {    delti[theta]=delts;
         for(i=1; i<=nlstate;i++)    return res; 
           prlim[i][i]=probs[(int)age][i][ij];    
       }  }
    
       for(j=1; j<= nlstate; j++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    int i;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
        int k;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fx=func(x);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (k=1; k<=2; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
       if (popbased==1) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(i=1; i<=nlstate;i++)      k1=func(p2)-fx;
           prlim[i][i]=probs[(int)age][i][ij];    
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<= nlstate; j++){      k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k3=func(p2)-fx;
       }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<= nlstate; j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(h=0; h<=nhstepm; h++){      k4=func(p2)-fx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         }  #ifdef DEBUG
     } /* End theta */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  #endif
     }
     for(h=0; h<=nhstepm; h++)    return res;
       for(j=1; j<=nlstate;j++)  }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  { 
     for(i=1;i<=nlstate;i++)    int i,imax,j,k; 
       for(j=1;j<=nlstate;j++)    double big,dum,sum,temp; 
         vareij[i][j][(int)age] =0.;    double *vv; 
    
     for(h=0;h<=nhstepm;h++){    vv=vector(1,n); 
       for(k=0;k<=nhstepm;k++){    *d=1.0; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=n;i++) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      big=0.0; 
         for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
           for(j=1;j<=nlstate;j++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
     }    } 
     for (j=1;j<=n;j++) { 
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<j;i++) { 
     for(i=1; i<=nlstate;i++)        sum=a[i][j]; 
       for(j=1; j<=nlstate;j++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        a[i][j]=sum; 
       }      } 
     fprintf(ficresvij,"\n");      big=0.0; 
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=j;i<=n;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);        sum=a[i][j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for (k=1;k<j;k++) 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          sum -= a[i][k]*a[k][j]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        a[i][j]=sum; 
   } /* End age */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   free_vector(xp,1,npar);          imax=i; 
   free_matrix(doldm,1,nlstate,1,npar);        } 
   free_matrix(dnewm,1,nlstate,1,nlstate);      } 
       if (j != imax) { 
 }        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 /************ Variance of prevlim ******************/          a[imax][k]=a[j][k]; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          a[j][k]=dum; 
 {        } 
   /* Variance of prevalence limit */        *d = -(*d); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        vv[imax]=vv[j]; 
   double **newm;      } 
   double **dnewm,**doldm;      indx[j]=imax; 
   int i, j, nhstepm, hstepm;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   int k, cptcode;      if (j != n) { 
   double *xp;        dum=1.0/(a[j][j]); 
   double *gp, *gm;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double **gradg, **trgradg;      } 
   double age,agelim;    } 
   int theta;    free_vector(vv,1,n);  /* Doesn't work */
      ;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  } 
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficresvpl," %1d-%1d",i,i);  { 
   fprintf(ficresvpl,"\n");    int i,ii=0,ip,j; 
     double sum; 
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      ip=indx[i]; 
        sum=b[ip]; 
   hstepm=1*YEARM; /* Every year of age */      b[ip]=b[i]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      if (ii) 
   agelim = AGESUP;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      else if (sum) ii=i; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      b[i]=sum; 
     if (stepm >= YEARM) hstepm=1;    } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (i=n;i>=1;i--) { 
     gradg=matrix(1,npar,1,nlstate);      sum=b[i]; 
     gp=vector(1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     gm=vector(1,nlstate);      b[i]=sum/a[i][i]; 
     } 
     for(theta=1; theta <=npar; theta++){  } 
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {  /* Some frequencies */
       for(i=1;i<=nlstate;i++)    
         gp[i] = prlim[i][i];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
       for(i=1; i<=npar; i++) /* Computes gradient */    double ***freq; /* Frequencies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *pp, **prop;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1;i<=nlstate;i++)    FILE *ficresp;
         gm[i] = prlim[i][i];    char fileresp[FILENAMELENGTH];
     
       for(i=1;i<=nlstate;i++)    pp=vector(1,nlstate);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    prop=matrix(1,nlstate,iagemin,iagemax+3);
     } /* End theta */    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     trgradg =matrix(1,nlstate,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(theta=1; theta <=npar; theta++)      exit(0);
         trgradg[j][theta]=gradg[theta][j];    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(i=1;i<=nlstate;i++)    j1=0;
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    j=cptcoveff;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    first=1;
   
     fprintf(ficresvpl,"%.0f ",age );    for(k1=1; k1<=j;k1++){
     for(i=1; i<=nlstate;i++)      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        j1++;
     fprintf(ficresvpl,"\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_vector(gp,1,nlstate);          scanf("%d", i);*/
     free_vector(gm,1,nlstate);        for (i=-5; i<=nlstate+ndeath; i++)  
     free_matrix(gradg,1,npar,1,nlstate);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     free_matrix(trgradg,1,nlstate,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
   } /* End age */              freq[i][jk][m]=0;
   
   free_vector(xp,1,npar);      for (i=1; i<=nlstate; i++)  
   free_matrix(doldm,1,nlstate,1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(dnewm,1,nlstate,1,nlstate);          prop[i][m]=0;
         
 }        dateintsum=0;
         k2cpt=0;
 /************ Variance of one-step probabilities  ******************/        for (i=1; i<=imx; i++) {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          bool=1;
 {          if  (cptcovn>0) {
   int i, j, i1, k1, j1, z1;            for (z1=1; z1<=cptcoveff; z1++) 
   int k=0, cptcode;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double **dnewm,**doldm;                bool=0;
   double *xp;          }
   double *gp, *gm;          if (bool==1){
   double **gradg, **trgradg;            for(m=firstpass; m<=lastpass; m++){
   double age,agelim, cov[NCOVMAX];              k2=anint[m][i]+(mint[m][i]/12.);
   int theta;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   char fileresprob[FILENAMELENGTH];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcpy(fileresprob,"prob");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   strcat(fileresprob,fileres);                if (m<lastpass) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     printf("Problem with resultfile: %s\n", fileresprob);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   }                }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");                  dateintsum=dateintsum+k2;
   fprintf(ficresprob,"# Age");                  k2cpt++;
   for(i=1; i<=nlstate;i++)                }
     for(j=1; j<=(nlstate+ndeath);j++)                /*}*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            }
           }
         }
   fprintf(ficresprob,"\n");         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresp, "#Local time at start: %s", strstart);
   xp=vector(1,npar);        if  (cptcovn>0) {
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   cov[1]=1;        }
   j=cptcoveff;        for(i=1; i<=nlstate;i++) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   j1=0;        fprintf(ficresp, "\n");
   for(k1=1; k1<=1;k1++){        
     for(i1=1; i1<=ncodemax[k1];i1++){        for(i=iagemin; i <= iagemax+3; i++){
     j1++;          if(i==iagemax+3){
             fprintf(ficlog,"Total");
     if  (cptcovn>0) {          }else{
       fprintf(ficresprob, "\n#********** Variable ");            if(first==1){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              first=0;
       fprintf(ficresprob, "**********\n#");              printf("See log file for details...\n");
     }            }
                fprintf(ficlog,"Age %d", i);
       for (age=bage; age<=fage; age ++){          }
         cov[2]=age;          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovn;k++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              pp[jk] += freq[jk][m][i]; 
                    }
         }          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            for(m=-1, pos=0; m <=0 ; m++)
         for (k=1; k<=cptcovprod;k++)              pos += freq[jk][m][i];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            if(pp[jk]>=1.e-10){
                      if(first==1){
         gradg=matrix(1,npar,1,9);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         trgradg=matrix(1,9,1,npar);              }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            }else{
                  if(first==1)
         for(theta=1; theta <=npar; theta++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<=npar; i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                    for(jk=1; jk <=nlstate ; jk++){
           k=0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           for(i=1; i<= (nlstate+ndeath); i++){              pp[jk] += freq[jk][m][i];
             for(j=1; j<=(nlstate+ndeath);j++){          }       
               k=k+1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               gp[k]=pmmij[i][j];            pos += pp[jk];
             }            posprop += prop[jk][i];
           }          }
                    for(jk=1; jk <=nlstate ; jk++){
           for(i=1; i<=npar; i++)            if(pos>=1.e-5){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           k=0;            }else{
           for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
             for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               gm[k]=pmmij[i][j];            }
             }            if( i <= iagemax){
           }              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         }              }
               else
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           for(theta=1; theta <=npar; theta++)            }
             trgradg[j][theta]=gradg[theta][j];          }
                  
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
         pmij(pmmij,cov,ncovmodel,x,nlstate);              if(first==1)
                        printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         k=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(i=1; i<=(nlstate+ndeath); i++){              }
           for(j=1; j<=(nlstate+ndeath);j++){          if(i <= iagemax)
             k=k+1;            fprintf(ficresp,"\n");
             gm[k]=pmmij[i][j];          if(first==1)
           }            printf("Others in log...\n");
         }          fprintf(ficlog,"\n");
              }
      /*printf("\n%d ",(int)age);      }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    dateintmean=dateintsum/k2cpt; 
      }*/   
     fclose(ficresp);
         fprintf(ficresprob,"\n%d ",(int)age);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    /* End of Freq */
    }
       }  
     }  /************ Prevalence ********************/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  {  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   }       We still use firstpass and lastpass as another selection.
   free_vector(xp,1,npar);    */
   fclose(ficresprob);   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 }    double ***freq; /* Frequencies */
     double *pp, **prop;
 /******************* Printing html file ***********/    double pos,posprop; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double  y2; /* in fractional years */
  int lastpass, int stepm, int weightopt, char model[],\    int iagemin, iagemax;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    iagemin= (int) agemin;
  char version[], int popforecast, int estepm ){    iagemax= (int) agemax;
   int jj1, k1, i1, cpt;    /*pp=vector(1,nlstate);*/
   FILE *fichtm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*char optionfilehtm[FILENAMELENGTH];*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    j=cptcoveff;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with %s \n",optionfilehtm), exit(0);    
   }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        j1++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        
 \n        for (i=1; i<=nlstate; i++)  
 Total number of observations=%d <br>\n          for(m=iagemin; m <= iagemax+3; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            prop[i][m]=0.0;
 <hr  size=\"2\" color=\"#EC5E5E\">       
  <ul><li>Outputs files<br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          bool=1;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          if  (cptcovn>0) {
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                bool=0;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          } 
           if (bool==1) { 
  fprintf(fichtm,"\n            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
  if(popforecast==1) fprintf(fichtm,"\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                  prop[s[m][i]][iagemax+3] += weight[i]; 
         <br>",fileres,fileres,fileres,fileres);                } 
  else              }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            } /* end selection of waves */
 fprintf(fichtm," <li>Graphs</li><p>");          }
         }
  m=cptcoveff;        for(i=iagemin; i <= iagemax+3; i++){  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  jj1=0;            posprop += prop[jk][i]; 
  for(k1=1; k1<=m;k1++){          } 
    for(i1=1; i1<=ncodemax[k1];i1++){  
        jj1++;          for(jk=1; jk <=nlstate ; jk++){     
        if (cptcovn > 0) {            if( i <=  iagemax){ 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if(posprop>=1.e-5){ 
          for (cpt=1; cpt<=cptcoveff;cpt++)                probs[i][jk][j1]= prop[jk][i]/posprop;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            } 
        }          }/* end jk */ 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        }/* end i */ 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          } /* end i1 */
        for(cpt=1; cpt<nlstate;cpt++){    } /* end k1 */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        }    /*free_vector(pp,1,nlstate);*/
     for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  }  /* End of prevalence */
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /************* Waves Concatenation ***************/
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      }       Death is a valid wave (if date is known).
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 health expectancies in states (1) and (2): e%s%d.gif<br>       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       and mw[mi+1][i]. dh depends on stepm.
 fprintf(fichtm,"\n</body>");       */
    }  
    }    int i, mi, m;
 fclose(fichtm);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     int first;
 /******************* Gnuplot file **************/    int j, k=0,jk, ju, jl;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double sum=0.;
     first=0;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    jmin=1e+5;
     jmax=-1;
   strcpy(optionfilegnuplot,optionfilefiname);    jmean=0.;
   strcat(optionfilegnuplot,".gp.txt");    for(i=1; i<=imx; i++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      mi=0;
     printf("Problem with file %s",optionfilegnuplot);      m=firstpass;
   }      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 #ifdef windows          mw[++mi][i]=m;
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if(m >=lastpass)
 #endif          break;
 m=pow(2,cptcoveff);        else
            m++;
  /* 1eme*/      }/* end while */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      if (s[m][i] > nlstate){
    for (k1=1; k1<= m ; k1 ++) {        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);           /* Only death is a correct wave */
         mw[mi][i]=m;
 for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }      if(mi==0){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        nbwarn++;
     for (i=1; i<= nlstate ; i ++) {        if(first==0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          first=1;
 }        }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        if(first==1){
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end mi==0 */
 }      } /* End individuals */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
     for(i=1; i<=imx; i++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(mi=1; mi<wav[i];mi++){
    }        if (stepm <=0)
   }          dh[mi][i]=1;
   /*2 eme*/        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   for (k1=1; k1<= m ; k1 ++) {            if (agedc[i] < 2*AGESUP) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
     for (i=1; i<= nlstate+1 ; i ++) {              else if(j<0){
       k=2*i;                nberr++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {                j=1; /* Temporary Dangerous patch */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              k=k+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax) jmax=j;
       for (j=1; j<= nlstate+1 ; j ++) {              if (j <= jmin) jmin=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            k=k+1;
       else fprintf(ficgp,"\" t\"\" w l 0,");            if (j >= jmax) jmax=j;
     }            else if (j <= jmin)jmin=j;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
   /*3eme*/              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {            }
       k=2+nlstate*(2*cpt-2);            sum=sum+j;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          jk= j/stepm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          jl= j -jk*stepm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          ju= j -(jk+1)*stepm;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            if(jl==0){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              dh[mi][i]=jk;
               bh[mi][i]=0;
 */            }else{ /* We want a negative bias in order to only have interpolation ie
       for (i=1; i< nlstate ; i ++) {                    * at the price of an extra matrix product in likelihood */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
       }            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }else{
     }            if(jl <= -ju){
     }              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /* CV preval stat */                                   * is higher than the multiple of stepm and negative otherwise.
     for (k1=1; k1<= m ; k1 ++) {                                   */
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;            else{
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);            if(dh[mi][i]==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              dh[mi][i]=1; /* At least one step */
                    bh[mi][i]=ju; /* At least one step */
       l=3+(nlstate+ndeath)*cpt;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {          } /* end if mle */
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);      } /* end wave */
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      jmean=sum/k;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }     }
    
   /* proba elementaires */  /*********** Tricode ****************************/
    for(i=1,jk=1; i <=nlstate; i++){  void tricode(int *Tvar, int **nbcode, int imx)
     for(k=1; k <=(nlstate+ndeath); k++){  {
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
            int cptcode=0;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    cptcoveff=0; 
           jk++;   
           fprintf(ficgp,"\n");    for (k=0; k<maxncov; k++) Ndum[k]=0;
         }    for (k=1; k<=7; k++) ncodemax[k]=0;
       }  
     }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
     for(jk=1; jk <=m; jk++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        Ndum[ij]++; /*store the modality */
    i=1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    for(k2=1; k2<=nlstate; k2++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      k3=i;                                         Tvar[j]. If V=sex and male is 0 and 
      for(k=1; k<=(nlstate+ndeath); k++) {                                         female is 1, then  cptcode=1.*/
        if (k != k2){      }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;      for (i=0; i<=cptcode; i++) {
         for(j=3; j <=ncovmodel; j++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;      ij=1; 
           }      for (i=1; i<=ncodemax[j]; i++) {
           else        for (k=0; k<= maxncov; k++) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          if (Ndum[k] != 0) {
         }            nbcode[Tvar[j]][ij]=k; 
           fprintf(ficgp,")/(1");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                    
         for(k1=1; k1 <=nlstate; k1++){              ij++;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          }
 ij=1;          if (ij > ncodemax[j]) break; 
           for(j=3; j <=ncovmodel; j++){        }  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }  
             ij++;  
           }   for (k=0; k< maxncov; k++) Ndum[k]=0;
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   for (i=1; i<=ncovmodel-2; i++) { 
           }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
           fprintf(ficgp,")");     ij=Tvar[i];
         }     Ndum[ij]++;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);   }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;   ij=1;
        }   for (i=1; i<= maxncov; i++) {
      }     if((Ndum[i]!=0) && (i<=ncovcol)){
    }       Tvaraff[ij]=i; /*For printing */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       ij++;
    }     }
       }
   fclose(ficgp);   
 }  /* end gnuplot */   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   
 /*************** Moving average **************/  /*********** Health Expectancies ****************/
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  {
       for (i=1; i<=nlstate;i++)    /* Health expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double age, agelim, hf;
        double ***p3mat,***varhe;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double **dnewm,**doldm;
       for (i=1; i<=nlstate;i++){    double *xp;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **gp, **gm;
           for (cpt=0;cpt<=4;cpt++){    double ***gradg, ***trgradg;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int theta;
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         }    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
 }    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
 /************** Forecasting ******************/    for(i=1; i<=nlstate;i++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(j=1; j<=nlstate;j++)
          fprintf(ficreseij," %1d-%1d (SE)",i,j);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficreseij,"\n");
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if(estepm < stepm){
   double *popeffectif,*popcount;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***p3mat;    }
   char fileresf[FILENAMELENGTH];    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
  agelim=AGESUP;     * This is mainly to measure the difference between two models: for example
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcpy(fileresf,"f");     * to compare the new estimate of Life expectancy with the same linear 
   strcat(fileresf,fileres);     * hypothesis. A more precise result, taking into account a more precise
   if((ficresf=fopen(fileresf,"w"))==NULL) {     * curvature will be obtained if estepm is as small as stepm. */
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   if (mobilav==1) {       and note for a fixed period like estepm months */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     movingaverage(agedeb, fage, ageminpar, mobaverage);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   stepsize=(int) (stepm+YEARM-1)/YEARM;       results. So we changed our mind and took the option of the best precision.
   if (stepm<=12) stepsize=1;    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   agelim=AGESUP;  
      agelim=AGESUP;
   hstepm=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   hstepm=hstepm/stepm;      /* nhstepm age range expressed in number of stepm */
   yp1=modf(dateintmean,&yp);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   anprojmean=yp;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   yp2=modf((yp1*12),&yp);      /* if (stepm >= YEARM) hstepm=1;*/
   mprojmean=yp;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   yp1=modf((yp2*30.5),&yp);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   jprojmean=yp;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if(jprojmean==0) jprojmean=1;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if(mprojmean==0) jprojmean=1;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   for(cptcov=1;cptcov<=i2;cptcov++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   
       k=k+1;  
       fprintf(ficresf,"\n#******");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Computing  Variances of health expectancies */
       }  
       fprintf(ficresf,"******\n");       for(theta=1; theta <=npar; theta++){
       fprintf(ficresf,"# StartingAge FinalAge");        for(i=1; i<=npar; i++){ 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              }
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    
         fprintf(ficresf,"\n");        cptj=0;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            cptj=cptj+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           nhstepm = nhstepm/hstepm;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         
               
           for (h=0; h<=nhstepm; h++){        for(i=1; i<=npar; i++) 
             if (h==(int) (calagedate+YEARM*cpt)) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             }        
             for(j=1; j<=nlstate+ndeath;j++) {        cptj=0;
               kk1=0.;kk2=0;        for(j=1; j<= nlstate; j++){
               for(i=1; i<=nlstate;i++) {                        for(i=1;i<=nlstate;i++){
                 if (mobilav==1)            cptj=cptj+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                 }            }
                          }
               }        }
               if (h==(int)(calagedate+12*cpt)){        for(j=1; j<= nlstate*nlstate; j++)
                 fprintf(ficresf," %.3f", kk1);          for(h=0; h<=nhstepm-1; h++){
                                    gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               }          }
             }       } 
           }     
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* End theta */
         }  
       }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     }  
   }       for(h=0; h<=nhstepm-1; h++)
                for(j=1; j<=nlstate*nlstate;j++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   fclose(ficresf);       
 }  
 /************** Forecasting ******************/       for(i=1;i<=nlstate*nlstate;i++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;       printf("%d|",(int)age);fflush(stdout);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double *popeffectif,*popcount;       for(h=0;h<=nhstepm-1;h++){
   double ***p3mat,***tabpop,***tabpopprev;        for(k=0;k<=nhstepm-1;k++){
   char filerespop[FILENAMELENGTH];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1;i<=nlstate*nlstate;i++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1;j<=nlstate*nlstate;j++)
   agelim=AGESUP;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        }
        }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   strcpy(filerespop,"pop");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(filerespop,fileres);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            
     printf("Problem with forecast resultfile: %s\n", filerespop);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);          }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   if (mobilav==1) {      for(i=1; i<=nlstate;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficreseij,"\n");
   if (stepm<=12) stepsize=1;     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   hstepm=1;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   if (popforecast==1) {    printf("\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficlog,"\n");
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }    free_vector(xp,1,npar);
     popage=ivector(0,AGESUP);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     popeffectif=vector(0,AGESUP);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     popcount=vector(0,AGESUP);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  /************ Variance ******************/
      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     imx=i;  {
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   for(cptcov=1;cptcov<=i2;cptcov++){    double **dnewm,**doldm;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **dnewmp,**doldmp;
       k=k+1;    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficrespop,"\n#******");    int k, cptcode;
       for(j=1;j<=cptcoveff;j++) {    double *xp;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
       fprintf(ficrespop,"******\n");    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficrespop,"# Age");    double *gpp, *gmp; /* for var p point j */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    double ***p3mat;
          double age,agelim, hf;
       for (cpt=0; cpt<=0;cpt++) {    double ***mobaverage;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int theta;
            char digit[4];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    char digitp[25];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    char fileresprobmorprev[FILENAMELENGTH];
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(popbased==1){
           oldm=oldms;savm=savms;      if(mobilav!=0)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          strcpy(digitp,"-populbased-mobilav-");
              else strcpy(digitp,"-populbased-nomobil-");
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    else 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      strcpy(digitp,"-stablbased-");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    if (mobilav!=0) {
               kk1=0.;kk2=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(i=1; i<=nlstate;i++) {                    if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                 if (mobilav==1)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 else {      }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }  
               }    strcpy(fileresprobmorprev,"prmorprev"); 
               if (h==(int)(calagedate+12*cpt)){    sprintf(digit,"%-d",ij);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   /*fprintf(ficrespop," %.3f", kk1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               }    strcat(fileresprobmorprev,fileres);
             }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             for(i=1; i<=nlstate;i++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               kk1=0.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 for(j=1; j<=nlstate;j++){    }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 }   
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       }    }  
      fprintf(ficresprobmorprev,"\n");
   /******/    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*   } */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;   fprintf(ficresvij, "#Local time at start: %s", strstart);
              fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresvij,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    xp=vector(1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    dnewm=matrix(1,nlstate,1,npar);
               kk1=0.;kk2=0;    doldm=matrix(1,nlstate,1,nlstate);
               for(i=1; i<=nlstate;i++) {                  dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             }    gpp=vector(nlstate+1,nlstate+ndeath);
           }    gmp=vector(nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    
       }    if(estepm < stepm){
    }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
      else  hstepm=estepm;   
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (popforecast==1) {       nhstepm is the number of hstepm from age to agelim 
     free_ivector(popage,0,AGESUP);       nstepm is the number of stepm from age to agelin. 
     free_vector(popeffectif,0,AGESUP);       Look at hpijx to understand the reason of that which relies in memory size
     free_vector(popcount,0,AGESUP);       and note for a fixed period like k years */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed every two years of age and if
   fclose(ficrespop);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 }       results. So we changed our mind and took the option of the best precision.
     */
 /***********************************************/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 /**************** Main Program *****************/    agelim = AGESUP;
 /***********************************************/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 int main(int argc, char *argv[])      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      gp=matrix(0,nhstepm,1,nlstate);
   double agedeb, agefin,hf;      gm=matrix(0,nhstepm,1,nlstate);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   
   double fret;      for(theta=1; theta <=npar; theta++){
   double **xi,tmp,delta;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double dum; /* Dummy variable */        }
   double ***p3mat;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int *indx;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];        if (popbased==1) {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          if(mobilav ==0){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   char filerest[FILENAMELENGTH];              prlim[i][i]=mobaverage[(int)age][i][ij];
   char fileregp[FILENAMELENGTH];          }
   char popfile[FILENAMELENGTH];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    
   int firstobs=1, lastobs=10;        for(j=1; j<= nlstate; j++){
   int sdeb, sfin; /* Status at beginning and end */          for(h=0; h<=nhstepm; h++){
   int c,  h , cpt,l;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   int ju,jl, mi;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
   int mobilav=0,popforecast=0;        /* This for computing probability of death (h=1 means
   int hstepm, nhstepm;           computed over hstepm matrices product = hstepm*stepm months) 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;           as a weighted average of prlim.
         */
   double bage, fage, age, agelim, agebase;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double ftolpl=FTOL;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double **prlim;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double *severity;        }    
   double ***param; /* Matrix of parameters */        /* end probability of death */
   double  *p;  
   double **matcov; /* Matrix of covariance */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double ***delti3; /* Scale */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *delti; /* Scale */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***eij, ***vareij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **varpl; /* Variances of prevalence limits by age */   
   double *epj, vepp;        if (popbased==1) {
   double kk1, kk2;          if(mobilav ==0){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";            for(i=1; i<=nlstate;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   char z[1]="c", occ;  
 #include <sys/time.h>        for(j=1; j<= nlstate; j++){
 #include <time.h>          for(h=0; h<=nhstepm; h++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* long total_usecs;          }
   struct timeval start_time, end_time;        }
          /* This for computing probability of death (h=1 means
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */           computed over hstepm matrices product = hstepm*stepm months) 
   getcwd(pathcd, size);           as a weighted average of prlim.
         */
   printf("\n%s",version);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if(argc <=1){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     printf("\nEnter the parameter file name: ");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     scanf("%s",pathtot);        }    
   }        /* end probability of death */
   else{  
     strcpy(pathtot,argv[1]);        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /*cygwin_split_path(pathtot,path,optionfile);          }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      } /* End theta */
   replace(pathc,path);  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 /*-------- arguments in the command line --------*/  
       for(h=0; h<=nhstepm; h++) /* veij */
   strcpy(fileres,"r");        for(j=1; j<=nlstate;j++)
   strcat(fileres, optionfilefiname);          for(theta=1; theta <=npar; theta++)
   strcat(fileres,".txt");    /* Other files have txt extension */            trgradg[h][j][theta]=gradg[h][theta][j];
   
   /*---------arguments file --------*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          trgradgp[j][theta]=gradgp[theta][j];
     printf("Problem with optionfile %s\n",optionfile);    
     goto end;  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   strcpy(filereso,"o");        for(j=1;j<=nlstate;j++)
   strcat(filereso,fileres);          vareij[i][j][(int)age] =0.;
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     puts(line);        }
     fputs(line,ficparo);      }
   }    
   ungetc(c,ficpar);      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){          varppt[j][i]=doldmp[j][i];
     ungetc(c,ficpar);      /* end ppptj */
     fgets(line, MAXLINE, ficpar);      /*  x centered again */
     puts(line);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     fputs(line,ficparo);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
   ungetc(c,ficpar);      if (popbased==1) {
          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);            prlim[i][i]=probs[(int)age][i][ij];
   cptcovn=0;        }else{ /* mobilav */ 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      }
                 
   /* Read guess parameters */      /* This for computing probability of death (h=1 means
   /* Reads comments: lines beginning with '#' */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   while((c=getc(ficpar))=='#' && c!= EOF){         as a weighted average of prlim.
     ungetc(c,ficpar);      */
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     puts(line);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fputs(line,ficparo);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
   ungetc(c,ficpar);      /* end probability of death */
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     for(i=1; i <=nlstate; i++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(i=1; i<=nlstate;i++){
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){      } 
         fscanf(ficpar," %lf",&param[i][j][k]);      fprintf(ficresprobmorprev,"\n");
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");        for(j=1; j<=nlstate;j++){
       printf("\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       fprintf(ficparo,"\n");        }
     }      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   p=param[1][1];      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Reads comments: lines beginning with '#' */    } /* End age */
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fputs(line,ficparo);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(i=1; i <=nlstate; i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       printf("%1d%1d",i,j);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(k=1; k<=ncovmodel;k++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fscanf(ficpar,"%le",&delti3[i][j][k]);  */
         printf(" %le",delti3[i][j][k]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }  
       fscanf(ficpar,"\n");    free_vector(xp,1,npar);
       printf("\n");    free_matrix(doldm,1,nlstate,1,nlstate);
       fprintf(ficparo,"\n");    free_matrix(dnewm,1,nlstate,1,npar);
     }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   delti=delti3[1][1];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Reads comments: lines beginning with '#' */    fclose(ficresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(ficgp);
     ungetc(c,ficpar);    fflush(fichtm); 
     fgets(line, MAXLINE, ficpar);  }  /* end varevsij */
     puts(line);  
     fputs(line,ficparo);  /************ Variance of prevlim ******************/
   }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   ungetc(c,ficpar);  {
      /* Variance of prevalence limit */
   matcov=matrix(1,npar,1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   for(i=1; i <=npar; i++){    double **newm;
     fscanf(ficpar,"%s",&str);    double **dnewm,**doldm;
     printf("%s",str);    int i, j, nhstepm, hstepm;
     fprintf(ficparo,"%s",str);    int k, cptcode;
     for(j=1; j <=i; j++){    double *xp;
       fscanf(ficpar," %le",&matcov[i][j]);    double *gp, *gm;
       printf(" %.5le",matcov[i][j]);    double **gradg, **trgradg;
       fprintf(ficparo," %.5le",matcov[i][j]);    double age,agelim;
     }    int theta;
     fscanf(ficpar,"\n");    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     printf("\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficparo,"\n");    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++)        fprintf(ficresvpl," %1d-%1d",i,i);
     for(j=i+1;j<=npar;j++)    fprintf(ficresvpl,"\n");
       matcov[i][j]=matcov[j][i];  
        xp=vector(1,npar);
   printf("\n");    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     /*-------- Rewriting paramater file ----------*/    hstepm=1*YEARM; /* Every year of age */
      strcpy(rfileres,"r");    /* "Rparameterfile */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    agelim = AGESUP;
      strcat(rfileres,".");    /* */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     if((ficres =fopen(rfileres,"w"))==NULL) {      if (stepm >= YEARM) hstepm=1;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
     fprintf(ficres,"#%s\n",version);      gp=vector(1,nlstate);
          gm=vector(1,nlstate);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      for(theta=1; theta <=npar; theta++){
       printf("Problem with datafile: %s\n", datafile);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     n= lastobs;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     severity = vector(1,maxwav);        for(i=1;i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);          gp[i] = prlim[i][i];
     num=ivector(1,n);      
     moisnais=vector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient */
     annais=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     moisdc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     andc=vector(1,n);        for(i=1;i<=nlstate;i++)
     agedc=vector(1,n);          gm[i] = prlim[i][i];
     cod=ivector(1,n);  
     weight=vector(1,n);        for(i=1;i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     mint=matrix(1,maxwav,1,n);      } /* End theta */
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);      trgradg =matrix(1,nlstate,1,npar);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);      for(j=1; j<=nlstate;j++)
     ncodemax=ivector(1,8);        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {      for(i=1;i<=nlstate;i++)
       if ((i >= firstobs) && (i <=lastobs)) {        varpl[i][(int)age] =0.;
              matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         for (j=maxwav;j>=1;j--){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for(i=1;i<=nlstate;i++)
           strcpy(line,stra);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvpl,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
                fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvpl,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(gradg,1,npar,1,nlstate);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){    free_vector(xp,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,npar);
         }    free_matrix(dnewm,1,nlstate,1,nlstate);
         num[i]=atol(stra);  
          }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         i=i+1;  {
       }    int i, j=0,  i1, k1, l1, t, tj;
     }    int k2, l2, j1,  z1;
     /* printf("ii=%d", ij);    int k=0,l, cptcode;
        scanf("%d",i);*/    int first=1, first1;
   imx=i-1; /* Number of individuals */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   /* for (i=1; i<=imx; i++){    double *xp;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double *gp, *gm;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double **gradg, **trgradg;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double **mu;
     }*/    double age,agelim, cov[NCOVMAX];
    /*  for (i=1; i<=imx; i++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      if (s[4][i]==9)  s[4][i]=-1;    int theta;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    double ***varpij;
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);    strcpy(fileresprob,"prob"); 
   Tvard=imatrix(1,15,1,2);    strcat(fileresprob,fileres);
   Tage=ivector(1,15);          if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprob);
   if (strlen(model) >1){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');    strcpy(fileresprobcov,"probcov"); 
     j1=nbocc(model,'*');    strcat(fileresprobcov,fileres);
     cptcovn=j+1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     cptcovprod=j1;      printf("Problem with resultfile: %s\n", fileresprobcov);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     strcpy(modelsav,model);    }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    strcpy(fileresprobcor,"probcor"); 
       printf("Error. Non available option model=%s ",model);    strcat(fileresprobcor,fileres);
       goto end;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(i=(j+1); i>=1;i--){    }
       cutv(stra,strb,modelsav,'+');    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       /*scanf("%d",i);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       if (strchr(strb,'*')) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         cutv(strd,strc,strb,'*');    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         if (strcmp(strc,"age")==0) {    fprintf(ficresprob, "#Local time at start: %s", strstart);
           cptcovprod--;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           cutv(strb,stre,strd,'V');    fprintf(ficresprob,"# Age");
           Tvar[i]=atoi(stre);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
           cptcovage++;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
             Tage[cptcovage]=i;    fprintf(ficresprobcov,"# Age");
             /*printf("stre=%s ", stre);*/    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
         }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         else if (strcmp(strd,"age")==0) {    fprintf(ficresprobcov,"# Age");
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    for(i=1; i<=nlstate;i++)
           cptcovage++;      for(j=1; j<=(nlstate+ndeath);j++){
           Tage[cptcovage]=i;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         else {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           cutv(strb,stre,strc,'V');      }  
           Tvar[i]=ncovcol+k1;   /* fprintf(ficresprob,"\n");
           cutv(strb,strc,strd,'V');    fprintf(ficresprobcov,"\n");
           Tprod[k1]=i;    fprintf(ficresprobcor,"\n");
           Tvard[k1][1]=atoi(strc);   */
           Tvard[k1][2]=atoi(stre);   xp=vector(1,npar);
           Tvar[cptcovn+k2]=Tvard[k1][1];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           for (k=1; k<=lastobs;k++)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           k1++;    first=1;
           k2=k2+2;    fprintf(ficgp,"\n# Routine varprob");
         }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       }    fprintf(fichtm,"\n");
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        /*  scanf("%d",i);*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       cutv(strd,strc,strb,'V');    file %s<br>\n",optionfilehtmcov);
       Tvar[i]=atoi(strc);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       }  and drawn. It helps understanding how is the covariance between two incidences.\
       strcpy(modelsav,stra);     They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         scanf("%d",i);*/  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 }  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   printf("cptcovprod=%d ", cptcovprod);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   scanf("%d ",i);*/  
     fclose(fic);    cov[1]=1;
     tj=cptcoveff;
     /*  if(mle==1){*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     if (weightopt != 1) { /* Maximisation without weights*/    j1=0;
       for(i=1;i<=n;i++) weight[i]=1.0;    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
     /*-calculation of age at interview from date of interview and age at death -*/        j1++;
     agev=matrix(1,maxwav,1,imx);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
     for (i=1; i<=imx; i++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(m=2; (m<= maxwav); m++) {          fprintf(ficresprob, "**********\n#\n");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficresprobcov, "\n#********** Variable "); 
          anint[m][i]=9999;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          s[m][i]=-1;          fprintf(ficresprobcov, "**********\n#\n");
        }          
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
           
     for (i=1; i<=imx; i++)  {          
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if(s[m][i] >0){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           if (s[m][i] >= nlstate+1) {          
             if(agedc[i]>0)          fprintf(ficresprobcor, "\n#********** Variable ");    
               if(moisdc[i]!=99 && andc[i]!=9999)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 agev[m][i]=agedc[i];          fprintf(ficresprobcor, "**********\n#");    
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {        
               if (andc[i]!=9999){        for (age=bage; age<=fage; age ++){ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          cov[2]=age;
               agev[m][i]=-1;          for (k=1; k<=cptcovn;k++) {
               }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             }          }
           }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           else if(s[m][i] !=9){ /* Should no more exist */          for (k=1; k<=cptcovprod;k++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if(mint[m][i]==99 || anint[m][i]==9999)          
               agev[m][i]=1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             else if(agev[m][i] <agemin){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               agemin=agev[m][i];          gp=vector(1,(nlstate)*(nlstate+ndeath));
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
             }      
             else if(agev[m][i] >agemax){          for(theta=1; theta <=npar; theta++){
               agemax=agev[m][i];            for(i=1; i<=npar; i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             }            
             /*agev[m][i]=anint[m][i]-annais[i];*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             /*   agev[m][i] = age[i]+2*m;*/            
           }            k=0;
           else { /* =9 */            for(i=1; i<= (nlstate); i++){
             agev[m][i]=1;              for(j=1; j<=(nlstate+ndeath);j++){
             s[m][i]=-1;                k=k+1;
           }                gp[k]=pmmij[i][j];
         }              }
         else /*= 0 Unknown */            }
           agev[m][i]=1;            
       }            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     }      
     for (i=1; i<=imx; i++)  {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for(m=1; (m<= maxwav); m++){            k=0;
         if (s[m][i] > (nlstate+ndeath)) {            for(i=1; i<=(nlstate); i++){
           printf("Error: Wrong value in nlstate or ndeath\n");                for(j=1; j<=(nlstate+ndeath);j++){
           goto end;                k=k+1;
         }                gm[k]=pmmij[i][j];
       }              }
     }            }
        
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     free_vector(annais,1,n);            for(theta=1; theta <=npar; theta++)
     /* free_matrix(mint,1,maxwav,1,n);              trgradg[j][theta]=gradg[theta][j];
        free_matrix(anint,1,maxwav,1,n);*/          
     free_vector(moisdc,1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     free_vector(andc,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     wav=ivector(1,imx);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
              pmij(pmmij,cov,ncovmodel,x,nlstate);
     /* Concatenates waves */          
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
       Tcode=ivector(1,100);              k=k+1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              mu[k][(int) age]=pmmij[i][j];
       ncodemax[1]=1;            }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
                for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    codtab=imatrix(1,100,1,10);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    h=0;              varpij[i][j][(int)age] = doldm[i][j];
    m=pow(2,cptcoveff);  
            /*printf("\n%d ",(int)age);
    for(k=1;k<=cptcoveff; k++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      for(i=1; i <=(m/pow(2,k));i++){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        for(j=1; j <= ncodemax[k]; j++){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            }*/
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          fprintf(ficresprob,"\n%d ",(int)age);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
          }          fprintf(ficresprobcor,"\n%d ",(int)age);
        }  
      }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       codtab[1][2]=1;codtab[2][2]=2; */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    /* for(i=1; i <=m ;i++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       for(k=1; k <=cptcovn; k++){          }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          i=0;
       }          for (k=1; k<=(nlstate);k++){
       printf("\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
       }              i=i++;
       scanf("%d",i);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    /* Calculates basic frequencies. Computes observed prevalence at single age              for (j=1; j<=i;j++){
        and prints on file fileres'p'. */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                  }
                }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }/* end of loop for state */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        } /* end of loop for age */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Confidence intervalle of pij  */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /*
                fprintf(ficgp,"\nset noparametric;unset label");
     /* For Powell, parameters are in a vector p[] starting at p[1]          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     if(mle==1){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     }        */
      
     /*--------- results files --------------*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        first1=1;
          for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
    jk=1;            if(l2==k2) continue;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            j=(k2-1)*(nlstate+ndeath)+l2;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for (k1=1; k1<=(nlstate);k1++){
    for(i=1,jk=1; i <=nlstate; i++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
      for(k=1; k <=(nlstate+ndeath); k++){                if(l1==k1) continue;
        if (k != i)                i=(k1-1)*(nlstate+ndeath)+l1;
          {                if(i<=j) continue;
            printf("%d%d ",i,k);                for (age=bage; age<=fage; age ++){ 
            fprintf(ficres,"%1d%1d ",i,k);                  if ((int)age %5==0){
            for(j=1; j <=ncovmodel; j++){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
              printf("%f ",p[jk]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
              fprintf(ficres,"%f ",p[jk]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
              jk++;                    mu1=mu[i][(int) age]/stepm*YEARM ;
            }                    mu2=mu[j][(int) age]/stepm*YEARM;
            printf("\n");                    c12=cv12/sqrt(v1*v2);
            fprintf(ficres,"\n");                    /* Computing eigen value of matrix of covariance */
          }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    }                    /* Eigen vectors */
  if(mle==1){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     /* Computing hessian and covariance matrix */                    /*v21=sqrt(1.-v11*v11); *//* error */
     ftolhess=ftol; /* Usually correct */                    v21=(lc1-v1)/cv12*v11;
     hesscov(matcov, p, npar, delti, ftolhess, func);                    v12=-v21;
  }                    v22=v11;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                    tnalp=v21/v11;
     printf("# Scales (for hessian or gradient estimation)\n");                    if(first1==1){
      for(i=1,jk=1; i <=nlstate; i++){                      first1=0;
       for(j=1; j <=nlstate+ndeath; j++){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         if (j!=i) {                    }
           fprintf(ficres,"%1d%1d",i,j);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           printf("%1d%1d",i,j);                    /*printf(fignu*/
           for(k=1; k<=ncovmodel;k++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
             printf(" %.5e",delti[jk]);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             fprintf(ficres," %.5e",delti[jk]);                    if(first==1){
             jk++;                      first=0;
           }                      fprintf(ficgp,"\nset parametric;unset label");
           printf("\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           fprintf(ficres,"\n");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
      }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                  subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     k=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     for(i=1;i<=npar;i++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       /*  if (k>nlstate) k=1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       i1=(i-1)/(ncovmodel*nlstate)+1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       printf("%s%d%d",alph[k],i1,tab[i]);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficres,"%3d",i);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       printf("%3d",i);                    }else{
       for(j=1; j<=i;j++){                      first=0;
         fprintf(ficres," %.5e",matcov[i][j]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         printf(" %.5e",matcov[i][j]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficres,"\n");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       printf("\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       k++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }/* if first */
                      } /* age mod 5 */
     while((c=getc(ficpar))=='#' && c!= EOF){                } /* end loop age */
       ungetc(c,ficpar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fgets(line, MAXLINE, ficpar);                first=1;
       puts(line);              } /*l12 */
       fputs(line,ficparo);            } /* k12 */
     }          } /*l1 */
     ungetc(c,ficpar);        }/* k1 */
     estepm=0;      } /* loop covariates */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
     if (estepm==0 || estepm < stepm) estepm=stepm;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     if (fage <= 2) {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       bage = ageminpar;    free_vector(xp,1,npar);
       fage = agemaxpar;    fclose(ficresprob);
     }    fclose(ficresprobcov);
        fclose(ficresprobcor);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fflush(ficgp);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fflush(fichtmcov);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  }
    
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /******************* Printing html file ***********/
     fgets(line, MAXLINE, ficpar);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     puts(line);                    int lastpass, int stepm, int weightopt, char model[],\
     fputs(line,ficparo);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
   ungetc(c,ficpar);                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    int jj1, k1, i1, cpt;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   while((c=getc(ficpar))=='#' && c!= EOF){  </ul>");
     ungetc(c,ficpar);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     fgets(line, MAXLINE, ficpar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     puts(line);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fputs(line,ficparo);     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   ungetc(c,ficpar);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    dateprev1=anprev1+mprev1/12.+jprev1/365.;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
   fscanf(ficpar,"pop_based=%d\n",&popbased);     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficparo,"pop_based=%d\n",popbased);               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficres,"pop_based=%d\n",popbased);    
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       if (cptcovn > 0) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);       /* Pij */
     fgets(line, MAXLINE, ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     puts(line);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     fputs(line,ficparo);       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   ungetc(c,ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         /* Stable prevalence in each health state */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);         for(cpt=1; cpt<nlstate;cpt++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
 /*------------ gnuplot -------------*/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }
 /*------------ free_vector  -------------*/     } /* end i1 */
  chdir(path);   }/* End k1 */
     fprintf(fichtm,"</ul>");
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     fprintf(fichtm,"\
  free_ivector(num,1,n);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  free_vector(agedc,1,n);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fclose(ficres);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
 /*--------- index.htm --------*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
    fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*--------------- Prevalence limit --------------*/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fprintf(fichtm,"\
   strcpy(filerespl,"pl");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   strcat(filerespl,fileres);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   fprintf(fichtm,"\
   fprintf(ficrespl,"#Prevalence limit\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fprintf(ficrespl,"#Age ");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
    /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   prlim=matrix(1,nlstate,1,nlstate);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*      <br>",fileres,fileres,fileres,fileres); */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*  else  */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   fflush(fichtm);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   k=0;  
   agebase=ageminpar;   m=cptcoveff;
   agelim=agemaxpar;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   ftolpl=1.e-10;  
   i1=cptcoveff;   jj1=0;
   if (cptcovn < 1){i1=1;}   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   for(cptcov=1;cptcov<=i1;cptcov++){       jj1++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       if (cptcovn > 0) {
         k=k+1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrespl,"\n#******");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for(j=1;j<=cptcoveff;j++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
         fprintf(ficrespl,"******\n");       for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         for (age=agebase; age<=agelim; age++){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           fprintf(ficrespl,"%.0f",age );       }
           for(i=1; i<=nlstate;i++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           fprintf(ficrespl," %.5f", prlim[i][i]);  health expectancies in states (1) and (2): %s%d.png<br>\
           fprintf(ficrespl,"\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         }     } /* end i1 */
       }   }/* End k1 */
     }   fprintf(fichtm,"</ul>");
   fclose(ficrespl);   fflush(fichtm);
   }
   /*------------- h Pij x at various ages ------------*/  
    /******************* Gnuplot file **************/
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    char dirfileres[132],optfileres[132];
   }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   printf("Computing pij: result on file '%s' \n", filerespij);    int ng;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*if (stepm<=24) stepsize=2;*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    /*#ifdef windows */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
   k=0;    m=pow(2,cptcoveff);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(dirfileres,optionfilefiname);
       k=k+1;    strcpy(optfileres,"vpl");
         fprintf(ficrespij,"\n#****** ");   /* 1eme*/
         for(j=1;j<=cptcoveff;j++)    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficrespij,"******\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
               fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       fprintf(ficgp,"set xlabel \"Age\" \n\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  set ylabel \"Probability\" \n\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  set ter png small\n\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  set size 0.65,0.65\n\
           oldm=oldms;savm=savms;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");       for (i=1; i<= nlstate ; i ++) {
           for(i=1; i<=nlstate;i++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             for(j=1; j<=nlstate+ndeath;j++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
               fprintf(ficrespij," %1d-%1d",i,j);       }
           fprintf(ficrespij,"\n");       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
            for (h=0; h<=nhstepm; h++){       for (i=1; i<= nlstate ; i ++) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             for(i=1; i<=nlstate;i++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
               for(j=1; j<=nlstate+ndeath;j++)       } 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
             fprintf(ficrespij,"\n");       for (i=1; i<= nlstate ; i ++) {
              }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrespij,"\n");       }  
         }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     }     }
   }    }
     /*2 eme*/
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficrespij);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
   /*---------- Forecasting ------------------*/      for (i=1; i<= nlstate+1 ; i ++) {
   if((stepm == 1) && (strcmp(model,".")==0)){        k=2*i;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   else{          else fprintf(ficgp," \%%*lf (\%%*lf)");
     erreur=108;        }   
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /*---------- Health expectancies and variances ------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerest,"t");        }   
   strcat(filerest,fileres);        fprintf(ficgp,"\" t\"\" w l 0,");
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   strcpy(filerese,"e");        else fprintf(ficgp,"\" t\"\" w l 0,");
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    
   }    /*3eme*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     for (k1=1; k1<= m ; k1 ++) { 
  strcpy(fileresv,"v");      for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcat(fileresv,fileres);        k=2+nlstate*(2*cpt-2);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficgp,"set ter png small\n\
   }  set size 0.65,0.65\n\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   calagedate=-1;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   k=0;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       k=k+1;          
       fprintf(ficrest,"\n#****** ");        */
       for(j=1;j<=cptcoveff;j++)        for (i=1; i< nlstate ; i ++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
       fprintf(ficrest,"******\n");          
         } 
       fprintf(ficreseij,"\n#****** ");      }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficreseij,"******\n");    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficresvij,"\n#****** ");      for (cpt=1; cpt<=nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++)        k=3;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fprintf(ficresvij,"******\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  unset log y\n\
       oldm=oldms;savm=savms;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          
          for (i=1; i< nlstate ; i ++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"+$%d",k+i+1);
       oldm=oldms;savm=savms;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        
            l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          l=3+(nlstate+ndeath)*cpt;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficgp,"+$%d",l+i+1);
       fprintf(ficrest,"\n");        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       epj=vector(1,nlstate+1);      } 
       for(age=bage; age <=fage ;age++){    }  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
         if (popbased==1) {    /* proba elementaires */
           for(i=1; i<=nlstate;i++)    for(i=1,jk=1; i <=nlstate; i++){
             prlim[i][i]=probs[(int)age][i][k];      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
                  for(j=1; j <=ncovmodel; j++){
         fprintf(ficrest," %4.0f",age);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            jk++; 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            fprintf(ficgp,"\n");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        }
           }      }
           epj[nlstate+1] +=epj[j];     }
         }  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(i=1, vepp=0.;i <=nlstate;i++)       for(jk=1; jk <=m; jk++) {
           for(j=1;j <=nlstate;j++)         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             vepp += vareij[i][j][(int)age];         if (ng==2)
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         for(j=1;j <=nlstate;j++){         else
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));           fprintf(ficgp,"\nset title \"Probability\"\n");
         }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         fprintf(ficrest,"\n");         i=1;
       }         for(k2=1; k2<=nlstate; k2++) {
     }           k3=i;
   }           for(k=1; k<=(nlstate+ndeath); k++) {
 free_matrix(mint,1,maxwav,1,n);             if (k != k2){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);               if(ng==2)
     free_vector(weight,1,n);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   fclose(ficreseij);               else
   fclose(ficresvij);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fclose(ficrest);               ij=1;
   fclose(ficpar);               for(j=3; j <=ncovmodel; j++) {
   free_vector(epj,1,nlstate+1);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*------- Variance limit prevalence------*/                     ij++;
                  }
   strcpy(fileresvpl,"vpl");                 else
   strcat(fileresvpl,fileres);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {               }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);               fprintf(ficgp,")/(1");
     exit(0);               
   }               for(k1=1; k1 <=nlstate; k1++){   
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
   k=0;                 for(j=3; j <=ncovmodel; j++){
   for(cptcov=1;cptcov<=i1;cptcov++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k=k+1;                     ij++;
       fprintf(ficresvpl,"\n#****** ");                   }
       for(j=1;j<=cptcoveff;j++)                   else
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       fprintf(ficresvpl,"******\n");                 }
                       fprintf(ficgp,")");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);               }
       oldm=oldms;savm=savms;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     }               i=i+ncovmodel;
  }             }
            } /* end k */
   fclose(ficresvpl);         } /* end k2 */
        } /* end jk */
   /*---------- End : free ----------------*/     } /* end ng */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     fflush(ficgp); 
    }  /* end gnuplot */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
    /*************** Moving average **************/
    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    int i, cpt, cptcod;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    int modcovmax =1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int mobilavrange, mob;
      double age;
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   free_matrix(agev,1,maxwav,1,imx);                             a covariate has 2 modalities */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   if(erreur >0)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     printf("End of Imach with error or warning %d\n",erreur);      if(mobilav==1) mobilavrange=5; /* default */
   else   printf("End of Imach\n");      else mobilavrange=mobilav;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   /*------ End -----------*/      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
  end:      */ 
   /* chdir(pathcd);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
  /*system("wgnuplot graph.plt");*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for (i=1; i<=nlstate;i++){
  /*system("cd ../gp37mgw");*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
  strcpy(plotcmd,GNUPLOTPROGRAM);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
  strcat(plotcmd," ");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
  strcat(plotcmd,optionfilegnuplot);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  system(plotcmd);                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
  /*#ifdef windows*/            }
   while (z[0] != 'q') {          }
     /* chdir(path); */        }/* end age */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      }/* end mob */
     scanf("%s",z);    }else return -1;
     if (z[0] == 'c') system("./imach");    return 0;
     else if (z[0] == 'e') system(optionfilehtm);  }/* End movingaverage */
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);  
   }  /************** Forecasting ******************/
   /*#endif */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
 }    /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       printf("IIIII= %d linei=%d\n",i,linei);
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,'/');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);
             exit(1);
           }
           anint[j][i]=(double)(lval); 
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);
             exit(1);
           }
           mint[j][i]=(double)(lval); 
           strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         andc[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);
           exit(1);
         }
         moisdc[i]=(double)(lval); 
   
         strcpy(line,stra);
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);
           exit(1);
         }
         annais[i]=(double)(lval);
   
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);
           exit(1);
         }
         moisnais[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <0 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.109


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>