Diff for /imach/src/imach.c between versions 1.51 and 1.114

version 1.51, 2002/07/19 12:22:25 version 1.114, 2006/02/26 12:57:58
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.114  2006/02/26 12:57:58  brouard
      (Module): Some improvements in processing parameter
   This program computes Healthy Life Expectancies from    filename with strsep.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.113  2006/02/24 14:20:24  brouard
   interviewed on their health status or degree of disability (in the    (Module): Memory leaks checks with valgrind and:
   case of a health survey which is our main interest) -2- at least a    datafile was not closed, some imatrix were not freed and on matrix
   second wave of interviews ("longitudinal") which measure each change    allocation too.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.112  2006/01/30 09:55:26  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.111  2006/01/25 20:38:18  brouard
   probability to be observed in state j at the second wave    (Module): Lots of cleaning and bugs added (Gompertz)
   conditional to be observed in state i at the first wave. Therefore    (Module): Comments can be added in data file. Missing date values
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    can be a simple dot '.'.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.110  2006/01/25 00:51:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Lots of cleaning and bugs added (Gompertz)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.108  2006/01/19 18:05:42  lievre
   identical for each individual. Also, if a individual missed an    Gnuplot problem appeared...
   intermediate interview, the information is lost, but taken into    To be fixed
   account using an interpolation or extrapolation.    
     Revision 1.107  2006/01/19 16:20:37  brouard
   hPijx is the probability to be observed in state i at age x+h    Test existence of gnuplot in imach path
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.106  2006/01/19 13:24:36  brouard
   states. This elementary transition (by month or quarter trimester,    Some cleaning and links added in html output
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.105  2006/01/05 20:23:19  lievre
   and the contribution of each individual to the likelihood is simply    *** empty log message ***
   hPijx.  
     Revision 1.104  2005/09/30 16:11:43  lievre
   Also this programme outputs the covariance matrix of the parameters but also    (Module): sump fixed, loop imx fixed, and simplifications.
   of the life expectancies. It also computes the prevalence limits.    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (instead of missing=-1 in earlier versions) and his/her
            Institut national d'études démographiques, Paris.    contributions to the likelihood is 1 - Prob of dying from last
   This software have been partly granted by Euro-REVES, a concerted action    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   from the European Union.    the healthy state at last known wave). Version is 0.98
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.103  2005/09/30 15:54:49  lievre
   can be accessed at http://euroreves.ined.fr/imach .    (Module): sump fixed, loop imx fixed, and simplifications.
   **********************************************************************/  
      Revision 1.102  2004/09/15 17:31:30  brouard
 #include <math.h>    Add the possibility to read data file including tab characters.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.101  2004/09/15 10:38:38  brouard
 #include <unistd.h>    Fix on curr_time
   
 #define MAXLINE 256    Revision 1.100  2004/07/12 18:29:06  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Add version for Mac OS X. Just define UNIX in Makefile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.99  2004/06/05 08:57:40  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.98  2004/05/16 15:05:56  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define NINTERVMAX 8    cross-longitudinal survey is different from the mortality estimated
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    from other sources like vital statistic data.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The same imach parameter file can be used but the option for mle should be -3.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Agnès, who wrote this part of the code, tried to keep most of the
 #define AGESUP 130    former routines in order to include the new code within the former code.
 #define AGEBASE 40  
 #ifdef windows    The output is very simple: only an estimate of the intercept and of
 #define DIRSEPARATOR '\\'    the slope with 95% confident intervals.
 #define ODIRSEPARATOR '/'  
 #else    Current limitations:
 #define DIRSEPARATOR '/'    A) Even if you enter covariates, i.e. with the
 #define ODIRSEPARATOR '\\'    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #endif    B) There is no computation of Life Expectancy nor Life Table.
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.97  2004/02/20 13:25:42  lievre
 int erreur; /* Error number */    Version 0.96d. Population forecasting command line is (temporarily)
 int nvar;    suppressed.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.96  2003/07/15 15:38:55  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int ndeath=1; /* Number of dead states */    rewritten within the same printf. Workaround: many printfs.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 int *wav; /* Number of waves for this individuual 0 is possible */    (Repository): Using imachwizard code to output a more meaningful covariance
 int maxwav; /* Maxim number of waves */    matrix (cov(a12,c31) instead of numbers.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.94  2003/06/27 13:00:02  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Just cleaning
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.93  2003/06/25 16:33:55  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): On windows (cygwin) function asctime_r doesn't
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    exist so I changed back to asctime which exists.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Version 0.96b
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.92  2003/06/25 16:30:45  brouard
 FILE *ficresprobmorprev;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *fichtm; /* Html File */    exist so I changed back to asctime which exists.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
 FILE  *ficresvij;    * imach.c (Repository): Duplicated warning errors corrected.
 char fileresv[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
 FILE  *ficresvpl;    helps to forecast when convergence will be reached. Elapsed time
 char fileresvpl[FILENAMELENGTH];    is stamped in powell.  We created a new html file for the graphs
 char title[MAXLINE];    concerning matrix of covariance. It has extension -cov.htm.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
 char filelog[FILENAMELENGTH]; /* Log file */    of the covariance matrix to be input.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
 char popfile[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    of the covariance matrix to be input.
   
 #define NR_END 1    Revision 1.88  2003/06/23 17:54:56  brouard
 #define FREE_ARG char*    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define FTOL 1.0e-10  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define NRANSI    Version 0.96
 #define ITMAX 200  
     Revision 1.86  2003/06/17 20:04:08  brouard
 #define TOL 2.0e-4    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.85  2003/06/17 13:12:43  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 #define GOLD 1.618034    prior to the death. In this case, dh was negative and likelihood
 #define GLIMIT 100.0    was wrong (infinity). We still send an "Error" but patch by
 #define TINY 1.0e-20    assuming that the date of death was just one stepm after the
     interview.
 static double maxarg1,maxarg2;    (Repository): Because some people have very long ID (first column)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    we changed int to long in num[] and we added a new lvector for
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    memory allocation. But we also truncated to 8 characters (left
      truncation)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): No more line truncation errors.
 #define rint(a) floor(a+0.5)  
     Revision 1.84  2003/06/13 21:44:43  brouard
 static double sqrarg;    * imach.c (Repository): Replace "freqsummary" at a correct
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    place. It differs from routine "prevalence" which may be called
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    many times. Probs is memory consuming and must be used with
     parcimony.
 int imx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*
 double **pmmij, ***probs, ***mobaverage;     Interpolated Markov Chain
 double dateintmean=0;  
     Short summary of the programme:
 double *weight;    
 int **s; /* Status */    This program computes Healthy Life Expectancies from
 double *agedc, **covar, idx;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    case of a health survey which is our main interest) -2- at least a
 double ftolhess; /* Tolerance for computing hessian */    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /**************** split *************************/    computed from the time spent in each health state according to a
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
    char *s;                             /* pointer */    simplest model is the multinomial logistic model where pij is the
    int  l1, l2;                         /* length counters */    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
    l1 = strlen( path );                 /* length of path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    'age' is age and 'sex' is a covariate. If you want to have a more
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    complex model than "constant and age", you should modify the program
    if ( s == NULL ) {                   /* no directory, so use current */    where the markup *Covariates have to be included here again* invites
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    you to do it.  More covariates you add, slower the
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    convergence.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
       if ( getwd( dirc ) == NULL ) {    identical for each individual. Also, if a individual missed an
 #else    intermediate interview, the information is lost, but taken into
       extern char       *getcwd( );    account using an interpolation or extrapolation.  
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    hPijx is the probability to be observed in state i at age x+h
 #endif    conditional to the observed state i at age x. The delay 'h' can be
          return( GLOCK_ERROR_GETCWD );    split into an exact number (nh*stepm) of unobserved intermediate
       }    states. This elementary transition (by month, quarter,
       strcpy( name, path );             /* we've got it */    semester or year) is modelled as a multinomial logistic.  The hPx
    } else {                             /* strip direcotry from path */    matrix is simply the matrix product of nh*stepm elementary matrices
       s++;                              /* after this, the filename */    and the contribution of each individual to the likelihood is simply
       l2 = strlen( s );                 /* length of filename */    hPijx.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Also this programme outputs the covariance matrix of the parameters but also
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    of the life expectancies. It also computes the stable prevalence. 
       dirc[l1-l2] = 0;                  /* add zero */    
    }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    l1 = strlen( dirc );                 /* length of directory */             Institut national d'études démographiques, Paris.
 #ifdef windows    This software have been partly granted by Euro-REVES, a concerted action
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    from the European Union.
 #else    It is copyrighted identically to a GNU software product, ie programme and
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    strcpy(ext,s);                       /* save extension */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    l1= strlen( name);    
    l2= strlen( s)+1;    **********************************************************************/
    strncpy( finame, name, l1-l2);  /*
    finame[l1-l2]= 0;    main
    return( 0 );                         /* we're done */    read parameterfile
 }    read datafile
     concatwav
     freqsummary
 /******************************************/    if (mle >= 1)
       mlikeli
 void replace(char *s, char*t)    print results files
 {    if mle==1 
   int i;       computes hessian
   int lg=20;    read end of parameter file: agemin, agemax, bage, fage, estepm
   i=0;        begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(i=0; i<= lg; i++) {    open html file
     (s[i] = t[i]);    stable prevalence
     if (t[i]== '\\') s[i]='/';     for age prevalim()
   }    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 int nbocc(char *s, char occ)    health expectancies
 {    Variance-covariance of DFLE
   int i,j=0;    prevalence()
   int lg=20;     movingaverage()
   i=0;    varevsij() 
   lg=strlen(s);    if popbased==1 varevsij(,popbased)
   for(i=0; i<= lg; i++) {    total life expectancies
   if  (s[i] == occ ) j++;    Variance of stable prevalence
   }   end
   return j;  */
 }  
   
 void cutv(char *u,char *v, char*t, char occ)  
 {   
   /* cuts string t into u and v where u is ended by char occ excluding it  #include <math.h>
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  #include <stdio.h>
      gives u="abcedf" and v="ghi2j" */  #include <stdlib.h>
   int i,lg,j,p=0;  #include <string.h>
   i=0;  #include <unistd.h>
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <limits.h>
   }  #include <sys/types.h>
   #include <sys/stat.h>
   lg=strlen(t);  #include <errno.h>
   for(j=0; j<p; j++) {  extern int errno;
     (u[j] = t[j]);  
   }  /* #include <sys/time.h> */
      u[p]='\0';  #include <time.h>
   #include "timeval.h"
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /********************** nrerror ********************/  
   #define GNUPLOTPROGRAM "gnuplot"
 void nrerror(char error_text[])  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   exit(1);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
 /*********************** vector *******************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double *vector(int nl, int nh)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   double *v;  #define NINTERVMAX 8
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!v) nrerror("allocation failure in vector");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return v-nl+NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /************************ free vector ******************/  #define AGESUP 130
 void free_vector(double*v, int nl, int nh)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG)(v+nl-NR_END));  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /************************ivector *******************************/  #define ODIRSEPARATOR '\\'
 int *ivector(long nl,long nh)  #else
 {  #define DIRSEPARATOR '\\'
   int *v;  #define CHARSEPARATOR "\\"
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '/'
   if (!v) nrerror("allocation failure in ivector");  #endif
   return v-nl+NR_END;  
 }  /* $Id$ */
   /* $State$ */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
 {  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(v+nl-NR_END));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************* imatrix *******************************/  int npar=NPARMAX;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int nlstate=2; /* Number of live states */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int popbased=0;
   int **m;  
    int *wav; /* Number of waves for this individuual 0 is possible */
   /* allocate pointers to rows */  int maxwav; /* Maxim number of waves */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   /* allocate rows and set pointers to them */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl] -= ncl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   /* return pointer to array of pointers to rows */  int globpr; /* Global variable for printing or not */
   return m;  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /****************** free_imatrix *************************/  char filerespow[FILENAMELENGTH];
 void free_imatrix(m,nrl,nrh,ncl,nch)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       int **m;  FILE *ficresilk;
       long nch,ncl,nrh,nrl;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
      /* free an int matrix allocated by imatrix() */  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *ficreseij;
   free((FREE_ARG) (m+nrl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /******************* matrix *******************************/  FILE  *ficresvpl;
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char command[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int  outcmd=0;
   m += NR_END;  
   m -= nrl;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerest[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileregp[FILENAMELENGTH];
   m[nrl] -= ncl;  char popfile[FILENAMELENGTH];
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return m;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /*************************free matrix ************************/  extern int gettimeofday();
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern long time();
   free((FREE_ARG)(m+nrl-NR_END));  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /******************* ma3x *******************************/  long lval;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #define NR_END 1
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define FREE_ARG char*
   double ***m;  #define FTOL 1.0e-10
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NRANSI 
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ITMAX 200 
   m += NR_END;  
   m -= nrl;  #define TOL 2.0e-4 
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CGOLD 0.3819660 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ZEPS 1.0e-10 
   m[nrl] += NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl] -= ncl;  
   #define GOLD 1.618034 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  static double maxarg1,maxarg2;
   m[nrl][ncl] += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m[nrl][ncl] -= nll;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=ncl+1; j<=nch; j++)    
     m[nrl][j]=m[nrl][j-1]+nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  static double sqrarg;
     for (j=ncl+1; j<=nch; j++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       m[i][j]=m[i][j-1]+nlay;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  int agegomp= AGEGOMP;
   return m;  
 }  int imx; 
   int stepm=1;
 /*************************free ma3x ************************/  /* Stepm, step in month: minimum step interpolation*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  int estepm;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 /***************** f1dim *************************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 extern int ncom;  double **pmmij, ***probs;
 extern double *pcom,*xicom;  double *ageexmed,*agecens;
 extern double (*nrfunc)(double []);  double dateintmean=0;
    
 double f1dim(double x)  double *weight;
 {  int **s; /* Status */
   int j;  double *agedc, **covar, idx;
   double f;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *xt;  double *lsurv, *lpop, *tpop;
    
   xt=vector(1,ncom);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double ftolhess; /* Tolerance for computing hessian */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /**************** split *************************/
   return f;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /*****************brent *************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    */ 
 {    char  *ss;                            /* pointer */
   int iter;    int   l1, l2;                         /* length counters */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    l1 = strlen(path );                   /* length of path */
   double ftemp;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double p,q,r,tol1,tol2,u,v,w,x,xm;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double e=0.0;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
        strcpy( name, path );               /* we got the fullname name because no directory */
   a=(ax < cx ? ax : cx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   b=(ax > cx ? ax : cx);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   x=w=v=bx;      /* get current working directory */
   fw=fv=fx=(*f)(x);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (iter=1;iter<=ITMAX;iter++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     xm=0.5*(a+b);        return( GLOCK_ERROR_GETCWD );
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /* got dirc from getcwd*/
     printf(".");fflush(stdout);      printf(" DIRC = %s \n",dirc);
     fprintf(ficlog,".");fflush(ficlog);    } else {                              /* strip direcotry from path */
 #ifdef DEBUG      ss++;                               /* after this, the filename */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      l2 = strlen( ss );                  /* length of filename */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      dirc[l1-l2] = 0;                    /* add zero */
       *xmin=x;      printf(" DIRC2 = %s \n",dirc);
       return fx;    }
     }    /* We add a separator at the end of dirc if not exists */
     ftemp=fu;    l1 = strlen( dirc );                  /* length of directory */
     if (fabs(e) > tol1) {    if( dirc[l1-1] != DIRSEPARATOR ){
       r=(x-w)*(fx-fv);      dirc[l1] =  DIRSEPARATOR;
       q=(x-v)*(fx-fw);      dirc[l1+1] = 0; 
       p=(x-v)*q-(x-w)*r;      printf(" DIRC3 = %s \n",dirc);
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;    ss = strrchr( name, '.' );            /* find last / */
       q=fabs(q);    if (ss >0){
       etemp=e;      ss++;
       e=d;      strcpy(ext,ss);                     /* save extension */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      l1= strlen( name);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      l2= strlen(ss)+1;
       else {      strncpy( finame, name, l1-l2);
         d=p/q;      finame[l1-l2]= 0;
         u=x+d;    }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    return( 0 );                          /* we're done */
       }  }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /******************************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  void replace_back_to_slash(char *s, char*t)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    int i;
       SHFT(v,w,x,u)    int lg=0;
         SHFT(fv,fw,fx,fu)    i=0;
         } else {    lg=strlen(t);
           if (u < x) a=u; else b=u;    for(i=0; i<= lg; i++) {
           if (fu <= fw || w == x) {      (s[i] = t[i]);
             v=w;      if (t[i]== '\\') s[i]='/';
             w=u;    }
             fv=fw;  }
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  int nbocc(char *s, char occ)
             v=u;  {
             fv=fu;    int i,j=0;
           }    int lg=20;
         }    i=0;
   }    lg=strlen(s);
   nrerror("Too many iterations in brent");    for(i=0; i<= lg; i++) {
   *xmin=x;    if  (s[i] == occ ) j++;
   return fx;    }
 }    return j;
   }
 /****************** mnbrak ***********************/  
   void cutv(char *u,char *v, char*t, char occ)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double ulim,u,r,q, dum;       gives u="abcedf" and v="ghi2j" */
   double fu;    int i,lg,j,p=0;
      i=0;
   *fa=(*func)(*ax);    for(j=0; j<=strlen(t)-1; j++) {
   *fb=(*func)(*bx);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    lg=strlen(t);
       }    for(j=0; j<p; j++) {
   *cx=(*bx)+GOLD*(*bx-*ax);      (u[j] = t[j]);
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {       u[p]='\0';
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);     for(j=0; j<= lg; j++) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      if (j>=(p+1))(v[j-p-1] = t[j]);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /********************** nrerror ********************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  void nrerror(char error_text[])
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    fprintf(stderr,"ERREUR ...\n");
           SHFT(*fb,*fc,fu,(*func)(u))    fprintf(stderr,"%s\n",error_text);
           }    exit(EXIT_FAILURE);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  /*********************** vector *******************/
       fu=(*func)(u);  double *vector(int nl, int nh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    double *v;
       fu=(*func)(u);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     }    if (!v) nrerror("allocation failure in vector");
     SHFT(*ax,*bx,*cx,u)    return v-nl+NR_END;
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************** linmin ************************/  {
     free((FREE_ARG)(v+nl-NR_END));
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /************************ivector *******************************/
    int *ivector(long nl,long nh)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  {
 {    int *v;
   double brent(double ax, double bx, double cx,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                double (*f)(double), double tol, double *xmin);    if (!v) nrerror("allocation failure in ivector");
   double f1dim(double x);    return v-nl+NR_END;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************free ivector **************************/
   double xx,xmin,bx,ax;  void free_ivector(int *v, long nl, long nh)
   double fx,fb,fa;  {
      free((FREE_ARG)(v+nl-NR_END));
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /************************lvector *******************************/
   nrfunc=func;  long *lvector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    long *v;
     xicom[j]=xi[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   ax=0.0;    return v-nl+NR_END;
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************* imatrix *******************************/
     p[j] += xi[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_vector(xicom,1,n);  { 
   free_vector(pcom,1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /*************** powell ************************/    /* allocate pointers to rows */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
             double (*func)(double []))    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   void linmin(double p[], double xi[], int n, double *fret,    m -= nrl; 
               double (*func)(double []));    
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    /* allocate rows and set pointers to them */ 
   double fp,fptt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double *xits;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   pt=vector(1,n);    m[nrl] += NR_END; 
   ptt=vector(1,n);    m[nrl] -= ncl; 
   xit=vector(1,n);    
   xits=vector(1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* return pointer to array of pointers to rows */ 
   for (*iter=1;;++(*iter)) {    return m; 
     fp=(*fret);  } 
     ibig=0;  
     del=0.0;  /****************** free_imatrix *************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_imatrix(m,nrl,nrh,ncl,nch)
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        int **m;
     for (i=1;i<=n;i++)        long nch,ncl,nrh,nrl; 
       printf(" %d %.12f",i, p[i]);       /* free an int matrix allocated by imatrix() */ 
     fprintf(ficlog," %d %.12f",i, p[i]);  { 
     printf("\n");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     fprintf(ficlog,"\n");    free((FREE_ARG) (m+nrl-NR_END)); 
     for (i=1;i<=n;i++) {  } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /******************* matrix *******************************/
 #ifdef DEBUG  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("fret=%lf \n",*fret);  {
       fprintf(ficlog,"fret=%lf \n",*fret);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #endif    double **m;
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (fabs(fptt-(*fret)) > del) {    m += NR_END;
         del=fabs(fptt-(*fret));    m -= nrl;
         ibig=i;  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("%d %.12e",i,(*fret));    m[nrl] += NR_END;
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl] -= ncl;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(" x(%d)=%.12e",j,xit[j]);    return m;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       }     */
       for(j=1;j<=n;j++) {  }
         printf(" p=%.12e",p[j]);  
         fprintf(ficlog," p=%.12e",p[j]);  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
       fprintf(ficlog,"\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************* ma3x *******************************/
       int k[2],l;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       k[0]=1;  {
       k[1]=-1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       printf("Max: %.12e",(*func)(p));    double ***m;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf(" %.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
         fprintf(ficlog," %.12e",p[j]);    m += NR_END;
       }    m -= nrl;
       printf("\n");  
       fprintf(ficlog,"\n");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(l=0;l<=1;l++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl] += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] -= ncl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
 #endif    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    for (i=nrl+1; i<=nrh; i++) {
       free_vector(ptt,1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       free_vector(pt,1,n);      for (j=ncl+1; j<=nch; j++) 
       return;        m[i][j]=m[i][j-1]+nlay;
     }    }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return m; 
     for (j=1;j<=n;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ptt[j]=2.0*p[j]-pt[j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       xit[j]=p[j]-pt[j];    */
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /*************************free ma3x ************************/
     if (fptt < fp) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
           xi[j][ibig]=xi[j][n];  }
           xi[j][n]=xit[j];  
         }  /*************** function subdirf ***********/
 #ifdef DEBUG  char *subdirf(char fileres[])
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /* Caution optionfilefiname is hidden */
         for(j=1;j<=n;j++){    strcpy(tmpout,optionfilefiname);
           printf(" %.12e",xit[j]);    strcat(tmpout,"/"); /* Add to the right */
           fprintf(ficlog," %.12e",xit[j]);    strcat(tmpout,fileres);
         }    return tmpout;
         printf("\n");  }
         fprintf(ficlog,"\n");  
 #endif  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
     }  {
   }    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /**** Prevalence limit ****************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcat(tmpout,fileres);
 {    return tmpout;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /*************** function subdirf3 ***********/
   int i, ii,j,k;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    /* Caution optionfilefiname is hidden */
   double **newm;    strcpy(tmpout,optionfilefiname);
   double agefin, delaymax=50 ; /* Max number of years to converge */    strcat(tmpout,"/");
     strcat(tmpout,preop);
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,preop2);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,fileres);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return tmpout;
     }  }
   
    cov[1]=1.;  /***************** f1dim *************************/
    extern int ncom; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern double *pcom,*xicom;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  extern double (*nrfunc)(double []); 
     newm=savm;   
     /* Covariates have to be included here again */  double f1dim(double x) 
      cov[2]=agefin;  { 
      int j; 
       for (k=1; k<=cptcovn;k++) {    double f;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double *xt; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/   
       }    xt=vector(1,ncom); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (k=1; k<=cptcovprod;k++)    f=(*nrfunc)(xt); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_vector(xt,1,ncom); 
     return f; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  } 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*****************brent *************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     savm=oldm;    int iter; 
     oldm=newm;    double a,b,d,etemp;
     maxmax=0.;    double fu,fv,fw,fx;
     for(j=1;j<=nlstate;j++){    double ftemp;
       min=1.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       max=0.;    double e=0.0; 
       for(i=1; i<=nlstate; i++) {   
         sumnew=0;    a=(ax < cx ? ax : cx); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    b=(ax > cx ? ax : cx); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    x=w=v=bx; 
         max=FMAX(max,prlim[i][j]);    fw=fv=fx=(*f)(x); 
         min=FMIN(min,prlim[i][j]);    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
       maxmin=max-min;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       maxmax=FMAX(maxmax,maxmin);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     if(maxmax < ftolpl){      fprintf(ficlog,".");fflush(ficlog);
       return prlim;  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /*************** transition probabilities ***************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        return fx; 
 {      } 
   double s1, s2;      ftemp=fu;
   /*double t34;*/      if (fabs(e) > tol1) { 
   int i,j,j1, nc, ii, jj;        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
     for(i=1; i<= nlstate; i++){        p=(x-v)*q-(x-w)*r; 
     for(j=1; j<i;j++){        q=2.0*(q-r); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (q > 0.0) p = -p; 
         /*s2 += param[i][j][nc]*cov[nc];*/        q=fabs(q); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        etemp=e; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        e=d; 
       }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       ps[i][j]=s2;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        else { 
     }          d=p/q; 
     for(j=i+1; j<=nlstate+ndeath;j++){          u=x+d; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          if (u-a < tol2 || b-u < tol2) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            d=SIGN(tol1,xm-x); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        } 
       }      } else { 
       ps[i][j]=s2;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     /*ps[3][2]=1;*/      fu=(*f)(u); 
       if (fu <= fx) { 
   for(i=1; i<= nlstate; i++){        if (u >= x) a=x; else b=x; 
      s1=0;        SHFT(v,w,x,u) 
     for(j=1; j<i; j++)          SHFT(fv,fw,fx,fu) 
       s1+=exp(ps[i][j]);          } else { 
     for(j=i+1; j<=nlstate+ndeath; j++)            if (u < x) a=u; else b=u; 
       s1+=exp(ps[i][j]);            if (fu <= fw || w == x) { 
     ps[i][i]=1./(s1+1.);              v=w; 
     for(j=1; j<i; j++)              w=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              fv=fw; 
     for(j=i+1; j<=nlstate+ndeath; j++)              fw=fu; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            } else if (fu <= fv || v == x || v == w) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              v=u; 
   } /* end i */              fv=fu; 
             } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    } 
       ps[ii][jj]=0;    nrerror("Too many iterations in brent"); 
       ps[ii][ii]=1;    *xmin=x; 
     }    return fx; 
   }  } 
   
   /****************** mnbrak ***********************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      printf("%lf ",ps[ii][jj]);              double (*func)(double)) 
    }  { 
     printf("\n ");    double ulim,u,r,q, dum;
     }    double fu; 
     printf("\n ");printf("%lf ",cov[2]);*/   
 /*    *fa=(*func)(*ax); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    *fb=(*func)(*bx); 
   goto end;*/    if (*fb > *fa) { 
     return ps;      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
 /**************** Product of 2 matrices ******************/    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    while (*fb > *fc) { 
 {      r=(*bx-*ax)*(*fb-*fc); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      q=(*bx-*cx)*(*fb-*fa); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* in, b, out are matrice of pointers which should have been initialized        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
      before: only the contents of out is modified. The function returns      ulim=(*bx)+GLIMIT*(*cx-*bx); 
      a pointer to pointers identical to out */      if ((*bx-u)*(u-*cx) > 0.0) { 
   long i, j, k;        fu=(*func)(u); 
   for(i=nrl; i<= nrh; i++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(k=ncolol; k<=ncoloh; k++)        fu=(*func)(u); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        if (fu < *fc) { 
         out[i][k] +=in[i][j]*b[j][k];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   return out;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
         fu=(*func)(u); 
 /************* Higher Matrix Product ***************/      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fu=(*func)(u); 
 {      } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      SHFT(*ax,*bx,*cx,u) 
      duration (i.e. until        SHFT(*fa,*fb,*fc,fu) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  } 
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /*************** linmin ************************/
      included manually here.  
   int ncom; 
      */  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double **newm;  { 
     double brent(double ax, double bx, double cx, 
   /* Hstepm could be zero and should return the unit matrix */                 double (*f)(double), double tol, double *xmin); 
   for (i=1;i<=nlstate+ndeath;i++)    double f1dim(double x); 
     for (j=1;j<=nlstate+ndeath;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       oldm[i][j]=(i==j ? 1.0 : 0.0);                double *fc, double (*func)(double)); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int j; 
     }    double xx,xmin,bx,ax; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fx,fb,fa;
   for(h=1; h <=nhstepm; h++){   
     for(d=1; d <=hstepm; d++){    ncom=n; 
       newm=savm;    pcom=vector(1,n); 
       /* Covariates have to be included here again */    xicom=vector(1,n); 
       cov[1]=1.;    nrfunc=func; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      pcom[j]=p[j]; 
       for (k=1; k<=cptcovage;k++)      xicom[j]=xi[j]; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } 
       for (k=1; k<=cptcovprod;k++)    ax=0.0; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #endif
       savm=oldm;    for (j=1;j<=n;j++) { 
       oldm=newm;      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
     for(i=1; i<=nlstate+ndeath; i++)    } 
       for(j=1;j<=nlstate+ndeath;j++) {    free_vector(xicom,1,n); 
         po[i][j][h]=newm[i][j];    free_vector(pcom,1,n); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  } 
          */  
       }  char *asc_diff_time(long time_sec, char ascdiff[])
   } /* end h */  {
   return po;    long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /*************** log-likelihood *************/    sec_left = (sec_left) %(60*60);
 double func( double *x)    minutes = (sec_left) /60;
 {    sec_left = (sec_left) % (60);
   int i, ii, j, k, mi, d, kk;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return ascdiff;
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /*************** powell ************************/
   long ipmx;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /*extern weight */              double (*func)(double [])) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    void linmin(double p[], double xi[], int n, double *fret, 
   /*for(i=1;i<imx;i++)                double (*func)(double [])); 
     printf(" %d\n",s[4][i]);    int i,ibig,j; 
   */    double del,t,*pt,*ptt,*xit;
   cov[1]=1.;    double fp,fptt;
     double *xits;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int niterf, itmp;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    pt=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    ptt=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    xit=vector(1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xits=vector(1,n); 
       for(d=0; d<dh[mi][i]; d++){    *fret=(*func)(p); 
         newm=savm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for (*iter=1;;++(*iter)) { 
         for (kk=1; kk<=cptcovage;kk++) {      fp=(*fret); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      ibig=0; 
         }      del=0.0; 
              last_time=curr_time;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      (void) gettimeofday(&curr_time,&tzp);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         savm=oldm;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         oldm=newm;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
              */
             for (i=1;i<=n;i++) {
       } /* end mult */        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        fprintf(ficrespow," %.12lf", p[i]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;      printf("\n");
       sw += weight[i];      fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficrespow,"\n");fflush(ficrespow);
     } /* end of wave */      if(*iter <=3){
   } /* end of individual */        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*       asctime_r(&tm,strcurr); */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        forecast_time=curr_time; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        itmp = strlen(strcurr);
   return -l;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /*********** Maximum Likelihood Estimation ***************/        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          tmf = *localtime(&forecast_time.tv_sec);
 {  /*      asctime_r(&tmf,strfor); */
   int i,j, iter;          strcpy(strfor,asctime(&tmf));
   double **xi,*delti;          itmp = strlen(strfor);
   double fret;          if(strfor[itmp-1]=='\n')
   xi=matrix(1,npar,1,npar);          strfor[itmp-1]='\0';
   for (i=1;i<=npar;i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      }
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fptt=(*fret); 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"%d",i);fflush(ficlog);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   double  **a,**y,*x,pd;          del=fabs(fptt-(*fret)); 
   double **hess;          ibig=i; 
   int i, j,jk;        } 
   int *indx;  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficlog,"%d %.12e",i,(*fret));
   double hessij(double p[], double delti[], int i, int j);        for (j=1;j<=n;j++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   hess=matrix(1,npar,1,npar);        }
         for(j=1;j<=n;j++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");          printf(" p=%.12e",p[j]);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++){        }
     printf("%d",i);fflush(stdout);        printf("\n");
     fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);  #endif
     /*printf(" %f ",p[i]);*/      } 
     /*printf(" %lf ",hess[i][i]);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
          int k[2],l;
   for (i=1;i<=npar;i++) {        k[0]=1;
     for (j=1;j<=npar;j++)  {        k[1]=-1;
       if (j>i) {        printf("Max: %.12e",(*func)(p));
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        for (j=1;j<=n;j++) {
         hess[i][j]=hessij(p,delti,i,j);          printf(" %.12e",p[j]);
         hess[j][i]=hess[i][j];              fprintf(ficlog," %.12e",p[j]);
         /*printf(" %lf ",hess[i][j]);*/        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
   printf("\n");          for (j=1;j<=n;j++) {
   fprintf(ficlog,"\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   a=matrix(1,npar,1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   y=matrix(1,npar,1,npar);        }
   x=vector(1,npar);  #endif
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        free_vector(xit,1,n); 
   ludcmp(a,npar,indx,&pd);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   for (j=1;j<=npar;j++) {        free_vector(pt,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        return; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (i=1;i<=npar;i++){      for (j=1;j<=n;j++) { 
       matcov[i][j]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
       } 
   printf("\n#Hessian matrix#\n");      fptt=(*func)(ptt); 
   fprintf(ficlog,"\n#Hessian matrix#\n");      if (fptt < fp) { 
   for (i=1;i<=npar;i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++) {        if (t < 0.0) { 
       printf("%.3e ",hess[i][j]);          linmin(p,xit,n,fret,func); 
       fprintf(ficlog,"%.3e ",hess[i][j]);          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
     printf("\n");            xi[j][n]=xit[j]; 
     fprintf(ficlog,"\n");          }
   }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* Recompute Inverse */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          for(j=1;j<=n;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            printf(" %.12e",xit[j]);
   ludcmp(a,npar,indx,&pd);            fprintf(ficlog," %.12e",xit[j]);
           }
   /*  printf("\n#Hessian matrix recomputed#\n");          printf("\n");
           fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;      } 
     lubksb(a,npar,indx,x);    } 
     for (i=1;i<=npar;i++){  } 
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /**** Prevalence limit (stable prevalence)  ****************/
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     printf("\n");  {
     fprintf(ficlog,"\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   }       matrix by transitions matrix until convergence is reached */
   */  
     int i, ii,j,k;
   free_matrix(a,1,npar,1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   free_matrix(y,1,npar,1,npar);    double **matprod2();
   free_vector(x,1,npar);    double **out, cov[NCOVMAX], **pmij();
   free_ivector(indx,1,npar);    double **newm;
   free_matrix(hess,1,npar,1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
     for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])  
 {     cov[1]=1.;
   int i;   
   int l=1, lmax=20;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double k1,k2;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double p2[NPARMAX+1];      newm=savm;
   double res;      /* Covariates have to be included here again */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;       cov[2]=agefin;
   double fx;    
   int k=0,kmax=10;        for (k=1; k<=cptcovn;k++) {
   double l1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovprod;k++)
     l1=pow(10,l);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       delt = delta*(l1*k);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       p2[theta]=x[theta] +delt;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       k1=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;      savm=oldm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */      oldm=newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      maxmax=0.;
            for(j=1;j<=nlstate;j++){
 #ifdef DEBUG        min=1.;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        max=0.;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(i=1; i<=nlstate; i++) {
 #endif          sumnew=0;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          prlim[i][j]= newm[i][j]/(1-sumnew);
         k=kmax;          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;      if(maxmax < ftolpl){
       }        return prlim;
     }      }
   }    }
   delti[theta]=delts;  }
   return res;  
    /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 double hessij( double x[], double delti[], int thetai,int thetaj)  {
 {    double s1, s2;
   int i;    /*double t34;*/
   int l=1, l1, lmax=20;    int i,j,j1, nc, ii, jj;
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];      for(i=1; i<= nlstate; i++){
   int k;        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fx=func(x);            /*s2 += param[i][j][nc]*cov[nc];*/
   for (k=1; k<=2; k++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ps[i][j]=s2;
     k1=func(p2)-fx;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=i+1; j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     k2=func(p2)-fx;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          ps[i][j]=s2;
     k3=func(p2)-fx;        }
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;      /*ps[3][2]=1;*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      
     k4=func(p2)-fx;      for(i=1; i<= nlstate; i++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        s1=0;
 #ifdef DEBUG        for(j=1; j<i; j++)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          s1+=exp(ps[i][j]);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(j=i+1; j<=nlstate+ndeath; j++)
 #endif          s1+=exp(ps[i][j]);
   }        ps[i][i]=1./(s1+1.);
   return res;        for(j=1; j<i; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 /************** Inverse of matrix **************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 void ludcmp(double **a, int n, int *indx, double *d)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {      } /* end i */
   int i,imax,j,k;      
   double big,dum,sum,temp;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double *vv;        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
   vv=vector(1,n);          ps[ii][ii]=1;
   *d=1.0;        }
   for (i=1;i<=n;i++) {      }
     big=0.0;      
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     vv[i]=1.0/big;  /*         printf("ddd %lf ",ps[ii][jj]); */
   }  /*       } */
   for (j=1;j<=n;j++) {  /*       printf("\n "); */
     for (i=1;i<j;i++) {  /*        } */
       sum=a[i][j];  /*        printf("\n ");printf("%lf ",cov[2]); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         /*
       a[i][j]=sum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
     big=0.0;      return ps;
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  /**************** Product of 2 matrices ******************/
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         imax=i;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }    /* in, b, out are matrice of pointers which should have been initialized 
     }       before: only the contents of out is modified. The function returns
     if (j != imax) {       a pointer to pointers identical to out */
       for (k=1;k<=n;k++) {    long i, j, k;
         dum=a[imax][k];    for(i=nrl; i<= nrh; i++)
         a[imax][k]=a[j][k];      for(k=ncolol; k<=ncoloh; k++)
         a[j][k]=dum;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
       *d = -(*d);  
       vv[imax]=vv[j];    return out;
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /************* Higher Matrix Product ***************/
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
   }    /* Computes the transition matrix starting at age 'age' over 
   free_vector(vv,1,n);  /* Doesn't work */       'nhstepm*hstepm*stepm' months (i.e. until
 ;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 void lubksb(double **a, int n, int *indx, double b[])       (typically every 2 years instead of every month which is too big 
 {       for the memory).
   int i,ii=0,ip,j;       Model is determined by parameters x and covariates have to be 
   double sum;       included manually here. 
    
   for (i=1;i<=n;i++) {       */
     ip=indx[i];  
     sum=b[ip];    int i, j, d, h, k;
     b[ip]=b[i];    double **out, cov[NCOVMAX];
     if (ii)    double **newm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;    /* Hstepm could be zero and should return the unit matrix */
     b[i]=sum;    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   for (i=n;i>=1;i--) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
     sum=b[i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
 }      for(d=1; d <=hstepm; d++){
         newm=savm;
 /************ Frequencies ********************/        /* Covariates have to be included here again */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        cov[1]=1.;
 {  /* Some frequencies */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovage;k++)
   int first;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovprod;k++)
   double *pp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   pp=vector(1,nlstate);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresp,"p");        savm=oldm;
   strcat(fileresp,fileres);        oldm=newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      }
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for(i=1; i<=nlstate+ndeath; i++)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        for(j=1;j<=nlstate+ndeath;j++) {
     exit(0);          po[i][j][h]=newm[i][j];
   }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           */
   j1=0;        }
      } /* end h */
   j=cptcoveff;    return po;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
   
   first=1;  
   /*************** log-likelihood *************/
   for(k1=1; k1<=j;k1++){  double func( double *x)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    int i, ii, j, k, mi, d, kk;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         scanf("%d", i);*/    double **out;
       for (i=-1; i<=nlstate+ndeath; i++)      double sw; /* Sum of weights */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double lli; /* Individual log likelihood */
           for(m=agemin; m <= agemax+3; m++)    int s1, s2;
             freq[i][jk][m]=0;    double bbh, survp;
          long ipmx;
       dateintsum=0;    /*extern weight */
       k2cpt=0;    /* We are differentiating ll according to initial status */
       for (i=1; i<=imx; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         bool=1;    /*for(i=1;i<imx;i++) 
         if  (cptcovn>0) {      printf(" %d\n",s[4][i]);
           for (z1=1; z1<=cptcoveff; z1++)    */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    cov[1]=1.;
               bool=0;  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    if(mle==1){
             k2=anint[m][i]+(mint[m][i]/12.);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if (m<lastpass) {            for (j=1;j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }            }
                        for(d=0; d<dh[mi][i]; d++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            newm=savm;
                 dateintsum=dateintsum+k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 k2cpt++;            for (kk=1; kk<=cptcovage;kk++) {
               }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
                    oldm=newm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          } /* end mult */
         
       if  (cptcovn>0) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         fprintf(ficresp, "\n#********** Variable ");          /* But now since version 0.9 we anticipate for bias at large stepm.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         fprintf(ficresp, "**********\n#");           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(i=1; i<=nlstate;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       fprintf(ficresp, "\n");           * probability in order to take into account the bias as a fraction of the way
                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * -stepm/2 to stepm/2 .
         if(i==(int)agemax+3){           * For stepm=1 the results are the same as for previous versions of Imach.
           fprintf(ficlog,"Total");           * For stepm > 1 the results are less biased than in previous versions. 
         }else{           */
           if(first==1){          s1=s[mw[mi][i]][i];
             first=0;          s2=s[mw[mi+1][i]][i];
             printf("See log file for details...\n");          bbh=(double)bh[mi][i]/(double)stepm; 
           }          /* bias bh is positive if real duration
           fprintf(ficlog,"Age %d", i);           * is higher than the multiple of stepm and negative otherwise.
         }           */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          if( s2 > nlstate){ 
             pp[jk] += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
         for(jk=1; jk <=nlstate ; jk++){               die between last step unit time and current  step unit time, 
           for(m=-1, pos=0; m <=0 ; m++)               which is also equal to probability to die before dh 
             pos += freq[jk][m][i];               minus probability to die before dh-stepm . 
           if(pp[jk]>=1.e-10){               In version up to 0.92 likelihood was computed
             if(first==1){          as if date of death was unknown. Death was treated as any other
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          to consider that at each interview the state was recorded
           }else{          (healthy, disable or death) and IMaCh was corrected; but when we
             if(first==1)          introduced the exact date of death then we should have modified
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          the contribution of an exact death to the likelihood. This new
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          contribution is smaller and very dependent of the step unit
           }          stepm. It is no more the probability to die between last interview
         }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
         for(jk=1; jk <=nlstate ; jk++){          probability to die within a month. Thanks to Chris
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          Jackson for correcting this bug.  Former versions increased
             pp[jk] += freq[jk][m][i];          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
           lower mortality.
         for(jk=1,pos=0; jk <=nlstate ; jk++)            */
           pos += pp[jk];            lli=log(out[s1][s2] - savm[s1][s2]);
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  
             if(first==1)          } else if  (s2==-2) {
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1,survp=0. ; j<=nlstate; j++) 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              survp += out[s1][j];
           }else{            lli= survp;
             if(first==1)          }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          else if  (s2==-4) {
           }            for (j=3,survp=0. ; j<=nlstate; j++) 
           if( i <= (int) agemax){              survp += out[s1][j];
             if(pos>=1.e-5){            lli= survp;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          }
               probs[i][jk][j1]= pp[jk]/pos;          
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          else if  (s2==-5) {
             }            for (j=1,survp=0. ; j<=2; j++) 
             else              survp += out[s1][j];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            lli= survp;
           }          }
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)          else{
           for(m=-1; m <=nlstate+ndeath; m++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if(freq[jk][m][i] !=0 ) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if(first==1)          } 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          /*if(lli ==000.0)*/
             }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(i <= (int) agemax)          ipmx +=1;
           fprintf(ficresp,"\n");          sw += weight[i];
         if(first==1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           printf("Others in log...\n");        } /* end of wave */
         fprintf(ficlog,"\n");      } /* end of individual */
       }    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   dateintmean=dateintsum/k2cpt;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   fclose(ficresp);            for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   /* End of Freq */          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Prevalence ********************/            for (kk=1; kk<=cptcovage;kk++) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {  /* Some frequencies */            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***freq; /* Frequencies */            savm=oldm;
   double *pp;            oldm=newm;
   double pos, k2;          } /* end mult */
         
   pp=vector(1,nlstate);          s1=s[mw[mi][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   j1=0;          ipmx +=1;
            sw += weight[i];
   j=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* end of wave */
        } /* end of individual */
   for(k1=1; k1<=j;k1++){    }  else if(mle==3){  /* exponential inter-extrapolation */
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       j1++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       for (i=-1; i<=nlstate+ndeath; i++)            for (ii=1;ii<=nlstate+ndeath;ii++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)              for (j=1;j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for (i=1; i<=imx; i++) {          for(d=0; d<dh[mi][i]; d++){
         bool=1;            newm=savm;
         if  (cptcovn>0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (z1=1; z1<=cptcoveff; z1++)            for (kk=1; kk<=cptcovage;kk++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               bool=0;            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (bool==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=firstpass; m<=lastpass; m++){            savm=oldm;
             k2=anint[m][i]+(mint[m][i]/12.);            oldm=newm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } /* end mult */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        
               if(agev[m][i]==1) agev[m][i]=agemax+2;          s1=s[mw[mi][i]][i];
               if (m<lastpass) {          s2=s[mw[mi+1][i]][i];
                 if (calagedate>0)          bbh=(double)bh[mi][i]/(double)stepm; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                 else          ipmx +=1;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          sw += weight[i];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               }        } /* end of wave */
             }      } /* end of individual */
           }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            savm=oldm;
                    oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){              } /* end mult */
           if( i <= (int) agemax){        
             if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
             }          if( s2 > nlstate){ 
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }/* end jk */          }else{
       }/* end i */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     } /* end i1 */          }
   } /* end k1 */          ipmx +=1;
           sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_vector(pp,1,nlstate);        } /* end of wave */
        } /* end of individual */
 }  /* End of Freq */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************* Waves Concatenation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for(d=0; d<dh[mi][i]; d++){
      and mw[mi+1][i]. dh depends on stepm.            newm=savm;
      */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int i, mi, m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          
   int first;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;            savm=oldm;
   first=0;            oldm=newm;
   jmin=1e+5;          } /* end mult */
   jmax=-1;        
   jmean=0.;          s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     mi=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     m=firstpass;          ipmx +=1;
     while(s[m][i] <= nlstate){          sw += weight[i];
       if(s[m][i]>=1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         mw[++mi][i]=m;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if(m >=lastpass)        } /* end of wave */
         break;      } /* end of individual */
       else    } /* End of if */
         m++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }/* end while */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (s[m][i] > nlstate){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       mi++;     /* Death is another wave */    return -l;
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** log-likelihood *************/
     }  double funcone( double *x)
   {
     wav[i]=mi;    /* Same as likeli but slower because of a lot of printf and if */
     if(mi==0){    int i, ii, j, k, mi, d, kk;
       if(first==0){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    double **out;
         first=1;    double lli; /* Individual log likelihood */
       }    double llt;
       if(first==1){    int s1, s2;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    double bbh, survp;
       }    /*extern weight */
     } /* end mi==0 */    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   for(i=1; i<=imx; i++){      printf(" %d\n",s[4][i]);
     for(mi=1; mi<wav[i];mi++){    */
       if (stepm <=0)    cov[1]=1.;
         dh[mi][i]=1;  
       else{    for(k=1; k<=nlstate; k++) ll[k]=0.;
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */      for(mi=1; mi<= wav[i]-1; mi++){
           k=k+1;        for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j >= jmax) jmax=j;          for (j=1;j<=nlstate+ndeath;j++){
           if (j <= jmin) jmin=j;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
         else{          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;          savm=oldm;
         }          oldm=newm;
         jk= j/stepm;        } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;        s1=s[mw[mi][i]][i];
         if(jl <= -ju)        s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;        bbh=(double)bh[mi][i]/(double)stepm; 
         else        /* bias is positive if real duration
           dh[mi][i]=jk+1;         * is higher than the multiple of stepm and negative otherwise.
         if(dh[mi][i]==0)         */
           dh[mi][i]=1; /* At least one step */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   jmean=sum/k;        } else if(mle==2){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else if(mle==3){  /* exponential inter-extrapolation */
  }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 /*********** Tricode ****************************/          lli=log(out[s1][s2]); /* Original formula */
 void tricode(int *Tvar, int **nbcode, int imx)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 {          lli=log(out[s1][s2]); /* Original formula */
   int Ndum[20],ij=1, k, j, i;        } /* End of if */
   int cptcode=0;        ipmx +=1;
   cptcoveff=0;        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=0; k<19; k++) Ndum[k]=0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (k=1; k<=7; k++) ncodemax[k]=0;        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {   %10.6f %10.6f %10.6f ", \
     for (i=1; i<=imx; i++) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       ij=(int)(covar[Tvar[j]][i]);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       Ndum[ij]++;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            llt +=ll[k]*gipmx/gsw;
       if (ij > cptcode) cptcode=ij;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
           fprintf(ficresilk," %10.6f\n", -llt);
     for (i=0; i<=cptcode; i++) {        }
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of wave */
     }    } /* end of individual */
     ij=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1; i<=ncodemax[j]; i++) {    if(globpr==0){ /* First time we count the contributions and weights */
       for (k=0; k<=19; k++) {      gipmx=ipmx;
         if (Ndum[k] != 0) {      gsw=sw;
           nbcode[Tvar[j]][ij]=k;    }
              return -l;
           ij++;  }
         }  
         if (ij > ncodemax[j]) break;  
       }    /*************** function likelione ***********/
     }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   }    {
     /* This routine should help understanding what is done with 
  for (k=0; k<19; k++) Ndum[k]=0;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
  for (i=1; i<=ncovmodel-2; i++) {       Plotting could be done.
    ij=Tvar[i];     */
    Ndum[ij]++;    int k;
  }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
  ij=1;      strcpy(fileresilk,"ilk"); 
  for (i=1; i<=10; i++) {      strcat(fileresilk,fileres);
    if((Ndum[i]!=0) && (i<=ncovcol)){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      Tvaraff[ij]=i;        printf("Problem with resultfile: %s\n", fileresilk);
      ij++;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    }      }
  }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
        fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  cptcoveff=ij-1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 /*********** Health Expectancies ****************/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
     *fretone=(*funcone)(p);
 {    if(*globpri !=0){
   /* Health expectancies */      fclose(ficresilk);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double age, agelim, hf;      fflush(fichtm); 
   double ***p3mat,***varhe;    } 
   double **dnewm,**doldm;    return;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   int theta;  /*********** Maximum Likelihood Estimation ***************/
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate*2,1,npar);    int i,j, iter;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **xi;
      double fret;
   fprintf(ficreseij,"# Health expectancies\n");    double fretone; /* Only one call to likelihood */
   fprintf(ficreseij,"# Age");    /*  char filerespow[FILENAMELENGTH];*/
   for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for (j=1;j<=npar;j++)
   fprintf(ficreseij,"\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   if(estepm < stepm){    strcpy(filerespow,"pow"); 
     printf ("Problem %d lower than %d\n",estepm, stepm);    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   else  hstepm=estepm;        printf("Problem with resultfile: %s\n", filerespow);
   /* We compute the life expectancy from trapezoids spaced every estepm months      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1;i<=nlstate;i++)
    * progression inbetween and thus overestimating or underestimating according      for(j=1;j<=nlstate+ndeath;j++)
    * to the curvature of the survival function. If, for the same date, we        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    fprintf(ficrespow,"\n");
    * to compare the new estimate of Life expectancy with the same linear  
    * hypothesis. A more precise result, taking into account a more precise    powell(p,xi,npar,ftol,&iter,&fret,func);
    * curvature will be obtained if estepm is as small as stepm. */  
     fclose(ficrespow);
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nhstepm is the number of hstepm from age to agelim    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /**** Computes Hessian and covariance matrix ***/
      survival function given by stepm (the optimization length). Unfortunately it  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double  **a,**y,*x,pd;
      results. So we changed our mind and took the option of the best precision.    double **hess;
   */    int i, j,jk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int *indx;
   
   agelim=AGESUP;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     /* nhstepm age range expressed in number of stepm */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double gompertz(double p[]);
     /* if (stepm >= YEARM) hstepm=1;*/    hess=matrix(1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nCalculation of the hessian matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     gp=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++){
     gm=matrix(0,nhstepm,1,nlstate*2);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        
        /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     
     /* Computing Variances of health expectancies */    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
      for(theta=1; theta <=npar; theta++){        if (j>i) { 
       for(i=1; i<=npar; i++){          printf(".%d%d",i,j);fflush(stdout);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
            hess[j][i]=hess[i][j];    
       cptj=0;          /*printf(" %lf ",hess[i][j]);*/
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){      }
           cptj=cptj+1;    }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    printf("\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficlog,"\n");
           }  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          
          a=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++)    y=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    x=vector(1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
       cptj=0;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<= nlstate; j++){    ludcmp(a,npar,indx,&pd);
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    for (j=1;j<=npar;j++) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++) x[i]=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
       for(j=1; j<= nlstate*2; j++)      }
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    printf("\n#Hessian matrix#\n");
      }    fprintf(ficlog,"\n#Hessian matrix#\n");
        for (i=1;i<=npar;i++) { 
 /* End theta */      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
      for(h=0; h<=nhstepm-1; h++)      printf("\n");
       for(j=1; j<=nlstate*2;j++)      fprintf(ficlog,"\n");
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];  
          /* Recompute Inverse */
     for (i=1;i<=npar;i++)
      for(i=1;i<=nlstate*2;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(j=1;j<=nlstate*2;j++)    ludcmp(a,npar,indx,&pd);
         varhe[i][j][(int)age] =0.;  
     /*  printf("\n#Hessian matrix recomputed#\n");
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    for (j=1;j<=npar;j++) {
      for(h=0;h<=nhstepm-1;h++){      for (i=1;i<=npar;i++) x[i]=0;
       for(k=0;k<=nhstepm-1;k++){      x[j]=1;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      lubksb(a,npar,indx,x);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      for (i=1;i<=npar;i++){ 
         for(i=1;i<=nlstate*2;i++)        y[i][j]=x[i];
           for(j=1;j<=nlstate*2;j++)        printf("%.3e ",y[i][j]);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
     }      printf("\n");
     /* Computing expectancies */      fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++)    */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    free_matrix(a,1,npar,1,npar);
              free_matrix(y,1,npar,1,npar);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
   
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /*************** hessian matrix ****************/
         cptj++;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {
       }    int i;
     fprintf(ficreseij,"\n");    int l=1, lmax=20;
        double k1,k2;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double p2[NPARMAX+1];
     free_matrix(gp,0,nhstepm,1,nlstate*2);    double res;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,kmax=10;
   }    double l1;
   printf("\n");  
   fprintf(ficlog,"\n");    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   free_vector(xp,1,npar);    for(l=0 ; l <=lmax; l++){
   free_matrix(dnewm,1,nlstate*2,1,npar);      l1=pow(10,l);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      delts=delt;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for(k=1 ; k <kmax; k=k+1){
 }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
 /************ Variance ******************/        k1=func(p2)-fx;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        p2[theta]=x[theta]-delt;
 {        k2=func(p2)-fx;
   /* Variance of health expectancies */        /*res= (k1-2.0*fx+k2)/delt/delt; */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* double **newm;*/        
   double **dnewm,**doldm;  #ifdef DEBUG
   double **dnewmp,**doldmp;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i, j, nhstepm, hstepm, h, nstepm ;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int k, cptcode;  #endif
   double *xp;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **gp, **gm;  /* for var eij */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double ***gradg, ***trgradg; /*for var eij */          k=kmax;
   double **gradgp, **trgradgp; /* for var p point j */        }
   double *gpp, *gmp; /* for var p point j */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          k=kmax; l=lmax*10.;
   double ***p3mat;        }
   double age,agelim, hf;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int theta;          delts=delt;
   char digit[4];        }
   char digitp[16];      }
     }
   char fileresprobmorprev[FILENAMELENGTH];    delti[theta]=delts;
     return res; 
   if(popbased==1)    
     strcpy(digitp,"-populbased-");  }
   else  
     strcpy(digitp,"-stablbased-");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   strcpy(fileresprobmorprev,"prmorprev");    int i;
   sprintf(digit,"%-d",ij);    int l=1, l1, lmax=20;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double k1,k2,k3,k4,res,fx;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double p2[NPARMAX+1];
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    int k;
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    fx=func(x);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    for (k=1; k<=2; k++) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      k1=func(p2)-fx;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficresprobmorprev," p.%-d SE",j);      k2=func(p2)-fx;
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprobmorprev,"\n");      k3=func(p2)-fx;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     exit(0);      k4=func(p2)-fx;
   }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   else{  #ifdef DEBUG
     fprintf(ficgp,"\n# Routine varevsij");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  #endif
     printf("Problem with html file: %s\n", optionfilehtm);    }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    return res;
     exit(0);  }
   }  
   else{  /************** Inverse of matrix **************/
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int i,imax,j,k; 
     double big,dum,sum,temp; 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double *vv; 
   fprintf(ficresvij,"# Age");   
   for(i=1; i<=nlstate;i++)    vv=vector(1,n); 
     for(j=1; j<=nlstate;j++)    *d=1.0; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (i=1;i<=n;i++) { 
   fprintf(ficresvij,"\n");      big=0.0; 
       for (j=1;j<=n;j++) 
   xp=vector(1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   dnewm=matrix(1,nlstate,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   doldm=matrix(1,nlstate,1,nlstate);      vv[i]=1.0/big; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    } 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        sum=a[i][j]; 
   gpp=vector(nlstate+1,nlstate+ndeath);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   gmp=vector(nlstate+1,nlstate+ndeath);        a[i][j]=sum; 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      } 
        big=0.0; 
   if(estepm < stepm){      for (i=j;i<=n;i++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   else  hstepm=estepm;            sum -= a[i][k]*a[k][j]; 
   /* For example we decided to compute the life expectancy with the smallest unit */        a[i][j]=sum; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if ( (dum=vv[i]*fabs(sum)) >= big) { 
      nhstepm is the number of hstepm from age to agelim          big=dum; 
      nstepm is the number of stepm from age to agelin.          imax=i; 
      Look at hpijx to understand the reason of that which relies in memory size        } 
      and note for a fixed period like k years */      } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      if (j != imax) { 
      survival function given by stepm (the optimization length). Unfortunately it        for (k=1;k<=n;k++) { 
      means that if the survival funtion is printed only each two years of age and if          dum=a[imax][k]; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          a[imax][k]=a[j][k]; 
      results. So we changed our mind and took the option of the best precision.          a[j][k]=dum; 
   */        } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        *d = -(*d); 
   agelim = AGESUP;        vv[imax]=vv[j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      indx[j]=imax; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if (a[j][j] == 0.0) a[j][j]=TINY; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (j != n) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        dum=1.0/(a[j][j]); 
     gp=matrix(0,nhstepm,1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     gm=matrix(0,nhstepm,1,nlstate);      } 
     } 
     free_vector(vv,1,n);  /* Doesn't work */
     for(theta=1; theta <=npar; theta++){  ;
       for(i=1; i<=npar; i++){ /* Computes gradient */  } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,ii=0,ip,j; 
     double sum; 
       if (popbased==1) {   
         for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
           prlim[i][i]=probs[(int)age][i][ij];      ip=indx[i]; 
       }      sum=b[ip]; 
        b[ip]=b[i]; 
       for(j=1; j<= nlstate; j++){      if (ii) 
         for(h=0; h<=nhstepm; h++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      else if (sum) ii=i; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      b[i]=sum; 
         }    } 
       }    for (i=n;i>=1;i--) { 
       /* This for computing forces of mortality (h=1)as a weighted average */      sum=b[i]; 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for(i=1; i<= nlstate; i++)      b[i]=sum/a[i][i]; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    } 
       }      } 
       /* end force of mortality */  
   /************ Frequencies ********************/
       for(i=1; i<=npar; i++) /* Computes gradient */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {  /* Some frequencies */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
       if (popbased==1) {    double ***freq; /* Frequencies */
         for(i=1; i<=nlstate;i++)    double *pp, **prop;
           prlim[i][i]=probs[(int)age][i][ij];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){    pp=vector(1,nlstate);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       /* This for computing force of mortality (h=1)as a weighted average */      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for(i=1; i<= nlstate; i++)      exit(0);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    }
       }        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       /* end force of mortality */    j1=0;
     
       for(j=1; j<= nlstate; j++) /* vareij */    j=cptcoveff;
         for(h=0; h<=nhstepm; h++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    first=1;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     } /* End theta */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for(h=0; h<=nhstepm; h++) /* veij */            for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++)              freq[i][jk][m]=0;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          prop[i][m]=0;
       for(theta=1; theta <=npar; theta++)        
         trgradgp[j][theta]=gradgp[theta][j];        dateintsum=0;
         k2cpt=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (i=1; i<=imx; i++) {
     for(i=1;i<=nlstate;i++)          bool=1;
       for(j=1;j<=nlstate;j++)          if  (cptcovn>0) {
         vareij[i][j][(int)age] =0.;            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(h=0;h<=nhstepm;h++){                bool=0;
       for(k=0;k<=nhstepm;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          if (bool==1){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            for(m=firstpass; m<=lastpass; m++){
         for(i=1;i<=nlstate;i++)              k2=anint[m][i]+(mint[m][i]/12.);
           for(j=1;j<=nlstate;j++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     /* pptj */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                
       for(i=nlstate+1;i<=nlstate+ndeath;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         varppt[j][i]=doldmp[j][i];                  dateintsum=dateintsum+k2;
     /* end ppptj */                  k2cpt++;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                  }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                /*}*/
              }
     if (popbased==1) {          }
       for(i=1; i<=nlstate;i++)        }
         prlim[i][i]=probs[(int)age][i][ij];         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      fprintf(ficresp, "#Local time at start: %s", strstart);
     /* This for computing force of mortality (h=1)as a weighted average */        if  (cptcovn>0) {
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          fprintf(ficresp, "\n#********** Variable "); 
       for(i=1; i<= nlstate; i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          fprintf(ficresp, "**********\n#");
     }            }
     /* end force of mortality */        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        fprintf(ficresp, "\n");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        for(i=iagemin; i <= iagemax+3; i++){
       for(i=1; i<=nlstate;i++){          if(i==iagemax+3){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            fprintf(ficlog,"Total");
       }          }else{
     }            if(first==1){
     fprintf(ficresprobmorprev,"\n");              first=0;
               printf("See log file for details...\n");
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            fprintf(ficlog,"Age %d", i);
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficresvij,"\n");              pp[jk] += freq[jk][m][i]; 
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              pos += freq[jk][m][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pp[jk]>=1.e-10){
   } /* End age */              if(first==1){
   free_vector(gpp,nlstate+1,nlstate+ndeath);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_vector(gmp,nlstate+1,nlstate+ndeath);              }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            }else{
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              if(first==1)
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              pp[jk] += freq[jk][m][i];
           }       
   free_vector(xp,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(doldm,1,nlstate,1,nlstate);            pos += pp[jk];
   free_matrix(dnewm,1,nlstate,1,npar);            posprop += prop[jk][i];
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            if(pos>=1.e-5){
   fclose(ficresprobmorprev);              if(first==1)
   fclose(ficgp);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(fichtm);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
 }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance of prevlim ******************/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            }
 {            if( i <= iagemax){
   /* Variance of prevalence limit */              if(pos>=1.e-5){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double **newm;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double **dnewm,**doldm;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   int i, j, nhstepm, hstepm;              }
   int k, cptcode;              else
   double *xp;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double *gp, *gm;            }
   double **gradg, **trgradg;          }
   double age,agelim;          
   int theta;          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");              if(freq[jk][m][i] !=0 ) {
   fprintf(ficresvpl,"# Age");              if(first==1)
   for(i=1; i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresvpl," %1d-%1d",i,i);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficresvpl,"\n");              }
           if(i <= iagemax)
   xp=vector(1,npar);            fprintf(ficresp,"\n");
   dnewm=matrix(1,nlstate,1,npar);          if(first==1)
   doldm=matrix(1,nlstate,1,nlstate);            printf("Others in log...\n");
            fprintf(ficlog,"\n");
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    dateintmean=dateintsum/k2cpt; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     if (stepm >= YEARM) hstepm=1;    fclose(ficresp);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     gradg=matrix(1,npar,1,nlstate);    free_vector(pp,1,nlstate);
     gp=vector(1,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     gm=vector(1,nlstate);    /* End of Freq */
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /************ Prevalence ********************/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       }  {  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for(i=1;i<=nlstate;i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
         gp[i] = prlim[i][i];       We still use firstpass and lastpass as another selection.
        */
       for(i=1; i<=npar; i++) /* Computes gradient */   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double ***freq; /* Frequencies */
       for(i=1;i<=nlstate;i++)    double *pp, **prop;
         gm[i] = prlim[i][i];    double pos,posprop; 
     double  y2; /* in fractional years */
       for(i=1;i<=nlstate;i++)    int iagemin, iagemax;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    iagemin= (int) agemin;
     iagemax= (int) agemax;
     trgradg =matrix(1,nlstate,1,npar);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     for(j=1; j<=nlstate;j++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(theta=1; theta <=npar; theta++)    j1=0;
         trgradg[j][theta]=gradg[theta][j];    
     j=cptcoveff;
     for(i=1;i<=nlstate;i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       varpl[i][(int)age] =0.;    
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for(k1=1; k1<=j;k1++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i=1;i<=nlstate;i++)        j1++;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
         for (i=1; i<=nlstate; i++)  
     fprintf(ficresvpl,"%.0f ",age );          for(m=iagemin; m <= iagemax+3; m++)
     for(i=1; i<=nlstate;i++)            prop[i][m]=0.0;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));       
     fprintf(ficresvpl,"\n");        for (i=1; i<=imx; i++) { /* Each individual */
     free_vector(gp,1,nlstate);          bool=1;
     free_vector(gm,1,nlstate);          if  (cptcovn>0) {
     free_matrix(gradg,1,npar,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(trgradg,1,nlstate,1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   } /* End age */                bool=0;
           } 
   free_vector(xp,1,npar);          if (bool==1) { 
   free_matrix(doldm,1,nlstate,1,npar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   free_matrix(dnewm,1,nlstate,1,nlstate);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /************ Variance of one-step probabilities  ******************/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   int i, j=0,  i1, k1, l1, t, tj;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int k2, l2, j1,  z1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   int k=0,l, cptcode;                } 
   int first=1, first1;              }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;            } /* end selection of waves */
   double **dnewm,**doldm;          }
   double *xp;        }
   double *gp, *gm;        for(i=iagemin; i <= iagemax+3; i++){  
   double **gradg, **trgradg;          
   double **mu;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double age,agelim, cov[NCOVMAX];            posprop += prop[jk][i]; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          } 
   int theta;  
   char fileresprob[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){     
   char fileresprobcov[FILENAMELENGTH];            if( i <=  iagemax){ 
   char fileresprobcor[FILENAMELENGTH];              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   double ***varpij;              } 
             } 
   strcpy(fileresprob,"prob");          }/* end jk */ 
   strcat(fileresprob,fileres);        }/* end i */ 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      } /* end i1 */
     printf("Problem with resultfile: %s\n", fileresprob);    } /* end k1 */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   strcpy(fileresprobcov,"probcov");    /*free_vector(pp,1,nlstate);*/
   strcat(fileresprobcov,fileres);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  }  /* End of prevalence */
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  /************* Waves Concatenation ***************/
   }  
   strcpy(fileresprobcor,"probcor");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   strcat(fileresprobcor,fileres);  {
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     printf("Problem with resultfile: %s\n", fileresprobcor);       Death is a valid wave (if date is known).
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int i, mi, m;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       double sum=0., jmean=0.;*/
      int first;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    int j, k=0,jk, ju, jl;
   fprintf(ficresprob,"# Age");    double sum=0.;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    first=0;
   fprintf(ficresprobcov,"# Age");    jmin=1e+5;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    jmax=-1;
   fprintf(ficresprobcov,"# Age");    jmean=0.;
     for(i=1; i<=imx; i++){
       mi=0;
   for(i=1; i<=nlstate;i++)      m=firstpass;
     for(j=1; j<=(nlstate+ndeath);j++){      while(s[m][i] <= nlstate){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          mw[++mi][i]=m;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        if(m >=lastpass)
     }            break;
   fprintf(ficresprob,"\n");        else
   fprintf(ficresprobcov,"\n");          m++;
   fprintf(ficresprobcor,"\n");      }/* end while */
   xp=vector(1,npar);      if (s[m][i] > nlstate){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        mi++;     /* Death is another wave */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        /* if(mi==0)  never been interviewed correctly before death */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);           /* Only death is a correct wave */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        mw[mi][i]=m;
   first=1;      }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      wav[i]=mi;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      if(mi==0){
     exit(0);        nbwarn++;
   }        if(first==0){
   else{          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     fprintf(ficgp,"\n# Routine varprob");          first=1;
   }        }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        if(first==1){
     printf("Problem with html file: %s\n", optionfilehtm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        }
     exit(0);      } /* end mi==0 */
   }    } /* End individuals */
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    for(i=1; i<=imx; i++){
     fprintf(fichtm,"\n");      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          dh[mi][i]=1;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        else{
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   cov[1]=1;                nberr++;
   tj=cptcoveff;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                j=1; /* Temporary Dangerous patch */
   j1=0;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for(t=1; t<=tj;t++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(i1=1; i1<=ncodemax[t];i1++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       j1++;              }
                    k=k+1;
       if  (cptcovn>0) {              if (j >= jmax){
         fprintf(ficresprob, "\n#********** Variable ");                jmax=j;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                ijmax=i;
         fprintf(ficresprob, "**********\n#");              }
         fprintf(ficresprobcov, "\n#********** Variable ");              if (j <= jmin){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                jmin=j;
         fprintf(ficresprobcov, "**********\n#");                ijmin=i;
                      }
         fprintf(ficgp, "\n#********** Variable ");              sum=sum+j;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fprintf(ficgp, "**********\n#");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                    }
                  }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          else{
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
          
         fprintf(ficresprobcor, "\n#********** Variable ");                k=k+1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if (j >= jmax) {
         fprintf(ficgp, "**********\n#");                  jmax=j;
       }              ijmax=i;
                  }
       for (age=bage; age<=fage; age ++){            else if (j <= jmin){
         cov[2]=age;              jmin=j;
         for (k=1; k<=cptcovn;k++) {              ijmin=i;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];            }
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for (k=1; k<=cptcovprod;k++)            if(j<0){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              nberr++;
                      printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            }
         gp=vector(1,(nlstate)*(nlstate+ndeath));            sum=sum+j;
         gm=vector(1,(nlstate)*(nlstate+ndeath));          }
              jk= j/stepm;
         for(theta=1; theta <=npar; theta++){          jl= j -jk*stepm;
           for(i=1; i<=npar; i++)          ju= j -(jk+1)*stepm;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                      if(jl==0){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              dh[mi][i]=jk;
                        bh[mi][i]=0;
           k=0;            }else{ /* We want a negative bias in order to only have interpolation ie
           for(i=1; i<= (nlstate); i++){                    * at the price of an extra matrix product in likelihood */
             for(j=1; j<=(nlstate+ndeath);j++){              dh[mi][i]=jk+1;
               k=k+1;              bh[mi][i]=ju;
               gp[k]=pmmij[i][j];            }
             }          }else{
           }            if(jl <= -ju){
                        dh[mi][i]=jk;
           for(i=1; i<=npar; i++)              bh[mi][i]=jl;       /* bias is positive if real duration
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;            else{
           for(i=1; i<=(nlstate); i++){              dh[mi][i]=jk+1;
             for(j=1; j<=(nlstate+ndeath);j++){              bh[mi][i]=ju;
               k=k+1;            }
               gm[k]=pmmij[i][j];            if(dh[mi][i]==0){
             }              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
                    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            } /* end if mle */
         }        }
       } /* end wave */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    }
           for(theta=1; theta <=npar; theta++)    jmean=sum/k;
             trgradg[j][theta]=gradg[theta][j];    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
            fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
          /*********** Tricode ****************************/
         pmij(pmmij,cov,ncovmodel,x,nlstate);  void tricode(int *Tvar, int **nbcode, int imx)
          {
         k=0;    
         for(i=1; i<=(nlstate); i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
           for(j=1; j<=(nlstate+ndeath);j++){    int cptcode=0;
             k=k+1;    cptcoveff=0; 
             mu[k][(int) age]=pmmij[i][j];   
           }    for (k=0; k<maxncov; k++) Ndum[k]=0;
         }    for (k=1; k<=7; k++) ncodemax[k]=0;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             varpij[i][j][(int)age] = doldm[i][j];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
         /*printf("\n%d ",(int)age);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        Ndum[ij]++; /*store the modality */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      }*/                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
         fprintf(ficresprob,"\n%d ",(int)age);      }
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      ij=1; 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for (i=1; i<=ncodemax[j]; i++) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for (k=0; k<= maxncov; k++) {
         }          if (Ndum[k] != 0) {
         i=0;            nbcode[Tvar[j]][ij]=k; 
         for (k=1; k<=(nlstate);k++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           for (l=1; l<=(nlstate+ndeath);l++){            
             i=i++;            ij++;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          if (ij > ncodemax[j]) break; 
             for (j=1; j<=i;j++){        }  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      } 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    }  
             }  
           }   for (k=0; k< maxncov; k++) Ndum[k]=0;
         }/* end of loop for state */  
       } /* end of loop for age */   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       /* Confidence intervalle of pij  */     ij=Tvar[i];
       /*     Ndum[ij]++;
       fprintf(ficgp,"\nset noparametric;unset label");   }
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");   ij=1;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);   for (i=1; i<= maxncov; i++) {
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);       Tvaraff[ij]=i; /*For printing */
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);       ij++;
       */     }
    }
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/   
       first1=1;   cptcoveff=ij-1; /*Number of simple covariates*/
       for (k2=1; k2<=(nlstate);k2++){  }
         for (l2=1; l2<=(nlstate+ndeath);l2++){  
           if(l2==k2) continue;  /*********** Health Expectancies ****************/
           j=(k2-1)*(nlstate+ndeath)+l2;  
           for (k1=1; k1<=(nlstate);k1++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;  {
               i=(k1-1)*(nlstate+ndeath)+l1;    /* Health expectancies */
               if(i<=j) continue;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
               for (age=bage; age<=fage; age ++){    double age, agelim, hf;
                 if ((int)age %5==0){    double ***p3mat,***varhe;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double **dnewm,**doldm;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    double *xp;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double **gp, **gm;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double ***gradg, ***trgradg;
                   mu2=mu[j][(int) age]/stepm*YEARM;    int theta;
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    xp=vector(1,npar);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   /* Eigen vectors */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    
                   /*v21=sqrt(1.-v11*v11); *//* error */    fprintf(ficreseij,"# Local time at start: %s", strstart);
                   v21=(lc1-v1)/cv12*v11;    fprintf(ficreseij,"# Health expectancies\n");
                   v12=-v21;    fprintf(ficreseij,"# Age");
                   v22=v11;    for(i=1; i<=nlstate;i++)
                   tnalp=v21/v11;      for(j=1; j<=nlstate;j++)
                   if(first1==1){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                     first1=0;    fprintf(ficreseij,"\n");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }    if(estepm < stepm){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      printf ("Problem %d lower than %d\n",estepm, stepm);
                   /*printf(fignu*/    }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    else  hstepm=estepm;   
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    /* We compute the life expectancy from trapezoids spaced every estepm months
                   if(first==1){     * This is mainly to measure the difference between two models: for example
                     first=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
                     fprintf(ficgp,"\nset parametric;unset label");     * we are calculating an estimate of the Life Expectancy assuming a linear 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);     * progression in between and thus overestimating or underestimating according
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");     * to the curvature of the survival function. If, for the same date, we 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);     * to compare the new estimate of Life expectancy with the same linear 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);     * hypothesis. A more precise result, taking into account a more precise
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);     * curvature will be obtained if estepm is as small as stepm. */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    /* For example we decided to compute the life expectancy with the smallest unit */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));       nhstepm is the number of hstepm from age to agelim 
                   }else{       nstepm is the number of stepm from age to agelin. 
                     first=0;       Look at hpijx to understand the reason of that which relies in memory size
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       and note for a fixed period like estepm months */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       survival function given by stepm (the optimization length). Unfortunately it
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\       means that if the survival funtion is printed only each two years of age and if
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   }/* if first */       results. So we changed our mind and took the option of the best precision.
                 } /* age mod 5 */    */
               } /* end loop age */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);  
               first=1;    agelim=AGESUP;
             } /*l12 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           } /* k12 */      /* nhstepm age range expressed in number of stepm */
         } /*l1 */      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }/* k1 */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     } /* loop covariates */      /* if (stepm >= YEARM) hstepm=1;*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_vector(xp,1,npar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fclose(ficresprob);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   fclose(ficresprobcov);   
   fclose(ficresprobcor);  
   fclose(ficgp);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(fichtm);  
 }      /* Computing  Variances of health expectancies */
   
        for(theta=1; theta <=npar; theta++){
 /******************* Printing html file ***********/        for(i=1; i<=npar; i++){ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   int popforecast, int estepm ,\    
                   double jprev1, double mprev1,double anprev1, \        cptj=0;
                   double jprev2, double mprev2,double anprev2){        for(j=1; j<= nlstate; j++){
   int jj1, k1, i1, cpt;          for(i=1; i<=nlstate; i++){
   /*char optionfilehtm[FILENAMELENGTH];*/            cptj=cptj+1;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     printf("Problem with %s \n",optionfilehtm), exit(0);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);            }
   }          }
         }
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for(i=1; i<=npar; i++) 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  - Life expectancies by age and initial health status (estepm=%2d months):        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        cptj=0;
         for(j=1; j<= nlstate; j++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
  m=cptcoveff;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  jj1=0;            }
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;        for(j=1; j<= nlstate*nlstate; j++)
      if (cptcovn > 0) {          for(h=0; h<=nhstepm-1; h++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");     
      }  /* End theta */
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */       for(h=0; h<=nhstepm-1; h++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        for(j=1; j<=nlstate*nlstate;j++)
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(theta=1; theta <=npar; theta++)
        /* Stable prevalence in each health state */            trgradg[h][j][theta]=gradg[h][theta][j];
        for(cpt=1; cpt<nlstate;cpt++){       
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       for(i=1;i<=nlstate*nlstate;i++)
        }        for(j=1;j<=nlstate*nlstate;j++)
      for(cpt=1; cpt<=nlstate;cpt++) {          varhe[i][j][(int)age] =0.;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       printf("%d|",(int)age);fflush(stdout);
      }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       for(h=0;h<=nhstepm-1;h++){
 health expectancies in states (1) and (2): e%s%d.png<br>        for(k=0;k<=nhstepm-1;k++){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
    } /* end i1 */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  }/* End k1 */          for(i=1;i<=nlstate*nlstate;i++)
  fprintf(fichtm,"</ul>");            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      /* Computing expectancies */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        for(j=1; j<=nlstate;j++)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
  if(popforecast==1) fprintf(fichtm,"\n          }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      fprintf(ficreseij,"%3.0f",age );
         <br>",fileres,fileres,fileres,fileres);      cptj=0;
  else      for(i=1; i<=nlstate;i++)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for(j=1; j<=nlstate;j++){
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      fprintf(ficreseij,"\n");
      
  jj1=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  for(k1=1; k1<=m;k1++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      jj1++;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      if (cptcovn > 0) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)    printf("\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficlog,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    free_vector(xp,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 interval) in state (%d): v%s%d%d.png <br>    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }  
    } /* end i1 */  /************ Variance ******************/
  }/* End k1 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  fprintf(fichtm,"</ul>");  {
 fclose(fichtm);    /* Variance of health expectancies */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 /******************* Gnuplot file **************/    double **dnewm,**doldm;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int k, cptcode;
   int ng;    double *xp;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double **gp, **gm;  /* for var eij */
     printf("Problem with file %s",optionfilegnuplot);    double ***gradg, ***trgradg; /*for var eij */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 #ifdef windows    double ***p3mat;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double age,agelim, hf;
 #endif    double ***mobaverage;
 m=pow(2,cptcoveff);    int theta;
      char digit[4];
  /* 1eme*/    char digitp[25];
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    char fileresprobmorprev[FILENAMELENGTH];
   
 #ifdef windows    if(popbased==1){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if(mobilav!=0)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        strcpy(digitp,"-populbased-mobilav-");
 #endif      else strcpy(digitp,"-populbased-nomobil-");
 #ifdef unix    }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    else 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      strcpy(digitp,"-stablbased-");
 #endif  
     if (mobilav!=0) {
 for (i=1; i<= nlstate ; i ++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      }
     for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprobmorprev,"prmorprev"); 
 }    sprintf(digit,"%-d",ij);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      for (i=1; i<= nlstate ; i ++) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,fileres);
 }      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #ifdef unix      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    }
 #endif    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    }   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*2 eme*/    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      fprintf(ficresprobmorprev," p.%-d SE",j);
          for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate+1 ; i ++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       k=2*i;    }  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobmorprev,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficgp,"\n# Routine varevsij");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*   } */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   fprintf(ficresvij, "#Local time at start: %s", strstart);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    xp=vector(1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    dnewm=matrix(1,nlstate,1,npar);
 }      doldm=matrix(1,nlstate,1,nlstate);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   /*3eme*/    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    if(estepm < stepm){
       k=2+nlstate*(2*cpt-2);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    else  hstepm=estepm;   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* For example we decided to compute the life expectancy with the smallest unit */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       nhstepm is the number of hstepm from age to agelim 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       nstepm is the number of stepm from age to agelin. 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       Look at hpijx to understand the reason of that which relies in memory size
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 */       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i< nlstate ; i ++) {       means that if the survival funtion is printed every two years of age and if
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* CV preval stat */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (k1=1; k1<= m ; k1 ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for (cpt=1; cpt<nlstate ; cpt ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=3;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      gm=matrix(0,nhstepm,1,nlstate);
   
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);      for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                xp[i] = x[i] + (i==theta ?delti[theta]:0);
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (i=1; i< nlstate ; i ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);        if (popbased==1) {
       }          if(mobilav ==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   }            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   /* proba elementaires */              prlim[i][i]=mobaverage[(int)age][i][ij];
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){        for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(h=0; h<=nhstepm; h++){
           jk++;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
     }        /* This for computing probability of death (h=1 means
    }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        */
      for(jk=1; jk <=m; jk++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        if (ng==2)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        }    
        else        /* end probability of death */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
        i=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        for(k2=1; k2<=nlstate; k2++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          k3=i;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(k=1; k<=(nlstate+ndeath); k++) {   
            if (k != k2){        if (popbased==1) {
              if(ng==2)          if(mobilav ==0){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            for(i=1; i<=nlstate;i++)
              else              prlim[i][i]=probs[(int)age][i][ij];
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }else{ /* mobilav */ 
              ij=1;            for(i=1; i<=nlstate;i++)
              for(j=3; j <=ncovmodel; j++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;  
                }        for(j=1; j<= nlstate; j++){
                else          for(h=0; h<=nhstepm; h++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
              }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              fprintf(ficgp,")/(1");          }
                      }
              for(k1=1; k1 <=nlstate; k1++){          /* This for computing probability of death (h=1 means
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           computed over hstepm matrices product = hstepm*stepm months) 
                ij=1;           as a weighted average of prlim.
                for(j=3; j <=ncovmodel; j++){        */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                    ij++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                  }        }    
                  else        /* end probability of death */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }        for(j=1; j<= nlstate; j++) /* vareij */
                fprintf(ficgp,")");          for(h=0; h<=nhstepm; h++){
              }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          } /* end k */        }
        } /* end k2 */  
      } /* end jk */      } /* End theta */
    } /* end ng */  
    fclose(ficgp);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  /* end gnuplot */  
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/          for(theta=1; theta <=npar; theta++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            trgradg[h][j][theta]=gradg[h][theta][j];
   
   int i, cpt, cptcod;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++)          trgradgp[j][theta]=gradgp[theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(i=1;i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        for(j=1;j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          vareij[i][j][(int)age] =0.;
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }        }
       }
     
 /************** Forecasting ******************/      /* pptj */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int *popage;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          varppt[j][i]=doldmp[j][i];
   double *popeffectif,*popcount;      /* end ppptj */
   double ***p3mat;      /*  x centered again */
   char fileresf[FILENAMELENGTH];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  agelim=AGESUP;   
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      if (popbased==1) {
         if(mobilav ==0){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   strcpy(fileresf,"f");          for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);      }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);               
   }      /* This for computing probability of death (h=1 means
   printf("Computing forecasting: result on file '%s' \n", fileresf);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         as a weighted average of prlim.
       */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (mobilav==1) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }    
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /* end probability of death */
   }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (stepm<=12) stepsize=1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   agelim=AGESUP;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   hstepm=1;      } 
   hstepm=hstepm/stepm;      fprintf(ficresprobmorprev,"\n");
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;      fprintf(ficresvij,"%.0f ",age );
   yp2=modf((yp1*12),&yp);      for(i=1; i<=nlstate;i++)
   mprojmean=yp;        for(j=1; j<=nlstate;j++){
   yp1=modf((yp2*30.5),&yp);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   jprojmean=yp;        }
   if(jprojmean==0) jprojmean=1;      fprintf(ficresvij,"\n");
   if(mprojmean==0) jprojmean=1;      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    } /* End age */
       k=k+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"\n#******");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       fprintf(ficresf,"******\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficresf,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           nhstepm = nhstepm/hstepm;  */
            /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xp,1,npar);
            free_matrix(doldm,1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewm,1,nlstate,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(j=1; j<=nlstate+ndeath;j++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               kk1=0.;kk2=0;    fclose(ficresprobmorprev);
               for(i=1; i<=nlstate;i++) {                  fflush(ficgp);
                 if (mobilav==1)    fflush(fichtm); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }  /* end varevsij */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /************ Variance of prevlim ******************/
                 }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                  {
               }    /* Variance of prevalence limit */
               if (h==(int)(calagedate+12*cpt)){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                 fprintf(ficresf," %.3f", kk1);    double **newm;
                            double **dnewm,**doldm;
               }    int i, j, nhstepm, hstepm;
             }    int k, cptcode;
           }    double *xp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gp, *gm;
         }    double **gradg, **trgradg;
       }    double age,agelim;
     }    int theta;
   }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
            fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   fclose(ficresf);        fprintf(ficresvpl," %1d-%1d",i,i);
 }    fprintf(ficresvpl,"\n");
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    doldm=matrix(1,nlstate,1,nlstate);
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    hstepm=1*YEARM; /* Every year of age */
   double *popeffectif,*popcount;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double ***p3mat,***tabpop,***tabpopprev;    agelim = AGESUP;
   char filerespop[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (stepm >= YEARM) hstepm=1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   agelim=AGESUP;      gradg=matrix(1,npar,1,nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   strcpy(filerespop,"pop");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1;i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          gp[i] = prlim[i][i];
   }      
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(i=1; i<=npar; i++) /* Computes gradient */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      trgradg =matrix(1,nlstate,1,npar);
   if (stepm<=12) stepsize=1;  
        for(j=1; j<=nlstate;j++)
   agelim=AGESUP;        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   hstepm=1;  
   hstepm=hstepm/stepm;      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   if (popforecast==1) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     if((ficpop=fopen(popfile,"r"))==NULL) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       printf("Problem with population file : %s\n",popfile);exit(0);      for(i=1;i<=nlstate;i++)
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
     popage=ivector(0,AGESUP);      fprintf(ficresvpl,"%.0f ",age );
     popeffectif=vector(0,AGESUP);      for(i=1; i<=nlstate;i++)
     popcount=vector(0,AGESUP);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          fprintf(ficresvpl,"\n");
     i=1;        free_vector(gp,1,nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      free_vector(gm,1,nlstate);
          free_matrix(gradg,1,npar,1,nlstate);
     imx=i;      free_matrix(trgradg,1,nlstate,1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    } /* End age */
   }  
     free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_matrix(doldm,1,nlstate,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(dnewm,1,nlstate,1,nlstate);
       k=k+1;  
       fprintf(ficrespop,"\n#******");  }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fprintf(ficrespop,"******\n");  {
       fprintf(ficrespop,"# Age");    int i, j=0,  i1, k1, l1, t, tj;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    int k2, l2, j1,  z1;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int k=0,l, cptcode;
          int first=1, first1;
       for (cpt=0; cpt<=0;cpt++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **dnewm,**doldm;
            double *xp;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double *gp, *gm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **gradg, **trgradg;
           nhstepm = nhstepm/hstepm;    double **mu;
              double age,agelim, cov[NCOVMAX];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           oldm=oldms;savm=savms;    int theta;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char fileresprob[FILENAMELENGTH];
            char fileresprobcov[FILENAMELENGTH];
           for (h=0; h<=nhstepm; h++){    char fileresprobcor[FILENAMELENGTH];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***varpij;
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    strcpy(fileresprob,"prob"); 
               kk1=0.;kk2=0;    strcat(fileresprob,fileres);
               for(i=1; i<=nlstate;i++) {                  if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                 if (mobilav==1)      printf("Problem with resultfile: %s\n", fileresprob);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcpy(fileresprobcov,"probcov"); 
                 }    strcat(fileresprobcov,fileres);
               }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               if (h==(int)(calagedate+12*cpt)){      printf("Problem with resultfile: %s\n", fileresprobcov);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    strcpy(fileresprobcor,"probcor"); 
               }    strcat(fileresprobcor,fileres);
             }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             for(i=1; i<=nlstate;i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
               kk1=0.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                 for(j=1; j<=nlstate;j++){    }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficresprob, "#Local time at start: %s", strstart);
           }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprob,"# Age");
         }    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   /******/    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;      for(j=1; j<=(nlstate+ndeath);j++){
                  fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           oldm=oldms;savm=savms;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }  
           for (h=0; h<=nhstepm; h++){   /* fprintf(ficresprob,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcov,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcor,"\n");
             }   */
             for(j=1; j<=nlstate+ndeath;j++) {   xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    first=1;
             }    fprintf(ficgp,"\n# Routine varprob");
           }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n");
         }  
       }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (popforecast==1) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_ivector(popage,0,AGESUP);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(popeffectif,0,AGESUP);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     free_vector(popcount,0,AGESUP);  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fclose(ficrespop);  
 }    cov[1]=1;
     tj=cptcoveff;
 /***********************************************/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 /**************** Main Program *****************/    j1=0;
 /***********************************************/    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
 int main(int argc, char *argv[])        j1++;
 {        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double agedeb, agefin,hf;          fprintf(ficresprob, "**********\n#\n");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double fret;          fprintf(ficresprobcov, "**********\n#\n");
   double **xi,tmp,delta;          
           fprintf(ficgp, "\n#********** Variable "); 
   double dum; /* Dummy variable */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***p3mat;          fprintf(ficgp, "**********\n#\n");
   int *indx;          
   char line[MAXLINE], linepar[MAXLINE];          
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   int firstobs=1, lastobs=10;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int sdeb, sfin; /* Status at beginning and end */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int c,  h , cpt,l;          
   int ju,jl, mi;          fprintf(ficresprobcor, "\n#********** Variable ");    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficresprobcor, "**********\n#");    
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   double bage, fage, age, agelim, agebase;          for (k=1; k<=cptcovn;k++) {
   double ftolpl=FTOL;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   double **prlim;          }
   double *severity;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***param; /* Matrix of parameters */          for (k=1; k<=cptcovprod;k++)
   double  *p;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double **matcov; /* Matrix of covariance */          
   double ***delti3; /* Scale */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   double *delti; /* Scale */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double ***eij, ***vareij;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double **varpl; /* Variances of prevalence limits by age */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   double *epj, vepp;      
   double kk1, kk2;          for(theta=1; theta <=npar; theta++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   char *alph[]={"a","a","b","c","d","e"}, str[4];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
   char z[1]="c", occ;            for(i=1; i<= (nlstate); i++){
 #include <sys/time.h>              for(j=1; j<=(nlstate+ndeath);j++){
 #include <time.h>                k=k+1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                gp[k]=pmmij[i][j];
                }
   /* long total_usecs;            }
   struct timeval start_time, end_time;            
              for(i=1; i<=npar; i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   getcwd(pathcd, size);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("\n%s",version);            k=0;
   if(argc <=1){            for(i=1; i<=(nlstate); i++){
     printf("\nEnter the parameter file name: ");              for(j=1; j<=(nlstate+ndeath);j++){
     scanf("%s",pathtot);                k=k+1;
   }                gm[k]=pmmij[i][j];
   else{              }
     strcpy(pathtot,argv[1]);            }
   }       
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /*cygwin_split_path(pathtot,path,optionfile);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }
   /* cutv(path,optionfile,pathtot,'\\');*/  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            for(theta=1; theta <=npar; theta++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              trgradg[j][theta]=gradg[theta][j];
   chdir(path);          
   replace(pathc,path);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*-------- arguments in the command line --------*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   /* Log file */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(filelog, optionfilefiname);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {          pmij(pmmij,cov,ncovmodel,x,nlstate);
     printf("Problem with logfile %s\n",filelog);          
     goto end;          k=0;
   }          for(i=1; i<=(nlstate); i++){
   fprintf(ficlog,"Log filename:%s\n",filelog);            for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficlog,"\n%s",version);              k=k+1;
   fprintf(ficlog,"\nEnter the parameter file name: ");              mu[k][(int) age]=pmmij[i][j];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            }
   fflush(ficlog);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   /* */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   strcpy(fileres,"r");              varpij[i][j][(int)age] = doldm[i][j];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*---------arguments file --------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            }*/
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          fprintf(ficresprob,"\n%d ",(int)age);
     goto end;          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   strcpy(filereso,"o");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcat(filereso,fileres);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if((ficparo=fopen(filereso,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with Output resultfile: %s\n", filereso);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     goto end;          }
   }          i=0;
           for (k=1; k<=(nlstate);k++){
   /* Reads comments: lines beginning with '#' */            for (l=1; l<=(nlstate+ndeath);l++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){              i=i++;
     ungetc(c,ficpar);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     fgets(line, MAXLINE, ficpar);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     puts(line);              for (j=1; j<=i;j++){
     fputs(line,ficparo);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   ungetc(c,ficpar);              }
             }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          }/* end of loop for state */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        } /* end of loop for age */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){        /* Confidence intervalle of pij  */
     ungetc(c,ficpar);        /*
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nset noparametric;unset label");
     puts(line);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     fputs(line,ficparo);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   covar=matrix(0,NCOVMAX,1,n);        */
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   ncovmodel=2+cptcovn;        for (k2=1; k2<=(nlstate);k2++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   /* Read guess parameters */            j=(k2-1)*(nlstate+ndeath)+l2;
   /* Reads comments: lines beginning with '#' */            for (k1=1; k1<=(nlstate);k1++){
   while((c=getc(ficpar))=='#' && c!= EOF){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     ungetc(c,ficpar);                if(l1==k1) continue;
     fgets(line, MAXLINE, ficpar);                i=(k1-1)*(nlstate+ndeath)+l1;
     puts(line);                if(i<=j) continue;
     fputs(line,ficparo);                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
   ungetc(c,ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(i=1; i <=nlstate; i++)                    mu1=mu[i][(int) age]/stepm*YEARM ;
     for(j=1; j <=nlstate+ndeath-1; j++){                    mu2=mu[j][(int) age]/stepm*YEARM;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    c12=cv12/sqrt(v1*v2);
       fprintf(ficparo,"%1d%1d",i1,j1);                    /* Computing eigen value of matrix of covariance */
       if(mle==1)                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         printf("%1d%1d",i,j);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fprintf(ficlog,"%1d%1d",i,j);                    /* Eigen vectors */
       for(k=1; k<=ncovmodel;k++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fscanf(ficpar," %lf",&param[i][j][k]);                    /*v21=sqrt(1.-v11*v11); *//* error */
         if(mle==1){                    v21=(lc1-v1)/cv12*v11;
           printf(" %lf",param[i][j][k]);                    v12=-v21;
           fprintf(ficlog," %lf",param[i][j][k]);                    v22=v11;
         }                    tnalp=v21/v11;
         else                    if(first1==1){
           fprintf(ficlog," %lf",param[i][j][k]);                      first1=0;
         fprintf(ficparo," %lf",param[i][j][k]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
       fscanf(ficpar,"\n");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       if(mle==1)                    /*printf(fignu*/
         printf("\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficlog,"\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fprintf(ficparo,"\n");                    if(first==1){
     }                      first=0;
                        fprintf(ficgp,"\nset parametric;unset label");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   p=param[1][1];                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   /* Reads comments: lines beginning with '#' */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   while((c=getc(ficpar))=='#' && c!= EOF){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     ungetc(c,ficpar);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fputs(line,ficparo);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i <=nlstate; i++){                    }else{
     for(j=1; j <=nlstate+ndeath-1; j++){                      first=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       printf("%1d%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficparo,"%1d%1d",i1,j1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fscanf(ficpar,"%le",&delti3[i][j][k]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         printf(" %le",delti3[i][j][k]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficparo," %le",delti3[i][j][k]);                    }/* if first */
       }                  } /* age mod 5 */
       fscanf(ficpar,"\n");                } /* end loop age */
       printf("\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficparo,"\n");                first=1;
     }              } /*l12 */
   }            } /* k12 */
   delti=delti3[1][1];          } /*l1 */
          }/* k1 */
   /* Reads comments: lines beginning with '#' */      } /* loop covariates */
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     puts(line);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    fclose(ficresprob);
      fclose(ficresprobcov);
   matcov=matrix(1,npar,1,npar);    fclose(ficresprobcor);
   for(i=1; i <=npar; i++){    fflush(ficgp);
     fscanf(ficpar,"%s",&str);    fflush(fichtmcov);
     if(mle==1)  }
       printf("%s",str);  
     fprintf(ficlog,"%s",str);  
     fprintf(ficparo,"%s",str);  /******************* Printing html file ***********/
     for(j=1; j <=i; j++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fscanf(ficpar," %le",&matcov[i][j]);                    int lastpass, int stepm, int weightopt, char model[],\
       if(mle==1){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         printf(" %.5le",matcov[i][j]);                    int popforecast, int estepm ,\
         fprintf(ficlog," %.5le",matcov[i][j]);                    double jprev1, double mprev1,double anprev1, \
       }                    double jprev2, double mprev2,double anprev2){
       else    int jj1, k1, i1, cpt;
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fscanf(ficpar,"\n");  </ul>");
     if(mle==1)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       printf("\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     fprintf(ficlog,"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fprintf(ficparo,"\n");     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   for(i=1; i <=npar; i++)             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     for(j=i+1;j<=npar;j++)     fprintf(fichtm,"\
       matcov[i][j]=matcov[j][i];   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if(mle==1)     fprintf(fichtm,"\
     printf("\n");   - Life expectancies by age and initial health status (estepm=%2d months): \
   fprintf(ficlog,"\n");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
     /*-------- Rewriting paramater file ----------*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/   m=cptcoveff;
      strcat(rfileres,".");    /* */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {   jj1=0;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   for(k1=1; k1<=m;k1++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     fprintf(ficres,"#%s\n",version);       if (cptcovn > 0) {
             fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /*-------- data file ----------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
     if((fic=fopen(datafile,"r"))==NULL)    {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       printf("Problem with datafile: %s\n", datafile);goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;       }
     }       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     n= lastobs;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     severity = vector(1,maxwav);       /* Quasi-incidences */
     outcome=imatrix(1,maxwav+1,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     num=ivector(1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     moisnais=vector(1,n);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     annais=vector(1,n);         /* Stable prevalence in each health state */
     moisdc=vector(1,n);         for(cpt=1; cpt<nlstate;cpt++){
     andc=vector(1,n);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     agedc=vector(1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     cod=ivector(1,n);         }
     weight=vector(1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     mint=matrix(1,maxwav,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     anint=matrix(1,maxwav,1,n);       }
     s=imatrix(1,maxwav+1,1,n);     } /* end i1 */
     adl=imatrix(1,maxwav+1,1,n);       }/* End k1 */
     tab=ivector(1,NCOVMAX);   fprintf(fichtm,"</ul>");
     ncodemax=ivector(1,8);  
   
     i=1;   fprintf(fichtm,"\
     while (fgets(line, MAXLINE, fic) != NULL)    {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       if ((i >= firstobs) && (i <=lastobs)) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
          
         for (j=maxwav;j>=1;j--){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           strcpy(line,stra);   fprintf(fichtm,"\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         }  
           fprintf(fichtm,"\
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
         for (j=ncovcol;j>=1;j--){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"\
         }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         num[i]=atol(stra);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         i=i+1;  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
     }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     /* printf("ii=%d", ij);   fflush(fichtm);
        scanf("%d",i);*/   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   imx=i-1; /* Number of individuals */  
    m=cptcoveff;
   /* for (i=1; i<=imx; i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   jj1=0;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   for(k1=1; k1<=m;k1++){
     }*/     for(i1=1; i1<=ncodemax[k1];i1++){
    /*  for (i=1; i<=imx; i++){       jj1++;
      if (s[4][i]==9)  s[4][i]=-1;       if (cptcovn > 0) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Calculation of the number of parameter from char model*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       }
   Tprod=ivector(1,15);       for(cpt=1; cpt<=nlstate;cpt++) {
   Tvaraff=ivector(1,15);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   Tvard=imatrix(1,15,1,2);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   Tage=ivector(1,15);        <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           }
   if (strlen(model) >1){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     j=0, j1=0, k1=1, k2=1;  health expectancies in states (1) and (2): %s%d.png<br>\
     j=nbocc(model,'+');  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     j1=nbocc(model,'*');     } /* end i1 */
     cptcovn=j+1;   }/* End k1 */
     cptcovprod=j1;   fprintf(fichtm,"</ul>");
       fflush(fichtm);
     strcpy(modelsav,model);  }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);  /******************* Gnuplot file **************/
       fprintf(ficlog,"Error. Non available option model=%s ",model);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       goto end;  
     }    char dirfileres[132],optfileres[132];
        int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(i=(j+1); i>=1;i--){    int ng;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  /*     printf("Problem with file %s",optionfilegnuplot); */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       /*scanf("%d",i);*/  /*   } */
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    /*#ifdef windows */
         if (strcmp(strc,"age")==0) { /* Vn*age */    fprintf(ficgp,"cd \"%s\" \n",pathc);
           cptcovprod--;      /*#endif */
           cutv(strb,stre,strd,'V');    m=pow(2,cptcoveff);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    strcpy(dirfileres,optionfilefiname);
             Tage[cptcovage]=i;    strcpy(optfileres,"vpl");
             /*printf("stre=%s ", stre);*/   /* 1eme*/
         }    for (cpt=1; cpt<= nlstate ; cpt ++) {
         else if (strcmp(strd,"age")==0) { /* or age*Vn */     for (k1=1; k1<= m ; k1 ++) {
           cptcovprod--;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           cutv(strb,stre,strc,'V');       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           Tvar[i]=atoi(stre);       fprintf(ficgp,"set xlabel \"Age\" \n\
           cptcovage++;  set ylabel \"Probability\" \n\
           Tage[cptcovage]=i;  set ter png small\n\
         }  set size 0.65,0.65\n\
         else {  /* Age is not in the model */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;       for (i=1; i<= nlstate ; i ++) {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           Tprod[k1]=i;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvard[k1][1]=atoi(strc); /* m*/       }
           Tvard[k1][2]=atoi(stre); /* n */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           Tvar[cptcovn+k2]=Tvard[k1][1];       for (i=1; i<= nlstate ; i ++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           for (k=1; k<=lastobs;k++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       } 
           k1++;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           k2=k2+2;       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
       else { /* no more sum */       }  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
        /*  scanf("%d",i);*/     }
       cutv(strd,strc,strb,'V');    }
       Tvar[i]=atoi(strc);    /*2 eme*/
       }    
       strcpy(modelsav,stra);      for (k1=1; k1<= m ; k1 ++) { 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         scanf("%d",i);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     } /* end of loop + */      
   } /* end model */      for (i=1; i<= nlstate+1 ; i ++) {
          k=2*i;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("cptcovprod=%d ", cptcovprod);        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   scanf("%d ",i);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fclose(fic);        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     /*  if(mle==1){*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(i=1;i<=n;i++) weight[i]=1.0;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     /*-calculation of age at interview from date of interview and age at death -*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
     agev=matrix(1,maxwav,1,imx);        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
     for (i=1; i<=imx; i++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(m=2; (m<= maxwav); m++) {        for (j=1; j<= nlstate+1 ; j ++) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          anint[m][i]=9999;          else fprintf(ficgp," \%%*lf (\%%*lf)");
          s[m][i]=-1;        }   
        }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        else fprintf(ficgp,"\" t\"\" w l 0,");
       }      }
     }    }
     
     for (i=1; i<=imx; i++)  {    /*3eme*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){    for (k1=1; k1<= m ; k1 ++) { 
         if(s[m][i] >0){      for (cpt=1; cpt<= nlstate ; cpt ++) {
           if (s[m][i] >= nlstate+1) {        k=2+nlstate*(2*cpt-2);
             if(agedc[i]>0)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               if(moisdc[i]!=99 && andc[i]!=9999)        fprintf(ficgp,"set ter png small\n\
                 agev[m][i]=agedc[i];  set size 0.65,0.65\n\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
            else {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               if (andc[i]!=9999){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               agev[m][i]=-1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             }          
           }        */
           else if(s[m][i] !=9){ /* Should no more exist */        for (i=1; i< nlstate ; i ++) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
             if(mint[m][i]==99 || anint[m][i]==9999)          
               agev[m][i]=1;        } 
             else if(agev[m][i] <agemin){      }
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    
             }    /* CV preval stable (period) */
             else if(agev[m][i] >agemax){    for (k1=1; k1<= m ; k1 ++) { 
               agemax=agev[m][i];      for (cpt=1; cpt<=nlstate ; cpt ++) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        k=3;
             }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             /*   agev[m][i] = age[i]+2*m;*/  set ter png small\nset size 0.65,0.65\n\
           }  unset log y\n\
           else { /* =9 */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             agev[m][i]=1;        
             s[m][i]=-1;        for (i=1; i< nlstate ; i ++)
           }          fprintf(ficgp,"+$%d",k+i+1);
         }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         else /*= 0 Unknown */        
           agev[m][i]=1;        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
            for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"+$%d",l+i+1);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        } 
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      }  
           goto end;    
         }    /* proba elementaires */
       }    for(i=1,jk=1; i <=nlstate; i++){
     }      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(j=1; j <=ncovmodel; j++){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
     free_vector(severity,1,maxwav);            fprintf(ficgp,"\n");
     free_imatrix(outcome,1,maxwav+1,1,n);          }
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);      }
     /* free_matrix(mint,1,maxwav,1,n);     }
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     free_vector(andc,1,n);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             if (ng==2)
     wav=ivector(1,imx);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         else
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           fprintf(ficgp,"\nset title \"Probability\"\n");
             fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     /* Concatenates waves */         i=1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
       Tcode=ivector(1,100);             if (k != k2){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);               if(ng==2)
       ncodemax[1]=1;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);               else
                       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
    codtab=imatrix(1,100,1,10);               ij=1;
    h=0;               for(j=3; j <=ncovmodel; j++) {
    m=pow(2,cptcoveff);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    for(k=1;k<=cptcoveff; k++){                   ij++;
      for(i=1; i <=(m/pow(2,k));i++){                 }
        for(j=1; j <= ncodemax[k]; j++){                 else
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            h++;               }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;               fprintf(ficgp,")/(1");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/               
          }               for(k1=1; k1 <=nlstate; k1++){   
        }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
      }                 ij=1;
    }                 for(j=3; j <=ncovmodel; j++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       codtab[1][2]=1;codtab[2][2]=2; */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    /* for(i=1; i <=m ;i++){                     ij++;
       for(k=1; k <=cptcovn; k++){                   }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                   else
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       printf("\n");                 }
       }                 fprintf(ficgp,")");
       scanf("%d",i);*/               }
                   fprintf(ficgp,") t \"p%d%d\" ", k2,k);
    /* Calculates basic frequencies. Computes observed prevalence at single age               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
        and prints on file fileres'p'. */               i=i+ncovmodel;
              }
               } /* end k */
             } /* end k2 */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } /* end jk */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end ng */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fflush(ficgp); 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }  /* end gnuplot */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*************** Moving average **************/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     int i, cpt, cptcod;
     if(mle==1){    int modcovmax =1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int mobilavrange, mob;
     }    double age;
      
     /*--------- results files --------------*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                             a covariate has 2 modalities */
      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
    jk=1;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if(mobilav==1) mobilavrange=5; /* default */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      else mobilavrange=mobilav;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (age=bage; age<=fage; age++)
    for(i=1,jk=1; i <=nlstate; i++){        for (i=1; i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
        if (k != i)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
          {      /* We keep the original values on the extreme ages bage, fage and for 
            printf("%d%d ",i,k);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
            fprintf(ficlog,"%d%d ",i,k);         we use a 5 terms etc. until the borders are no more concerned. 
            fprintf(ficres,"%1d%1d ",i,k);      */ 
            for(j=1; j <=ncovmodel; j++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
              printf("%f ",p[jk]);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
              fprintf(ficlog,"%f ",p[jk]);          for (i=1; i<=nlstate;i++){
              fprintf(ficres,"%f ",p[jk]);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
              jk++;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
            }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
            printf("\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
            fprintf(ficlog,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
            fprintf(ficres,"\n");                }
          }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
      }            }
    }          }
    if(mle==1){        }/* end age */
      /* Computing hessian and covariance matrix */      }/* end mob */
      ftolhess=ftol; /* Usually correct */    }else return -1;
      hesscov(matcov, p, npar, delti, ftolhess, func);    return 0;
    }  }/* End movingaverage */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  /************** Forecasting ******************/
    for(i=1,jk=1; i <=nlstate; i++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      for(j=1; j <=nlstate+ndeath; j++){    /* proj1, year, month, day of starting projection 
        if (j!=i) {       agemin, agemax range of age
          fprintf(ficres,"%1d%1d",i,j);       dateprev1 dateprev2 range of dates during which prevalence is computed
          printf("%1d%1d",i,j);       anproj2 year of en of projection (same day and month as proj1).
          fprintf(ficlog,"%1d%1d",i,j);    */
          for(k=1; k<=ncovmodel;k++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            printf(" %.5e",delti[jk]);    int *popage;
            fprintf(ficlog," %.5e",delti[jk]);    double agec; /* generic age */
            fprintf(ficres," %.5e",delti[jk]);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
            jk++;    double *popeffectif,*popcount;
          }    double ***p3mat;
          printf("\n");    double ***mobaverage;
          fprintf(ficlog,"\n");    char fileresf[FILENAMELENGTH];
          fprintf(ficres,"\n");  
        }    agelim=AGESUP;
      }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    }   
        strcpy(fileresf,"f"); 
    k=1;    strcat(fileresf,fileres);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
    if(mle==1)      printf("Problem with forecast resultfile: %s\n", fileresf);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    for(i=1;i<=npar;i++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
      /*  if (k>nlstate) k=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);    if (mobilav!=0) {
      if(mle==1)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        printf("%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
      fprintf(ficlog,"%3d",i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(j=1; j<=i;j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        fprintf(ficres," %.5e",matcov[i][j]);      }
        if(mle==1)    }
          printf(" %.5e",matcov[i][j]);  
        fprintf(ficlog," %.5e",matcov[i][j]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      }    if (stepm<=12) stepsize=1;
      fprintf(ficres,"\n");    if(estepm < stepm){
      if(mle==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
        printf("\n");    }
      fprintf(ficlog,"\n");    else  hstepm=estepm;   
      k++;  
    }    hstepm=hstepm/stepm; 
        yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
    while((c=getc(ficpar))=='#' && c!= EOF){                                 fractional in yp1 */
      ungetc(c,ficpar);    anprojmean=yp;
      fgets(line, MAXLINE, ficpar);    yp2=modf((yp1*12),&yp);
      puts(line);    mprojmean=yp;
      fputs(line,ficparo);    yp1=modf((yp2*30.5),&yp);
    }    jprojmean=yp;
    ungetc(c,ficpar);    if(jprojmean==0) jprojmean=1;
    estepm=0;    if(mprojmean==0) jprojmean=1;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;    i1=cptcoveff;
    if (fage <= 2) {    if (cptcovn < 1){i1=1;}
      bage = ageminpar;    
      fage = agemaxpar;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
    }    
        fprintf(ficresf,"#****** Routine prevforecast **\n");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*            if (h==(int)(YEARM*yearp)){ */
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    while((c=getc(ficpar))=='#' && c!= EOF){        k=k+1;
      ungetc(c,ficpar);        fprintf(ficresf,"\n#******");
      fgets(line, MAXLINE, ficpar);        for(j=1;j<=cptcoveff;j++) {
      puts(line);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fputs(line,ficparo);        }
    }        fprintf(ficresf,"******\n");
    ungetc(c,ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for(i=1; i<=nlstate;i++)              
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresf," p%d%d",i,j);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresf," p.%d",j);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      ungetc(c,ficpar);          fprintf(ficresf,"\n");
      fgets(line, MAXLINE, ficpar);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      puts(line);  
      fputs(line,ficparo);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
    ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          
             for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if (h*hstepm/YEARM*stepm ==yearp) {
   fprintf(ficparo,"pop_based=%d\n",popbased);                  fprintf(ficresf,"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);                  for(j=1;j<=cptcoveff;j++) 
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     ungetc(c,ficpar);              } 
     fgets(line, MAXLINE, ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                ppij=0.;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1) 
   ungetc(c,ficpar);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
 while((c=getc(ficpar))=='#' && c!= EOF){                } /* end i */
     ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
     fgets(line, MAXLINE, ficpar);                  fprintf(ficresf," %.3f", ppij);
     puts(line);                }
     fputs(line,ficparo);              }/* end j */
   }            } /* end h */
   ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        } /* end yearp */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      } /* end cptcod */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    } /* end  cptcov */
          
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 /*------------ gnuplot -------------*/    fclose(ficresf);
   strcpy(optionfilegnuplot,optionfilefiname);  }
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /************** Forecasting *****not tested NB*************/
     printf("Problem with file %s",optionfilegnuplot);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   fclose(ficgp);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    int *popage;
 /*--------- index.htm --------*/    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   strcpy(optionfilehtm,optionfile);    double ***p3mat,***tabpop,***tabpopprev;
   strcat(optionfilehtm,".htm");    double ***mobaverage;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    char filerespop[FILENAMELENGTH];
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    agelim=AGESUP;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 \n    
 Total number of observations=%d <br>\n    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    
 <hr  size=\"2\" color=\"#EC5E5E\">    
  <ul><li><h4>Parameter files</h4>\n    strcpy(filerespop,"pop"); 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    strcat(filerespop,fileres);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    if((ficrespop=fopen(filerespop,"w"))==NULL) {
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);      printf("Problem with forecast resultfile: %s\n", filerespop);
   fclose(fichtm);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    printf("Computing forecasting: result on file '%s' \n", filerespop);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 /*------------ free_vector  -------------*/  
  chdir(path);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
  free_ivector(wav,1,imx);    if (mobilav!=0) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  free_ivector(num,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  free_vector(agedc,1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
  fclose(ficparo);    }
  fclose(ficres);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   /*--------------- Prevalence limit --------------*/    
      agelim=AGESUP;
   strcpy(filerespl,"pl");    
   strcat(filerespl,fileres);    hstepm=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    hstepm=hstepm/stepm; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (popforecast==1) {
   }      if((ficpop=fopen(popfile,"r"))==NULL) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        printf("Problem with population file : %s\n",popfile);exit(0);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fprintf(ficrespl,"#Prevalence limit\n");      } 
   fprintf(ficrespl,"#Age ");      popage=ivector(0,AGESUP);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      popeffectif=vector(0,AGESUP);
   fprintf(ficrespl,"\n");      popcount=vector(0,AGESUP);
        
   prlim=matrix(1,nlstate,1,nlstate);      i=1;   
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      imx=i;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
   k=0;  
   agebase=ageminpar;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   agelim=agemaxpar;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   ftolpl=1.e-10;        k=k+1;
   i1=cptcoveff;        fprintf(ficrespop,"\n#******");
   if (cptcovn < 1){i1=1;}        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficrespop,"******\n");
         k=k+1;        fprintf(ficrespop,"# Age");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         fprintf(ficrespl,"\n#******");        if (popforecast==1)  fprintf(ficrespop," [Population]");
         printf("\n#******");        
         fprintf(ficlog,"\n#******");        for (cpt=0; cpt<=0;cpt++) { 
         for(j=1;j<=cptcoveff;j++) {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
         fprintf(ficrespl,"******\n");            
         printf("******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficlog,"******\n");            oldm=oldms;savm=savms;
                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         for (age=agebase; age<=agelim; age++){          
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespl,"%.0f",age );              if (h==(int) (calagedatem+YEARM*cpt)) {
           for(i=1; i<=nlstate;i++)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespl," %.5f", prlim[i][i]);              } 
           fprintf(ficrespl,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
         }                kk1=0.;kk2=0;
       }                for(i=1; i<=nlstate;i++) {              
     }                  if (mobilav==1) 
   fclose(ficrespl);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   /*------------- h Pij x at various ages ------------*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                if (h==(int)(calagedatem+12*cpt)){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   printf("Computing pij: result on file '%s' \n", filerespij);                }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);              }
                for(i=1; i<=nlstate;i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                kk1=0.;
   /*if (stepm<=24) stepsize=2;*/                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   agelim=AGESUP;                  }
   hstepm=stepsize*YEARM; /* Every year of age */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              }
   
   /* hstepm=1;   aff par mois*/              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)    /******/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                  fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            nhstepm = nhstepm/hstepm; 
             
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           oldm=oldms;savm=savms;            for (h=0; h<=nhstepm; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if (h==(int) (calagedatem+YEARM*cpt)) {
           fprintf(ficrespij,"# Age");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate;i++)              } 
             for(j=1; j<=nlstate+ndeath;j++)              for(j=1; j<=nlstate+ndeath;j++) {
               fprintf(ficrespij," %1d-%1d",i,j);                kk1=0.;kk2=0;
           fprintf(ficrespij,"\n");                for(i=1; i<=nlstate;i++) {              
            for (h=0; h<=nhstepm; h++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                }
             for(i=1; i<=nlstate;i++)                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               for(j=1; j<=nlstate+ndeath;j++)              }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            }
             fprintf(ficrespij,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");     } 
         }    }
     }   
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   fclose(ficrespij);      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
   /*---------- Forecasting ------------------*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((stepm == 1) && (strcmp(model,".")==0)){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fclose(ficrespop);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  } /* End of popforecast */
   }  
   else{  int fileappend(FILE *fichier, char *optionfich)
     erreur=108;  {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if((fichier=fopen(optionfich,"a"))==NULL) {
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      printf("Problem with file: %s\n", optionfich);
   }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
        return (0);
     }
   /*---------- Health expectancies and variances ------------*/    fflush(fichier);
     return (1);
   strcpy(filerest,"t");  }
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /**************** function prwizard **********************/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
   strcpy(filerese,"e");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcat(filerese,fileres);    int numlinepar;
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    for(i=1; i <=nlstate; i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      jj=0;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   strcpy(fileresv,"v");        jj++;
   strcat(fileresv,fileres);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        printf("%1d%1d",i,j);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        for(k=1; k<=ncovmodel;k++){
   }          /*        printf(" %lf",param[i][j][k]); */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf(" 0.");
   calagedate=-1;          fprintf(ficparo," 0.");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
         printf("\n");
   k=0;        fprintf(ficparo,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficrest,"\n#****** ");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
       for(j=1;j<=cptcoveff;j++)    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i <=nlstate; i++){
       fprintf(ficrest,"******\n");      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficreseij,"\n#****** ");        if(j==i) continue;
       for(j=1;j<=cptcoveff;j++)        jj++;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficparo,"%1d%1d",i,j);
       fprintf(ficreseij,"******\n");        printf("%1d%1d",i,j);
         fflush(stdout);
       fprintf(ficresvij,"\n#****** ");        for(k=1; k<=ncovmodel;k++){
       for(j=1;j<=cptcoveff;j++)          /*      printf(" %le",delti3[i][j][k]); */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       fprintf(ficresvij,"******\n");          printf(" 0.");
           fprintf(ficparo," 0.");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        numlinepar++;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          printf("\n");
          fprintf(ficparo,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    printf("# Covariance matrix\n");
       if(popbased==1){  /* # 121 Var(a12)\n\ */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
        }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
    /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       fprintf(ficrest,"\n");  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
       epj=vector(1,nlstate+1);    fprintf(ficparo,"# Covariance matrix\n");
       for(age=bage; age <=fage ;age++){    /* # 121 Var(a12)\n\ */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
         if (popbased==1) {    /* #   ...\n\ */
           for(i=1; i<=nlstate;i++)    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
             prlim[i][i]=probs[(int)age][i][k];    
         }    for(itimes=1;itimes<=2;itimes++){
              jj=0;
         fprintf(ficrest," %4.0f",age);      for(i=1; i <=nlstate; i++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j <=nlstate+ndeath; j++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          if(j==i) continue;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(k=1; k<=ncovmodel;k++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            jj++;
           }            ca[0]= k+'a'-1;ca[1]='\0';
           epj[nlstate+1] +=epj[j];            if(itimes==1){
         }              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
         for(i=1, vepp=0.;i <=nlstate;i++)            }else{
           for(j=1;j <=nlstate;j++)              printf("%1d%1d%d",i,j,k);
             vepp += vareij[i][j][(int)age];              fprintf(ficparo,"%1d%1d%d",i,j,k);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              /*  printf(" %.5le",matcov[i][j]); */
         for(j=1;j <=nlstate;j++){            }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            ll=0;
         }            for(li=1;li <=nlstate; li++){
         fprintf(ficrest,"\n");              for(lj=1;lj <=nlstate+ndeath; lj++){
       }                if(lj==li) continue;
     }                for(lk=1;lk<=ncovmodel;lk++){
   }                  ll++;
 free_matrix(mint,1,maxwav,1,n);                  if(ll<=jj){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    cb[0]= lk +'a'-1;cb[1]='\0';
     free_vector(weight,1,n);                    if(ll<jj){
   fclose(ficreseij);                      if(itimes==1){
   fclose(ficresvij);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   fclose(ficrest);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   fclose(ficpar);                      }else{
   free_vector(epj,1,nlstate+1);                        printf(" 0.");
                          fprintf(ficparo," 0.");
   /*------- Variance limit prevalence------*/                        }
                     }else{
   strcpy(fileresvpl,"vpl");                      if(itimes==1){
   strcat(fileresvpl,fileres);                        printf(" Var(%s%1d%1d)",ca,i,j);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      }else{
     exit(0);                        printf(" 0.");
   }                        fprintf(ficparo," 0.");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      }
                     }
   k=0;                  }
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end lk */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } /* end lj */
       k=k+1;            } /* end li */
       fprintf(ficresvpl,"\n#****** ");            printf("\n");
       for(j=1;j<=cptcoveff;j++)            fprintf(ficparo,"\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            numlinepar++;
       fprintf(ficresvpl,"******\n");          } /* end k*/
              } /*end j */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      } /* end i */
       oldm=oldms;savm=savms;    } /* end itimes */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  } /* end of prwizard */
  }  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   fclose(ficresvpl);  { 
     double A,B,L=0.0,sump=0.,num=0.;
   /*---------- End : free ----------------*/    int i,n=0; /* n is the size of the sample */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      for (i=0;i<=imx-1 ; i++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      sump=sump+weight[i];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*    sump=sump+1;*/
        num=num+1;
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* for (i=0; i<=imx; i++) 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
    
   free_matrix(matcov,1,npar,1,npar);    for (i=1;i<=imx ; i++)
   free_vector(delti,1,npar);      {
   free_matrix(agev,1,maxwav,1,imx);        if (cens[i] == 1 && wav[i]>1)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
   fprintf(fichtm,"\n</body>");        if (cens[i] == 0 && wav[i]>1)
   fclose(fichtm);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fclose(ficgp);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
          
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   if(erreur >0){        if (wav[i] > 1 ) { /* ??? */
     printf("End of Imach with error or warning %d\n",erreur);          L=L+A*weight[i];
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   }else{        }
    printf("End of Imach\n");      }
    fprintf(ficlog,"End of Imach\n");  
   }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   printf("See log file on %s\n",filelog);   
   fclose(ficlog);    return -2*L*num/sump;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /******************* Printing html file ***********/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   /*------ End -----------*/                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
  end:  
 #ifdef windows    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   /* chdir(pathcd);*/    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 #endif    for (i=1;i<=2;i++) 
  /*system("wgnuplot graph.plt");*/      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
  /*system("cd ../gp37mgw");*/    fprintf(fichtm,"</ul>");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
  system(plotcmd);  
    for (k=agegomp;k<(agemortsup-2);k++) 
 #ifdef windows     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   while (z[0] != 'q') {  
     /* chdir(path); */   
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fflush(fichtm);
     scanf("%s",z);  }
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  /******************* Gnuplot file **************/
     else if (z[0] == 'g') system(plotcmd);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     else if (z[0] == 'q') exit(0);  
   }    char dirfileres[132],optfileres[132];
 #endif    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 }    int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.114


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>