Diff for /imach/src/imach.c between versions 1.47 and 1.109

version 1.47, 2002/06/10 13:12:01 version 1.109, 2006/01/24 19:37:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.108  2006/01/19 18:05:42  lievre
   first survey ("cross") where individuals from different ages are    Gnuplot problem appeared...
   interviewed on their health status or degree of disability (in the    To be fixed
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.107  2006/01/19 16:20:37  brouard
   (if any) in individual health status.  Health expectancies are    Test existence of gnuplot in imach path
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.106  2006/01/19 13:24:36  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Some cleaning and links added in html output
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.105  2006/01/05 20:23:19  lievre
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.104  2005/09/30 16:11:43  lievre
   complex model than "constant and age", you should modify the program    (Module): sump fixed, loop imx fixed, and simplifications.
   where the markup *Covariates have to be included here again* invites    (Module): If the status is missing at the last wave but we know
   you to do it.  More covariates you add, slower the    that the person is alive, then we can code his/her status as -2
   convergence.    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   The advantage of this computer programme, compared to a simple    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   multinomial logistic model, is clear when the delay between waves is not    the healthy state at last known wave). Version is 0.98
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.103  2005/09/30 15:54:49  lievre
   account using an interpolation or extrapolation.      (Module): sump fixed, loop imx fixed, and simplifications.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.102  2004/09/15 17:31:30  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Add the possibility to read data file including tab characters.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.101  2004/09/15 10:38:38  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Fix on curr_time
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.100  2004/07/12 18:29:06  brouard
   hPijx.    Add version for Mac OS X. Just define UNIX in Makefile
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.99  2004/06/05 08:57:40  brouard
   of the life expectancies. It also computes the prevalence limits.    *** empty log message ***
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.98  2004/05/16 15:05:56  brouard
            Institut national d'études démographiques, Paris.    New version 0.97 . First attempt to estimate force of mortality
   This software have been partly granted by Euro-REVES, a concerted action    directly from the data i.e. without the need of knowing the health
   from the European Union.    state at each age, but using a Gompertz model: log u =a + b*age .
   It is copyrighted identically to a GNU software product, ie programme and    This is the basic analysis of mortality and should be done before any
   software can be distributed freely for non commercial use. Latest version    other analysis, in order to test if the mortality estimated from the
   can be accessed at http://euroreves.ined.fr/imach .    cross-longitudinal survey is different from the mortality estimated
   **********************************************************************/    from other sources like vital statistic data.
    
 #include <math.h>    The same imach parameter file can be used but the option for mle should be -3.
 #include <stdio.h>  
 #include <stdlib.h>    Agnès, who wrote this part of the code, tried to keep most of the
 #include <unistd.h>    former routines in order to include the new code within the former code.
   
 #define MAXLINE 256    The output is very simple: only an estimate of the intercept and of
 #define GNUPLOTPROGRAM "gnuplot"    the slope with 95% confident intervals.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Current limitations:
 /*#define DEBUG*/    A) Even if you enter covariates, i.e. with the
 #define windows    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    B) There is no computation of Life Expectancy nor Life Table.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Version 0.96d. Population forecasting command line is (temporarily)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    suppressed.
   
 #define NINTERVMAX 8    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    rewritten within the same printf. Workaround: many printfs.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.95  2003/07/08 07:54:34  brouard
 #define YEARM 12. /* Number of months per year */    * imach.c (Repository):
 #define AGESUP 130    (Repository): Using imachwizard code to output a more meaningful covariance
 #define AGEBASE 40    matrix (cov(a12,c31) instead of numbers.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.94  2003/06/27 13:00:02  brouard
 #else    Just cleaning
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";    exist so I changed back to asctime which exists.
 int erreur; /* Error number */    (Module): Version 0.96b
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.92  2003/06/25 16:30:45  brouard
 int npar=NPARMAX;    (Module): On windows (cygwin) function asctime_r doesn't
 int nlstate=2; /* Number of live states */    exist so I changed back to asctime which exists.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.91  2003/06/25 15:30:29  brouard
 int popbased=0;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int *wav; /* Number of waves for this individuual 0 is possible */    helps to forecast when convergence will be reached. Elapsed time
 int maxwav; /* Maxim number of waves */    is stamped in powell.  We created a new html file for the graphs
 int jmin, jmax; /* min, max spacing between 2 waves */    concerning matrix of covariance. It has extension -cov.htm.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.90  2003/06/24 12:34:15  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Some bugs corrected for windows. Also, when
 double jmean; /* Mean space between 2 waves */    mle=-1 a template is output in file "or"mypar.txt with the design
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of the covariance matrix to be input.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.89  2003/06/24 12:30:52  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): Some bugs corrected for windows. Also, when
 FILE *fichtm; /* Html File */    mle=-1 a template is output in file "or"mypar.txt with the design
 FILE *ficreseij;    of the covariance matrix to be input.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.88  2003/06/23 17:54:56  brouard
 char fileresv[FILENAMELENGTH];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.87  2003/06/18 12:26:01  brouard
 char title[MAXLINE];    Version 0.96
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    routine fileappend.
   
 char filerest[FILENAMELENGTH];    Revision 1.85  2003/06/17 13:12:43  brouard
 char fileregp[FILENAMELENGTH];    * imach.c (Repository): Check when date of death was earlier that
 char popfile[FILENAMELENGTH];    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define NR_END 1    interview.
 #define FREE_ARG char*    (Repository): Because some people have very long ID (first column)
 #define FTOL 1.0e-10    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define NRANSI    truncation)
 #define ITMAX 200    (Repository): No more line truncation errors.
   
 #define TOL 2.0e-4    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define CGOLD 0.3819660    place. It differs from routine "prevalence" which may be called
 #define ZEPS 1.0e-10    many times. Probs is memory consuming and must be used with
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.83  2003/06/10 13:39:11  lievre
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.82  2003/06/05 15:57:20  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Add log in  imach.c and  fullversion number is now printed.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /*
 #define rint(a) floor(a+0.5)     Interpolated Markov Chain
   
 static double sqrarg;    Short summary of the programme:
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int imx;    first survey ("cross") where individuals from different ages are
 int stepm;    interviewed on their health status or degree of disability (in the
 /* Stepm, step in month: minimum step interpolation*/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 int estepm;    (if any) in individual health status.  Health expectancies are
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int m,nb;    Maximum Likelihood of the parameters involved in the model.  The
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    simplest model is the multinomial logistic model where pij is the
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    probability to be observed in state j at the second wave
 double **pmmij, ***probs, ***mobaverage;    conditional to be observed in state i at the first wave. Therefore
 double dateintmean=0;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 double *weight;    complex model than "constant and age", you should modify the program
 int **s; /* Status */    where the markup *Covariates have to be included here again* invites
 double *agedc, **covar, idx;    you to do it.  More covariates you add, slower the
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    convergence.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    The advantage of this computer programme, compared to a simple
 double ftolhess; /* Tolerance for computing hessian */    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /**************** split *************************/    intermediate interview, the information is lost, but taken into
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    account using an interpolation or extrapolation.  
 {  
    char *s;                             /* pointer */    hPijx is the probability to be observed in state i at age x+h
    int  l1, l2;                         /* length counters */    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
    l1 = strlen( path );                 /* length of path */    states. This elementary transition (by month, quarter,
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    semester or year) is modelled as a multinomial logistic.  The hPx
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    matrix is simply the matrix product of nh*stepm elementary matrices
    if ( s == NULL ) {                   /* no directory, so use current */    and the contribution of each individual to the likelihood is simply
 #if     defined(__bsd__)                /* get current working directory */    hPijx.
       extern char       *getwd( );  
     Also this programme outputs the covariance matrix of the parameters but also
       if ( getwd( dirc ) == NULL ) {    of the life expectancies. It also computes the stable prevalence. 
 #else    
       extern char       *getcwd( );    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    This software have been partly granted by Euro-REVES, a concerted action
 #endif    from the European Union.
          return( GLOCK_ERROR_GETCWD );    It is copyrighted identically to a GNU software product, ie programme and
       }    software can be distributed freely for non commercial use. Latest version
       strcpy( name, path );             /* we've got it */    can be accessed at http://euroreves.ined.fr/imach .
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       l2 = strlen( s );                 /* length of filename */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    
       strcpy( name, s );                /* save file name */    **********************************************************************/
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /*
       dirc[l1-l2] = 0;                  /* add zero */    main
    }    read parameterfile
    l1 = strlen( dirc );                 /* length of directory */    read datafile
 #ifdef windows    concatwav
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    freqsummary
 #else    if (mle >= 1)
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }      mlikeli
 #endif    print results files
    s = strrchr( name, '.' );            /* find last / */    if mle==1 
    s++;       computes hessian
    strcpy(ext,s);                       /* save extension */    read end of parameter file: agemin, agemax, bage, fage, estepm
    l1= strlen( name);        begin-prev-date,...
    l2= strlen( s)+1;    open gnuplot file
    strncpy( finame, name, l1-l2);    open html file
    finame[l1-l2]= 0;    stable prevalence
    return( 0 );                         /* we're done */     for age prevalim()
 }    h Pij x
     variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /******************************************/    health expectancies
     Variance-covariance of DFLE
 void replace(char *s, char*t)    prevalence()
 {     movingaverage()
   int i;    varevsij() 
   int lg=20;    if popbased==1 varevsij(,popbased)
   i=0;    total life expectancies
   lg=strlen(t);    Variance of stable prevalence
   for(i=0; i<= lg; i++) {   end
     (s[i] = t[i]);  */
     if (t[i]== '\\') s[i]='/';  
   }  
 }  
    
 int nbocc(char *s, char occ)  #include <math.h>
 {  #include <stdio.h>
   int i,j=0;  #include <stdlib.h>
   int lg=20;  #include <string.h>
   i=0;  #include <unistd.h>
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #include <limits.h>
   if  (s[i] == occ ) j++;  #include <sys/types.h>
   }  #include <sys/stat.h>
   return j;  #include <errno.h>
 }  extern int errno;
   
 void cutv(char *u,char *v, char*t, char occ)  /* #include <sys/time.h> */
 {  #include <time.h>
   int i,lg,j,p=0;  #include "timeval.h"
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  /* #include <libintl.h> */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  /* #define _(String) gettext (String) */
   }  
   #define MAXLINE 256
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define GNUPLOTPROGRAM "gnuplot"
     (u[j] = t[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
      u[p]='\0';  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    for(j=0; j<= lg; j++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /********************** nrerror ********************/  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 void nrerror(char error_text[])  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   fprintf(stderr,"ERREUR ...\n");  #define MAXN 20000
   fprintf(stderr,"%s\n",error_text);  #define YEARM 12. /* Number of months per year */
   exit(1);  #define AGESUP 130
 }  #define AGEBASE 40
 /*********************** vector *******************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double *vector(int nl, int nh)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   double *v;  #define CHARSEPARATOR "/"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '\\'
   if (!v) nrerror("allocation failure in vector");  #else
   return v-nl+NR_END;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /************************ free vector ******************/  #endif
 void free_vector(double*v, int nl, int nh)  
 {  /* $Id$ */
   free((FREE_ARG)(v+nl-NR_END));  /* $State$ */
 }  
   char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
 /************************ivector *******************************/  char fullversion[]="$Revision$ $Date$"; 
 int *ivector(long nl,long nh)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   int *v;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int npar=NPARMAX;
   if (!v) nrerror("allocation failure in ivector");  int nlstate=2; /* Number of live states */
   return v-nl+NR_END;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   free((FREE_ARG)(v+nl-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /******************* imatrix *******************************/  int mle, weightopt;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int **m;  double jmean; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   /* allocate pointers to rows */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficlog, *ficrespow;
   m += NR_END;  int globpr; /* Global variable for printing or not */
   m -= nrl;  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   /* allocate rows and set pointers to them */  char filerespow[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresilk;
   m[nrl] += NR_END;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl] -= ncl;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  FILE  *ficresvij;
   return m;  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /****************** free_imatrix *************************/  char title[MAXLINE];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       int **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      /* free an int matrix allocated by imatrix() */  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /******************* matrix *******************************/  char filerest[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!m) nrerror("allocation failure 1 in matrix()");  struct timezone tzp;
   m += NR_END;  extern int gettimeofday();
   m -= nrl;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  extern long time();
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char strcurr[80], strfor[80];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char *endptr;
   long lval;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NRANSI 
 {  #define ITMAX 200 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /******************* ma3x *******************************/  #define ZEPS 1.0e-10 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define GOLD 1.618034 
   double ***m;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define rint(a) floor(a+0.5)
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int imx; 
   m[nrl][ncl] += NR_END;  int stepm=1;
   m[nrl][ncl] -= nll;  /* Stepm, step in month: minimum step interpolation*/
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int m,nb;
     for (j=ncl+1; j<=nch; j++)  long *num;
       m[i][j]=m[i][j-1]+nlay;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return m;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  double *agedc, **covar, idx;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   free((FREE_ARG)(m+nrl-NR_END));  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /***************** f1dim *************************/  double ftolhess; /* Tolerance for computing hessian */
 extern int ncom;  
 extern double *pcom,*xicom;  /**************** split *************************/
 extern double (*nrfunc)(double []);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
 double f1dim(double x)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int j;    */ 
   double f;    char  *ss;                            /* pointer */
   double *xt;    int   l1, l2;                         /* length counters */
    
   xt=vector(1,ncom);    l1 = strlen(path );                   /* length of path */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   f=(*nrfunc)(xt);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   free_vector(xt,1,ncom);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   return f;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*****************brent *************************/      /* get current working directory */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int iter;        return( GLOCK_ERROR_GETCWD );
   double a,b,d,etemp;      }
   double fu,fv,fw,fx;      /* got dirc from getcwd*/
   double ftemp;      printf(" DIRC = %s \n",dirc);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    } else {                              /* strip direcotry from path */
   double e=0.0;      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
   a=(ax < cx ? ax : cx);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   b=(ax > cx ? ax : cx);      strcpy( name, ss );         /* save file name */
   x=w=v=bx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   fw=fv=fx=(*f)(x);      dirc[l1-l2] = 0;                    /* add zero */
   for (iter=1;iter<=ITMAX;iter++) {      printf(" DIRC2 = %s \n",dirc);
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* We add a separator at the end of dirc if not exists */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    l1 = strlen( dirc );                  /* length of directory */
     printf(".");fflush(stdout);    if( dirc[l1-1] != DIRSEPARATOR ){
 #ifdef DEBUG      dirc[l1] =  DIRSEPARATOR;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      dirc[l1+1] = 0; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      printf(" DIRC3 = %s \n",dirc);
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    ss = strrchr( name, '.' );            /* find last / */
       *xmin=x;    if (ss >0){
       return fx;      ss++;
     }      strcpy(ext,ss);                     /* save extension */
     ftemp=fu;      l1= strlen( name);
     if (fabs(e) > tol1) {      l2= strlen(ss)+1;
       r=(x-w)*(fx-fv);      strncpy( finame, name, l1-l2);
       q=(x-v)*(fx-fw);      finame[l1-l2]= 0;
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    return( 0 );                          /* we're done */
       q=fabs(q);  }
       etemp=e;  
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  void replace_back_to_slash(char *s, char*t)
         d=p/q;  {
         u=x+d;    int i;
         if (u-a < tol2 || b-u < tol2)    int lg=0;
           d=SIGN(tol1,xm-x);    i=0;
       }    lg=strlen(t);
     } else {    for(i=0; i<= lg; i++) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    }
     fu=(*f)(u);  }
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  int nbocc(char *s, char occ)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    int i,j=0;
         } else {    int lg=20;
           if (u < x) a=u; else b=u;    i=0;
           if (fu <= fw || w == x) {    lg=strlen(s);
             v=w;    for(i=0; i<= lg; i++) {
             w=u;    if  (s[i] == occ ) j++;
             fv=fw;    }
             fw=fu;    return j;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  void cutv(char *u,char *v, char*t, char occ)
           }  {
         }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   nrerror("Too many iterations in brent");       gives u="abcedf" and v="ghi2j" */
   *xmin=x;    int i,lg,j,p=0;
   return fx;    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /****************** mnbrak ***********************/    }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    lg=strlen(t);
             double (*func)(double))    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   double ulim,u,r,q, dum;    }
   double fu;       u[p]='\0';
    
   *fa=(*func)(*ax);     for(j=0; j<= lg; j++) {
   *fb=(*func)(*bx);      if (j>=(p+1))(v[j-p-1] = t[j]);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  /********************** nrerror ********************/
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  void nrerror(char error_text[])
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    fprintf(stderr,"ERREUR ...\n");
     q=(*bx-*cx)*(*fb-*fa);    fprintf(stderr,"%s\n",error_text);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    exit(EXIT_FAILURE);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  /*********************** vector *******************/
     if ((*bx-u)*(u-*cx) > 0.0) {  double *vector(int nl, int nh)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double *v;
       fu=(*func)(u);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       if (fu < *fc) {    if (!v) nrerror("allocation failure in vector");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    return v-nl+NR_END;
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /************************ free vector ******************/
       u=ulim;  void free_vector(double*v, int nl, int nh)
       fu=(*func)(u);  {
     } else {    free((FREE_ARG)(v+nl-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  /************************ivector *******************************/
     SHFT(*ax,*bx,*cx,u)  int *ivector(long nl,long nh)
       SHFT(*fa,*fb,*fc,fu)  {
       }    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** linmin ************************/    return v-nl+NR_END;
   }
 int ncom;  
 double *pcom,*xicom;  /******************free ivector **************************/
 double (*nrfunc)(double []);  void free_ivector(int *v, long nl, long nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /************************lvector *******************************/
   double f1dim(double x);  long *lvector(long nl,long nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    long *v;
   int j;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double xx,xmin,bx,ax;    if (!v) nrerror("allocation failure in ivector");
   double fx,fb,fa;    return v-nl+NR_END;
    }
   ncom=n;  
   pcom=vector(1,n);  /******************free lvector **************************/
   xicom=vector(1,n);  void free_lvector(long *v, long nl, long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /******************* imatrix *******************************/
   ax=0.0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xx=1.0;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    
 #endif    /* allocate pointers to rows */ 
   for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     xi[j] *= xmin;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     p[j] += xi[j];    m += NR_END; 
   }    m -= nrl; 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /*************** powell ************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] += NR_END; 
             double (*func)(double []))    m[nrl] -= ncl; 
 {    
   void linmin(double p[], double xi[], int n, double *fret,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
               double (*func)(double []));    
   int i,ibig,j;    /* return pointer to array of pointers to rows */ 
   double del,t,*pt,*ptt,*xit;    return m; 
   double fp,fptt;  } 
   double *xits;  
   pt=vector(1,n);  /****************** free_imatrix *************************/
   ptt=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   xit=vector(1,n);        int **m;
   xits=vector(1,n);        long nch,ncl,nrh,nrl; 
   *fret=(*func)(p);       /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=n;j++) pt[j]=p[j];  { 
   for (*iter=1;;++(*iter)) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     fp=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* matrix *******************************/
     for (i=1;i<=n;i++)  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (i=1;i<=n;i++) {    double **m;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("fret=%lf \n",*fret);    m += NR_END;
 #endif    m -= nrl;
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (fabs(fptt-(*fret)) > del) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         del=fabs(fptt-(*fret));    m[nrl] += NR_END;
         ibig=i;    m[nrl] -= ncl;
       }  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       printf("%d %.12e",i,(*fret));    return m;
       for (j=1;j<=n;j++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);     */
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /*************************free matrix ************************/
         printf(" p=%.12e",p[j]);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /******************* ma3x *******************************/
       k[0]=1;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (j=1;j<=n;j++)    double ***m;
         printf(" %.12e",p[j]);  
       printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(l=0;l<=1;l++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m -= nrl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       free_vector(ptt,1,n);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       free_vector(pt,1,n);    m[nrl][ncl] += NR_END;
       return;    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      m[nrl][j]=m[nrl][j-1]+nlay;
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) {
       xit[j]=p[j]-pt[j];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       pt[j]=p[j];      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {    return m; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (t < 0.0) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         linmin(p,xit,n,fret,func);    */
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /*************************free ma3x ************************/
         }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for(j=1;j<=n;j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           printf(" %.12e",xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
         printf("\n");  }
 #endif  
       }  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
   }  {
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**** Prevalence limit ****************/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return tmpout;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* Caution optionfilefiname is hidden */
   double **out, cov[NCOVMAX], **pmij();    strcpy(tmpout,optionfilefiname);
   double **newm;    strcat(tmpout,"/");
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   for (ii=1;ii<=nlstate+ndeath;ii++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
    cov[1]=1.;  {
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcpy(tmpout,optionfilefiname);
     newm=savm;    strcat(tmpout,"/");
     /* Covariates have to be included here again */    strcat(tmpout,preop);
      cov[2]=agefin;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
       for (k=1; k<=cptcovn;k++) {    return tmpout;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /***************** f1dim *************************/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  extern int ncom; 
       for (k=1; k<=cptcovprod;k++)  extern double *pcom,*xicom;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  extern double (*nrfunc)(double []); 
    
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double f1dim(double x) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    int j; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double f;
     double *xt; 
     savm=oldm;   
     oldm=newm;    xt=vector(1,ncom); 
     maxmax=0.;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=1;j<=nlstate;j++){    f=(*nrfunc)(xt); 
       min=1.;    free_vector(xt,1,ncom); 
       max=0.;    return f; 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*****************brent *************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    int iter; 
       }    double a,b,d,etemp;
       maxmin=max-min;    double fu,fv,fw,fx;
       maxmax=FMAX(maxmax,maxmin);    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     if(maxmax < ftolpl){    double e=0.0; 
       return prlim;   
     }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /*************** transition probabilities ***************/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double s1, s2;      printf(".");fflush(stdout);
   /*double t34;*/      fprintf(ficlog,".");fflush(ficlog);
   int i,j,j1, nc, ii, jj;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(i=1; i<= nlstate; i++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=1; j<i;j++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         /*s2 += param[i][j][nc]*cov[nc];*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        *xmin=x; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        return fx; 
       }      } 
       ps[i][j]=s2;      ftemp=fu;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
     for(j=i+1; j<=nlstate+ndeath;j++){        q=(x-v)*(fx-fw); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        p=(x-v)*q-(x-w)*r; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=2.0*(q-r); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       ps[i][j]=s2;        etemp=e; 
     }        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     /*ps[3][2]=1;*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   for(i=1; i<= nlstate; i++){          d=p/q; 
      s1=0;          u=x+d; 
     for(j=1; j<i; j++)          if (u-a < tol2 || b-u < tol2) 
       s1+=exp(ps[i][j]);            d=SIGN(tol1,xm-x); 
     for(j=i+1; j<=nlstate+ndeath; j++)        } 
       s1+=exp(ps[i][j]);      } else { 
     ps[i][i]=1./(s1+1.);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(j=1; j<i; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(j=i+1; j<=nlstate+ndeath; j++)      fu=(*f)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fu <= fx) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        if (u >= x) a=x; else b=x; 
   } /* end i */        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          } else { 
     for(jj=1; jj<= nlstate+ndeath; jj++){            if (u < x) a=u; else b=u; 
       ps[ii][jj]=0;            if (fu <= fw || w == x) { 
       ps[ii][ii]=1;              v=w; 
     }              w=u; 
   }              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){              v=u; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              fv=fu; 
      printf("%lf ",ps[ii][jj]);            } 
    }          } 
     printf("\n ");    } 
     }    nrerror("Too many iterations in brent"); 
     printf("\n ");printf("%lf ",cov[2]);*/    *xmin=x; 
 /*    return fx; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /**************** Product of 2 matrices ******************/              double (*func)(double)) 
   { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double ulim,u,r,q, dum;
 {    double fu; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    *fa=(*func)(*ax); 
   /* in, b, out are matrice of pointers which should have been initialized    *fb=(*func)(*bx); 
      before: only the contents of out is modified. The function returns    if (*fb > *fa) { 
      a pointer to pointers identical to out */      SHFT(dum,*ax,*bx,dum) 
   long i, j, k;        SHFT(dum,*fb,*fa,dum) 
   for(i=nrl; i<= nrh; i++)        } 
     for(k=ncolol; k<=ncoloh; k++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    *fc=(*func)(*cx); 
         out[i][k] +=in[i][j]*b[j][k];    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   return out;      q=(*bx-*cx)*(*fb-*fa); 
 }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 /************* Higher Matrix Product ***************/      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 {        fu=(*func)(u); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        if (fu < *fc) { 
      duration (i.e. until          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            SHFT(*fb,*fc,fu,(*func)(u)) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            } 
      (typically every 2 years instead of every month which is too big).      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
      Model is determined by parameters x and covariates have to be        u=ulim; 
      included manually here.        fu=(*func)(u); 
       } else { 
      */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   int i, j, d, h, k;      } 
   double **out, cov[NCOVMAX];      SHFT(*ax,*bx,*cx,u) 
   double **newm;        SHFT(*fa,*fb,*fc,fu) 
         } 
   /* Hstepm could be zero and should return the unit matrix */  } 
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** linmin ************************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  int ncom; 
     }  double *pcom,*xicom;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double (*nrfunc)(double []); 
   for(h=1; h <=nhstepm; h++){   
     for(d=1; d <=hstepm; d++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       newm=savm;  { 
       /* Covariates have to be included here again */    double brent(double ax, double bx, double cx, 
       cov[1]=1.;                 double (*f)(double), double tol, double *xmin); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double f1dim(double x); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (k=1; k<=cptcovage;k++)                double *fc, double (*func)(double)); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int j; 
       for (k=1; k<=cptcovprod;k++)    double xx,xmin,bx,ax; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double fx,fb,fa;
    
     ncom=n; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    pcom=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xicom=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    nrfunc=func; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) { 
       savm=oldm;      pcom[j]=p[j]; 
       oldm=newm;      xicom[j]=xi[j]; 
     }    } 
     for(i=1; i<=nlstate+ndeath; i++)    ax=0.0; 
       for(j=1;j<=nlstate+ndeath;j++) {    xx=1.0; 
         po[i][j][h]=newm[i][j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
          */  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end h */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return po;  #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       p[j] += xi[j]; 
 /*************** log-likelihood *************/    } 
 double func( double *x)    free_vector(xicom,1,n); 
 {    free_vector(pcom,1,n); 
   int i, ii, j, k, mi, d, kk;  } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  char *asc_diff_time(long time_sec, char ascdiff[])
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    long sec_left, days, hours, minutes;
   long ipmx;    days = (time_sec) / (60*60*24);
   /*extern weight */    sec_left = (time_sec) % (60*60*24);
   /* We are differentiating ll according to initial status */    hours = (sec_left) / (60*60) ;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    sec_left = (sec_left) %(60*60);
   /*for(i=1;i<imx;i++)    minutes = (sec_left) /60;
     printf(" %d\n",s[4][i]);    sec_left = (sec_left) % (60);
   */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   cov[1]=1.;    return ascdiff;
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************** powell ************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(mi=1; mi<= wav[i]-1; mi++){              double (*func)(double [])) 
       for (ii=1;ii<=nlstate+ndeath;ii++)  { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    void linmin(double p[], double xi[], int n, double *fret, 
       for(d=0; d<dh[mi][i]; d++){                double (*func)(double [])); 
         newm=savm;    int i,ibig,j; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double del,t,*pt,*ptt,*xit;
         for (kk=1; kk<=cptcovage;kk++) {    double fp,fptt;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double *xits;
         }    int niterf, itmp;
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    pt=vector(1,n); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    ptt=vector(1,n); 
         savm=oldm;    xit=vector(1,n); 
         oldm=newm;    xits=vector(1,n); 
            *fret=(*func)(p); 
            for (j=1;j<=n;j++) pt[j]=p[j]; 
       } /* end mult */    for (*iter=1;;++(*iter)) { 
            fp=(*fret); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      ibig=0; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      del=0.0; 
       ipmx +=1;      last_time=curr_time;
       sw += weight[i];      (void) gettimeofday(&curr_time,&tzp);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     } /* end of wave */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   } /* end of individual */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];     for (i=1;i<=n;i++) {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        printf(" %d %.12f",i, p[i]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fprintf(ficlog," %d %.12lf",i, p[i]);
   return -l;        fprintf(ficrespow," %.12lf", p[i]);
 }      }
       printf("\n");
       fprintf(ficlog,"\n");
 /*********** Maximum Likelihood Estimation ***************/      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        tm = *localtime(&curr_time.tv_sec);
 {        strcpy(strcurr,asctime(&tm));
   int i,j, iter;  /*       asctime_r(&tm,strcurr); */
   double **xi,*delti;        forecast_time=curr_time; 
   double fret;        itmp = strlen(strcurr);
   xi=matrix(1,npar,1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1;i<=npar;i++)          strcurr[itmp-1]='\0';
     for (j=1;j<=npar;j++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       xi[i][j]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("Powell\n");        for(niterf=10;niterf<=30;niterf+=10){
   powell(p,xi,npar,ftol,&iter,&fret,func);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*      asctime_r(&tmf,strfor); */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 /**** Computes Hessian and covariance matrix ***/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {        }
   double  **a,**y,*x,pd;      }
   double **hess;      for (i=1;i<=n;i++) { 
   int i, j,jk;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int *indx;        fptt=(*fret); 
   #ifdef DEBUG
   double hessii(double p[], double delta, int theta, double delti[]);        printf("fret=%lf \n",*fret);
   double hessij(double p[], double delti[], int i, int j);        fprintf(ficlog,"fret=%lf \n",*fret);
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #endif
   void ludcmp(double **a, int npar, int *indx, double *d) ;        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   hess=matrix(1,npar,1,npar);        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");          del=fabs(fptt-(*fret)); 
   for (i=1;i<=npar;i++){          ibig=i; 
     printf("%d",i);fflush(stdout);        } 
     hess[i][i]=hessii(p,ftolhess,i,delti);  #ifdef DEBUG
     /*printf(" %f ",p[i]);*/        printf("%d %.12e",i,(*fret));
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
            xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1;i<=npar;i++) {          printf(" x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=npar;j++)  {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       if (j>i) {        }
         printf(".%d%d",i,j);fflush(stdout);        for(j=1;j<=n;j++) {
         hess[i][j]=hessij(p,delti,i,j);          printf(" p=%.12e",p[j]);
         hess[j][i]=hess[i][j];              fprintf(ficlog," p=%.12e",p[j]);
         /*printf(" %lf ",hess[i][j]);*/        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
   printf("\n");      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #ifdef DEBUG
          int k[2],l;
   a=matrix(1,npar,1,npar);        k[0]=1;
   y=matrix(1,npar,1,npar);        k[1]=-1;
   x=vector(1,npar);        printf("Max: %.12e",(*func)(p));
   indx=ivector(1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf(" %.12e",p[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," %.12e",p[j]);
         }
   for (j=1;j<=npar;j++) {        printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"\n");
     x[j]=1;        for(l=0;l<=1;l++) {
     lubksb(a,npar,indx,x);          for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       matcov[i][j]=x[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   printf("\n#Hessian matrix#\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {  #endif
       printf("%.3e ",hess[i][j]);  
     }  
     printf("\n");        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   /* Recompute Inverse */        free_vector(pt,1,n); 
   for (i=1;i<=npar;i++)        return; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      } 
   ludcmp(a,npar,indx,&pd);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   /*  printf("\n#Hessian matrix recomputed#\n");        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   for (j=1;j<=npar;j++) {        pt[j]=p[j]; 
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      fptt=(*func)(ptt); 
     lubksb(a,npar,indx,x);      if (fptt < fp) { 
     for (i=1;i<=npar;i++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       y[i][j]=x[i];        if (t < 0.0) { 
       printf("%.3e ",y[i][j]);          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
     printf("\n");            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
   */          }
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(y,1,npar,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_vector(x,1,npar);          for(j=1;j<=n;j++){
   free_ivector(indx,1,npar);            printf(" %.12e",xit[j]);
   free_matrix(hess,1,npar,1,npar);            fprintf(ficlog," %.12e",xit[j]);
           }
           printf("\n");
 }          fprintf(ficlog,"\n");
   #endif
 /*************** hessian matrix ****************/        }
 double hessii( double x[], double delta, int theta, double delti[])      } 
 {    } 
   int i;  } 
   int l=1, lmax=20;  
   double k1,k2;  /**** Prevalence limit (stable prevalence)  ****************/
   double p2[NPARMAX+1];  
   double res;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  {
   double fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int k=0,kmax=10;       matrix by transitions matrix until convergence is reached */
   double l1;  
     int i, ii,j,k;
   fx=func(x);    double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **matprod2();
   for(l=0 ; l <=lmax; l++){    double **out, cov[NCOVMAX], **pmij();
     l1=pow(10,l);    double **newm;
     delts=delt;    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta] +delt;      for (j=1;j<=nlstate+ndeath;j++){
       k1=func(p2)-fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */     cov[1]=1.;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */   
         /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 #ifdef DEBUG    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      newm=savm;
 #endif      /* Covariates have to be included here again */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       cov[2]=agefin;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    
         k=kmax;        for (k=1; k<=cptcovn;k++) {
       }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         k=kmax; l=lmax*10.;        }
       }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for (k=1; k<=cptcovprod;k++)
         delts=delt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   delti[theta]=delts;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   return res;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
 }      savm=oldm;
       oldm=newm;
 double hessij( double x[], double delti[], int thetai,int thetaj)      maxmax=0.;
 {      for(j=1;j<=nlstate;j++){
   int i;        min=1.;
   int l=1, l1, lmax=20;        max=0.;
   double k1,k2,k3,k4,res,fx;        for(i=1; i<=nlstate; i++) {
   double p2[NPARMAX+1];          sumnew=0;
   int k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   fx=func(x);          max=FMAX(max,prlim[i][j]);
   for (k=1; k<=2; k++) {          min=FMIN(min,prlim[i][j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k1=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]+delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k2=func(p2)-fx;    }
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*************** transition probabilities ***************/ 
     k3=func(p2)-fx;  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double s1, s2;
     k4=func(p2)-fx;    /*double t34;*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i,j,j1, nc, ii, jj;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for(i=1; i<= nlstate; i++){
 #endif        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   return res;            /*s2 += param[i][j][nc]*cov[nc];*/
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 /************** Inverse of matrix **************/          }
 void ludcmp(double **a, int n, int *indx, double *d)          ps[i][j]=s2;
 {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   int i,imax,j,k;        }
   double big,dum,sum,temp;        for(j=i+1; j<=nlstate+ndeath;j++){
   double *vv;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   vv=vector(1,n);  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   *d=1.0;          }
   for (i=1;i<=n;i++) {          ps[i][j]=s2;
     big=0.0;        }
     for (j=1;j<=n;j++)      }
       if ((temp=fabs(a[i][j])) > big) big=temp;      /*ps[3][2]=1;*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      
     vv[i]=1.0/big;      for(i=1; i<= nlstate; i++){
   }        s1=0;
   for (j=1;j<=n;j++) {        for(j=1; j<i; j++)
     for (i=1;i<j;i++) {          s1+=exp(ps[i][j]);
       sum=a[i][j];        for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
     big=0.0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=j;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       sum=a[i][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<j;k++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         sum -= a[i][k]*a[k][j];      } /* end i */
       a[i][j]=sum;      
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         big=dum;        for(jj=1; jj<= nlstate+ndeath; jj++){
         imax=i;          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
     }        }
     if (j != imax) {      }
       for (k=1;k<=n;k++) {      
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         a[j][k]=dum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }  /*         printf("ddd %lf ",ps[ii][jj]); */
       *d = -(*d);  /*       } */
       vv[imax]=vv[j];  /*       printf("\n "); */
     }  /*        } */
     indx[j]=imax;  /*        printf("\n ");printf("%lf ",cov[2]); */
     if (a[j][j] == 0.0) a[j][j]=TINY;         /*
     if (j != n) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       dum=1.0/(a[j][j]);        goto end;*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      return ps;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /**************** Product of 2 matrices ******************/
 ;  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 void lubksb(double **a, int n, int *indx, double b[])    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i,ii=0,ip,j;    /* in, b, out are matrice of pointers which should have been initialized 
   double sum;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
   for (i=1;i<=n;i++) {    long i, j, k;
     ip=indx[i];    for(i=nrl; i<= nrh; i++)
     sum=b[ip];      for(k=ncolol; k<=ncoloh; k++)
     b[ip]=b[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (ii)          out[i][k] +=in[i][j]*b[j][k];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;    return out;
     b[i]=sum;  }
   }  
   for (i=n;i>=1;i--) {  
     sum=b[i];  /************* Higher Matrix Product ***************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
 }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
 /************ Frequencies ********************/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       nhstepm*hstepm matrices. 
 {  /* Some frequencies */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       for the memory).
   double ***freq; /* Frequencies */       Model is determined by parameters x and covariates have to be 
   double *pp;       included manually here. 
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;       */
   char fileresp[FILENAMELENGTH];  
      int i, j, d, h, k;
   pp=vector(1,nlstate);    double **out, cov[NCOVMAX];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **newm;
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    /* Hstepm could be zero and should return the unit matrix */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    for (i=1;i<=nlstate+ndeath;i++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for (j=1;j<=nlstate+ndeath;j++){
     exit(0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   j=cptcoveff;      for(d=1; d <=hstepm; d++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        newm=savm;
          /* Covariates have to be included here again */
   for(k1=1; k1<=j;k1++){        cov[1]=1.;
     for(i1=1; i1<=ncodemax[k1];i1++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       j1++;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (k=1; k<=cptcovage;k++)
         scanf("%d", i);*/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovprod;k++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  
              /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       dateintsum=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       k2cpt=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (i=1; i<=imx; i++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         bool=1;        savm=oldm;
         if  (cptcovn>0) {        oldm=newm;
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(i=1; i<=nlstate+ndeath; i++)
               bool=0;        for(j=1;j<=nlstate+ndeath;j++) {
         }          po[i][j][h]=newm[i][j];
         if (bool==1) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           for(m=firstpass; m<=lastpass; m++){           */
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    } /* end h */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    return po;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  }
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*************** log-likelihood *************/
               }  double func( double *x)
                {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    int i, ii, j, k, mi, d, kk;
                 dateintsum=dateintsum+k2;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                 k2cpt++;    double **out;
               }    double sw; /* Sum of weights */
             }    double lli; /* Individual log likelihood */
           }    int s1, s2;
         }    double bbh, survp;
       }    long ipmx;
            /*extern weight */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if  (cptcovn>0) {    /*for(i=1;i<imx;i++) 
         fprintf(ficresp, "\n#********** Variable ");      printf(" %d\n",s[4][i]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    */
         fprintf(ficresp, "**********\n#");    cov[1]=1.;
       }  
       for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i==(int)agemax+3)        for(mi=1; mi<= wav[i]-1; mi++){
           printf("Total");          for (ii=1;ii<=nlstate+ndeath;ii++)
         else            for (j=1;j<=nlstate+ndeath;j++){
           printf("Age %d", i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=-1, pos=0; m <=0 ; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pos += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(pp[jk]>=1.e-10)            }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            savm=oldm;
         }            oldm=newm;
           } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             pp[jk] += freq[jk][m][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * the nearest (and in case of equal distance, to the lowest) interval but now
           pos += pp[jk];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if(pos>=1.e-5)           * probability in order to take into account the bias as a fraction of the way
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           else           * -stepm/2 to stepm/2 .
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * For stepm=1 the results are the same as for previous versions of Imach.
           if( i <= (int) agemax){           * For stepm > 1 the results are less biased than in previous versions. 
             if(pos>=1.e-5){           */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          s1=s[mw[mi][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          bbh=(double)bh[mi][i]/(double)stepm; 
             }          /* bias bh is positive if real duration
             else           * is higher than the multiple of stepm and negative otherwise.
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           */
           }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
                    /* i.e. if s2 is a death state and if the date of death is known 
         for(jk=-1; jk <=nlstate+ndeath; jk++)               then the contribution to the likelihood is the probability to 
           for(m=-1; m <=nlstate+ndeath; m++)               die between last step unit time and current  step unit time, 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);               which is also equal to probability to die before dh 
         if(i <= (int) agemax)               minus probability to die before dh-stepm . 
           fprintf(ficresp,"\n");               In version up to 0.92 likelihood was computed
         printf("\n");          as if date of death was unknown. Death was treated as any other
       }          health state: the date of the interview describes the actual state
     }          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
   dateintmean=dateintsum/k2cpt;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   fclose(ficresp);          the contribution of an exact death to the likelihood. This new
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          contribution is smaller and very dependent of the step unit
   free_vector(pp,1,nlstate);          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
   /* End of Freq */          interview up to one month before death multiplied by the
 }          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
 /************ Prevalence ********************/          mortality artificially. The bad side is that we add another loop
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          which slows down the processing. The difference can be up to 10%
 {  /* Some frequencies */          lower mortality.
              */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli=log(out[s1][s2] - savm[s1][s2]);
   double ***freq; /* Frequencies */  
   double *pp;  
   double pos, k2;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   pp=vector(1,nlstate);              survp += out[s1][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli= survp;
            }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          
   j1=0;          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
   j=cptcoveff;              survp += out[s1][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            lli= survp;
            }
   for(k1=1; k1<=j;k1++){          
     for(i1=1; i1<=ncodemax[k1];i1++){          else if  (s2==-5) {
       j1++;            for (j=1,survp=0. ; j<=2; j++) 
                    survp += out[s1][j];
       for (i=-1; i<=nlstate+ndeath; i++)              lli= survp;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  
                else{
       for (i=1; i<=imx; i++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         bool=1;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if  (cptcovn>0) {          } 
           for (z1=1; z1<=cptcoveff; z1++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /*if(lli ==000.0)*/
               bool=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
         if (bool==1) {          sw += weight[i];
           for(m=firstpass; m<=lastpass; m++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             k2=anint[m][i]+(mint[m][i]/12.);        } /* end of wave */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } /* end of individual */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }  else if(mle==2){
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 if (calagedate>0)        for(mi=1; mi<= wav[i]-1; mi++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
                 else            for (j=1;j<=nlstate+ndeath;j++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }            }
             }          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       for(i=(int)agemin; i <= (int)agemax+3; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
         }          s1=s[mw[mi][i]][i];
                  s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        } /* end of wave */
              } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){        }  else if(mle==3){  /* exponential inter-extrapolation */
           if( i <= (int) agemax){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(pos>=1.e-5){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               probs[i][jk][j1]= pp[jk]/pos;        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(pp,1,nlstate);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }  /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************* Waves Concatenation ***************/            oldm=newm;
           } /* end mult */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        
 {          s1=s[mw[mi][i]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s2=s[mw[mi+1][i]][i];
      Death is a valid wave (if date is known).          bbh=(double)bh[mi][i]/(double)stepm; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ipmx +=1;
      and mw[mi+1][i]. dh depends on stepm.          sw += weight[i];
      */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   int i, mi, m;      } /* end of individual */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      double sum=0., jmean=0.;*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int j, k=0,jk, ju, jl;        for(mi=1; mi<= wav[i]-1; mi++){
   double sum=0.;          for (ii=1;ii<=nlstate+ndeath;ii++)
   jmin=1e+5;            for (j=1;j<=nlstate+ndeath;j++){
   jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){            }
     mi=0;          for(d=0; d<dh[mi][i]; d++){
     m=firstpass;            newm=savm;
     while(s[m][i] <= nlstate){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(s[m][i]>=1)            for (kk=1; kk<=cptcovage;kk++) {
         mw[++mi][i]=m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(m >=lastpass)            }
         break;          
       else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         m++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }/* end while */            savm=oldm;
     if (s[m][i] > nlstate){            oldm=newm;
       mi++;     /* Death is another wave */          } /* end mult */
       /* if(mi==0)  never been interviewed correctly before death */        
          /* Only death is a correct wave */          s1=s[mw[mi][i]][i];
       mw[mi][i]=m;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     wav[i]=mi;          }else{
     if(mi==0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          }
   }          ipmx +=1;
           sw += weight[i];
   for(i=1; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(mi=1; mi<wav[i];mi++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (stepm <=0)        } /* end of wave */
         dh[mi][i]=1;      } /* end of individual */
       else{    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         if (s[mw[mi+1][i]][i] > nlstate) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (agedc[i] < 2*AGESUP) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(mi=1; mi<= wav[i]-1; mi++){
           if(j==0) j=1;  /* Survives at least one month after exam */          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else{            for (kk=1; kk<=cptcovage;kk++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           k=k+1;            }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         else          ipmx +=1;
           dh[mi][i]=jk+1;          sw += weight[i];
         if(dh[mi][i]==0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           dh[mi][i]=1; /* At least one step */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
     }      } /* end of individual */
   }    } /* End of if */
   jmean=sum/k;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /*********** Tricode ****************************/    return -l;
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
   int Ndum[20],ij=1, k, j, i;  /*************** log-likelihood *************/
   int cptcode=0;  double funcone( double *x)
   cptcoveff=0;  {
      /* Same as likeli but slower because of a lot of printf and if */
   for (k=0; k<19; k++) Ndum[k]=0;    int i, ii, j, k, mi, d, kk;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double lli; /* Individual log likelihood */
     for (i=1; i<=imx; i++) {    double llt;
       ij=(int)(covar[Tvar[j]][i]);    int s1, s2;
       Ndum[ij]++;    double bbh, survp;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /*extern weight */
       if (ij > cptcode) cptcode=ij;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     for (i=0; i<=cptcode; i++) {      printf(" %d\n",s[4][i]);
       if(Ndum[i]!=0) ncodemax[j]++;    */
     }    cov[1]=1.;
     ij=1;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     for (i=1; i<=ncodemax[j]; i++) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (Ndum[k] != 0) {      for(mi=1; mi<= wav[i]-1; mi++){
           nbcode[Tvar[j]][ij]=k;        for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
           ij++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (ij > ncodemax[j]) break;          }
       }          for(d=0; d<dh[mi][i]; d++){
     }          newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
  for (k=0; k<19; k++) Ndum[k]=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
  for (i=1; i<=ncovmodel-2; i++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ij=Tvar[i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;          savm=oldm;
     }          oldm=newm;
         } /* end mult */
  ij=1;        
  for (i=1; i<=10; i++) {        s1=s[mw[mi][i]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        s2=s[mw[mi+1][i]][i];
      Tvaraff[ij]=i;        bbh=(double)bh[mi][i]/(double)stepm; 
      ij++;        /* bias is positive if real duration
    }         * is higher than the multiple of stepm and negative otherwise.
  }         */
          if( s2 > nlstate && (mle <5) ){  /* Jackson */
     cptcoveff=ij-1;          lli=log(out[s1][s2] - savm[s1][s2]);
 }        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /*********** Health Expectancies ****************/        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* Health expectancies */          lli=log(out[s1][s2]); /* Original formula */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double age, agelim, hf;          lli=log(out[s1][s2]); /* Original formula */
   double ***p3mat,***varhe;        } /* End of if */
   double **dnewm,**doldm;        ipmx +=1;
   double *xp;        sw += weight[i];
   double **gp, **gm;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int theta;        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);   %10.6f %10.6f %10.6f ", \
   xp=vector(1,npar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   dnewm=matrix(1,nlstate*2,1,npar);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   doldm=matrix(1,nlstate*2,1,nlstate*2);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
   fprintf(ficreseij,"# Health expectancies\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      } /* end of wave */
   fprintf(ficreseij,"\n");    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if(estepm < stepm){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf ("Problem %d lower than %d\n",estepm, stepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    if(globpr==0){ /* First time we count the contributions and weights */
   else  hstepm=estepm;        gipmx=ipmx;
   /* We compute the life expectancy from trapezoids spaced every estepm months      gsw=sw;
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    return -l;
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  /*************** function likelione ***********/
    * to compare the new estimate of Life expectancy with the same linear  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    * hypothesis. A more precise result, taking into account a more precise  {
    * curvature will be obtained if estepm is as small as stepm. */    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   /* For example we decided to compute the life expectancy with the smallest unit */       to check the exact contribution to the likelihood.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       Plotting could be done.
      nhstepm is the number of hstepm from age to agelim     */
      nstepm is the number of stepm from age to agelin.    int k;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      strcpy(fileresilk,"ilk"); 
      survival function given by stepm (the optimization length). Unfortunately it      strcat(fileresilk,fileres);
      means that if the survival funtion is printed only each two years of age and if      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        printf("Problem with resultfile: %s\n", fileresilk);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   agelim=AGESUP;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(k=1; k<=nlstate; k++) 
     /* nhstepm age range expressed in number of stepm */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    *fretone=(*funcone)(p);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      fclose(ficresilk);
     gp=matrix(0,nhstepm,1,nlstate*2);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     gm=matrix(0,nhstepm,1,nlstate*2);      fflush(fichtm); 
     } 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    return;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
    
   /*********** Maximum Likelihood Estimation ***************/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     /* Computing Variances of health expectancies */  {
     int i,j, iter;
      for(theta=1; theta <=npar; theta++){    double **xi;
       for(i=1; i<=npar; i++){    double fret;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
       cptj=0;      for (j=1;j<=npar;j++)
       for(j=1; j<= nlstate; j++){        xi[i][j]=(i==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           cptj=cptj+1;    strcpy(filerespow,"pow"); 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    strcat(filerespow,fileres);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", filerespow);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }    }
          fprintf(ficrespow,"# Powell\n# iter -2*LL");
          for (i=1;i<=nlstate;i++)
       for(i=1; i<=npar; i++)      for(j=1;j<=nlstate+ndeath;j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"\n");
        
       cptj=0;    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    fclose(ficrespow);
           cptj=cptj+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           }  
         }  }
       }  
       for(j=1; j<= nlstate*2; j++)  /**** Computes Hessian and covariance matrix ***/
         for(h=0; h<=nhstepm-1; h++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    double  **a,**y,*x,pd;
      }    double **hess;
        int i, j,jk;
 /* End theta */    int *indx;
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      for(h=0; h<=nhstepm-1; h++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate*2;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(theta=1; theta <=npar; theta++)    double gompertz(double p[]);
           trgradg[h][j][theta]=gradg[h][theta][j];    hess=matrix(1,npar,1,npar);
        
     printf("\nCalculation of the hessian matrix. Wait...\n");
      for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(j=1;j<=nlstate*2;j++)    for (i=1;i<=npar;i++){
         varhe[i][j][(int)age] =0.;      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
      printf("%d|",(int)age);fflush(stdout);     
      for(h=0;h<=nhstepm-1;h++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(k=0;k<=nhstepm-1;k++){      
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      /*  printf(" %f ",p[i]);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(i=1;i<=nlstate*2;i++)    }
           for(j=1;j<=nlstate*2;j++)    
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
     /* Computing expectancies */          printf(".%d%d",i,j);fflush(stdout);
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<=nlstate;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          hess[j][i]=hess[i][j];    
                    /*printf(" %lf ",hess[i][j]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        }
       }
         }    }
     printf("\n");
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficlog,"\n");
     cptj=0;  
     for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         cptj++;    
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     fprintf(ficreseij,"\n");    x=vector(1,npar);
        indx=ivector(1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
   printf("\n");      x[j]=1;
       lubksb(a,npar,indx,x);
   free_vector(xp,1,npar);      for (i=1;i<=npar;i++){ 
   free_matrix(dnewm,1,nlstate*2,1,npar);        matcov[i][j]=x[i];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    }
 }  
     printf("\n#Hessian matrix#\n");
 /************ Variance ******************/    fprintf(ficlog,"\n#Hessian matrix#\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for (i=1;i<=npar;i++) { 
 {      for (j=1;j<=npar;j++) { 
   /* Variance of health expectancies */        printf("%.3e ",hess[i][j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **newm;      }
   double **dnewm,**doldm;      printf("\n");
   int i, j, nhstepm, hstepm, h, nstepm ;      fprintf(ficlog,"\n");
   int k, cptcode;    }
   double *xp;  
   double **gp, **gm;    /* Recompute Inverse */
   double ***gradg, ***trgradg;    for (i=1;i<=npar;i++)
   double ***p3mat;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double age,agelim, hf;    ludcmp(a,npar,indx,&pd);
   int theta;  
     /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    for (j=1;j<=npar;j++) {
   for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
     for(j=1; j<=nlstate;j++)      x[j]=1;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      lubksb(a,npar,indx,x);
   fprintf(ficresvij,"\n");      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   xp=vector(1,npar);        printf("%.3e ",y[i][j]);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);      }
        printf("\n");
   if(estepm < stepm){      fprintf(ficlog,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    */
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    free_matrix(a,1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    free_matrix(y,1,npar,1,npar);
      nhstepm is the number of hstepm from age to agelim    free_vector(x,1,npar);
      nstepm is the number of stepm from age to agelin.    free_ivector(indx,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    free_matrix(hess,1,npar,1,npar);
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /*************** hessian matrix ****************/
      results. So we changed our mind and took the option of the best precision.  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   */  {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int i;
   agelim = AGESUP;    int l=1, lmax=20;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double k1,k2;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double p2[NPARMAX+1];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double res;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double fx;
     gp=matrix(0,nhstepm,1,nlstate);    int k=0,kmax=10;
     gm=matrix(0,nhstepm,1,nlstate);    double l1;
   
     for(theta=1; theta <=npar; theta++){    fx=func(x);
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++) p2[i]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(l=0 ; l <=lmax; l++){
       }      l1=pow(10,l);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        delts=delt;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
       if (popbased==1) {        p2[theta]=x[theta] +delt;
         for(i=1; i<=nlstate;i++)        k1=func(p2)-fx;
           prlim[i][i]=probs[(int)age][i][ij];        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(j=1; j<= nlstate; j++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for(h=0; h<=nhstepm; h++){        
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  #ifdef DEBUG
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1; i<=npar; i++) /* Computes gradient */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          k=kmax;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           prlim[i][i]=probs[(int)age][i][ij];          delts=delt;
       }        }
       }
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    delti[theta]=delts;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    return res; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }  }
       }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(j=1; j<= nlstate; j++)  {
         for(h=0; h<=nhstepm; h++){    int i;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
     } /* End theta */    double p2[NPARMAX+1];
     int k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     fx=func(x);
     for(h=0; h<=nhstepm; h++)    for (k=1; k<=2; k++) {
       for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) p2[i]=x[i];
         for(theta=1; theta <=npar; theta++)      p2[thetai]=x[thetai]+delti[thetai]/k;
           trgradg[h][j][theta]=gradg[h][theta][j];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         vareij[i][j][(int)age] =0.;      k2=func(p2)-fx;
     
     for(h=0;h<=nhstepm;h++){      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(k=0;k<=nhstepm;k++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      k3=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
           for(j=1;j<=nlstate;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    return res;
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  /************** Inverse of matrix **************/
     free_matrix(gm,0,nhstepm,1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int i,imax,j,k; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double big,dum,sum,temp; 
   } /* End age */    double *vv; 
     
   free_vector(xp,1,npar);    vv=vector(1,n); 
   free_matrix(doldm,1,nlstate,1,npar);    *d=1.0; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=n;i++) { 
       big=0.0; 
 }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
 /************ Variance of prevlim ******************/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      vv[i]=1.0/big; 
 {    } 
   /* Variance of prevalence limit */    for (j=1;j<=n;j++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1;i<j;i++) { 
   double **newm;        sum=a[i][j]; 
   double **dnewm,**doldm;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int i, j, nhstepm, hstepm;        a[i][j]=sum; 
   int k, cptcode;      } 
   double *xp;      big=0.0; 
   double *gp, *gm;      for (i=j;i<=n;i++) { 
   double **gradg, **trgradg;        sum=a[i][j]; 
   double age,agelim;        for (k=1;k<j;k++) 
   int theta;          sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fprintf(ficresvpl,"# Age");          big=dum; 
   for(i=1; i<=nlstate;i++)          imax=i; 
       fprintf(ficresvpl," %1d-%1d",i,i);        } 
   fprintf(ficresvpl,"\n");      } 
       if (j != imax) { 
   xp=vector(1,npar);        for (k=1;k<=n;k++) { 
   dnewm=matrix(1,nlstate,1,npar);          dum=a[imax][k]; 
   doldm=matrix(1,nlstate,1,nlstate);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   hstepm=1*YEARM; /* Every year of age */        } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        *d = -(*d); 
   agelim = AGESUP;        vv[imax]=vv[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      indx[j]=imax; 
     if (stepm >= YEARM) hstepm=1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      if (j != n) { 
     gradg=matrix(1,npar,1,nlstate);        dum=1.0/(a[j][j]); 
     gp=vector(1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gm=vector(1,nlstate);      } 
     } 
     for(theta=1; theta <=npar; theta++){    free_vector(vv,1,n);  /* Doesn't work */
       for(i=1; i<=npar; i++){ /* Computes gradient */  ;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  } 
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void lubksb(double **a, int n, int *indx, double b[]) 
       for(i=1;i<=nlstate;i++)  { 
         gp[i] = prlim[i][i];    int i,ii=0,ip,j; 
        double sum; 
       for(i=1; i<=npar; i++) /* Computes gradient */   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      ip=indx[i]; 
       for(i=1;i<=nlstate;i++)      sum=b[ip]; 
         gm[i] = prlim[i][i];      b[ip]=b[i]; 
       if (ii) 
       for(i=1;i<=nlstate;i++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      else if (sum) ii=i; 
     } /* End theta */      b[i]=sum; 
     } 
     trgradg =matrix(1,nlstate,1,npar);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for(j=1; j<=nlstate;j++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(theta=1; theta <=npar; theta++)      b[i]=sum/a[i][i]; 
         trgradg[j][theta]=gradg[theta][j];    } 
   } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /************ Frequencies ********************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {  /* Some frequencies */
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     fprintf(ficresvpl,"%.0f ",age );    double ***freq; /* Frequencies */
     for(i=1; i<=nlstate;i++)    double *pp, **prop;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficresvpl,"\n");    FILE *ficresp;
     free_vector(gp,1,nlstate);    char fileresp[FILENAMELENGTH];
     free_vector(gm,1,nlstate);    
     free_matrix(gradg,1,npar,1,nlstate);    pp=vector(1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   } /* End age */    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   free_vector(xp,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_matrix(doldm,1,nlstate,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 /************ Variance of one-step probabilities  ******************/    j1=0;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    
 {    j=cptcoveff;
   int i, j,  i1, k1, l1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int k2, l2, j1,  z1;  
   int k=0,l, cptcode;    first=1;
   int first=1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    for(k1=1; k1<=j;k1++){
   double **dnewm,**doldm;      for(i1=1; i1<=ncodemax[k1];i1++){
   double *xp;        j1++;
   double *gp, *gm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double **gradg, **trgradg;          scanf("%d", i);*/
   double **mu;        for (i=-5; i<=nlstate+ndeath; i++)  
   double age,agelim, cov[NCOVMAX];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            for(m=iagemin; m <= iagemax+3; m++)
   int theta;              freq[i][jk][m]=0;
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];      for (i=1; i<=nlstate; i++)  
   char fileresprobcor[FILENAMELENGTH];        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   double ***varpij;        
         dateintsum=0;
   strcpy(fileresprob,"prob");        k2cpt=0;
   strcat(fileresprob,fileres);        for (i=1; i<=imx; i++) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          bool=1;
     printf("Problem with resultfile: %s\n", fileresprob);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   strcpy(fileresprobcov,"probcov");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcat(fileresprobcov,fileres);                bool=0;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", fileresprobcov);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   strcpy(fileresprobcor,"probcor");              k2=anint[m][i]+(mint[m][i]/12.);
   strcat(fileresprobcor,fileres);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with resultfile: %s\n", fileresprobcor);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                if (m<lastpass) {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                
   fprintf(ficresprob,"# Age");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                  dateintsum=dateintsum+k2;
   fprintf(ficresprobcov,"# Age");                  k2cpt++;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                }
   fprintf(ficresprobcov,"# Age");                /*}*/
             }
           }
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=(nlstate+ndeath);j++){         
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  fprintf(ficresp, "#Local time at start: %s", strstart);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        if  (cptcovn>0) {
     }            fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficresprob,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficresprobcov,"\n");          fprintf(ficresp, "**********\n#");
   fprintf(ficresprobcor,"\n");        }
   xp=vector(1,npar);        for(i=1; i<=nlstate;i++) 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        fprintf(ficresp, "\n");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        for(i=iagemin; i <= iagemax+3; i++){
   first=1;          if(i==iagemax+3){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            fprintf(ficlog,"Total");
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          }else{
     exit(0);            if(first==1){
   }              first=0;
   else{              printf("See log file for details...\n");
     fprintf(ficgp,"\n# Routine varprob");            }
   }            fprintf(ficlog,"Age %d", i);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          }
     printf("Problem with html file: %s\n", optionfilehtm);          for(jk=1; jk <=nlstate ; jk++){
     exit(0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   else{          }
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          for(jk=1; jk <=nlstate ; jk++){
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            for(m=-1, pos=0; m <=0 ; m++)
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   }              if(first==1){
   cov[1]=1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   j=cptcoveff;              }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   j1=0;            }else{
   for(k1=1; k1<=1;k1++){              if(first==1)
     for(i1=1; i1<=ncodemax[k1];i1++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     j1++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     if  (cptcovn>0) {          }
       fprintf(ficresprob, "\n#********** Variable ");  
       fprintf(ficresprobcov, "\n#********** Variable ");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp, "\n#********** Variable ");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");              pp[jk] += freq[jk][m][i];
       fprintf(ficresprobcor, "\n#********** Variable ");          }       
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficresprob, "**********\n#");            pos += pp[jk];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            posprop += prop[jk][i];
       fprintf(ficresprobcov, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp, "**********\n#");            if(pos>=1.e-5){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(first==1)
       fprintf(ficgp, "**********\n#");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(fichtm, "**********\n#");            }else{
     }              if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (age=bage; age<=fage; age ++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {            if( i <= iagemax){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                /*probs[i][jk][j1]= pp[jk]/pos;*/
         for (k=1; k<=cptcovprod;k++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              }
                      else
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            }
         gp=vector(1,(nlstate)*(nlstate+ndeath));          }
         gm=vector(1,(nlstate)*(nlstate+ndeath));          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(theta=1; theta <=npar; theta++){            for(m=-1; m <=nlstate+ndeath; m++)
           for(i=1; i<=npar; i++)              if(freq[jk][m][i] !=0 ) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(first==1)
                          printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                        }
           k=0;          if(i <= iagemax)
           for(i=1; i<= (nlstate); i++){            fprintf(ficresp,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){          if(first==1)
               k=k+1;            printf("Others in log...\n");
               gp[k]=pmmij[i][j];          fprintf(ficlog,"\n");
             }        }
           }      }
              }
           for(i=1; i<=npar; i++)    dateintmean=dateintsum/k2cpt; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);   
        fclose(ficresp);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           k=0;    free_vector(pp,1,nlstate);
           for(i=1; i<=(nlstate); i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             for(j=1; j<=(nlstate+ndeath);j++){    /* End of Freq */
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /************ Prevalence ********************/
           }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        {  
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
     */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)   
           for(theta=1; theta <=npar; theta++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             trgradg[j][theta]=gradg[theta][j];    double ***freq; /* Frequencies */
            double *pp, **prop;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    double pos,posprop; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    double  y2; /* in fractional years */
            int iagemin, iagemax;
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
            iagemin= (int) agemin;
         k=0;    iagemax= (int) agemax;
         for(i=1; i<=(nlstate); i++){    /*pp=vector(1,nlstate);*/
           for(j=1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             k=k+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             mu[k][(int) age]=pmmij[i][j];    j1=0;
           }    
         }    j=cptcoveff;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    
             varpij[i][j][(int)age] = doldm[i][j];    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         /*printf("\n%d ",(int)age);        j1++;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for (i=1; i<=nlstate; i++)  
      }*/          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
         fprintf(ficresprob,"\n%d ",(int)age);       
         fprintf(ficresprobcov,"\n%d ",(int)age);        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficresprobcor,"\n%d ",(int)age);          bool=1;
           if  (cptcovn>0) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for (z1=1; z1<=cptcoveff; z1++) 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                bool=0;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          } 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          if (bool==1) { 
         }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         i=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for (k=1; k<=(nlstate);k++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           for (l=1; l<=(nlstate+ndeath);l++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             i=i++;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             for (j=1; j<=i;j++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                  prop[s[m][i]][iagemax+3] += weight[i]; 
             }                } 
           }              }
         }/* end of loop for state */            } /* end selection of waves */
       } /* end of loop for age */          }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        }
       for (k1=1; k1<=(nlstate);k1++){        for(i=iagemin; i <= iagemax+3; i++){  
         for (l1=1; l1<=(nlstate+ndeath);l1++){          
           if(l1==k1) continue;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           i=(k1-1)*(nlstate+ndeath)+l1;            posprop += prop[jk][i]; 
           for (k2=1; k2<=(nlstate);k2++){          } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){  
               if(l2==k2) continue;          for(jk=1; jk <=nlstate ; jk++){     
               j=(k2-1)*(nlstate+ndeath)+l2;            if( i <=  iagemax){ 
               if(j<=i) continue;              if(posprop>=1.e-5){ 
               for (age=bage; age<=fage; age ++){                probs[i][jk][j1]= prop[jk][i]/posprop;
                 if ((int)age %5==0){              } 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            } 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          }/* end jk */ 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        }/* end i */ 
                   mu1=mu[i][(int) age]/stepm*YEARM ;      } /* end i1 */
                   mu2=mu[j][(int) age]/stepm*YEARM;    } /* end k1 */
                   /* Computing eigen value of matrix of covariance */    
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /*free_vector(pp,1,nlstate);*/
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   /* Eigen vectors */  }  /* End of prevalence */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);  /************* Waves Concatenation ***************/
                   v12=-v21;  
                   v22=v11;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   /*printf(fignu*/  {
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */       Death is a valid wave (if date is known).
                   if(first==1){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                     first=0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                     fprintf(ficgp,"\nset parametric;set nolabel");       and mw[mi+1][i]. dh depends on stepm.
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);       */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    int i, mi, m;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);       double sum=0., jmean=0.;*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    int first;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    int j, k=0,jk, ju, jl;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    double sum=0.;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    first=0;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    jmin=1e+5;
                   }else{    jmax=-1;
                     first=0;    jmean=0.;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    for(i=1; i<=imx; i++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      mi=0;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      m=firstpass;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      while(s[m][i] <= nlstate){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                   }/* if first */          mw[++mi][i]=m;
                 } /* age mod 5 */        if(m >=lastpass)
               } /* end loop age */          break;
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);        else
               first=1;          m++;
             } /*l12 */      }/* end while */
           } /* k12 */      if (s[m][i] > nlstate){
         } /*l1 */        mi++;     /* Death is another wave */
       }/* k1 */        /* if(mi==0)  never been interviewed correctly before death */
     } /* loop covariates */           /* Only death is a correct wave */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        mw[mi][i]=m;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      wav[i]=mi;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if(mi==0){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        nbwarn++;
   }        if(first==0){
   free_vector(xp,1,npar);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fclose(ficresprob);          first=1;
   fclose(ficresprobcov);        }
   fclose(ficresprobcor);        if(first==1){
   fclose(ficgp);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   fclose(fichtm);        }
 }      } /* end mi==0 */
     } /* End individuals */
   
 /******************* Printing html file ***********/    for(i=1; i<=imx; i++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      for(mi=1; mi<wav[i];mi++){
                   int lastpass, int stepm, int weightopt, char model[],\        if (stepm <=0)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          dh[mi][i]=1;
                   int popforecast, int estepm ,\        else{
                   double jprev1, double mprev1,double anprev1, \          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   double jprev2, double mprev2,double anprev2){            if (agedc[i] < 2*AGESUP) {
   int jj1, k1, i1, cpt;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /*char optionfilehtm[FILENAMELENGTH];*/              if(j==0) j=1;  /* Survives at least one month after exam */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {              else if(j<0){
     printf("Problem with %s \n",optionfilehtm), exit(0);                nberr++;
   }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              }
  - Life expectancies by age and initial health status (estepm=%2d months):              k=k+1;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              if (j >= jmax) jmax=j;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if (j <= jmin) jmin=j;
               sum=sum+j;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          }
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          else{
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
             k=k+1;
  if(popforecast==1) fprintf(fichtm,"\n            if (j >= jmax) jmax=j;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            else if (j <= jmin)jmin=j;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         <br>",fileres,fileres,fileres,fileres);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
  else            if(j<0){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              nberr++;
 fprintf(fichtm," <li>Graphs</li><p>");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  m=cptcoveff;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            sum=sum+j;
           }
  jj1=0;          jk= j/stepm;
  for(k1=1; k1<=m;k1++){          jl= j -jk*stepm;
    for(i1=1; i1<=ncodemax[k1];i1++){          ju= j -(jk+1)*stepm;
      jj1++;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      if (cptcovn > 0) {            if(jl==0){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              dh[mi][i]=jk;
        for (cpt=1; cpt<=cptcoveff;cpt++)              bh[mi][i]=0;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }else{ /* We want a negative bias in order to only have interpolation ie
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                    * at the price of an extra matrix product in likelihood */
      }              dh[mi][i]=jk+1;
      /* Pij */              bh[mi][i]=ju;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            }
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }else{
      /* Quasi-incidences */            if(jl <= -ju){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              dh[mi][i]=jk;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              bh[mi][i]=jl;       /* bias is positive if real duration
        /* Stable prevalence in each health state */                                   * is higher than the multiple of stepm and negative otherwise.
        for(cpt=1; cpt<nlstate;cpt++){                                   */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            else{
        }              dh[mi][i]=jk+1;
     for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=ju;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            }
 interval) in state (%d): v%s%d%d.png <br>            if(dh[mi][i]==0){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                dh[mi][i]=1; /* At least one step */
      }              bh[mi][i]=ju; /* At least one step */
      for(cpt=1; cpt<=nlstate;cpt++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          } /* end if mle */
      }        }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      } /* end wave */
 health expectancies in states (1) and (2): e%s%d.png<br>    }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    jmean=sum/k;
    }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 fclose(fichtm);   }
 }  
   /*********** Tricode ****************************/
 /******************* Gnuplot file **************/  void tricode(int *Tvar, int **nbcode, int imx)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  {
     
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int ng;    int cptcode=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    cptcoveff=0; 
     printf("Problem with file %s",optionfilegnuplot);   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 #endif      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 m=pow(2,cptcoveff);                                 modality*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  /* 1eme*/        Ndum[ij]++; /*store the modality */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    for (k1=1; k1<= m ; k1 ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
 #ifdef windows                                         female is 1, then  cptcode=1.*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif      for (i=0; i<=cptcode; i++) {
 #ifdef unix        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  
 #endif      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
 for (i=1; i<= nlstate ; i ++) {        for (k=0; k<= maxncov; k++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (Ndum[k] != 0) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");            nbcode[Tvar[j]][ij]=k; 
 }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            
     for (i=1; i<= nlstate ; i ++) {            ij++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if (ij > ncodemax[j]) break; 
 }        }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      } 
      for (i=1; i<= nlstate ; i ++) {    }  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   for (i=1; i<=ncovmodel-2; i++) { 
 #ifdef unix     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");     ij=Tvar[i];
 #endif     Ndum[ij]++;
    }   }
   }  
   /*2 eme*/   ij=1;
    for (i=1; i<= maxncov; i++) {
   for (k1=1; k1<= m ; k1 ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);       Tvaraff[ij]=i; /*For printing */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       ij++;
         }
     for (i=1; i<= nlstate+1 ; i ++) {   }
       k=2*i;   
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);   cptcoveff=ij-1; /*Number of simple covariates*/
       for (j=1; j<= nlstate+1 ; j ++) {  }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*********** Health Expectancies ****************/
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    /* Health expectancies */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double age, agelim, hf;
 }      double ***p3mat,***varhe;
       fprintf(ficgp,"\" t\"\" w l 0,");    double **dnewm,**doldm;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *xp;
       for (j=1; j<= nlstate+1 ; j ++) {    double **gp, **gm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***gradg, ***trgradg;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       else fprintf(ficgp,"\" t\"\" w l 0,");    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
   /*3eme*/    fprintf(ficreseij,"# Local time at start: %s", strstart);
     fprintf(ficreseij,"# Health expectancies\n");
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficreseij,"# Age");
     for (cpt=1; cpt<= nlstate ; cpt ++) {    for(i=1; i<=nlstate;i++)
       k=2+nlstate*(2*cpt-2);      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficreseij,"\n");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    if(estepm < stepm){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      printf ("Problem %d lower than %d\n",estepm, stepm);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    else  hstepm=estepm;   
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
 */     * if stepm=24 months pijx are given only every 2 years and by summing them
       for (i=1; i< nlstate ; i ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
     for (cpt=1; cpt<nlstate ; cpt ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       k=3;       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
       for (i=1; i< nlstate ; i ++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficgp,"+$%d",k+i+1);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       l=3+(nlstate+ndeath)*cpt;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    */
       for (i=1; i< nlstate ; i ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    agelim=AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* nhstepm age range expressed in number of stepm */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   /* proba elementaires */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(i=1,jk=1; i <=nlstate; i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(k=1; k <=(nlstate+ndeath); k++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       if (k != i) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(j=1; j <=ncovmodel; j++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           jk++;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficgp,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         }   
       }  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    }  
       /* Computing  Variances of health expectancies */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {       for(theta=1; theta <=npar; theta++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        for(i=1; i<=npar; i++){ 
        if (ng==2)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        }
        else        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          fprintf(ficgp,"\nset title \"Probability\"\n");    
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        cptj=0;
        i=1;        for(j=1; j<= nlstate; j++){
        for(k2=1; k2<=nlstate; k2++) {          for(i=1; i<=nlstate; i++){
          k3=i;            cptj=cptj+1;
          for(k=1; k<=(nlstate+ndeath); k++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
            if (k != k2){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              if(ng==2)            }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          }
              else        }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       
              ij=1;       
              for(j=3; j <=ncovmodel; j++) {        for(i=1; i<=npar; i++) 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                  ij++;        
                }        cptj=0;
                else        for(j=1; j<= nlstate; j++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1;i<=nlstate;i++){
              }            cptj=cptj+1;
              fprintf(ficgp,")/(1");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
                
              for(k1=1; k1 <=nlstate; k1++){                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
                ij=1;          }
                for(j=3; j <=ncovmodel; j++){        }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<= nlstate*nlstate; j++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(h=0; h<=nhstepm-1; h++){
                    ij++;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }          }
                  else       } 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     
                }  /* End theta */
                fprintf(ficgp,")");  
              }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       for(h=0; h<=nhstepm-1; h++)
              i=i+ncovmodel;        for(j=1; j<=nlstate*nlstate;j++)
            }          for(theta=1; theta <=npar; theta++)
          }            trgradg[h][j][theta]=gradg[h][theta][j];
        }       
      }  
    }       for(i=1;i<=nlstate*nlstate;i++)
    fclose(ficgp);        for(j=1;j<=nlstate*nlstate;j++)
 }  /* end gnuplot */          varhe[i][j][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
 /*************** Moving average **************/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   int i, cpt, cptcod;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for (i=1; i<=nlstate;i++)          for(i=1;i<=nlstate*nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            for(j=1;j<=nlstate*nlstate;j++)
           mobaverage[(int)agedeb][i][cptcod]=0.;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      }
       for (i=1; i<=nlstate;i++){      /* Computing expectancies */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){        for(j=1; j<=nlstate;j++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            
         }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
     }          }
      
 }      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
       for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/        for(j=1; j<=nlstate;j++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          cptj++;
            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      fprintf(ficreseij,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     
   double *popeffectif,*popcount;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double ***p3mat;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   char fileresf[FILENAMELENGTH];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
  agelim=AGESUP;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     printf("\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficlog,"\n");
    
      free_vector(xp,1,npar);
   strcpy(fileresf,"f");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcat(fileresf,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with forecast resultfile: %s\n", fileresf);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {
     /* Variance of health expectancies */
   if (mobilav==1) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* double **newm;*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k, cptcode;
   if (stepm<=12) stepsize=1;    double *xp;
      double **gp, **gm;  /* for var eij */
   agelim=AGESUP;    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   hstepm=1;    double *gpp, *gmp; /* for var p point j */
   hstepm=hstepm/stepm;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   yp1=modf(dateintmean,&yp);    double ***p3mat;
   anprojmean=yp;    double age,agelim, hf;
   yp2=modf((yp1*12),&yp);    double ***mobaverage;
   mprojmean=yp;    int theta;
   yp1=modf((yp2*30.5),&yp);    char digit[4];
   jprojmean=yp;    char digitp[25];
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    char fileresprobmorprev[FILENAMELENGTH];
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    if(popbased==1){
        if(mobilav!=0)
   for(cptcov=1;cptcov<=i2;cptcov++){        strcpy(digitp,"-populbased-mobilav-");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      else strcpy(digitp,"-populbased-nomobil-");
       k=k+1;    }
       fprintf(ficresf,"\n#******");    else 
       for(j=1;j<=cptcoveff;j++) {      strcpy(digitp,"-stablbased-");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    if (mobilav!=0) {
       fprintf(ficresf,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficresf,"# StartingAge FinalAge");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
              printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    }
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           nhstepm = nhstepm/hstepm;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
              strcat(fileresprobmorprev,fileres);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
            }
           for (h=0; h<=nhstepm; h++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             if (h==(int) (calagedate+YEARM*cpt)) {   
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               kk1=0.;kk2=0;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               for(i=1; i<=nlstate;i++) {                  for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 if (mobilav==1)      fprintf(ficresprobmorprev," p.%-d SE",j);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(i=1; i<=nlstate;i++)
                 else {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }  
                 }    fprintf(ficresprobmorprev,"\n");
                    fprintf(ficgp,"\n# Routine varevsij");
               }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               if (h==(int)(calagedate+12*cpt)){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                 fprintf(ficresf," %.3f", kk1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                          /*   } */
               }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             }   fprintf(ficresvij, "#Local time at start: %s", strstart);
           }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   }    fprintf(ficresvij,"\n");
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   fclose(ficresf);    doldm=matrix(1,nlstate,1,nlstate);
 }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 /************** Forecasting ******************/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    gpp=vector(nlstate+1,nlstate+ndeath);
   int *popage;    gmp=vector(nlstate+1,nlstate+ndeath);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *popeffectif,*popcount;    
   double ***p3mat,***tabpop,***tabpopprev;    if(estepm < stepm){
   char filerespop[FILENAMELENGTH];      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else  hstepm=estepm;   
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* For example we decided to compute the life expectancy with the smallest unit */
   agelim=AGESUP;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcpy(filerespop,"pop");       survival function given by stepm (the optimization length). Unfortunately it
   strcat(filerespop,fileres);       means that if the survival funtion is printed every two years of age and if
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with forecast resultfile: %s\n", filerespop);       results. So we changed our mind and took the option of the best precision.
   }    */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (mobilav==1) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  
        for(theta=1; theta <=npar; theta++){
   agelim=AGESUP;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   hstepm=1;        }
   hstepm=hstepm/stepm;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {        if (popbased==1) {
       printf("Problem with population file : %s\n",popfile);exit(0);          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     popage=ivector(0,AGESUP);              prlim[i][i]=probs[(int)age][i][ij];
     popeffectif=vector(0,AGESUP);          }else{ /* mobilav */ 
     popcount=vector(0,AGESUP);            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
     i=1;            }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
        
     imx=i;        for(j=1; j<= nlstate; j++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   for(cptcov=1;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        /* This for computing probability of death (h=1 means
       fprintf(ficrespop,"\n#******");           computed over hstepm matrices product = hstepm*stepm months) 
       for(j=1;j<=cptcoveff;j++) {           as a weighted average of prlim.
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficrespop,"******\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficrespop,"# Age");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }    
       if (popforecast==1)  fprintf(ficrespop," [Population]");        /* end probability of death */
        
       for (cpt=0; cpt<=0;cpt++) {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;        if (popbased==1) {
                    if(mobilav ==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;              prlim[i][i]=probs[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              prlim[i][i]=mobaverage[(int)age][i][ij];
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<= nlstate; j++){
               kk1=0.;kk2=0;          for(h=0; h<=nhstepm; h++){
               for(i=1; i<=nlstate;i++) {                          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 if (mobilav==1)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        /* This for computing probability of death (h=1 means
                 }           computed over hstepm matrices product = hstepm*stepm months) 
               }           as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)){        */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   /*fprintf(ficrespop," %.3f", kk1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
               }        }    
             }        /* end probability of death */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;        for(j=1; j<= nlstate; j++) /* vareij */
                 for(j=1; j<=nlstate;j++){          for(h=0; h<=nhstepm; h++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }      } /* End theta */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
        for(h=0; h<=nhstepm; h++) /* veij */
   /******/        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;          trgradgp[j][theta]=gradgp[theta][j];
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1;i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){        for(j=1;j<=nlstate;j++)
             if (h==(int) (calagedate+YEARM*cpt)) {          vareij[i][j][(int)age] =0.;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      for(h=0;h<=nhstepm;h++){
             for(j=1; j<=nlstate+ndeath;j++) {        for(k=0;k<=nhstepm;k++){
               kk1=0.;kk2=0;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
               for(i=1; i<=nlstate;i++) {                        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(i=1;i<=nlstate;i++)
               }            for(j=1;j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }      /* pptj */
       }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
   if (popforecast==1) {      /*  x centered again */
     free_ivector(popage,0,AGESUP);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     free_vector(popeffectif,0,AGESUP);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     free_vector(popcount,0,AGESUP);   
   }      if (popbased==1) {
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(mobilav ==0){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate;i++)
   fclose(ficrespop);            prlim[i][i]=probs[(int)age][i][ij];
 }        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
 /***********************************************/            prlim[i][i]=mobaverage[(int)age][i][ij];
 /**************** Main Program *****************/        }
 /***********************************************/      }
                
 int main(int argc, char *argv[])      /* This for computing probability of death (h=1 means
 {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      */
   double agedeb, agefin,hf;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double fret;      }    
   double **xi,tmp,delta;      /* end probability of death */
   
   double dum; /* Dummy variable */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double ***p3mat;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int *indx;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   char line[MAXLINE], linepar[MAXLINE];        for(i=1; i<=nlstate;i++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   int firstobs=1, lastobs=10;        }
   int sdeb, sfin; /* Status at beginning and end */      } 
   int c,  h , cpt,l;      fprintf(ficresprobmorprev,"\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      fprintf(ficresvij,"%.0f ",age );
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(i=1; i<=nlstate;i++)
   int mobilav=0,popforecast=0;        for(j=1; j<=nlstate;j++){
   int hstepm, nhstepm;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        }
       fprintf(ficresvij,"\n");
   double bage, fage, age, agelim, agebase;      free_matrix(gp,0,nhstepm,1,nlstate);
   double ftolpl=FTOL;      free_matrix(gm,0,nhstepm,1,nlstate);
   double **prlim;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   double *severity;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double ***param; /* Matrix of parameters */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double  *p;    } /* End age */
   double **matcov; /* Matrix of covariance */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double ***delti3; /* Scale */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double *delti; /* Scale */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double ***eij, ***vareij;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double *epj, vepp;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   double kk1, kk2;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   char z[1]="c", occ;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 #include <sys/time.h>    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 #include <time.h>    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  */
    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /* long total_usecs;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   struct timeval start_time, end_time;  
      free_vector(xp,1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_matrix(doldm,1,nlstate,1,nlstate);
   getcwd(pathcd, size);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("\n%s",version);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   if(argc <=1){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("\nEnter the parameter file name: ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     scanf("%s",pathtot);    fclose(ficresprobmorprev);
   }    fflush(ficgp);
   else{    fflush(fichtm); 
     strcpy(pathtot,argv[1]);  }  /* end varevsij */
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  /************ Variance of prevlim ******************/
   /*cygwin_split_path(pathtot,path,optionfile);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  {
   /* cutv(path,optionfile,pathtot,'\\');*/    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double **newm;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewm,**doldm;
   chdir(path);    int i, j, nhstepm, hstepm;
   replace(pathc,path);    int k, cptcode;
     double *xp;
 /*-------- arguments in the command line --------*/    double *gp, *gm;
     double **gradg, **trgradg;
   strcpy(fileres,"r");    double age,agelim;
   strcat(fileres, optionfilefiname);    int theta;
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   /*---------arguments file --------*/    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        fprintf(ficresvpl," %1d-%1d",i,i);
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficresvpl,"\n");
     goto end;  
   }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   strcpy(filereso,"o");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* Reads comments: lines beginning with '#' */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (stepm >= YEARM) hstepm=1;
     ungetc(c,ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fgets(line, MAXLINE, ficpar);      gradg=matrix(1,npar,1,nlstate);
     puts(line);      gp=vector(1,nlstate);
     fputs(line,ficparo);      gm=vector(1,nlstate);
   }  
   ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gp[i] = prlim[i][i];
     fgets(line, MAXLINE, ficpar);      
     puts(line);        for(i=1; i<=npar; i++) /* Computes gradient */
     fputs(line,ficparo);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
      
   covar=matrix(0,NCOVMAX,1,n);        for(i=1;i<=nlstate;i++)
   cptcovn=0;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      } /* End theta */
   
   ncovmodel=2+cptcovn;      trgradg =matrix(1,nlstate,1,npar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        for(j=1; j<=nlstate;j++)
   /* Read guess parameters */        for(theta=1; theta <=npar; theta++)
   /* Reads comments: lines beginning with '#' */          trgradg[j][theta]=gradg[theta][j];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] =0.;
     puts(line);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresvpl,"%.0f ",age );
     for(i=1; i <=nlstate; i++)      for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvpl,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);      free_vector(gp,1,nlstate);
       printf("%1d%1d",i,j);      free_vector(gm,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      free_matrix(gradg,1,npar,1,nlstate);
         fscanf(ficpar," %lf",&param[i][j][k]);      free_matrix(trgradg,1,nlstate,1,npar);
         printf(" %lf",param[i][j][k]);    } /* End age */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    free_vector(xp,1,npar);
       fscanf(ficpar,"\n");    free_matrix(doldm,1,nlstate,1,npar);
       printf("\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
       fprintf(ficparo,"\n");  
     }  }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   p=param[1][1];  {
      int i, j=0,  i1, k1, l1, t, tj;
   /* Reads comments: lines beginning with '#' */    int k2, l2, j1,  z1;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k=0,l, cptcode;
     ungetc(c,ficpar);    int first=1, first1;
     fgets(line, MAXLINE, ficpar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     puts(line);    double **dnewm,**doldm;
     fputs(line,ficparo);    double *xp;
   }    double *gp, *gm;
   ungetc(c,ficpar);    double **gradg, **trgradg;
     double **mu;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double age,agelim, cov[NCOVMAX];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   for(i=1; i <=nlstate; i++){    int theta;
     for(j=1; j <=nlstate+ndeath-1; j++){    char fileresprob[FILENAMELENGTH];
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char fileresprobcov[FILENAMELENGTH];
       printf("%1d%1d",i,j);    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    double ***varpij;
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    strcpy(fileresprob,"prob"); 
         fprintf(ficparo," %le",delti3[i][j][k]);    strcat(fileresprob,fileres);
       }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fscanf(ficpar,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
       printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fprintf(ficparo,"\n");    }
     }    strcpy(fileresprobcov,"probcov"); 
   }    strcat(fileresprobcov,fileres);
   delti=delti3[1][1];    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcor,fileres);
     puts(line);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   matcov=matrix(1,npar,1,npar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for(i=1; i <=npar; i++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fscanf(ficpar,"%s",&str);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("%s",str);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficparo,"%s",str);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(j=1; j <=i; j++){    fprintf(ficresprob, "#Local time at start: %s", strstart);
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       printf(" %.5le",matcov[i][j]);    fprintf(ficresprob,"# Age");
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fscanf(ficpar,"\n");    fprintf(ficresprobcov,"# Age");
     printf("\n");    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficparo,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcov,"# Age");
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
   printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     /*-------- Rewriting paramater file ----------*/      }  
      strcpy(rfileres,"r");    /* "Rparameterfile */   /* fprintf(ficresprob,"\n");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficresprobcov,"\n");
      strcat(rfileres,".");    /* */    fprintf(ficresprobcor,"\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */   */
     if((ficres =fopen(rfileres,"w"))==NULL) {   xp=vector(1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"#%s\n",version);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     /*-------- data file ----------*/    first=1;
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficgp,"\n# Routine varprob");
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
   
     n= lastobs;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     severity = vector(1,maxwav);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     outcome=imatrix(1,maxwav+1,1,n);    file %s<br>\n",optionfilehtmcov);
     num=ivector(1,n);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     moisnais=vector(1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
     annais=vector(1,n);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     moisdc=vector(1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     andc=vector(1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     agedc=vector(1,n);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     cod=ivector(1,n);  standard deviations wide on each axis. <br>\
     weight=vector(1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     mint=matrix(1,maxwav,1,n);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    cov[1]=1;
     adl=imatrix(1,maxwav+1,1,n);        tj=cptcoveff;
     tab=ivector(1,NCOVMAX);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     ncodemax=ivector(1,8);    j1=0;
     for(t=1; t<=tj;t++){
     i=1;      for(i1=1; i1<=ncodemax[t];i1++){ 
     while (fgets(line, MAXLINE, fic) != NULL)    {        j1++;
       if ((i >= firstobs) && (i <=lastobs)) {        if  (cptcovn>0) {
                  fprintf(ficresprob, "\n#********** Variable "); 
         for (j=maxwav;j>=1;j--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficresprob, "**********\n#\n");
           strcpy(line,stra);          fprintf(ficresprobcov, "\n#********** Variable "); 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov, "**********\n#\n");
         }          
                  fprintf(ficgp, "\n#********** Variable "); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp, "**********\n#\n");
           
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (j=ncovcol;j>=1;j--){          
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcor, "\n#********** Variable ");    
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         num[i]=atol(stra);          fprintf(ficresprobcor, "**********\n#");    
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
         i=i+1;          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
     /* printf("ii=%d", ij);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        scanf("%d",i);*/          for (k=1; k<=cptcovprod;k++)
   imx=i-1; /* Number of individuals */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
   /* for (i=1; i<=imx; i++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          gp=vector(1,(nlstate)*(nlstate+ndeath));
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }*/      
    /*  for (i=1; i<=imx; i++){          for(theta=1; theta <=npar; theta++){
      if (s[4][i]==9)  s[4][i]=-1;            for(i=1; i<=npar; i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
              
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /* Calculation of the number of parameter from char model*/            
   Tvar=ivector(1,15);            k=0;
   Tprod=ivector(1,15);            for(i=1; i<= (nlstate); i++){
   Tvaraff=ivector(1,15);              for(j=1; j<=(nlstate+ndeath);j++){
   Tvard=imatrix(1,15,1,2);                k=k+1;
   Tage=ivector(1,15);                      gp[k]=pmmij[i][j];
                  }
   if (strlen(model) >1){            }
     j=0, j1=0, k1=1, k2=1;            
     j=nbocc(model,'+');            for(i=1; i<=npar; i++)
     j1=nbocc(model,'*');              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     cptcovn=j+1;      
     cptcovprod=j1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                k=0;
     strcpy(modelsav,model);            for(i=1; i<=(nlstate); i++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              for(j=1; j<=(nlstate+ndeath);j++){
       printf("Error. Non available option model=%s ",model);                k=k+1;
       goto end;                gm[k]=pmmij[i][j];
     }              }
                }
     for(i=(j+1); i>=1;i--){       
       cutv(stra,strb,modelsav,'+');            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         cutv(strd,strc,strb,'*');            for(theta=1; theta <=npar; theta++)
         if (strcmp(strc,"age")==0) {              trgradg[j][theta]=gradg[theta][j];
           cptcovprod--;          
           cutv(strb,stre,strd,'V');          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           Tvar[i]=atoi(stre);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           cptcovage++;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             Tage[cptcovage]=i;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             /*printf("stre=%s ", stre);*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;          pmij(pmmij,cov,ncovmodel,x,nlstate);
           cutv(strb,stre,strc,'V');          
           Tvar[i]=atoi(stre);          k=0;
           cptcovage++;          for(i=1; i<=(nlstate); i++){
           Tage[cptcovage]=i;            for(j=1; j<=(nlstate+ndeath);j++){
         }              k=k+1;
         else {              mu[k][(int) age]=pmmij[i][j];
           cutv(strb,stre,strc,'V');            }
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V');          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           Tprod[k1]=i;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           Tvard[k1][1]=atoi(strc);              varpij[i][j][(int)age] = doldm[i][j];
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];          /*printf("\n%d ",(int)age);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           for (k=1; k<=lastobs;k++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           k1++;            }*/
           k2=k2+2;  
         }          fprintf(ficresprob,"\n%d ",(int)age);
       }          fprintf(ficresprobcov,"\n%d ",(int)age);
       else {          fprintf(ficresprobcor,"\n%d ",(int)age);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       cutv(strd,strc,strb,'V');            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       Tvar[i]=atoi(strc);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       strcpy(modelsav,stra);              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/          i=0;
     }          for (k=1; k<=(nlstate);k++){
 }            for (l=1; l<=(nlstate+ndeath);l++){ 
                i=i++;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   printf("cptcovprod=%d ", cptcovprod);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   scanf("%d ",i);*/              for (j=1; j<=i;j++){
     fclose(fic);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     /*  if(mle==1){*/              }
     if (weightopt != 1) { /* Maximisation without weights*/            }
       for(i=1;i<=n;i++) weight[i]=1.0;          }/* end of loop for state */
     }        } /* end of loop for age */
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);        /* Confidence intervalle of pij  */
         /*
     for (i=1; i<=imx; i++) {          fprintf(ficgp,"\nset noparametric;unset label");
       for(m=2; (m<= maxwav); m++) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          anint[m][i]=9999;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
          s[m][i]=-1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
        }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       }        */
     }  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     for (i=1; i<=imx; i++)  {        first1=1;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for (k2=1; k2<=(nlstate);k2++){
       for(m=1; (m<= maxwav); m++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         if(s[m][i] >0){            if(l2==k2) continue;
           if (s[m][i] >= nlstate+1) {            j=(k2-1)*(nlstate+ndeath)+l2;
             if(agedc[i]>0)            for (k1=1; k1<=(nlstate);k1++){
               if(moisdc[i]!=99 && andc[i]!=9999)              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 agev[m][i]=agedc[i];                if(l1==k1) continue;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                i=(k1-1)*(nlstate+ndeath)+l1;
            else {                if(i<=j) continue;
               if (andc[i]!=9999){                for (age=bage; age<=fage; age ++){ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                  if ((int)age %5==0){
               agev[m][i]=-1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
               }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           }                    mu1=mu[i][(int) age]/stepm*YEARM ;
           else if(s[m][i] !=9){ /* Should no more exist */                    mu2=mu[j][(int) age]/stepm*YEARM;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                    c12=cv12/sqrt(v1*v2);
             if(mint[m][i]==99 || anint[m][i]==9999)                    /* Computing eigen value of matrix of covariance */
               agev[m][i]=1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             else if(agev[m][i] <agemin){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               agemin=agev[m][i];                    /* Eigen vectors */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             }                    /*v21=sqrt(1.-v11*v11); *//* error */
             else if(agev[m][i] >agemax){                    v21=(lc1-v1)/cv12*v11;
               agemax=agev[m][i];                    v12=-v21;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    v22=v11;
             }                    tnalp=v21/v11;
             /*agev[m][i]=anint[m][i]-annais[i];*/                    if(first1==1){
             /*   agev[m][i] = age[i]+2*m;*/                      first1=0;
           }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           else { /* =9 */                    }
             agev[m][i]=1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             s[m][i]=-1;                    /*printf(fignu*/
           }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         else /*= 0 Unknown */                    if(first==1){
           agev[m][i]=1;                      first=0;
       }                      fprintf(ficgp,"\nset parametric;unset label");
                          fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     for (i=1; i<=imx; i++)  {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       for(m=1; (m<= maxwav); m++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         if (s[m][i] > (nlstate+ndeath)) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           printf("Error: Wrong value in nlstate or ndeath\n");                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           goto end;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     free_vector(severity,1,maxwav);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     free_imatrix(outcome,1,maxwav+1,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_vector(moisnais,1,n);                    }else{
     free_vector(annais,1,n);                      first=0;
     /* free_matrix(mint,1,maxwav,1,n);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
        free_matrix(anint,1,maxwav,1,n);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_vector(moisdc,1,n);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_vector(andc,1,n);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     wav=ivector(1,imx);                    }/* if first */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                  } /* age mod 5 */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                } /* end loop age */
                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     /* Concatenates waves */                first=1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              } /*l12 */
             } /* k12 */
           } /*l1 */
       Tcode=ivector(1,100);        }/* k1 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } /* loop covariates */
       ncodemax[1]=1;    }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
          free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    codtab=imatrix(1,100,1,10);    free_vector(xp,1,npar);
    h=0;    fclose(ficresprob);
    m=pow(2,cptcoveff);    fclose(ficresprobcov);
      fclose(ficresprobcor);
    for(k=1;k<=cptcoveff; k++){    fflush(ficgp);
      for(i=1; i <=(m/pow(2,k));i++){    fflush(fichtmcov);
        for(j=1; j <= ncodemax[k]; j++){  }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /******************* Printing html file ***********/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
          }                    int lastpass, int stepm, int weightopt, char model[],\
        }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      }                    int popforecast, int estepm ,\
    }                    double jprev1, double mprev1,double anprev1, \
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    double jprev2, double mprev2,double anprev2){
       codtab[1][2]=1;codtab[2][2]=2; */    int jj1, k1, i1, cpt;
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       }  </ul>");
       printf("\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       scanf("%d",i);*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         fprintf(fichtm,"\
    /* Calculates basic frequencies. Computes observed prevalence at single age   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
        and prints on file fileres'p'. */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
       - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Life expectancies by age and initial health status (estepm=%2d months): \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     <a href=\"%s\">%s</a> <br>\n</li>",
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   m=cptcoveff;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
     if(mle==1){   jj1=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
     /*--------- results files --------------*/       if (cptcovn > 0) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    jk=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       /* Pij */
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
      for(k=1; k <=(nlstate+ndeath); k++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        if (k != i)       /* Quasi-incidences */
          {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
            printf("%d%d ",i,k);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
            fprintf(ficres,"%1d%1d ",i,k);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
            for(j=1; j <=ncovmodel; j++){         /* Stable prevalence in each health state */
              printf("%f ",p[jk]);         for(cpt=1; cpt<nlstate;cpt++){
              fprintf(ficres,"%f ",p[jk]);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
              jk++;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
            }         }
            printf("\n");       for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(ficres,"\n");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
          }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
      }       }
    }     } /* end i1 */
  if(mle==1){   }/* End k1 */
     /* Computing hessian and covariance matrix */   fprintf(fichtm,"</ul>");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }   fprintf(fichtm,"\
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     printf("# Scales (for hessian or gradient estimation)\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         if (j!=i) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           fprintf(ficres,"%1d%1d",i,j);   fprintf(fichtm,"\
           printf("%1d%1d",i,j);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           for(k=1; k<=ncovmodel;k++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);   fprintf(fichtm,"\
             jk++;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           printf("\n");   fprintf(fichtm,"\
           fprintf(ficres,"\n");   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       }   fprintf(fichtm,"\
      }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     k=1;   fprintf(fichtm,"\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;  /*  if(popforecast==1) fprintf(fichtm,"\n */
       i1=(i-1)/(ncovmodel*nlstate)+1;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /*      <br>",fileres,fileres,fileres,fileres); */
       fprintf(ficres,"%3d",i);  /*  else  */
       printf("%3d",i);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       for(j=1; j<=i;j++){   fflush(fichtm);
         fprintf(ficres," %.5e",matcov[i][j]);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         printf(" %.5e",matcov[i][j]);  
       }   m=cptcoveff;
       fprintf(ficres,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       printf("\n");  
       k++;   jj1=0;
     }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     while((c=getc(ficpar))=='#' && c!= EOF){       jj1++;
       ungetc(c,ficpar);       if (cptcovn > 0) {
       fgets(line, MAXLINE, ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       puts(line);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fputs(line,ficparo);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);       }
     estepm=0;       for(cpt=1; cpt<=nlstate;cpt++) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     if (estepm==0 || estepm < stepm) estepm=stepm;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     if (fage <= 2) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       bage = ageminpar;       }
       fage = agemaxpar;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     }  health expectancies in states (1) and (2): %s%d.png<br>\
      <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     } /* end i1 */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   }/* End k1 */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fprintf(fichtm,"</ul>");
     fflush(fichtm);
     while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /******************* Gnuplot file **************/
     puts(line);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fputs(line,ficparo);  
   }    char dirfileres[132],optfileres[132];
   ungetc(c,ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*     printf("Problem with file %s",optionfilegnuplot); */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
        /*   } */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /*#ifdef windows */
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     puts(line);      /*#endif */
     fputs(line,ficparo);    m=pow(2,cptcoveff);
   }  
   ungetc(c,ficpar);    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
    /* 1eme*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    for (cpt=1; cpt<= nlstate ; cpt ++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   fprintf(ficparo,"pop_based=%d\n",popbased);         fprintf(ficgp,"set xlabel \"Age\" \n\
   fprintf(ficres,"pop_based=%d\n",popbased);    set ylabel \"Probability\" \n\
    set ter png small\n\
   while((c=getc(ficpar))=='#' && c!= EOF){  set size 0.65,0.65\n\
     ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fgets(line, MAXLINE, ficpar);  
     puts(line);       for (i=1; i<= nlstate ; i ++) {
     fputs(line,ficparo);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       for (i=1; i<= nlstate ; i ++) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 while((c=getc(ficpar))=='#' && c!= EOF){       for (i=1; i<= nlstate ; i ++) {
     ungetc(c,ficpar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fgets(line, MAXLINE, ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     puts(line);       }  
     fputs(line,ficparo);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   }     }
   ungetc(c,ficpar);    }
     /*2 eme*/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
       for (i=1; i<= nlstate+1 ; i ++) {
 /*------------ gnuplot -------------*/        k=2*i;
   strcpy(optionfilegnuplot,optionfilefiname);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcat(optionfilegnuplot,".gp");        for (j=1; j<= nlstate+1 ; j ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with file %s",optionfilegnuplot);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
   fclose(ficgp);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
 /*--------- index.htm --------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   strcpy(optionfilehtm,optionfile);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(optionfilehtm,".htm");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }   
     printf("Problem with %s \n",optionfilehtm), exit(0);        fprintf(ficgp,"\" t\"\" w l 0,");
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          else fprintf(ficgp," \%%*lf (\%%*lf)");
 \n        }   
 Total number of observations=%d <br>\n        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        else fprintf(ficgp,"\" t\"\" w l 0,");
 <hr  size=\"2\" color=\"#EC5E5E\">      }
  <ul><li>Parameter files<br>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    /*3eme*/
   fclose(fichtm);    
     for (k1=1; k1<= m ; k1 ++) { 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      for (cpt=1; cpt<= nlstate ; cpt ++) {
          k=2+nlstate*(2*cpt-2);
 /*------------ free_vector  -------------*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
  chdir(path);        fprintf(ficgp,"set ter png small\n\
    set size 0.65,0.65\n\
  free_ivector(wav,1,imx);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  free_ivector(num,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  free_vector(agedc,1,n);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  fclose(ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  fclose(ficres);          
         */
         for (i=1; i< nlstate ; i ++) {
   /*--------------- Prevalence limit --------------*/          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
            
   strcpy(filerespl,"pl");        } 
   strcat(filerespl,fileres);      }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
   }    /* CV preval stable (period) */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficrespl,"#Prevalence limit\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
   fprintf(ficrespl,"#Age ");        k=3;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fprintf(ficrespl,"\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   prlim=matrix(1,nlstate,1,nlstate);  unset log y\n\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=1; i< nlstate ; i ++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"+$%d",k+i+1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   k=0;        
   agebase=ageminpar;        l=3+(nlstate+ndeath)*cpt;
   agelim=agemaxpar;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   ftolpl=1.e-10;        for (i=1; i< nlstate ; i ++) {
   i1=cptcoveff;          l=3+(nlstate+ndeath)*cpt;
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"+$%d",l+i+1);
         }
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
         k=k+1;    }  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");    /* proba elementaires */
         for(j=1;j<=cptcoveff;j++)    for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrespl,"******\n");        if (k != i) {
                  for(j=1; j <=ncovmodel; j++){
         for (age=agebase; age<=agelim; age++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            jk++; 
           fprintf(ficrespl,"%.0f",age );            fprintf(ficgp,"\n");
           for(i=1; i<=nlstate;i++)          }
           fprintf(ficrespl," %.5f", prlim[i][i]);        }
           fprintf(ficrespl,"\n");      }
         }     }
       }  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fclose(ficrespl);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   /*------------- h Pij x at various ages ------------*/         if (ng==2)
             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);         else
   if((ficrespij=fopen(filerespij,"w"))==NULL) {           fprintf(ficgp,"\nset title \"Probability\"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   }         i=1;
   printf("Computing pij: result on file '%s' \n", filerespij);         for(k2=1; k2<=nlstate; k2++) {
             k3=i;
   stepsize=(int) (stepm+YEARM-1)/YEARM;           for(k=1; k<=(nlstate+ndeath); k++) {
   /*if (stepm<=24) stepsize=2;*/             if (k != k2){
                if(ng==2)
   agelim=AGESUP;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   hstepm=stepsize*YEARM; /* Every year of age */               else
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
   k=0;               for(j=3; j <=ncovmodel; j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k=k+1;                   ij++;
         fprintf(ficrespij,"\n#****** ");                 }
         for(j=1;j<=cptcoveff;j++)                 else
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         fprintf(ficrespij,"******\n");               }
                       fprintf(ficgp,")/(1");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */               
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               for(k1=1; k1 <=nlstate; k1++){   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 ij=1;
           oldm=oldms;savm=savms;                 for(j=3; j <=ncovmodel; j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           fprintf(ficrespij,"# Age");                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           for(i=1; i<=nlstate;i++)                     ij++;
             for(j=1; j<=nlstate+ndeath;j++)                   }
               fprintf(ficrespij," %1d-%1d",i,j);                   else
           fprintf(ficrespij,"\n");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            for (h=0; h<=nhstepm; h++){                 }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                 fprintf(ficgp,")");
             for(i=1; i<=nlstate;i++)               }
               for(j=1; j<=nlstate+ndeath;j++)               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
             fprintf(ficrespij,"\n");               i=i+ncovmodel;
              }             }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           } /* end k */
           fprintf(ficrespij,"\n");         } /* end k2 */
         }       } /* end jk */
     }     } /* end ng */
   }     fflush(ficgp); 
   }  /* end gnuplot */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
   
   fclose(ficrespij);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   /*---------- Forecasting ------------------*/    int i, cpt, cptcod;
   if((stepm == 1) && (strcmp(model,".")==0)){    int modcovmax =1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int mobilavrange, mob;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double age;
   }  
   else{    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     erreur=108;                             a covariate has 2 modalities */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   }  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   /*---------- Health expectancies and variances ------------*/      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   strcpy(filerest,"t");        for (i=1; i<=nlstate;i++)
   strcat(filerest,fileres);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if((ficrest=fopen(filerest,"w"))==NULL) {            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* We keep the original values on the extreme ages bage, fage and for 
   }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   strcpy(filerese,"e");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   strcat(filerese,fileres);          for (i=1; i<=nlstate;i++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
  strcpy(fileresv,"v");                }
   strcat(fileresv,fileres);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          }
   }        }/* end age */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }/* end mob */
   calagedate=-1;    }else return -1;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    return 0;
   }/* End movingaverage */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /************** Forecasting ******************/
       k=k+1;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       fprintf(ficrest,"\n#****** ");    /* proj1, year, month, day of starting projection 
       for(j=1;j<=cptcoveff;j++)       agemin, agemax range of age
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       dateprev1 dateprev2 range of dates during which prevalence is computed
       fprintf(ficrest,"******\n");       anproj2 year of en of projection (same day and month as proj1).
     */
       fprintf(ficreseij,"\n#****** ");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       for(j=1;j<=cptcoveff;j++)    int *popage;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agec; /* generic age */
       fprintf(ficreseij,"******\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
       fprintf(ficresvij,"\n#****** ");    double ***p3mat;
       for(j=1;j<=cptcoveff;j++)    double ***mobaverage;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresf[FILENAMELENGTH];
       fprintf(ficresvij,"******\n");  
     agelim=AGESUP;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       oldm=oldms;savm=savms;   
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      strcpy(fileresf,"f"); 
      strcat(fileresf,fileres);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       oldm=oldms;savm=savms;      printf("Problem with forecast resultfile: %s\n", fileresf);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
        }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficrest,"\n");  
     if (mobilav!=0) {
       epj=vector(1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(age=bage; age <=fage ;age++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         if (popbased==1) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           for(i=1; i<=nlstate;i++)      }
             prlim[i][i]=probs[(int)age][i][k];    }
         }  
            stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficrest," %4.0f",age);    if (stepm<=12) stepsize=1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    if(estepm < stepm){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    else  hstepm=estepm;   
           }  
           epj[nlstate+1] +=epj[j];    hstepm=hstepm/stepm; 
         }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
         for(i=1, vepp=0.;i <=nlstate;i++)    anprojmean=yp;
           for(j=1;j <=nlstate;j++)    yp2=modf((yp1*12),&yp);
             vepp += vareij[i][j][(int)age];    mprojmean=yp;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    yp1=modf((yp2*30.5),&yp);
         for(j=1;j <=nlstate;j++){    jprojmean=yp;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    if(jprojmean==0) jprojmean=1;
         }    if(mprojmean==0) jprojmean=1;
         fprintf(ficrest,"\n");  
       }    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
   }    
 free_matrix(mint,1,maxwav,1,n);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   fclose(ficreseij);  
   fclose(ficresvij);  /*            if (h==(int)(YEARM*yearp)){ */
   fclose(ficrest);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fclose(ficpar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_vector(epj,1,nlstate+1);        k=k+1;
          fprintf(ficresf,"\n#******");
   /*------- Variance limit prevalence------*/          for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);        fprintf(ficresf,"******\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(j=1; j<=nlstate+ndeath;j++){ 
     exit(0);          for(i=1; i<=nlstate;i++)              
   }            fprintf(ficresf," p%d%d",i,j);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficresf," p.%d",j);
         }
   k=0;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresf,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       for(j=1;j<=cptcoveff;j++)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm = nhstepm/hstepm; 
       fprintf(ficresvpl,"******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  oldm=oldms;savm=savms;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for (h=0; h<=nhstepm; h++){
     }              if (h*hstepm/YEARM*stepm ==yearp) {
  }                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
   fclose(ficresvpl);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /*---------- End : free ----------------*/              } 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                for(i=1; i<=nlstate;i++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                    else {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                  if (h*hstepm/YEARM*stepm== yearp) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   free_matrix(matcov,1,npar,1,npar);                } /* end i */
   free_vector(delti,1,npar);                if (h*hstepm/YEARM*stepm==yearp) {
   free_matrix(agev,1,maxwav,1,imx);                  fprintf(ficresf," %.3f", ppij);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                }
               }/* end j */
   fprintf(fichtm,"\n</body>");            } /* end h */
   fclose(fichtm);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);          } /* end agec */
          } /* end yearp */
       } /* end cptcod */
   if(erreur >0)    } /* end  cptcov */
     printf("End of Imach with error or warning %d\n",erreur);         
   else   printf("End of Imach\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      fclose(ficresf);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
  end:    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 #ifdef windows    int *popage;
   /* chdir(pathcd);*/    double calagedatem, agelim, kk1, kk2;
 #endif    double *popeffectif,*popcount;
  /*system("wgnuplot graph.plt");*/    double ***p3mat,***tabpop,***tabpopprev;
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double ***mobaverage;
  /*system("cd ../gp37mgw");*/    char filerespop[FILENAMELENGTH];
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd," ");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd,optionfilegnuplot);    agelim=AGESUP;
  system(plotcmd);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
 #ifdef windows    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   while (z[0] != 'q') {    
     /* chdir(path); */    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    strcpy(filerespop,"pop"); 
     scanf("%s",z);    strcat(filerespop,fileres);
     if (z[0] == 'c') system("./imach");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     else if (z[0] == 'e') system(optionfilehtm);      printf("Problem with forecast resultfile: %s\n", filerespop);
     else if (z[0] == 'g') system(plotcmd);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     else if (z[0] == 'q') exit(0);    }
   }    printf("Computing forecasting: result on file '%s' \n", filerespop);
 #endif    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 }  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       printf("IIIII= %d linei=%d\n",i,linei);
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,'/');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);
             exit(1);
           }
           anint[j][i]=(double)(lval); 
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);
             exit(1);
           }
           mint[j][i]=(double)(lval); 
           strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         andc[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);
           exit(1);
         }
         moisdc[i]=(double)(lval); 
   
         strcpy(line,stra);
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);
           exit(1);
         }
         annais[i]=(double)(lval);
   
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);
           exit(1);
         }
         moisnais[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <0 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.109


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>