Diff for /imach/src/imach.c between versions 1.125 and 1.168

version 1.125, 2006/04/04 15:20:31 version 1.168, 2014/12/22 15:17:42
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: udate
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  #define POWELL /* Instead of NLOPT */
 extern int errno;  
   #include <math.h>
 /* #include <sys/time.h> */  #include <stdio.h>
 #include <time.h>  #include <stdlib.h>
 #include "timeval.h"  #include <string.h>
   
 /* #include <libintl.h> */  #ifdef _WIN32
 /* #define _(String) gettext (String) */  #include <io.h>
   #else
 #define MAXLINE 256  #include <unistd.h>
   #endif
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #include <limits.h>
 #define FILENAMELENGTH 132  #include <sys/types.h>
   #include <sys/utsname.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <sys/stat.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <errno.h>
   /* extern int errno; */
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  /* #ifdef LINUX */
   /* #include <time.h> */
 #define NINTERVMAX 8  /* #include "timeval.h" */
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  /* #else */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /* #include <sys/time.h> */
 #define NCOVMAX 8 /* Maximum number of covariates */  /* #endif */
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */  #include <time.h>
 #define AGESUP 130  
 #define AGEBASE 40  #ifdef GSL
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #include <gsl/gsl_errno.h>
 #ifdef UNIX  #include <gsl/gsl_multimin.h>
 #define DIRSEPARATOR '/'  #endif
 #define CHARSEPARATOR "/"  
 #define ODIRSEPARATOR '\\'  
 #else  #ifdef NLOPT
 #define DIRSEPARATOR '\\'  #include <nlopt.h>
 #define CHARSEPARATOR "\\"  typedef struct {
 #define ODIRSEPARATOR '/'    double (* function)(double [] );
 #endif  } myfunc_data ;
   #endif
 /* $Id$ */  
 /* $State$ */  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  
 char fullversion[]="$Revision$ $Date$";  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 char strstart[80];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int nvar;  #define FILENAMELENGTH 132
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int nlstate=2; /* Number of live states */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 int popbased=0;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int *wav; /* Number of waves for this individuual 0 is possible */  #define NINTERVMAX 8
 int maxwav; /* Maxim number of waves */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 int jmin, jmax; /* min, max spacing between 2 waves */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 int gipmx, gsw; /* Global variables on the number of contributions  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
                    to the likelihood and the sum of weights (done by funcone)*/  #define MAXN 20000
 int mle, weightopt;  #define YEARM 12. /**< Number of months per year */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define AGESUP 130
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define AGEBASE 40
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #ifdef _WIN32
 double jmean; /* Mean space between 2 waves */  #define DIRSEPARATOR '\\'
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define CHARSEPARATOR "\\"
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define ODIRSEPARATOR '/'
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #else
 FILE *ficlog, *ficrespow;  #define DIRSEPARATOR '/'
 int globpr; /* Global variable for printing or not */  #define CHARSEPARATOR "/"
 double fretone; /* Only one call to likelihood */  #define ODIRSEPARATOR '\\'
 long ipmx; /* Number of contributions */  #endif
 double sw; /* Sum of weights */  
 char filerespow[FILENAMELENGTH];  /* $Id$ */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  /* $State$ */
 FILE *ficresilk;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  char version[]="Imach version 0.98nY, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 FILE *ficresprobmorprev;  char fullversion[]="$Revision$ $Date$"; 
 FILE *fichtm, *fichtmcov; /* Html File */  char strstart[80];
 FILE *ficreseij;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 char filerese[FILENAMELENGTH];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 FILE *ficresstdeij;  int nvar=0, nforce=0; /* Number of variables, number of forces */
 char fileresstde[FILENAMELENGTH];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 FILE *ficrescveij;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 char filerescve[FILENAMELENGTH];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 FILE  *ficresvij;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char fileresv[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 FILE  *ficresvpl;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 char fileresvpl[FILENAMELENGTH];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 char title[MAXLINE];  int cptcov=0; /* Working variable */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int npar=NPARMAX;
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int nlstate=2; /* Number of live states */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
 char command[FILENAMELENGTH];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int  outcmd=0;  int popbased=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
 char filelog[FILENAMELENGTH]; /* Log file */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 char filerest[FILENAMELENGTH];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 char fileregp[FILENAMELENGTH];  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 char popfile[FILENAMELENGTH];                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 struct timezone tzp;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 extern int gettimeofday();  int countcallfunc=0;  /* Count the number of calls to func */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  double jmean=1; /* Mean space between 2 waves */
 long time_value;  double **matprod2(); /* test */
 extern long time();  double **oldm, **newm, **savm; /* Working pointers to matrices */
 char strcurr[80], strfor[80];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*FILE *fic ; */ /* Used in readdata only */
 char *endptr;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 long lval;  FILE *ficlog, *ficrespow;
 double dval;  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 #define NR_END 1  long ipmx=0; /* Number of contributions */
 #define FREE_ARG char*  double sw; /* Sum of weights */
 #define FTOL 1.0e-10  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define NRANSI  FILE *ficresilk;
 #define ITMAX 200  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 #define TOL 2.0e-4  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 #define CGOLD 0.3819660  char filerese[FILENAMELENGTH];
 #define ZEPS 1.0e-10  FILE *ficresstdeij;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 #define GOLD 1.618034  char filerescve[FILENAMELENGTH];
 #define GLIMIT 100.0  FILE  *ficresvij;
 #define TINY 1.0e-20  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 static double maxarg1,maxarg2;  char fileresvpl[FILENAMELENGTH];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char title[MAXLINE];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 #define rint(a) floor(a+0.5)  char command[FILENAMELENGTH];
   int  outcmd=0;
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
 int agegomp= AGEGOMP;  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 int imx;  char fileregp[FILENAMELENGTH];
 int stepm=1;  char popfile[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
 int m,nb;  /* extern int gettimeofday(); */
 long *num;  struct tm tml, *gmtime(), *localtime();
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  extern time_t time();
 double **pmmij, ***probs;  
 double *ageexmed,*agecens;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 double dateintmean=0;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   struct tm tm;
 double *weight;  
 int **s; /* Status */  char strcurr[80], strfor[80];
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char *endptr;
 double *lsurv, *lpop, *tpop;  long lval;
   double dval;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define NR_END 1
   #define FREE_ARG char*
 /**************** split *************************/  #define FTOL 1.0e-10
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define NRANSI 
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  #define ITMAX 200 
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  
   */  #define TOL 2.0e-4 
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   l1 = strlen(path );                   /* length of path */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define GOLD 1.618034 
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define GLIMIT 100.0 
     strcpy( name, path );               /* we got the fullname name because no directory */  #define TINY 1.0e-20 
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  static double maxarg1,maxarg2;
     /* get current working directory */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     /*    extern  char* getcwd ( char *buf , int len);*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
       return( GLOCK_ERROR_GETCWD );  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
     /* got dirc from getcwd*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     printf(" DIRC = %s \n",dirc);  /* #define mytinydouble 1.0e-16 */
   } else {                              /* strip direcotry from path */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     ss++;                               /* after this, the filename */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     l2 = strlen( ss );                  /* length of filename */  /* static double dsqrarg; */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     strcpy( name, ss );         /* save file name */  static double sqrarg;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     dirc[l1-l2] = 0;                    /* add zero */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf(" DIRC2 = %s \n",dirc);  int agegomp= AGEGOMP;
   }  
   /* We add a separator at the end of dirc if not exists */  int imx; 
   l1 = strlen( dirc );                  /* length of directory */  int stepm=1;
   if( dirc[l1-1] != DIRSEPARATOR ){  /* Stepm, step in month: minimum step interpolation*/
     dirc[l1] =  DIRSEPARATOR;  
     dirc[l1+1] = 0;  int estepm;
     printf(" DIRC3 = %s \n",dirc);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   }  
   ss = strrchr( name, '.' );            /* find last / */  int m,nb;
   if (ss >0){  long *num;
     ss++;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     strcpy(ext,ss);                     /* save extension */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     l1= strlen( name);  double **pmmij, ***probs;
     l2= strlen(ss)+1;  double *ageexmed,*agecens;
     strncpy( finame, name, l1-l2);  double dateintmean=0;
     finame[l1-l2]= 0;  
   }  double *weight;
   int **s; /* Status */
   return( 0 );                          /* we're done */  double *agedc;
 }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                     * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
 /******************************************/  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 void replace_back_to_slash(char *s, char*t)  int *Ndum; /** Freq of modality (tricode */
 {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int i;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int lg=0;  double *lsurv, *lpop, *tpop;
   i=0;  
   lg=strlen(t);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   for(i=0; i<= lg; i++) {  double ftolhess; /**< Tolerance for computing hessian */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 int nbocc(char *s, char occ)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   int i,j=0;    char  *ss;                            /* pointer */
   int lg=20;    int   l1, l2;                         /* length counters */
   i=0;  
   lg=strlen(s);    l1 = strlen(path );                   /* length of path */
   for(i=0; i<= lg; i++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   if  (s[i] == occ ) j++;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   return j;      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 void cutv(char *u,char *v, char*t, char occ)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   /* cuts string t into u and v where u ends before first occurence of char 'occ'      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')        return( GLOCK_ERROR_GETCWD );
      gives u="abcedf" and v="ghi2j" */      }
   int i,lg,j,p=0;      /* got dirc from getcwd*/
   i=0;      printf(" DIRC = %s \n",dirc);
   for(j=0; j<=strlen(t)-1; j++) {    } else {                              /* strip direcotry from path */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   lg=strlen(t);      strcpy( name, ss );         /* save file name */
   for(j=0; j<p; j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     (u[j] = t[j]);      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
      u[p]='\0';    }
     /* We add a separator at the end of dirc if not exists */
    for(j=0; j<= lg; j++) {    l1 = strlen( dirc );                  /* length of directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);    if( dirc[l1-1] != DIRSEPARATOR ){
   }      dirc[l1] =  DIRSEPARATOR;
 }      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 /********************** nrerror ********************/    }
     ss = strrchr( name, '.' );            /* find last / */
 void nrerror(char error_text[])    if (ss >0){
 {      ss++;
   fprintf(stderr,"ERREUR ...\n");      strcpy(ext,ss);                     /* save extension */
   fprintf(stderr,"%s\n",error_text);      l1= strlen( name);
   exit(EXIT_FAILURE);      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
 /*********************** vector *******************/      finame[l1-l2]= 0;
 double *vector(int nl, int nh)    }
 {  
   double *v;    return( 0 );                          /* we're done */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  }
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  
 }  /******************************************/
   
 /************************ free vector ******************/  void replace_back_to_slash(char *s, char*t)
 void free_vector(double*v, int nl, int nh)  {
 {    int i;
   free((FREE_ARG)(v+nl-NR_END));    int lg=0;
 }    i=0;
     lg=strlen(t);
 /************************ivector *******************************/    for(i=0; i<= lg; i++) {
 int *ivector(long nl,long nh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   int *v;    }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  char *trimbb(char *out, char *in)
 }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
 /******************free ivector **************************/    s=out;
 void free_ivector(int *v, long nl, long nh)    while (*in != '\0'){
 {      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   free((FREE_ARG)(v+nl-NR_END));        in++;
 }      }
       *out++ = *in++;
 /************************lvector *******************************/    }
 long *lvector(long nl,long nh)    *out='\0';
 {    return s;
   long *v;  }
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  char *cutl(char *blocc, char *alocc, char *in, char occ)
   return v-nl+NR_END;  {
 }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
        and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 /******************free lvector **************************/       gives blocc="abcdef2ghi" and alocc="j".
 void free_lvector(long *v, long nl, long nh)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 {    */
   free((FREE_ARG)(v+nl-NR_END));    char *s, *t;
 }    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
 /******************* imatrix *******************************/      *alocc++ = *in++;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if( *in == occ){
 {      *(alocc)='\0';
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      s=++in;
   int **m;    }
     
   /* allocate pointers to rows */    if (s == t) {/* occ not found */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      *(alocc-(in-s))='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");      in=s;
   m += NR_END;    }
   m -= nrl;    while ( *in != '\0'){
        *blocc++ = *in++;
      }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    *blocc='\0';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return t;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  char *cutv(char *blocc, char *alocc, char *in, char occ)
    {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   /* return pointer to array of pointers to rows */       gives blocc="abcdef2ghi" and alocc="j".
   return m;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 }    */
     char *s, *t;
 /****************** free_imatrix *************************/    t=in;s=in;
 void free_imatrix(m,nrl,nrh,ncl,nch)    while (*in != '\0'){
       int **m;      while( *in == occ){
       long nch,ncl,nrh,nrl;        *blocc++ = *in++;
      /* free an int matrix allocated by imatrix() */        s=in;
 {      }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      *blocc++ = *in++;
   free((FREE_ARG) (m+nrl-NR_END));    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /******************* matrix *******************************/    else
 double **matrix(long nrl, long nrh, long ncl, long nch)      *(blocc-(in-s)-1)='\0';
 {    in=s;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    while ( *in != '\0'){
   double **m;      *alocc++ = *in++;
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    *alocc='\0';
   m += NR_END;    return s;
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nbocc(char *s, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int i,j=0;
   m[nrl] -= ncl;    int lg=20;
     i=0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    lg=strlen(s);
   return m;    for(i=0; i<= lg; i++) {
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    if  (s[i] == occ ) j++;
    */    }
 }    return j;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* void cutv(char *u,char *v, char*t, char occ) */
 {  /* { */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   free((FREE_ARG)(m+nrl-NR_END));  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 }  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
 /******************* ma3x *******************************/  /*   i=0; */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /*   lg=strlen(t); */
 {  /*   for(j=0; j<=lg-1; j++) { */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   double ***m;  /*   } */
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /*   for(j=0; j<p; j++) { */
   if (!m) nrerror("allocation failure 1 in matrix()");  /*     (u[j] = t[j]); */
   m += NR_END;  /*   } */
   m -= nrl;  /*      u[p]='\0'; */
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*    for(j=0; j<= lg; j++) { */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   m[nrl] += NR_END;  /*   } */
   m[nrl] -= ncl;  /* } */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    char *p, *q;
   m[nrl][ncl] += NR_END;           
   m[nrl][ncl] -= nll;    if ((p = *pp) == NULL)
   for (j=ncl+1; j<=nch; j++)      return 0;
     m[nrl][j]=m[nrl][j-1]+nlay;    if ((q = strpbrk (p, delim)) != NULL)
      {
   for (i=nrl+1; i<=nrh; i++) {      *pp = q + 1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      *q = '\0';
     for (j=ncl+1; j<=nch; j++)    }
       m[i][j]=m[i][j-1]+nlay;    else
   }      *pp = 0;
   return m;    return p;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  }
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  #endif
   */  
 }  /********************** nrerror ********************/
   
 /*************************free ma3x ************************/  void nrerror(char error_text[])
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    exit(EXIT_FAILURE);
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /*************** function subdirf ***********/  {
 char *subdirf(char fileres[])    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* Caution optionfilefiname is hidden */    if (!v) nrerror("allocation failure in vector");
   strcpy(tmpout,optionfilefiname);    return v-nl+NR_END;
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /*************** function subdirf2 ***********/    free((FREE_ARG)(v+nl-NR_END));
 char *subdirf2(char fileres[], char *preop)  }
 {  
    /************************ivector *******************************/
   /* Caution optionfilefiname is hidden */  int *ivector(long nl,long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/");    int *v;
   strcat(tmpout,preop);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   strcat(tmpout,fileres);    if (!v) nrerror("allocation failure in ivector");
   return tmpout;    return v-nl+NR_END;
 }  }
   
 /*************** function subdirf3 ***********/  /******************free ivector **************************/
 char *subdirf3(char fileres[], char *preop, char *preop2)  void free_ivector(int *v, long nl, long nh)
 {  {
      free((FREE_ARG)(v+nl-NR_END));
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");  /************************lvector *******************************/
   strcat(tmpout,preop);  long *lvector(long nl,long nh)
   strcat(tmpout,preop2);  {
   strcat(tmpout,fileres);    long *v;
   return tmpout;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /***************** f1dim *************************/  }
 extern int ncom;  
 extern double *pcom,*xicom;  /******************free lvector **************************/
 extern double (*nrfunc)(double []);  void free_lvector(long *v, long nl, long nh)
    {
 double f1dim(double x)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int j;  
   double f;  /******************* imatrix *******************************/
   double *xt;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   xt=vector(1,ncom);  { 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   f=(*nrfunc)(xt);    int **m; 
   free_vector(xt,1,ncom);    
   return f;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /*****************brent *************************/    m += NR_END; 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m -= nrl; 
 {    
   int iter;    
   double a,b,d,etemp;    /* allocate rows and set pointers to them */ 
   double fu,fv,fw,fx;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double ftemp;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl] += NR_END; 
   double e=0.0;    m[nrl] -= ncl; 
      
   a=(ax < cx ? ax : cx);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;    /* return pointer to array of pointers to rows */ 
   fw=fv=fx=(*f)(x);    return m; 
   for (iter=1;iter<=ITMAX;iter++) {  } 
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /****************** free_imatrix *************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  void free_imatrix(m,nrl,nrh,ncl,nch)
     printf(".");fflush(stdout);        int **m;
     fprintf(ficlog,".");fflush(ficlog);        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  { 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG) (m+nrl-NR_END)); 
 #endif  } 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /******************* matrix *******************************/
       return fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     ftemp=fu;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     if (fabs(e) > tol1) {    double **m;
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       p=(x-v)*q-(x-w)*r;    if (!m) nrerror("allocation failure 1 in matrix()");
       q=2.0*(q-r);    m += NR_END;
       if (q > 0.0) p = -p;    m -= nrl;
       q=fabs(q);  
       etemp=e;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       e=d;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl] += NR_END;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] -= ncl;
       else {  
         d=p/q;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         u=x+d;    return m;
         if (u-a < tol2 || b-u < tol2)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
           d=SIGN(tol1,xm-x);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     } else {     */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  }
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /*************************free matrix ************************/
     fu=(*f)(u);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       SHFT(v,w,x,u)    free((FREE_ARG)(m+nrl-NR_END));
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /******************* ma3x *******************************/
           if (fu <= fw || w == x) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
             v=w;  {
             w=u;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             fv=fw;    double ***m;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             v=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fu;    m += NR_END;
           }    m -= nrl;
         }  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   nrerror("Too many iterations in brent");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *xmin=x;    m[nrl] += NR_END;
   return fx;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /****************** mnbrak ***********************/  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             double (*func)(double))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   double ulim,u,r,q, dum;    for (j=ncl+1; j<=nch; j++) 
   double fu;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   *fa=(*func)(*ax);    for (i=nrl+1; i<=nrh; i++) {
   *fb=(*func)(*bx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   if (*fb > *fa) {      for (j=ncl+1; j<=nch; j++) 
     SHFT(dum,*ax,*bx,dum)        m[i][j]=m[i][j-1]+nlay;
       SHFT(dum,*fb,*fa,dum)    }
       }    return m; 
   *cx=(*bx)+GOLD*(*bx-*ax);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   *fc=(*func)(*cx);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   while (*fb > *fc) {    */
     r=(*bx-*ax)*(*fb-*fc);  }
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /*************************free ma3x ************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     } else if ((*cx-u)*(u-ulim) > 0.0) {    free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /*************** function subdirf ***********/
           SHFT(*fb,*fc,fu,(*func)(u))  char *subdirf(char fileres[])
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* Caution optionfilefiname is hidden */
       u=ulim;    strcpy(tmpout,optionfilefiname);
       fu=(*func)(u);    strcat(tmpout,"/"); /* Add to the right */
     } else {    strcat(tmpout,fileres);
       u=(*cx)+GOLD*(*cx-*bx);    return tmpout;
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  /*************** function subdirf2 ***********/
       SHFT(*fa,*fb,*fc,fu)  char *subdirf2(char fileres[], char *preop)
       }  {
 }    
     /* Caution optionfilefiname is hidden */
 /*************** linmin ************************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 int ncom;    strcat(tmpout,preop);
 double *pcom,*xicom;    strcat(tmpout,fileres);
 double (*nrfunc)(double []);    return tmpout;
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /*************** function subdirf3 ***********/
   double brent(double ax, double bx, double cx,  char *subdirf3(char fileres[], char *preop, char *preop2)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    /* Caution optionfilefiname is hidden */
               double *fc, double (*func)(double));    strcpy(tmpout,optionfilefiname);
   int j;    strcat(tmpout,"/");
   double xx,xmin,bx,ax;    strcat(tmpout,preop);
   double fx,fb,fa;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
   ncom=n;    return tmpout;
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  char *asc_diff_time(long time_sec, char ascdiff[])
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    long sec_left, days, hours, minutes;
     xicom[j]=xi[j];    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
   ax=0.0;    hours = (sec_left) / (60*60) ;
   xx=1.0;    sec_left = (sec_left) %(60*60);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    minutes = (sec_left) /60;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    sec_left = (sec_left) % (60);
 #ifdef DEBUG    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return ascdiff;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /***************** f1dim *************************/
     xi[j] *= xmin;  extern int ncom; 
     p[j] += xi[j];  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);  double f1dim(double x) 
 }  { 
     int j; 
 char *asc_diff_time(long time_sec, char ascdiff[])    double f;
 {    double *xt; 
   long sec_left, days, hours, minutes;   
   days = (time_sec) / (60*60*24);    xt=vector(1,ncom); 
   sec_left = (time_sec) % (60*60*24);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   hours = (sec_left) / (60*60) ;    f=(*nrfunc)(xt); 
   sec_left = (sec_left) %(60*60);    free_vector(xt,1,ncom); 
   minutes = (sec_left) /60;    return f; 
   sec_left = (sec_left) % (60);  } 
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    
   return ascdiff;  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 /*************** powell ************************/    int iter; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double a,b,d,etemp;
             double (*func)(double []))    double fu=0,fv,fw,fx;
 {    double ftemp=0.;
   void linmin(double p[], double xi[], int n, double *fret,    double p,q,r,tol1,tol2,u,v,w,x,xm; 
               double (*func)(double []));    double e=0.0; 
   int i,ibig,j;   
   double del,t,*pt,*ptt,*xit;    a=(ax < cx ? ax : cx); 
   double fp,fptt;    b=(ax > cx ? ax : cx); 
   double *xits;    x=w=v=bx; 
   int niterf, itmp;    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   pt=vector(1,n);      xm=0.5*(a+b); 
   ptt=vector(1,n);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   xit=vector(1,n);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   xits=vector(1,n);      printf(".");fflush(stdout);
   *fret=(*func)(p);      fprintf(ficlog,".");fflush(ficlog);
   for (j=1;j<=n;j++) pt[j]=p[j];  #ifdef DEBUGBRENT
   for (*iter=1;;++(*iter)) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fp=(*fret);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     ibig=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     del=0.0;  #endif
     last_time=curr_time;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     (void) gettimeofday(&curr_time,&tzp);        *xmin=x; 
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);        return fx; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      } 
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */      ftemp=fu;
    for (i=1;i<=n;i++) {      if (fabs(e) > tol1) { 
       printf(" %d %.12f",i, p[i]);        r=(x-w)*(fx-fv); 
       fprintf(ficlog," %d %.12lf",i, p[i]);        q=(x-v)*(fx-fw); 
       fprintf(ficrespow," %.12lf", p[i]);        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     printf("\n");        if (q > 0.0) p = -p; 
     fprintf(ficlog,"\n");        q=fabs(q); 
     fprintf(ficrespow,"\n");fflush(ficrespow);        etemp=e; 
     if(*iter <=3){        e=d; 
       tm = *localtime(&curr_time.tv_sec);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       strcpy(strcurr,asctime(&tm));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*       asctime_r(&tm,strcurr); */        else { 
       forecast_time=curr_time;          d=p/q; 
       itmp = strlen(strcurr);          u=x+d; 
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */          if (u-a < tol2 || b-u < tol2) 
         strcurr[itmp-1]='\0';            d=SIGN(tol1,xm-x); 
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        } 
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      } else { 
       for(niterf=10;niterf<=30;niterf+=10){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);      } 
         tmf = *localtime(&forecast_time.tv_sec);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /*      asctime_r(&tmf,strfor); */      fu=(*f)(u); 
         strcpy(strfor,asctime(&tmf));      if (fu <= fx) { 
         itmp = strlen(strfor);        if (u >= x) a=x; else b=x; 
         if(strfor[itmp-1]=='\n')        SHFT(v,w,x,u) 
         strfor[itmp-1]='\0';          SHFT(fv,fw,fx,fu) 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          } else { 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
     }              v=w; 
     for (i=1;i<=n;i++) {              w=u; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];              fv=fw; 
       fptt=(*fret);              fw=fu; 
 #ifdef DEBUG            } else if (fu <= fv || v == x || v == w) { 
       printf("fret=%lf \n",*fret);              v=u; 
       fprintf(ficlog,"fret=%lf \n",*fret);              fv=fu; 
 #endif            } 
       printf("%d",i);fflush(stdout);          } 
       fprintf(ficlog,"%d",i);fflush(ficlog);    } 
       linmin(p,xit,n,fret,func);    nrerror("Too many iterations in brent"); 
       if (fabs(fptt-(*fret)) > del) {    *xmin=x; 
         del=fabs(fptt-(*fret));    return fx; 
         ibig=i;  } 
       }  
 #ifdef DEBUG  /****************** mnbrak ***********************/
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (j=1;j<=n;j++) {              double (*func)(double)) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    double ulim,u,r,q, dum;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double fu; 
       }   
       for(j=1;j<=n;j++) {    *fa=(*func)(*ax); 
         printf(" p=%.12e",p[j]);    *fb=(*func)(*bx); 
         fprintf(ficlog," p=%.12e",p[j]);    if (*fb > *fa) { 
       }      SHFT(dum,*ax,*bx,dum) 
       printf("\n");        SHFT(dum,*fb,*fa,dum) 
       fprintf(ficlog,"\n");        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    while (*fb > *fc) { /* Declining fa, fb, fc */
 #ifdef DEBUG      r=(*bx-*ax)*(*fb-*fc); 
       int k[2],l;      q=(*bx-*cx)*(*fb-*fa); 
       k[0]=1;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       k[1]=-1;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       printf("Max: %.12e",(*func)(p));      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
       fprintf(ficlog,"Max: %.12e",(*func)(p));      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         printf(" %.12e",p[j]);  #ifdef DEBUG
         fprintf(ficlog," %.12e",p[j]);        /* f(x)=A(x-u)**2+f(u) */
       }        double A, fparabu; 
       printf("\n");        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       fprintf(ficlog,"\n");        fparabu= *fa - A*(*ax-u)*(*ax-u);
       for(l=0;l<=1;l++) {        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         for (j=1;j<=n;j++) {        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #endif 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        fu=(*func)(u); 
         }        if (fu < *fc) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            SHFT(*fb,*fc,fu,(*func)(u)) 
       }            } 
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         u=ulim; 
         fu=(*func)(u); 
       free_vector(xit,1,n);      } else { 
       free_vector(xits,1,n);        u=(*cx)+GOLD*(*cx-*bx); 
       free_vector(ptt,1,n);        fu=(*func)(u); 
       free_vector(pt,1,n);      } 
       return;      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        } 
     for (j=1;j<=n;j++) {  } 
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /*************** linmin ************************/
       pt[j]=p[j];  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     fptt=(*func)(ptt);  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     if (fptt < fp) {  the value of func at the returned location p . This is actually all accomplished by calling the
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  routines mnbrak and brent .*/
       if (t < 0.0) {  int ncom; 
         linmin(p,xit,n,fret,func);  double *pcom,*xicom;
         for (j=1;j<=n;j++) {  double (*nrfunc)(double []); 
           xi[j][ibig]=xi[j][n];   
           xi[j][n]=xit[j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
 #ifdef DEBUG    double brent(double ax, double bx, double cx, 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                 double (*f)(double), double tol, double *xmin); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double f1dim(double x); 
         for(j=1;j<=n;j++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           printf(" %.12e",xit[j]);                double *fc, double (*func)(double)); 
           fprintf(ficlog," %.12e",xit[j]);    int j; 
         }    double xx,xmin,bx,ax; 
         printf("\n");    double fx,fb,fa;
         fprintf(ficlog,"\n");   
 #endif    ncom=n; 
       }    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
   }    nrfunc=func; 
 }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 /**** Prevalence limit (stable or period prevalence)  ****************/      xicom[j]=xi[j]; 
     } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    ax=0.0; 
 {    xx=1.0; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
      matrix by transitions matrix until convergence is reached */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
   #ifdef DEBUG
   int i, ii,j,k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double min, max, maxmin, maxmax,sumnew=0.;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **matprod2();  #endif
   double **out, cov[NCOVMAX], **pmij();    for (j=1;j<=n;j++) { 
   double **newm;      xi[j] *= xmin; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      p[j] += xi[j]; 
     } 
   for (ii=1;ii<=nlstate+ndeath;ii++)    free_vector(xicom,1,n); 
     for (j=1;j<=nlstate+ndeath;j++){    free_vector(pcom,1,n); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
     }  
   
    cov[1]=1.;  /*************** powell ************************/
    /*
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  Minimization of a function func of n variables. Input consists of an initial starting point
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
     newm=savm;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
     /* Covariates have to be included here again */  such that failure to decrease by more than this amount on one iteration signals doneness. On
      cov[2]=agefin;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
    function value at p , and iter is the number of iterations taken. The routine linmin is used.
       for (k=1; k<=cptcovn;k++) {   */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/              double (*func)(double [])) 
       }  { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    void linmin(double p[], double xi[], int n, double *fret, 
       for (k=1; k<=cptcovprod;k++)                double (*func)(double [])); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double fp,fptt;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double *xits;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    int niterf, itmp;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     pt=vector(1,n); 
     savm=oldm;    ptt=vector(1,n); 
     oldm=newm;    xit=vector(1,n); 
     maxmax=0.;    xits=vector(1,n); 
     for(j=1;j<=nlstate;j++){    *fret=(*func)(p); 
       min=1.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       max=0.;      rcurr_time = time(NULL);  
       for(i=1; i<=nlstate; i++) {    for (*iter=1;;++(*iter)) { 
         sumnew=0;      fp=(*fret); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      ibig=0; 
         prlim[i][j]= newm[i][j]/(1-sumnew);      del=0.0; 
         max=FMAX(max,prlim[i][j]);      rlast_time=rcurr_time;
         min=FMIN(min,prlim[i][j]);      /* (void) gettimeofday(&curr_time,&tzp); */
       }      rcurr_time = time(NULL);  
       maxmin=max-min;      curr_time = *localtime(&rcurr_time);
       maxmax=FMAX(maxmax,maxmin);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     if(maxmax < ftolpl){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       return prlim;     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
 }        fprintf(ficrespow," %.12lf", p[i]);
       }
 /*************** transition probabilities ***************/      printf("\n");
       fprintf(ficlog,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   double s1, s2;        tml = *localtime(&rcurr_time);
   /*double t34;*/        strcpy(strcurr,asctime(&tml));
   int i,j,j1, nc, ii, jj;        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
     for(i=1; i<= nlstate; i++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for(j=1; j<i;j++){          strcurr[itmp-1]='\0';
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for(niterf=10;niterf<=30;niterf+=10){
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         }          forecast_time = *localtime(&rforecast_time);
         ps[i][j]=s2;          strcpy(strfor,asctime(&forecast_time));
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
       for(j=i+1; j<=nlstate+ndeath;j++){          strfor[itmp-1]='\0';
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        }
         }      }
         ps[i][j]=s2;      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
     /*ps[3][2]=1;*/  #ifdef DEBUG
                printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     for(i=1; i<= nlstate; i++){            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       s1=0;  #endif
       for(j=1; j<i; j++)        printf("%d",i);fflush(stdout);
         s1+=exp(ps[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=i+1; j<=nlstate+ndeath; j++)        linmin(p,xit,n,fret,func); 
         s1+=exp(ps[i][j]);        if (fabs(fptt-(*fret)) > del) { 
       ps[i][i]=1./(s1+1.);          del=fabs(fptt-(*fret)); 
       for(j=1; j<i; j++)          ibig=i; 
         ps[i][j]= exp(ps[i][j])*ps[i][i];        } 
       for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
         ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("%d %.12e",i,(*fret));
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficlog,"%d %.12e",i,(*fret));
     } /* end i */        for (j=1;j<=n;j++) {
              xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          printf(" x(%d)=%.12e",j,xit[j]);
       for(jj=1; jj<= nlstate+ndeath; jj++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         ps[ii][jj]=0;        }
         ps[ii][ii]=1;        for(j=1;j<=n;j++) {
       }          printf(" p(%d)=%.12e",j,p[j]);
     }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
            }
         printf("\n");
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        fprintf(ficlog,"\n");
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  #endif
 /*         printf("ddd %lf ",ps[ii][jj]); */      } /* end i */
 /*       } */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*       printf("\n "); */  #ifdef DEBUG
 /*        } */        int k[2],l;
 /*        printf("\n ");printf("%lf ",cov[2]); */        k[0]=1;
        /*        k[1]=-1;
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        printf("Max: %.12e",(*func)(p));
       goto end;*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
     return ps;        for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 /**************** Product of 2 matrices ******************/        }
         printf("\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          for (j=1;j<=n;j++) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* in, b, out are matrice of pointers which should have been initialized            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      before: only the contents of out is modified. The function returns            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      a pointer to pointers identical to out */          }
   long i, j, k;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(i=nrl; i<= nrh; i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(k=ncolol; k<=ncoloh; k++)        }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #endif
         out[i][k] +=in[i][j]*b[j][k];  
   
   return out;        free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
 /************* Higher Matrix Product ***************/        return; 
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
   /* Computes the transition matrix starting at age 'age' over        ptt[j]=2.0*p[j]-pt[j]; 
      'nhstepm*hstepm*stepm' months (i.e. until        xit[j]=p[j]-pt[j]; 
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        pt[j]=p[j]; 
      nhstepm*hstepm matrices.      } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fptt=(*func)(ptt); 
      (typically every 2 years instead of every month which is too big      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
      for the memory).        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
      Model is determined by parameters x and covariates have to be        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
      included manually here.        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
      */        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   int i, j, d, h, k;        /* Thus we compare delta(2h) with observed f1-f3 */
   double **out, cov[NCOVMAX];        /* or best gain on one ancient line 'del' with total  */
   double **newm;        /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
     for (j=1;j<=nlstate+ndeath;j++){        t= t- del*SQR(fp-fptt);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     }  #ifdef DEBUG
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   for(h=1; h <=nhstepm; h++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     for(d=1; d <=hstepm; d++){        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       newm=savm;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       /* Covariates have to be included here again */        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       cov[1]=1.;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #endif
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (t < 0.0) { /* Then we use it for last direction */
       for (k=1; k<=cptcovage;k++)          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovprod;k++)            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           }
           printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       savm=oldm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       oldm=newm;          for(j=1;j<=n;j++){
     }            printf(" %.12e",xit[j]);
     for(i=1; i<=nlstate+ndeath; i++)            fprintf(ficlog," %.12e",xit[j]);
       for(j=1;j<=nlstate+ndeath;j++) {          }
         po[i][j][h]=newm[i][j];          printf("\n");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          fprintf(ficlog,"\n");
          */  #endif
       }        } /* end of t negative */
   } /* end h */      } /* end if (fptt < fp)  */
   return po;    } 
 }  } 
   
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /*************** log-likelihood *************/  
 double func( double *x)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i, ii, j, k, mi, d, kk;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       matrix by transitions matrix until convergence is reached */
   double **out;  
   double sw; /* Sum of weights */    int i, ii,j,k;
   double lli; /* Individual log likelihood */    double min, max, maxmin, maxmax,sumnew=0.;
   int s1, s2;    /* double **matprod2(); */ /* test */
   double bbh, survp;    double **out, cov[NCOVMAX+1], **pmij();
   long ipmx;    double **newm;
   /*extern weight */    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
   /*for(i=1;i<imx;i++)      for (j=1;j<=nlstate+ndeath;j++){
     printf(" %d\n",s[4][i]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */      }
   cov[1]=1.;  
      cov[1]=1.;
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if(mle==1){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      newm=savm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /* Covariates have to be included here again */
       for(mi=1; mi<= wav[i]-1; mi++){      cov[2]=agefin;
         for (ii=1;ii<=nlstate+ndeath;ii++)      
           for (j=1;j<=nlstate+ndeath;j++){      for (k=1; k<=cptcovn;k++) {
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           }      }
         for(d=0; d<dh[mi][i]; d++){      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           newm=savm;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           for (kk=1; kk<=cptcovage;kk++) {      
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           savm=oldm;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           oldm=newm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         } /* end mult */      
            savm=oldm;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */      oldm=newm;
         /* But now since version 0.9 we anticipate for bias at large stepm.      maxmax=0.;
          * If stepm is larger than one month (smallest stepm) and if the exact delay      for(j=1;j<=nlstate;j++){
          * (in months) between two waves is not a multiple of stepm, we rounded to        min=1.;
          * the nearest (and in case of equal distance, to the lowest) interval but now        max=0.;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        for(i=1; i<=nlstate; i++) {
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the          sumnew=0;
          * probability in order to take into account the bias as a fraction of the way          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies          prlim[i][j]= newm[i][j]/(1-sumnew);
          * -stepm/2 to stepm/2 .          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
          * For stepm=1 the results are the same as for previous versions of Imach.          max=FMAX(max,prlim[i][j]);
          * For stepm > 1 the results are less biased than in previous versions.          min=FMIN(min,prlim[i][j]);
          */        }
         s1=s[mw[mi][i]][i];        maxmin=max-min;
         s2=s[mw[mi+1][i]][i];        maxmax=FMAX(maxmax,maxmin);
         bbh=(double)bh[mi][i]/(double)stepm;      }
         /* bias bh is positive if real duration      if(maxmax < ftolpl){
          * is higher than the multiple of stepm and negative otherwise.        return prlim;
          */      }
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    }
         if( s2 > nlstate){  }
           /* i.e. if s2 is a death state and if the date of death is known  
              then the contribution to the likelihood is the probability to  /*************** transition probabilities ***************/ 
              die between last step unit time and current  step unit time,  
              which is also equal to probability to die before dh  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
              minus probability to die before dh-stepm .  {
              In version up to 0.92 likelihood was computed    /* According to parameters values stored in x and the covariate's values stored in cov,
         as if date of death was unknown. Death was treated as any other       computes the probability to be observed in state j being in state i by appying the
         health state: the date of the interview describes the actual state       model to the ncovmodel covariates (including constant and age).
         and not the date of a change in health state. The former idea was       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         to consider that at each interview the state was recorded       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         (healthy, disable or death) and IMaCh was corrected; but when we       ncth covariate in the global vector x is given by the formula:
         introduced the exact date of death then we should have modified       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         the contribution of an exact death to the likelihood. This new       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         contribution is smaller and very dependent of the step unit       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         stepm. It is no more the probability to die between last interview       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         and month of death but the probability to survive from last       Outputs ps[i][j] the probability to be observed in j being in j according to
         interview up to one month before death multiplied by the       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         probability to die within a month. Thanks to Chris    */
         Jackson for correcting this bug.  Former versions increased    double s1, lnpijopii;
         mortality artificially. The bad side is that we add another loop    /*double t34;*/
         which slows down the processing. The difference can be up to 10%    int i,j, nc, ii, jj;
         lower mortality.  
           */      for(i=1; i<= nlstate; i++){
           lli=log(out[s1][s2] - savm[s1][s2]);        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += param[i][j][nc]*cov[nc];*/
         } else if  (s2==-2) {            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           for (j=1,survp=0. ; j<=nlstate; j++)  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          }
           /*survp += out[s1][j]; */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           lli= log(survp);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
                for(j=i+1; j<=nlstate+ndeath;j++){
         else if  (s2==-4) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for (j=3,survp=0. ; j<=nlstate; j++)              /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           lli= log(survp);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         else if  (s2==-5) {        }
           for (j=1,survp=0. ; j<=2; j++)        }
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];      
           lli= log(survp);      for(i=1; i<= nlstate; i++){
         }        s1=0;
                for(j=1; j<i; j++){
         else{          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         /*if(lli ==000.0)*/          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        }
         ipmx +=1;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         sw += weight[i];        ps[i][i]=1./(s1+1.);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /* Computing other pijs */
       } /* end of wave */        for(j=1; j<i; j++)
     } /* end of individual */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }  else if(mle==2){        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end i */
         for (ii=1;ii<=nlstate+ndeath;ii++)      
           for (j=1;j<=nlstate+ndeath;j++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(jj=1; jj<= nlstate+ndeath; jj++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          ps[ii][jj]=0;
           }          ps[ii][ii]=1;
         for(d=0; d<=dh[mi][i]; d++){        }
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      
           for (kk=1; kk<=cptcovage;kk++) {      
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /*   } */
           savm=oldm;      /*   printf("\n "); */
           oldm=newm;      /* } */
         } /* end mult */      /* printf("\n ");printf("%lf ",cov[2]);*/
            /*
         s1=s[mw[mi][i]][i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         s2=s[mw[mi+1][i]][i];        goto end;*/
         bbh=(double)bh[mi][i]/(double)stepm;      return ps;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  }
         ipmx +=1;  
         sw += weight[i];  /**************** Product of 2 matrices ******************/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     } /* end of individual */  {
   }  else if(mle==3){  /* exponential inter-extrapolation */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* in, b, out are matrice of pointers which should have been initialized 
       for(mi=1; mi<= wav[i]-1; mi++){       before: only the contents of out is modified. The function returns
         for (ii=1;ii<=nlstate+ndeath;ii++)       a pointer to pointers identical to out */
           for (j=1;j<=nlstate+ndeath;j++){    int i, j, k;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=nrl; i<= nrh; i++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      for(k=ncolol; k<=ncoloh; k++){
           }        out[i][k]=0.;
         for(d=0; d<dh[mi][i]; d++){        for(j=ncl; j<=nch; j++)
           newm=savm;          out[i][k] +=in[i][j]*b[j][k];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           for (kk=1; kk<=cptcovage;kk++) {    return out;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /************* Higher Matrix Product ***************/
           savm=oldm;  
           oldm=newm;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         } /* end mult */  {
          /* Computes the transition matrix starting at age 'age' over 
         s1=s[mw[mi][i]][i];       'nhstepm*hstepm*stepm' months (i.e. until
         s2=s[mw[mi+1][i]][i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         bbh=(double)bh[mi][i]/(double)stepm;       nhstepm*hstepm matrices. 
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         ipmx +=1;       (typically every 2 years instead of every month which is too big 
         sw += weight[i];       for the memory).
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       Model is determined by parameters x and covariates have to be 
       } /* end of wave */       included manually here. 
     } /* end of individual */  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */       */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int i, j, d, h, k;
       for(mi=1; mi<= wav[i]-1; mi++){    double **out, cov[NCOVMAX+1];
         for (ii=1;ii<=nlstate+ndeath;ii++)    double **newm;
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         for(d=0; d<dh[mi][i]; d++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
           newm=savm;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           for (kk=1; kk<=cptcovage;kk++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
                newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        /* Covariates have to be included here again */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        cov[1]=1.;
           savm=oldm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           oldm=newm;        for (k=1; k<=cptcovn;k++) 
         } /* end mult */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              for (k=1; k<=cptcovage;k++)
         s1=s[mw[mi][i]][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         if( s2 > nlstate){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           lli=log(out[s1][s2] - savm[s1][s2]);  
         }else{  
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         ipmx +=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         sw += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        savm=oldm;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        oldm=newm;
       } /* end of wave */      }
     } /* end of individual */      for(i=1; i<=nlstate+ndeath; i++)
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */        for(j=1;j<=nlstate+ndeath;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          po[i][j][h]=newm[i][j];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       for(mi=1; mi<= wav[i]-1; mi++){        }
         for (ii=1;ii<=nlstate+ndeath;ii++)      /*printf("h=%d ",h);*/
           for (j=1;j<=nlstate+ndeath;j++){    } /* end h */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*     printf("\n H=%d \n",h); */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    return po;
           }  }
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  #ifdef NLOPT
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
           for (kk=1; kk<=cptcovage;kk++) {    double fret;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double *xt;
           }    int j;
            myfunc_data *d2 = (myfunc_data *) pd;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /* xt = (p1-1); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    xt=vector(1,n); 
           savm=oldm;    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
           oldm=newm;  
         } /* end mult */    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
          /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         s1=s[mw[mi][i]][i];    printf("Function = %.12lf ",fret);
         s2=s[mw[mi+1][i]][i];    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    printf("\n");
         ipmx +=1;   free_vector(xt,1,n);
         sw += weight[i];    return fret;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #endif
       } /* end of wave */  
     } /* end of individual */  /*************** log-likelihood *************/
   } /* End of if */  double func( double *x)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int i, ii, j, k, mi, d, kk;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   return -l;    double **out;
 }    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
 /*************** log-likelihood *************/    int s1, s2;
 double funcone( double *x)    double bbh, survp;
 {    long ipmx;
   /* Same as likeli but slower because of a lot of printf and if */    /*extern weight */
   int i, ii, j, k, mi, d, kk;    /* We are differentiating ll according to initial status */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **out;    /*for(i=1;i<imx;i++) 
   double lli; /* Individual log likelihood */      printf(" %d\n",s[4][i]);
   double llt;    */
   int s1, s2;  
   double bbh, survp;    ++countcallfunc;
   /*extern weight */  
   /* We are differentiating ll according to initial status */    cov[1]=1.;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
     printf(" %d\n",s[4][i]);  
   */    if(mle==1){
   cov[1]=1.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
   for(k=1; k<=nlstate; k++) ll[k]=0.;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){           to be observed in j being in i according to the model.
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];         */
     for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for (ii=1;ii<=nlstate+ndeath;ii++)          cov[2+k]=covar[Tvar[k]][i];
         for (j=1;j<=nlstate+ndeath;j++){        }
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         }           has been calculated etc */
       for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
         newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1;j<=nlstate+ndeath;j++){
         for (kk=1; kk<=cptcovage;kk++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          for(d=0; d<dh[mi][i]; d++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            newm=savm;
         savm=oldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         oldm=newm;            for (kk=1; kk<=cptcovage;kk++) {
       } /* end mult */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
                  }
       s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       bbh=(double)bh[mi][i]/(double)stepm;            savm=oldm;
       /* bias is positive if real duration            oldm=newm;
        * is higher than the multiple of stepm and negative otherwise.          } /* end mult */
        */        
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         lli=log(out[s1][s2] - savm[s1][s2]);          /* But now since version 0.9 we anticipate for bias at large stepm.
       } else if  (s2==-2) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for (j=1,survp=0. ; j<=nlstate; j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
         lli= log(survp);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }else if (mle==1){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           * probability in order to take into account the bias as a fraction of the way
       } else if(mle==2){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */           * -stepm/2 to stepm/2 .
       } else if(mle==3){  /* exponential inter-extrapolation */           * For stepm=1 the results are the same as for previous versions of Imach.
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */           * For stepm > 1 the results are less biased than in previous versions. 
       } else if (mle==4){  /* mle=4 no inter-extrapolation */           */
         lli=log(out[s1][s2]); /* Original formula */          s1=s[mw[mi][i]][i];
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          s2=s[mw[mi+1][i]][i];
         lli=log(out[s1][s2]); /* Original formula */          bbh=(double)bh[mi][i]/(double)stepm; 
       } /* End of if */          /* bias bh is positive if real duration
       ipmx +=1;           * is higher than the multiple of stepm and negative otherwise.
       sw += weight[i];           */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          if( s2 > nlstate){ 
       if(globpr){            /* i.e. if s2 is a death state and if the date of death is known 
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\               then the contribution to the likelihood is the probability to 
  %11.6f %11.6f %11.6f ", \               die between last step unit time and current  step unit time, 
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],               which is also equal to probability to die before dh 
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);               minus probability to die before dh-stepm . 
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){               In version up to 0.92 likelihood was computed
           llt +=ll[k]*gipmx/gsw;          as if date of death was unknown. Death was treated as any other
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
         fprintf(ficresilk," %10.6f\n", -llt);          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
     } /* end of wave */          introduced the exact date of death then we should have modified
   } /* end of individual */          the contribution of an exact death to the likelihood. This new
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          contribution is smaller and very dependent of the step unit
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          stepm. It is no more the probability to die between last interview
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          and month of death but the probability to survive from last
   if(globpr==0){ /* First time we count the contributions and weights */          interview up to one month before death multiplied by the
     gipmx=ipmx;          probability to die within a month. Thanks to Chris
     gsw=sw;          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
   return -l;          which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
             lli=log(out[s1][s2] - savm[s1][s2]);
 /*************** function likelione ***********/  
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  
 {          } else if  (s2==-2) {
   /* This routine should help understanding what is done with            for (j=1,survp=0. ; j<=nlstate; j++) 
      the selection of individuals/waves and              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      to check the exact contribution to the likelihood.            /*survp += out[s1][j]; */
      Plotting could be done.            lli= log(survp);
    */          }
   int k;          
           else if  (s2==-4) { 
   if(*globpri !=0){ /* Just counts and sums, no printings */            for (j=3,survp=0. ; j<=nlstate; j++)  
     strcpy(fileresilk,"ilk");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     strcat(fileresilk,fileres);            lli= log(survp); 
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          } 
       printf("Problem with resultfile: %s\n", fileresilk);  
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          else if  (s2==-5) { 
     }            for (j=1,survp=0. ; j<=2; j++)  
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            lli= log(survp); 
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          } 
     for(k=1; k<=nlstate; k++)          
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          else{
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
   *fretone=(*funcone)(p);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   if(*globpri !=0){          /*if(lli ==000.0)*/
     fclose(ficresilk);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          ipmx +=1;
     fflush(fichtm);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   return;        } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Maximum Likelihood Estimation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i,j, iter;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **xi;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fret;            }
   double fretone; /* Only one call to likelihood */          for(d=0; d<=dh[mi][i]; d++){
   /*  char filerespow[FILENAMELENGTH];*/            newm=savm;
   xi=matrix(1,npar,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=npar;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for (j=1;j<=npar;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       xi[i][j]=(i==j ? 1.0 : 0.0);            }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(filerespow,"pow");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(filerespow,fileres);            savm=oldm;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            oldm=newm;
     printf("Problem with resultfile: %s\n", filerespow);          } /* end mult */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        
   }          s1=s[mw[mi][i]][i];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
     for(j=1;j<=nlstate+ndeath;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          ipmx +=1;
   fprintf(ficrespow,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   powell(p,xi,npar,ftol,&iter,&fret,func);        } /* end of wave */
       } /* end of individual */
   free_matrix(xi,1,npar,1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   fclose(ficrespow);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /**** Computes Hessian and covariance matrix ***/            }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   double  **a,**y,*x,pd;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **hess;            for (kk=1; kk<=cptcovage;kk++) {
   int i, j,jk;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int *indx;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);            savm=oldm;
   void lubksb(double **a, int npar, int *indx, double b[]) ;            oldm=newm;
   void ludcmp(double **a, int npar, int *indx, double *d) ;          } /* end mult */
   double gompertz(double p[]);        
   hess=matrix(1,npar,1,npar);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   printf("\nCalculation of the hessian matrix. Wait...\n");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=1;i<=npar;i++){          ipmx +=1;
     printf("%d",i);fflush(stdout);          sw += weight[i];
     fprintf(ficlog,"%d",i);fflush(ficlog);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);      } /* end of individual */
        }else if (mle==4){  /* ml=4 no inter-extrapolation */
     /*  printf(" %f ",p[i]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++)  {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (j>i) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);            }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          for(d=0; d<dh[mi][i]; d++){
         hess[i][j]=hessij(p,delti,i,j,func,npar);            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         hess[j][i]=hess[i][j];                for (kk=1; kk<=cptcovage;kk++) {
         /*printf(" %lf ",hess[i][j]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n");            savm=oldm;
             oldm=newm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          } /* end mult */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        
            s1=s[mw[mi][i]][i];
   a=matrix(1,npar,1,npar);          s2=s[mw[mi+1][i]][i];
   y=matrix(1,npar,1,npar);          if( s2 > nlstate){ 
   x=vector(1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   indx=ivector(1,npar);          }else{
   for (i=1;i<=npar;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          }
   ludcmp(a,npar,indx,&pd);          ipmx +=1;
           sw += weight[i];
   for (j=1;j<=npar;j++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1;i<=npar;i++) x[i]=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     x[j]=1;        } /* end of wave */
     lubksb(a,npar,indx,x);      } /* end of individual */
     for (i=1;i<=npar;i++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       matcov[i][j]=x[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\n#Hessian matrix#\n");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\n#Hessian matrix#\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) {            }
       printf("%.3e ",hess[i][j]);          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficlog,"%.3e ",hess[i][j]);            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("\n");            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
           
   /* Recompute Inverse */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=npar;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            savm=oldm;
   ludcmp(a,npar,indx,&pd);            oldm=newm;
           } /* end mult */
   /*  printf("\n#Hessian matrix recomputed#\n");        
           s1=s[mw[mi][i]][i];
   for (j=1;j<=npar;j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1;i<=npar;i++) x[i]=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     x[j]=1;          ipmx +=1;
     lubksb(a,npar,indx,x);          sw += weight[i];
     for (i=1;i<=npar;i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       y[i][j]=x[i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       printf("%.3e ",y[i][j]);        } /* end of wave */
       fprintf(ficlog,"%.3e ",y[i][j]);      } /* end of individual */
     }    } /* End of if */
     printf("\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fprintf(ficlog,"\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   */    return -l;
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /*************** log-likelihood *************/
   free_vector(x,1,npar);  double funcone( double *x)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 }    double **out;
     double lli; /* Individual log likelihood */
 /*************** hessian matrix ****************/    double llt;
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    int s1, s2;
 {    double bbh, survp;
   int i;    /*extern weight */
   int l=1, lmax=20;    /* We are differentiating ll according to initial status */
   double k1,k2;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double p2[NPARMAX+1];    /*for(i=1;i<imx;i++) 
   double res;      printf(" %d\n",s[4][i]);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    */
   double fx;    cov[1]=1.;
   int k=0,kmax=10;  
   double l1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   fx=func(x);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(l=0 ; l <=lmax; l++){      for(mi=1; mi<= wav[i]-1; mi++){
     l1=pow(10,l);        for (ii=1;ii<=nlstate+ndeath;ii++)
     delts=delt;          for (j=1;j<=nlstate+ndeath;j++){
     for(k=1 ; k <kmax; k=k+1){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       delt = delta*(l1*k);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta] +delt;          }
       k1=func(p2)-fx;        for(d=0; d<dh[mi][i]; d++){
       p2[theta]=x[theta]-delt;          newm=savm;
       k2=func(p2)-fx;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for (kk=1; kk<=cptcovage;kk++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
 #ifdef DEBUG          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 #endif          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          savm=oldm;
         k=kmax;          oldm=newm;
       }        } /* end mult */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        
         k=kmax; l=lmax*10.;        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        bbh=(double)bh[mi][i]/(double)stepm; 
         delts=delt;        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
     }         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   delti[theta]=delts;          lli=log(out[s1][s2] - savm[s1][s2]);
   return res;        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
 }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)        }else if (mle==1){
 {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int i;        } else if(mle==2){
   int l=1, l1, lmax=20;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double k1,k2,k3,k4,res,fx;        } else if(mle==3){  /* exponential inter-extrapolation */
   double p2[NPARMAX+1];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int k;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   fx=func(x);        } else{  /* mle=0 back to 1 */
   for (k=1; k<=2; k++) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++) p2[i]=x[i];          /*lli=log(out[s1][s2]); */ /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;        } /* End of if */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        ipmx +=1;
     k1=func(p2)-fx;        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if(globpr){
     k2=func(p2)-fx;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
     p2[thetai]=x[thetai]-delti[thetai]/k;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     k3=func(p2)-fx;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
     p2[thetai]=x[thetai]-delti[thetai]/k;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k4=func(p2)-fx;          fprintf(ficresilk," %10.6f\n", -llt);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      } /* end of wave */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    } /* end of individual */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 #endif    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return res;    if(globpr==0){ /* First time we count the contributions and weights */
 }      gipmx=ipmx;
       gsw=sw;
 /************** Inverse of matrix **************/    }
 void ludcmp(double **a, int n, int *indx, double *d)    return -l;
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  
   double *vv;  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   vv=vector(1,n);  {
   *d=1.0;    /* This routine should help understanding what is done with 
   for (i=1;i<=n;i++) {       the selection of individuals/waves and
     big=0.0;       to check the exact contribution to the likelihood.
     for (j=1;j<=n;j++)       Plotting could be done.
       if ((temp=fabs(a[i][j])) > big) big=temp;     */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    int k;
     vv[i]=1.0/big;  
   }    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (j=1;j<=n;j++) {      strcpy(fileresilk,"ilk"); 
     for (i=1;i<j;i++) {      strcat(fileresilk,fileres);
       sum=a[i][j];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        printf("Problem with resultfile: %s\n", fileresilk);
       a[i][j]=sum;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
     big=0.0;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     for (i=j;i<=n;i++) {      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       sum=a[i][j];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for (k=1;k<j;k++)      for(k=1; k<=nlstate; k++) 
         sum -= a[i][k]*a[k][j];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       a[i][j]=sum;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       if ( (dum=vv[i]*fabs(sum)) >= big) {    }
         big=dum;  
         imax=i;    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
     }      fclose(ficresilk);
     if (j != imax) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for (k=1;k<=n;k++) {      fflush(fichtm); 
         dum=a[imax][k];    } 
         a[imax][k]=a[j][k];    return;
         a[j][k]=dum;  }
       }  
       *d = -(*d);  
       vv[imax]=vv[j];  /*********** Maximum Likelihood Estimation ***************/
     }  
     indx[j]=imax;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (a[j][j] == 0.0) a[j][j]=TINY;  {
     if (j != n) {    int i,j, iter=0;
       dum=1.0/(a[j][j]);    double **xi;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double fret;
     }    double fretone; /* Only one call to likelihood */
   }    /*  char filerespow[FILENAMELENGTH];*/
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  #ifdef NLOPT
 }    int creturn;
     nlopt_opt opt;
 void lubksb(double **a, int n, int *indx, double b[])    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
 {    double *lb;
   int i,ii=0,ip,j;    double minf; /* the minimum objective value, upon return */
   double sum;    double * p1; /* Shifted parameters from 0 instead of 1 */
      myfunc_data dinst, *d = &dinst;
   for (i=1;i<=n;i++) {  #endif
     ip=indx[i];  
     sum=b[ip];  
     b[ip]=b[i];    xi=matrix(1,npar,1,npar);
     if (ii)    for (i=1;i<=npar;i++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (j=1;j<=npar;j++)
     else if (sum) ii=i;        xi[i][j]=(i==j ? 1.0 : 0.0);
     b[i]=sum;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
   for (i=n;i>=1;i--) {    strcat(filerespow,fileres);
     sum=b[i];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      printf("Problem with resultfile: %s\n", filerespow);
     b[i]=sum/a[i][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
 }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
 void pstamp(FILE *fichier)      for(j=1;j<=nlstate+ndeath;j++)
 {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);    fprintf(ficrespow,"\n");
 }  #ifdef POWELL
     powell(p,xi,npar,ftol,&iter,&fret,func);
 /************ Frequencies ********************/  #endif
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  
 {  /* Some frequencies */  #ifdef NLOPT
    #ifdef NEWUOA
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   int first;  #else
   double ***freq; /* Frequencies */    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   double *pp, **prop;  #endif
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    lb=vector(0,npar-1);
   char fileresp[FILENAMELENGTH];    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
      nlopt_set_lower_bounds(opt, lb);
   pp=vector(1,nlstate);    nlopt_set_initial_step1(opt, 0.1);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    
   strcpy(fileresp,"p");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   strcat(fileresp,fileres);    d->function = func;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     printf("Problem with prevalence resultfile: %s\n", fileresp);    nlopt_set_min_objective(opt, myfunc, d);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    nlopt_set_xtol_rel(opt, ftol);
     exit(0);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   }      printf("nlopt failed! %d\n",creturn); 
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    }
   j1=0;    else {
        printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   j=cptcoveff;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      iter=1; /* not equal */
     }
   first=1;    nlopt_destroy(opt);
   #endif
   for(k1=1; k1<=j;k1++){    free_matrix(xi,1,npar,1,npar);
     for(i1=1; i1<=ncodemax[k1];i1++){    fclose(ficrespow);
       j1++;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         scanf("%d", i);*/    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       for (i=-5; i<=nlstate+ndeath; i++)    
         for (jk=-5; jk<=nlstate+ndeath; jk++)    }
           for(m=iagemin; m <= iagemax+3; m++)  
             freq[i][jk][m]=0;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for (i=1; i<=nlstate; i++)    {
       for(m=iagemin; m <= iagemax+3; m++)    double  **a,**y,*x,pd;
         prop[i][m]=0;    double **hess;
          int i, j;
       dateintsum=0;    int *indx;
       k2cpt=0;  
       for (i=1; i<=imx; i++) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         bool=1;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         if  (cptcovn>0) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
           for (z1=1; z1<=cptcoveff; z1++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double gompertz(double p[]);
               bool=0;    hess=matrix(1,npar,1,npar);
         }  
         if (bool==1){    printf("\nCalculation of the hessian matrix. Wait...\n");
           for(m=firstpass; m<=lastpass; m++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             k2=anint[m][i]+(mint[m][i]/12.);    for (i=1;i<=npar;i++){
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      printf("%d",i);fflush(stdout);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      fprintf(ficlog,"%d",i);fflush(ficlog);
               if(agev[m][i]==1) agev[m][i]=iagemax+2;     
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
               if (m<lastpass) {      
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /*  printf(" %f ",p[i]);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
               }    }
                  
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    for (i=1;i<=npar;i++) {
                 dateintsum=dateintsum+k2;      for (j=1;j<=npar;j++)  {
                 k2cpt++;        if (j>i) { 
               }          printf(".%d%d",i,j);fflush(stdout);
               /*}*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           }          hess[i][j]=hessij(p,delti,i,j,func,npar);
         }          
       }          hess[j][i]=hess[i][j];    
                  /*printf(" %lf ",hess[i][j]);*/
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        }
       pstamp(ficresp);      }
       if  (cptcovn>0) {    }
         fprintf(ficresp, "\n#********** Variable ");    printf("\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficlog,"\n");
         fprintf(ficresp, "**********\n#");  
       }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    
       fprintf(ficresp, "\n");    a=matrix(1,npar,1,npar);
          y=matrix(1,npar,1,npar);
       for(i=iagemin; i <= iagemax+3; i++){    x=vector(1,npar);
         if(i==iagemax+3){    indx=ivector(1,npar);
           fprintf(ficlog,"Total");    for (i=1;i<=npar;i++)
         }else{      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           if(first==1){    ludcmp(a,npar,indx,&pd);
             first=0;  
             printf("See log file for details...\n");    for (j=1;j<=npar;j++) {
           }      for (i=1;i<=npar;i++) x[i]=0;
           fprintf(ficlog,"Age %d", i);      x[j]=1;
         }      lubksb(a,npar,indx,x);
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++){ 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        matcov[i][j]=x[i];
             pp[jk] += freq[jk][m][i];      }
         }    }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    printf("\n#Hessian matrix#\n");
             pos += freq[jk][m][i];    fprintf(ficlog,"\n#Hessian matrix#\n");
           if(pp[jk]>=1.e-10){    for (i=1;i<=npar;i++) { 
             if(first==1){      for (j=1;j<=npar;j++) { 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        printf("%.3e ",hess[i][j]);
             }        fprintf(ficlog,"%.3e ",hess[i][j]);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      }
           }else{      printf("\n");
             if(first==1)      fprintf(ficlog,"\n");
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           }    /* Recompute Inverse */
         }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         for(jk=1; jk <=nlstate ; jk++){    ludcmp(a,npar,indx,&pd);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    /*  printf("\n#Hessian matrix recomputed#\n");
         }        
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for (j=1;j<=npar;j++) {
           pos += pp[jk];      for (i=1;i<=npar;i++) x[i]=0;
           posprop += prop[jk][i];      x[j]=1;
         }      lubksb(a,npar,indx,x);
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++){ 
           if(pos>=1.e-5){        y[i][j]=x[i];
             if(first==1)        printf("%.3e ",y[i][j]);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog,"%.3e ",y[i][j]);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
           }else{      printf("\n");
             if(first==1)      fprintf(ficlog,"\n");
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    */
           }  
           if( i <= iagemax){    free_matrix(a,1,npar,1,npar);
             if(pos>=1.e-5){    free_matrix(y,1,npar,1,npar);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    free_vector(x,1,npar);
               /*probs[i][jk][j1]= pp[jk]/pos;*/    free_ivector(indx,1,npar);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    free_matrix(hess,1,npar,1,npar);
             }  
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);  }
           }  
         }  /*************** hessian matrix ****************/
          double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    int i;
             if(freq[jk][m][i] !=0 ) {    int l=1, lmax=20;
             if(first==1)    double k1,k2;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double p2[MAXPARM+1]; /* identical to x */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    double res;
             }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         if(i <= iagemax)    double fx;
           fprintf(ficresp,"\n");    int k=0,kmax=10;
         if(first==1)    double l1;
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   }      l1=pow(10,l);
   dateintmean=dateintsum/k2cpt;      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   fclose(ficresp);        delt = delta*(l1*k);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);        p2[theta]=x[theta] +delt;
   free_vector(pp,1,nlstate);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        p2[theta]=x[theta]-delt;
   /* End of Freq */        k2=func(p2)-fx;
 }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /************ Prevalence ********************/        
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  #ifdef DEBUGHESS
 {          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      in each health status at the date of interview (if between dateprev1 and dateprev2).  #endif
      We still use firstpass and lastpass as another selection.        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double *pp, **prop;          k=kmax; l=lmax*10;
   double pos,posprop;        }
   double  y2; /* in fractional years */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int iagemin, iagemax;          delts=delt;
         }
   iagemin= (int) agemin;      }
   iagemax= (int) agemax;    }
   /*pp=vector(1,nlstate);*/    delti[theta]=delts;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    return res; 
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    
   j1=0;  }
    
   j=cptcoveff;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      int i;
   for(k1=1; k1<=j;k1++){    int l=1, lmax=20;
     for(i1=1; i1<=ncodemax[k1];i1++){    double k1,k2,k3,k4,res,fx;
       j1++;    double p2[MAXPARM+1];
          int k;
       for (i=1; i<=nlstate; i++)    
         for(m=iagemin; m <= iagemax+3; m++)    fx=func(x);
           prop[i][m]=0.0;    for (k=1; k<=2; k++) {
            for (i=1;i<=npar;i++) p2[i]=x[i];
       for (i=1; i<=imx; i++) { /* Each individual */      p2[thetai]=x[thetai]+delti[thetai]/k;
         bool=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         if  (cptcovn>0) {      k1=func(p2)-fx;
           for (z1=1; z1<=cptcoveff; z1++)    
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      p2[thetai]=x[thetai]+delti[thetai]/k;
               bool=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
         if (bool==1) {    
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      p2[thetai]=x[thetai]-delti[thetai]/k;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      k3=func(p2)-fx;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      p2[thetai]=x[thetai]-delti[thetai]/k;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               if (s[m][i]>0 && s[m][i]<=nlstate) {      k4=func(p2)-fx;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];  #ifdef DEBUG
                 prop[s[m][i]][iagemax+3] += weight[i];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             }  #endif
           } /* end selection of waves */    }
         }    return res;
       }  }
       for(i=iagemin; i <= iagemax+3; i++){    
          /************** Inverse of matrix **************/
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {  void ludcmp(double **a, int n, int *indx, double *d) 
           posprop += prop[jk][i];  { 
         }    int i,imax,j,k; 
     double big,dum,sum,temp; 
         for(jk=1; jk <=nlstate ; jk++){        double *vv; 
           if( i <=  iagemax){   
             if(posprop>=1.e-5){    vv=vector(1,n); 
               probs[i][jk][j1]= prop[jk][i]/posprop;    *d=1.0; 
             }    for (i=1;i<=n;i++) { 
           }      big=0.0; 
         }/* end jk */      for (j=1;j<=n;j++) 
       }/* end i */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     } /* end i1 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   } /* end k1 */      vv[i]=1.0/big; 
      } 
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    for (j=1;j<=n;j++) { 
   /*free_vector(pp,1,nlstate);*/      for (i=1;i<j;i++) { 
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        sum=a[i][j]; 
 }  /* End of prevalence */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /************* Waves Concatenation ***************/      } 
       big=0.0; 
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=j;i<=n;i++) { 
 {        sum=a[i][j]; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (k=1;k<j;k++) 
      Death is a valid wave (if date is known).          sum -= a[i][k]*a[k][j]; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        a[i][j]=sum; 
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        if ( (dum=vv[i]*fabs(sum)) >= big) { 
      and mw[mi+1][i]. dh depends on stepm.          big=dum; 
      */          imax=i; 
         } 
   int i, mi, m;      } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if (j != imax) { 
      double sum=0., jmean=0.;*/        for (k=1;k<=n;k++) { 
   int first;          dum=a[imax][k]; 
   int j, k=0,jk, ju, jl;          a[imax][k]=a[j][k]; 
   double sum=0.;          a[j][k]=dum; 
   first=0;        } 
   jmin=1e+5;        *d = -(*d); 
   jmax=-1;        vv[imax]=vv[j]; 
   jmean=0.;      } 
   for(i=1; i<=imx; i++){      indx[j]=imax; 
     mi=0;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     m=firstpass;      if (j != n) { 
     while(s[m][i] <= nlstate){        dum=1.0/(a[j][j]); 
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         mw[++mi][i]=m;      } 
       if(m >=lastpass)    } 
         break;    free_vector(vv,1,n);  /* Doesn't work */
       else  ;
         m++;  } 
     }/* end while */  
     if (s[m][i] > nlstate){  void lubksb(double **a, int n, int *indx, double b[]) 
       mi++;     /* Death is another wave */  { 
       /* if(mi==0)  never been interviewed correctly before death */    int i,ii=0,ip,j; 
          /* Only death is a correct wave */    double sum; 
       mw[mi][i]=m;   
     }    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     wav[i]=mi;      sum=b[ip]; 
     if(mi==0){      b[ip]=b[i]; 
       nbwarn++;      if (ii) 
       if(first==0){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);      else if (sum) ii=i; 
         first=1;      b[i]=sum; 
       }    } 
       if(first==1){    for (i=n;i>=1;i--) { 
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     } /* end mi==0 */      b[i]=sum/a[i][i]; 
   } /* End individuals */    } 
   } 
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  void pstamp(FILE *fichier)
       if (stepm <=0)  {
         dh[mi][i]=1;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       else{  }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */  
           if (agedc[i] < 2*AGESUP) {  /************ Frequencies ********************/
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             if(j==0) j=1;  /* Survives at least one month after exam */  {  /* Some frequencies */
             else if(j<0){    
               nberr++;    int i, m, jk, j1, bool, z1,j;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    int first;
               j=1; /* Temporary Dangerous patch */    double ***freq; /* Frequencies */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    double *pp, **prop;
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    char fileresp[FILENAMELENGTH];
             }    
             k=k+1;    pp=vector(1,nlstate);
             if (j >= jmax){    prop=matrix(1,nlstate,iagemin,iagemax+3);
               jmax=j;    strcpy(fileresp,"p");
               ijmax=i;    strcat(fileresp,fileres);
             }    if((ficresp=fopen(fileresp,"w"))==NULL) {
             if (j <= jmin){      printf("Problem with prevalence resultfile: %s\n", fileresp);
               jmin=j;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               ijmin=i;      exit(0);
             }    }
             sum=sum+j;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    j1=0;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    
           }    j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    first=1;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  
     /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           k=k+1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           if (j >= jmax) {    /*    j1++;
             jmax=j;  */
             ijmax=i;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           else if (j <= jmin){          scanf("%d", i);*/
             jmin=j;        for (i=-5; i<=nlstate+ndeath; i++)  
             ijmin=i;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           }            for(m=iagemin; m <= iagemax+3; m++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              freq[i][jk][m]=0;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/        
           if(j<0){        for (i=1; i<=nlstate; i++)  
             nberr++;          for(m=iagemin; m <= iagemax+3; m++)
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            prop[i][m]=0;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        
           }        dateintsum=0;
           sum=sum+j;        k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         jk= j/stepm;          bool=1;
         jl= j -jk*stepm;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         ju= j -(jk+1)*stepm;            for (z1=1; z1<=cptcoveff; z1++)       
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           if(jl==0){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             dh[mi][i]=jk;                bool=0;
             bh[mi][i]=0;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           }else{ /* We want a negative bias in order to only have interpolation ie                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   * at the price of an extra matrix product in likelihood */                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
             dh[mi][i]=jk+1;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             bh[mi][i]=ju;              } 
           }          }
         }else{   
           if(jl <= -ju){          if (bool==1){
             dh[mi][i]=jk;            for(m=firstpass; m<=lastpass; m++){
             bh[mi][i]=jl;       /* bias is positive if real duration              k2=anint[m][i]+(mint[m][i]/12.);
                                  * is higher than the multiple of stepm and negative otherwise.              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                                  */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           else{                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             dh[mi][i]=jk+1;                if (m<lastpass) {
             bh[mi][i]=ju;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           if(dh[mi][i]==0){                }
             dh[mi][i]=1; /* At least one step */                
             bh[mi][i]=ju; /* At least one step */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/                  dateintsum=dateintsum+k2;
           }                  k2cpt++;
         } /* end if mle */                }
       }                /*}*/
     } /* end wave */            }
   }          }
   jmean=sum/k;        } /* end i */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);         
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  }        pstamp(ficresp);
         if  (cptcovn>0) {
 /*********** Tricode ****************************/          fprintf(ficresp, "\n#********** Variable "); 
 void tricode(int *Tvar, int **nbcode, int imx)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 {          fprintf(ficresp, "**********\n#");
            fprintf(ficlog, "\n#********** Variable "); 
   int Ndum[20],ij=1, k, j, i, maxncov=19;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int cptcode=0;          fprintf(ficlog, "**********\n#");
   cptcoveff=0;        }
          for(i=1; i<=nlstate;i++) 
   for (k=0; k<maxncov; k++) Ndum[k]=0;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for (k=1; k<=7; k++) ncodemax[k]=0;        fprintf(ficresp, "\n");
         
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(i=iagemin; i <= iagemax+3; i++){
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum          if(i==iagemax+3){
                                modality*/            fprintf(ficlog,"Total");
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          }else{
       Ndum[ij]++; /*store the modality */            if(first==1){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              first=0;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable              printf("See log file for details...\n");
                                        Tvar[j]. If V=sex and male is 0 and            }
                                        female is 1, then  cptcode=1.*/            fprintf(ficlog,"Age %d", i);
     }          }
           for(jk=1; jk <=nlstate ; jk++){
     for (i=0; i<=cptcode; i++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              pp[jk] += freq[jk][m][i]; 
     }          }
           for(jk=1; jk <=nlstate ; jk++){
     ij=1;            for(m=-1, pos=0; m <=0 ; m++)
     for (i=1; i<=ncodemax[j]; i++) {              pos += freq[jk][m][i];
       for (k=0; k<= maxncov; k++) {            if(pp[jk]>=1.e-10){
         if (Ndum[k] != 0) {              if(first==1){
           nbcode[Tvar[j]][ij]=k;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              }
                        fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           ij++;            }else{
         }              if(first==1)
         if (ij > ncodemax[j]) break;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
   }            }
   
  for (k=0; k< maxncov; k++) Ndum[k]=0;          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  for (i=1; i<=ncovmodel-2; i++) {              pp[jk] += freq[jk][m][i];
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          }       
    ij=Tvar[i];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    Ndum[ij]++;            pos += pp[jk];
  }            posprop += prop[jk][i];
           }
  ij=1;          for(jk=1; jk <=nlstate ; jk++){
  for (i=1; i<= maxncov; i++) {            if(pos>=1.e-5){
    if((Ndum[i]!=0) && (i<=ncovcol)){              if(first==1)
      Tvaraff[ij]=i; /*For printing */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      ij++;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    }            }else{
  }              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  cptcoveff=ij-1; /*Number of simple covariates*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
             if( i <= iagemax){
 /*********** Health Expectancies ****************/              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 {              }
   /* Health expectancies, no variances */              else
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double age, agelim, hf;            }
   double ***p3mat;          }
   double eip;          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   pstamp(ficreseij);            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");              if(freq[jk][m][i] !=0 ) {
   fprintf(ficreseij,"# Age");              if(first==1)
   for(i=1; i<=nlstate;i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(j=1; j<=nlstate;j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficreseij," e%1d%1d ",i,j);              }
     }          if(i <= iagemax)
     fprintf(ficreseij," e%1d. ",i);            fprintf(ficresp,"\n");
   }          if(first==1)
   fprintf(ficreseij,"\n");            printf("Others in log...\n");
           fprintf(ficlog,"\n");
          }
   if(estepm < stepm){        /*}*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    dateintmean=dateintsum/k2cpt; 
   else  hstepm=estepm;     
   /* We compute the life expectancy from trapezoids spaced every estepm months    fclose(ficresp);
    * This is mainly to measure the difference between two models: for example    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    * if stepm=24 months pijx are given only every 2 years and by summing them    free_vector(pp,1,nlstate);
    * we are calculating an estimate of the Life Expectancy assuming a linear    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    * progression in between and thus overestimating or underestimating according    /* End of Freq */
    * to the curvature of the survival function. If, for the same date, we  }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  /************ Prevalence ********************/
    * hypothesis. A more precise result, taking into account a more precise  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    * curvature will be obtained if estepm is as small as stepm. */  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   /* For example we decided to compute the life expectancy with the smallest unit */       in each health status at the date of interview (if between dateprev1 and dateprev2).
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       We still use firstpass and lastpass as another selection.
      nhstepm is the number of hstepm from age to agelim    */
      nstepm is the number of stepm from age to agelin.   
      Look at hpijx to understand the reason of that which relies in memory size    int i, m, jk, j1, bool, z1,j;
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double **prop;
      survival function given by stepm (the optimization length). Unfortunately it    double posprop; 
      means that if the survival funtion is printed only each two years of age and if    double  y2; /* in fractional years */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int iagemin, iagemax;
      results. So we changed our mind and took the option of the best precision.    int first; /** to stop verbosity which is redirected to log file */
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    iagemin= (int) agemin;
     iagemax= (int) agemax;
   agelim=AGESUP;    /*pp=vector(1,nlstate);*/
   /* If stepm=6 months */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    j1=0;
        
 /* nhstepm age range expressed in number of stepm */    /*j=cptcoveff;*/
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    
   /* if (stepm >= YEARM) hstepm=1;*/    first=1;
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
   for (age=bage; age<=fage; age ++){        
         for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);              prop[i][m]=0.0;
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     printf("%d|",(int)age);fflush(stdout);          if  (cptcovn>0) {
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     /* Computing expectancies */          } 
     for(i=1; i<=nlstate;i++)          if (bool==1) { 
       for(j=1; j<=nlstate;j++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                          if(agev[m][i]==0) agev[m][i]=iagemax+1;
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                      /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficreseij,"%3.0f",age );                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i=1; i<=nlstate;i++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
       eip=0;                } 
       for(j=1; j<=nlstate;j++){              }
         eip +=eij[i][j][(int)age];            } /* end selection of waves */
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );          }
       }        }
       fprintf(ficreseij,"%9.4f", eip );        for(i=iagemin; i <= iagemax+3; i++){  
     }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficreseij,"\n");            posprop += prop[jk][i]; 
              } 
   }          
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){     
   printf("\n");            if( i <=  iagemax){ 
   fprintf(ficlog,"\n");              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
 }              } else{
                 if(first==1){
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )                  first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 {                }
   /* Covariances of health expectancies eij and of total life expectancies according              }
    to initial status i, ei. .            } 
   */          }/* end jk */ 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;        }/* end i */ 
   double age, agelim, hf;      /*} *//* end i1 */
   double ***p3matp, ***p3matm, ***varhe;    } /* end j1 */
   double **dnewm,**doldm;    
   double *xp, *xm;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double **gp, **gm;    /*free_vector(pp,1,nlstate);*/
   double ***gradg, ***trgradg;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int theta;  }  /* End of prevalence */
   
   double eip, vip;  /************* Waves Concatenation ***************/
   
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   xp=vector(1,npar);  {
   xm=vector(1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   dnewm=matrix(1,nlstate*nlstate,1,npar);       Death is a valid wave (if date is known).
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   pstamp(ficresstdeij);       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");       */
   fprintf(ficresstdeij,"# Age");  
   for(i=1; i<=nlstate;i++){    int i, mi, m;
     for(j=1; j<=nlstate;j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);       double sum=0., jmean=0.;*/
     fprintf(ficresstdeij," e%1d. ",i);    int first;
   }    int j, k=0,jk, ju, jl;
   fprintf(ficresstdeij,"\n");    double sum=0.;
     first=0;
   pstamp(ficrescveij);    jmin=100000;
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    jmax=-1;
   fprintf(ficrescveij,"# Age");    jmean=0.;
   for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
     for(j=1; j<=nlstate;j++){      mi=0;
       cptj= (j-1)*nlstate+i;      m=firstpass;
       for(i2=1; i2<=nlstate;i2++)      while(s[m][i] <= nlstate){
         for(j2=1; j2<=nlstate;j2++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           cptj2= (j2-1)*nlstate+i2;          mw[++mi][i]=m;
           if(cptj2 <= cptj)        if(m >=lastpass)
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);          break;
         }        else
     }          m++;
   fprintf(ficrescveij,"\n");      }/* end while */
        if (s[m][i] > nlstate){
   if(estepm < stepm){        mi++;     /* Death is another wave */
     printf ("Problem %d lower than %d\n",estepm, stepm);        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   else  hstepm=estepm;          mw[mi][i]=m;
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them      wav[i]=mi;
    * we are calculating an estimate of the Life Expectancy assuming a linear      if(mi==0){
    * progression in between and thus overestimating or underestimating according        nbwarn++;
    * to the curvature of the survival function. If, for the same date, we        if(first==0){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    * to compare the new estimate of Life expectancy with the same linear          first=1;
    * hypothesis. A more precise result, taking into account a more precise        }
    * curvature will be obtained if estepm is as small as stepm. */        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } /* end mi==0 */
      nhstepm is the number of hstepm from age to agelim    } /* End individuals */
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(i=1; i<=imx; i++){
      and note for a fixed period like estepm months */      for(mi=1; mi<wav[i];mi++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if (stepm <=0)
      survival function given by stepm (the optimization length). Unfortunately it          dh[mi][i]=1;
      means that if the survival funtion is printed only each two years of age and if        else{
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
      results. So we changed our mind and took the option of the best precision.            if (agedc[i] < 2*AGESUP) {
   */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   /* If stepm=6 months */                nberr++;
   /* nhstepm age range expressed in number of stepm */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   agelim=AGESUP;                j=1; /* Temporary Dangerous patch */
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* if (stepm >= YEARM) hstepm=1;*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              }
                k=k+1;
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (j >= jmax){
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                jmax=j;
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);                ijmax=i;
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              }
   gp=matrix(0,nhstepm,1,nlstate*nlstate);              if (j <= jmin){
   gm=matrix(0,nhstepm,1,nlstate*nlstate);                jmin=j;
                 ijmin=i;
   for (age=bage; age<=fage; age ++){              }
               sum=sum+j;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
           else{
     /* Computing  Variances of health expectancies */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        decrease memory allocation */  
     for(theta=1; theta <=npar; theta++){            k=k+1;
       for(i=1; i<=npar; i++){            if (j >= jmax) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              jmax=j;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);              ijmax=i;
       }            }
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);              else if (j <= jmin){
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);                jmin=j;
                ijmin=i;
       for(j=1; j<= nlstate; j++){            }
         for(i=1; i<=nlstate; i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for(h=0; h<=nhstepm-1; h++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;            if(j<0){
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;              nberr++;
           }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
                  sum=sum+j;
       for(ij=1; ij<= nlstate*nlstate; ij++)          }
         for(h=0; h<=nhstepm-1; h++){          jk= j/stepm;
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];          jl= j -jk*stepm;
         }          ju= j -(jk+1)*stepm;
     }/* End theta */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
                  dh[mi][i]=jk;
     for(h=0; h<=nhstepm-1; h++)              bh[mi][i]=0;
       for(j=1; j<=nlstate*nlstate;j++)            }else{ /* We want a negative bias in order to only have interpolation ie
         for(theta=1; theta <=npar; theta++)                    * to avoid the price of an extra matrix product in likelihood */
           trgradg[h][j][theta]=gradg[h][theta][j];              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
             }
      for(ij=1;ij<=nlstate*nlstate;ij++)          }else{
       for(ji=1;ji<=nlstate*nlstate;ji++)            if(jl <= -ju){
         varhe[ij][ji][(int)age] =0.;              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
      printf("%d|",(int)age);fflush(stdout);                                   * is higher than the multiple of stepm and negative otherwise.
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);                                   */
      for(h=0;h<=nhstepm-1;h++){            }
       for(k=0;k<=nhstepm-1;k++){            else{
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);              dh[mi][i]=jk+1;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);              bh[mi][i]=ju;
         for(ij=1;ij<=nlstate*nlstate;ij++)            }
           for(ji=1;ji<=nlstate*nlstate;ji++)            if(dh[mi][i]==0){
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
     /* Computing expectancies */          } /* end if mle */
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          }
     for(i=1; i<=nlstate;i++)      } /* end wave */
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    jmean=sum/k;
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
              fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/   }
   
         }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     fprintf(ficresstdeij,"%3.0f",age );  {
     for(i=1; i<=nlstate;i++){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       eip=0.;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       vip=0.;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
       for(j=1; j<=nlstate;j++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         eip += eij[i][j][(int)age];    /* nbcode[Tvar[j]][1]= 
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */    */
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];  
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       }    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));    int cptcode=0; /* Modality max of covariates j */
     }    int modmincovj=0; /* Modality min of covariates j */
     fprintf(ficresstdeij,"\n");  
   
     fprintf(ficrescveij,"%3.0f",age );    cptcoveff=0; 
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++){    for (k=-1; k < maxncov; k++) Ndum[k]=0;
         cptj= (j-1)*nlstate+i;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         for(i2=1; i2<=nlstate;i2++)  
           for(j2=1; j2<=nlstate;j2++){    /* Loop on covariates without age and products */
             cptj2= (j2-1)*nlstate+i2;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
             if(cptj2 <= cptj)      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);                                 modality of this covariate Vj*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       }                                      * If product of Vn*Vm, still boolean *:
     fprintf(ficrescveij,"\n");                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                          * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);                                        modality of the nth covariate of individual i. */
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);        if (ij > modmaxcovj)
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          modmaxcovj=ij; 
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        else if (ij < modmincovj) 
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          modmincovj=ij; 
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if ((ij < -1) && (ij > NCOVMAX)){
   printf("\n");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   fprintf(ficlog,"\n");          exit(1);
         }else
   free_vector(xm,1,npar);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   free_vector(xp,1,npar);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        /* getting the maximum value of the modality of the covariate
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 }           female is 1, then modmaxcovj=1.*/
       }
 /************ Variance ******************/      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])      cptcode=modmaxcovj;
 {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   /* Variance of health expectancies */     /*for (i=0; i<=cptcode; i++) {*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   /* double **newm;*/        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   double **dnewm,**doldm;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   double **dnewmp,**doldmp;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   double *xp;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   double **gp, **gm;  /* for var eij */      } /* Ndum[-1] number of undefined modalities */
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   double *gpp, *gmp; /* for var p point j */      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   double ***p3mat;         modmincovj=3; modmaxcovj = 7;
   double age,agelim, hf;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   double ***mobaverage;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   int theta;         variables V1_1 and V1_2.
   char digit[4];         nbcode[Tvar[j]][ij]=k;
   char digitp[25];         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   char fileresprobmorprev[FILENAMELENGTH];         nbcode[Tvar[j]][3]=2;
       */
   if(popbased==1){      ij=1; /* ij is similar to i but can jumps over null modalities */
     if(mobilav!=0)      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
       strcpy(digitp,"-populbased-mobilav-");        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     else strcpy(digitp,"-populbased-nomobil-");          /*recode from 0 */
   }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   else            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     strcpy(digitp,"-stablbased-");                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (mobilav!=0) {            ij++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          if (ij > ncodemax[j]) break; 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        }  /* end of loop on */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      } /* end of loop on modality */ 
     }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   }    
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   strcpy(fileresprobmorprev,"prmorprev");    
   sprintf(digit,"%-d",ij);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */     Ndum[ij]++; 
   strcat(fileresprobmorprev,fileres);   } 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);   ij=1;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   }     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);     if((Ndum[i]!=0) && (i<=ncovcol)){
         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       Tvaraff[ij]=i; /*For printing (unclear) */
   pstamp(ficresprobmorprev);       ij++;
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);     }else
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);         Tvaraff[ij]=0;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){   }
     fprintf(ficresprobmorprev," p.%-d SE",j);   ij--;
     for(i=1; i<=nlstate;i++)   cptcoveff=ij; /*Number of total covariates*/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    }
   fprintf(ficresprobmorprev,"\n");  
   fprintf(ficgp,"\n# Routine varevsij");  
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  /*********** Health Expectancies ****************/
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 /*   } */  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  {
   pstamp(ficresvij);    /* Health expectancies, no variances */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    int i, j, nhstepm, hstepm, h, nstepm;
   if(popbased==1)    int nhstepma, nstepma; /* Decreasing with age */
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    double age, agelim, hf;
   else    double ***p3mat;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    double eip;
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    pstamp(ficreseij);
     for(j=1; j<=nlstate;j++)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    fprintf(ficreseij,"# Age");
   fprintf(ficresvij,"\n");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   xp=vector(1,npar);        fprintf(ficreseij," e%1d%1d ",i,j);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficreseij," e%1d. ",i);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficreseij,"\n");
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    
   gpp=vector(nlstate+1,nlstate+ndeath);    if(estepm < stepm){
   gmp=vector(nlstate+1,nlstate+ndeath);      printf ("Problem %d lower than %d\n",estepm, stepm);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
      else  hstepm=estepm;   
   if(estepm < stepm){    /* We compute the life expectancy from trapezoids spaced every estepm months
     printf ("Problem %d lower than %d\n",estepm, stepm);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   else  hstepm=estepm;       * we are calculating an estimate of the Life Expectancy assuming a linear 
   /* For example we decided to compute the life expectancy with the smallest unit */     * progression in between and thus overestimating or underestimating according
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     * to the curvature of the survival function. If, for the same date, we 
      nhstepm is the number of hstepm from age to agelim     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      nstepm is the number of stepm from age to agelin.     * to compare the new estimate of Life expectancy with the same linear 
      Look at hpijx to understand the reason of that which relies in memory size     * hypothesis. A more precise result, taking into account a more precise
      and note for a fixed period like k years */     * curvature will be obtained if estepm is as small as stepm. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    /* For example we decided to compute the life expectancy with the smallest unit */
      means that if the survival funtion is printed every two years of age and if    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       nhstepm is the number of hstepm from age to agelim 
      results. So we changed our mind and took the option of the best precision.       nstepm is the number of stepm from age to agelin. 
   */       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       and note for a fixed period like estepm months */
   agelim = AGESUP;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       means that if the survival funtion is printed only each two years of age and if
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    */
     gp=matrix(0,nhstepm,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     gm=matrix(0,nhstepm,1,nlstate);  
     agelim=AGESUP;
     /* If stepm=6 months */
     for(theta=1; theta <=npar; theta++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      
       }  /* nhstepm age range expressed in number of stepm */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
       if (popbased==1) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         if(mobilav ==0){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];    for (age=bage; age<=fage; age ++){ 
         }else{ /* mobilav */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           for(i=1; i<=nlstate;i++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             prlim[i][i]=mobaverage[(int)age][i][ij];      /* if (stepm >= YEARM) hstepm=1;*/
         }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       }  
        /* If stepm=6 months */
       for(j=1; j<= nlstate; j++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         for(h=0; h<=nhstepm; h++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }      
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       /* This for computing probability of death (h=1 means      
          computed over hstepm matrices product = hstepm*stepm months)      printf("%d|",(int)age);fflush(stdout);
          as a weighted average of prlim.      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       */      
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      /* Computing expectancies */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      for(i=1; i<=nlstate;i++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        for(j=1; j<=nlstate;j++)
       }              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       /* end probability of death */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
        fprintf(ficreseij,"%3.0f",age );
       if (popbased==1) {      for(i=1; i<=nlstate;i++){
         if(mobilav ==0){        eip=0;
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate;j++){
             prlim[i][i]=probs[(int)age][i][ij];          eip +=eij[i][j][(int)age];
         }else{ /* mobilav */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=mobaverage[(int)age][i][ij];        fprintf(ficreseij,"%9.4f", eip );
         }      }
       }      fprintf(ficreseij,"\n");
       
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    printf("\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    fprintf(ficlog,"\n");
         }    
       }  }
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
          as a weighted average of prlim.  
       */  {
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* Covariances of health expectancies eij and of total life expectancies according
         for(i=1,gmp[j]=0.; i<= nlstate; i++)     to initial status i, ei. .
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    */
       }        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       /* end probability of death */    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
       for(j=1; j<= nlstate; j++) /* vareij */    double ***p3matp, ***p3matm, ***varhe;
         for(h=0; h<=nhstepm; h++){    double **dnewm,**doldm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double *xp, *xm;
         }    double **gp, **gm;
     double ***gradg, ***trgradg;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    int theta;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }    double eip, vip;
   
     } /* End theta */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(h=0; h<=nhstepm; h++) /* veij */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(j=1; j<=nlstate;j++)    
         for(theta=1; theta <=npar; theta++)    pstamp(ficresstdeij);
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    for(i=1; i<=nlstate;i++){
       for(theta=1; theta <=npar; theta++)      for(j=1; j<=nlstate;j++)
         trgradgp[j][theta]=gradgp[theta][j];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(ficresstdeij," e%1d. ",i);
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficresstdeij,"\n");
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    pstamp(ficrescveij);
         vareij[i][j][(int)age] =0.;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(h=0;h<=nhstepm;h++){    for(i=1; i<=nlstate;i++)
       for(k=0;k<=nhstepm;k++){      for(j=1; j<=nlstate;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        cptj= (j-1)*nlstate+i;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for(i2=1; i2<=nlstate;i2++)
         for(i=1;i<=nlstate;i++)          for(j2=1; j2<=nlstate;j2++){
           for(j=1;j<=nlstate;j++)            cptj2= (j2-1)*nlstate+i2;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            if(cptj2 <= cptj)
       }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     }          }
        }
     /* pptj */    fprintf(ficrescveij,"\n");
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    if(estepm < stepm){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      printf ("Problem %d lower than %d\n",estepm, stepm);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    }
         varppt[j][i]=doldmp[j][i];    else  hstepm=estepm;   
     /* end ppptj */    /* We compute the life expectancy from trapezoids spaced every estepm months
     /*  x centered again */     * This is mainly to measure the difference between two models: for example
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);       * if stepm=24 months pijx are given only every 2 years and by summing them
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
     if (popbased==1) {     * to the curvature of the survival function. If, for the same date, we 
       if(mobilav ==0){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         for(i=1; i<=nlstate;i++)     * to compare the new estimate of Life expectancy with the same linear 
           prlim[i][i]=probs[(int)age][i][ij];     * hypothesis. A more precise result, taking into account a more precise
       }else{ /* mobilav */     * curvature will be obtained if estepm is as small as stepm. */
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
                     nstepm is the number of stepm from age to agelin. 
     /* This for computing probability of death (h=1 means       Look at hpijx to understand the reason of that which relies in memory size
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       and note for a fixed period like estepm months */
        as a weighted average of prlim.    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     */       survival function given by stepm (the optimization length). Unfortunately it
     for(j=nlstate+1;j<=nlstate+ndeath;j++){       means that if the survival funtion is printed only each two years of age and if
       for(i=1,gmp[j]=0.;i<= nlstate; i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];       results. So we changed our mind and took the option of the best precision.
     }        */
     /* end probability of death */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    /* If stepm=6 months */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    /* nhstepm age range expressed in number of stepm */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    agelim=AGESUP;
       for(i=1; i<=nlstate;i++){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }    /* if (stepm >= YEARM) hstepm=1;*/
     }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresprobmorprev,"\n");    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficresvij,"%.0f ",age );    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i<=nlstate;i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(j=1; j<=nlstate;j++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    for (age=bage; age<=fage; age ++){ 
     free_matrix(gm,0,nhstepm,1,nlstate);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      /* if (stepm >= YEARM) hstepm=1;*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);      /* If stepm=6 months */
   free_vector(gmp,nlstate+1,nlstate+ndeath);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      /* Computing  Variances of health expectancies */
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */         decrease memory allocation */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      for(theta=1; theta <=npar; theta++){
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        for(i=1; i<=npar; i++){ 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 */    
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */        for(j=1; j<= nlstate; j++){
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   free_vector(xp,1,npar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   free_matrix(doldm,1,nlstate,1,nlstate);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   free_matrix(dnewm,1,nlstate,1,npar);            }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fclose(ficresprobmorprev);          for(h=0; h<=nhstepm-1; h++){
   fflush(ficgp);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   fflush(fichtm);          }
 }  /* end varevsij */      }/* End theta */
       
 /************ Variance of prevlim ******************/      
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      for(h=0; h<=nhstepm-1; h++)
 {        for(j=1; j<=nlstate*nlstate;j++)
   /* Variance of prevalence limit */          for(theta=1; theta <=npar; theta++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/            trgradg[h][j][theta]=gradg[h][theta][j];
   double **newm;      
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;       for(ij=1;ij<=nlstate*nlstate;ij++)
   int k, cptcode;        for(ji=1;ji<=nlstate*nlstate;ji++)
   double *xp;          varhe[ij][ji][(int)age] =0.;
   double *gp, *gm;  
   double **gradg, **trgradg;       printf("%d|",(int)age);fflush(stdout);
   double age,agelim;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   int theta;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   pstamp(ficresvpl);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(ficresvpl,"# Age");          for(ij=1;ij<=nlstate*nlstate;ij++)
   for(i=1; i<=nlstate;i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
       fprintf(ficresvpl," %1d-%1d",i,i);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fprintf(ficresvpl,"\n");        }
       }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);      /* Computing expectancies */
   doldm=matrix(1,nlstate,1,nlstate);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        for(i=1; i<=nlstate;i++)
   hstepm=1*YEARM; /* Every year of age */        for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   agelim = AGESUP;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);      fprintf(ficresstdeij,"%3.0f",age );
     gm=vector(1,nlstate);      for(i=1; i<=nlstate;i++){
         eip=0.;
     for(theta=1; theta <=npar; theta++){        vip=0.;
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(j=1; j<=nlstate;j++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          eip += eij[i][j][(int)age];
       }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       for(i=1;i<=nlstate;i++)          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         gp[i] = prlim[i][i];        }
            fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresstdeij,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)      fprintf(ficrescveij,"%3.0f",age );
         gm[i] = prlim[i][i];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
       for(i=1;i<=nlstate;i++)          cptj= (j-1)*nlstate+i;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(i2=1; i2<=nlstate;i2++)
     } /* End theta */            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
     trgradg =matrix(1,nlstate,1,npar);              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)        }
         trgradg[j][theta]=gradg[theta][j];      fprintf(ficrescveij,"\n");
      
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficresvpl,"%.0f ",age );    printf("\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    free_vector(xm,1,npar);
     free_vector(gp,1,nlstate);    free_vector(xp,1,npar);
     free_vector(gm,1,nlstate);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   } /* End age */  }
   
   free_vector(xp,1,npar);  /************ Variance ******************/
   free_matrix(doldm,1,nlstate,1,npar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     /* Variance of health expectancies */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 /************ Variance of one-step probabilities  ******************/    double **dnewm,**doldm;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])    double **dnewmp,**doldmp;
 {    int i, j, nhstepm, hstepm, h, nstepm ;
   int i, j=0,  i1, k1, l1, t, tj;    int k;
   int k2, l2, j1,  z1;    double *xp;
   int k=0,l, cptcode;    double **gp, **gm;  /* for var eij */
   int first=1, first1;    double ***gradg, ***trgradg; /*for var eij */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    double **gradgp, **trgradgp; /* for var p point j */
   double **dnewm,**doldm;    double *gpp, *gmp; /* for var p point j */
   double *xp;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   double *gp, *gm;    double ***p3mat;
   double **gradg, **trgradg;    double age,agelim, hf;
   double **mu;    double ***mobaverage;
   double age,agelim, cov[NCOVMAX];    int theta;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    char digit[4];
   int theta;    char digitp[25];
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];    char fileresprobmorprev[FILENAMELENGTH];
   char fileresprobcor[FILENAMELENGTH];  
     if(popbased==1){
   double ***varpij;      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   strcpy(fileresprob,"prob");      else strcpy(digitp,"-populbased-nomobil-");
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    else 
     printf("Problem with resultfile: %s\n", fileresprob);      strcpy(digitp,"-stablbased-");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }    if (mobilav!=0) {
   strcpy(fileresprobcov,"probcov");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(fileresprobcov,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with resultfile: %s\n", fileresprobcov);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      }
   }    }
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);    strcpy(fileresprobmorprev,"prmorprev"); 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    sprintf(digit,"%-d",ij);
     printf("Problem with resultfile: %s\n", fileresprobcor);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    strcat(fileresprobmorprev,fileres);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   pstamp(ficresprob);   
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresprob,"# Age");    pstamp(ficresprobmorprev);
   pstamp(ficresprobcov);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficresprobcov,"# Age");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   pstamp(ficresprobcor);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcor,"# Age");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n# Routine varevsij");
     for(j=1; j<=(nlstate+ndeath);j++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  /*   } */
     }      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  /* fprintf(ficresprob,"\n");    pstamp(ficresvij);
   fprintf(ficresprobcov,"\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficresprobcor,"\n");    if(popbased==1)
  */      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
  xp=vector(1,npar);    else
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fprintf(ficresvij,"# Age");
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    for(i=1; i<=nlstate;i++)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for(j=1; j<=nlstate;j++)
   first=1;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fprintf(ficgp,"\n# Routine varprob");    fprintf(ficresvij,"\n");
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  
   fprintf(fichtm,"\n");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   file %s<br>\n",optionfilehtmcov);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\  
 and drawn. It helps understanding how is the covariance between two incidences.\    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    gpp=vector(nlstate+1,nlstate+ndeath);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    gmp=vector(nlstate+1,nlstate+ndeath);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    
 standard deviations wide on each axis. <br>\    if(estepm < stepm){
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\      printf ("Problem %d lower than %d\n",estepm, stepm);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    }
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   cov[1]=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   tj=cptcoveff;       nhstepm is the number of hstepm from age to agelim 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}       nstepm is the number of stepm from age to agelin. 
   j1=0;       Look at function hpijx to understand why (it is linked to memory size questions) */
   for(t=1; t<=tj;t++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(i1=1; i1<=ncodemax[t];i1++){       survival function given by stepm (the optimization length). Unfortunately it
       j1++;       means that if the survival funtion is printed every two years of age and if
       if  (cptcovn>0) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         fprintf(ficresprob, "\n#********** Variable ");       results. So we changed our mind and took the option of the best precision.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    */
         fprintf(ficresprob, "**********\n#\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficresprobcov, "\n#********** Variable ");    agelim = AGESUP;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficresprobcov, "**********\n#\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp, "\n#********** Variable ");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         fprintf(ficgp, "**********\n#\n");      gp=matrix(0,nhstepm,1,nlstate);
              gm=matrix(0,nhstepm,1,nlstate);
          
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(theta=1; theta <=npar; theta++){
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresprobcor, "\n#********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprobcor, "**********\n#");            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }  
              if (popbased==1) {
       for (age=bage; age<=fage; age ++){          if(mobilav ==0){
         cov[2]=age;            for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovn;k++) {              prlim[i][i]=probs[(int)age][i][ij];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              prlim[i][i]=mobaverage[(int)age][i][ij];
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
            
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for(j=1; j<= nlstate; j++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for(h=0; h<=nhstepm; h++){
         gp=vector(1,(nlstate)*(nlstate+ndeath));            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         gm=vector(1,(nlstate)*(nlstate+ndeath));              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
         for(theta=1; theta <=npar; theta++){        }
           for(i=1; i<=npar; i++)        /* This for computing probability of death (h=1 means
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);           computed over hstepm matrices product = hstepm*stepm months) 
                     as a weighted average of prlim.
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        */
                  for(j=nlstate+1;j<=nlstate+ndeath;j++){
           k=0;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for(i=1; i<= (nlstate); i++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             for(j=1; j<=(nlstate+ndeath);j++){        }    
               k=k+1;        /* end probability of death */
               gp[k]=pmmij[i][j];  
             }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                  hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<=npar; i++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);   
            if (popbased==1) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if(mobilav ==0){
           k=0;            for(i=1; i<=nlstate;i++)
           for(i=1; i<=(nlstate); i++){              prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=(nlstate+ndeath);j++){          }else{ /* mobilav */ 
               k=k+1;            for(i=1; i<=nlstate;i++)
               gm[k]=pmmij[i][j];              prlim[i][i]=mobaverage[(int)age][i][ij];
             }          }
           }        }
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            for(h=0; h<=nhstepm; h++){
         }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)        }
             trgradg[j][theta]=gradg[theta][j];        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           as a weighted average of prlim.
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }    
         /* end probability of death */
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
                for(j=1; j<= nlstate; j++) /* vareij */
         k=0;          for(h=0; h<=nhstepm; h++){
         for(i=1; i<=(nlstate); i++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           for(j=1; j<=(nlstate+ndeath);j++){          }
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }        }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      } /* End theta */
             varpij[i][j][(int)age] = doldm[i][j];  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(h=0; h<=nhstepm; h++) /* veij */
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(j=1; j<=nlstate;j++)
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(theta=1; theta <=npar; theta++)
           }*/            trgradg[h][j][theta]=gradg[h][theta][j];
   
         fprintf(ficresprob,"\n%d ",(int)age);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fprintf(ficresprobcov,"\n%d ",(int)age);        for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobcor,"\n%d ",(int)age);          trgradgp[j][theta]=gradgp[theta][j];
     
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(i=1;i<=nlstate;i++)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        for(j=1;j<=nlstate;j++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          vareij[i][j][(int)age] =0.;
         }  
         i=0;      for(h=0;h<=nhstepm;h++){
         for (k=1; k<=(nlstate);k++){        for(k=0;k<=nhstepm;k++){
           for (l=1; l<=(nlstate+ndeath);l++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             i=i++;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for(i=1;i<=nlstate;i++)
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            for(j=1;j<=nlstate;j++)
             for (j=1; j<=i;j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      }
             }    
           }      /* pptj */
         }/* end of loop for state */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       } /* end of loop for age */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
       /* Confidence intervalle of pij  */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       /*          varppt[j][i]=doldmp[j][i];
         fprintf(ficgp,"\nset noparametric;unset label");      /* end ppptj */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");      /*  x centered again */
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);   
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      if (popbased==1) {
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        if(mobilav ==0){
       */          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        }else{ /* mobilav */ 
       first1=1;          for(i=1; i<=nlstate;i++)
       for (k2=1; k2<=(nlstate);k2++){            prlim[i][i]=mobaverage[(int)age][i][ij];
         for (l2=1; l2<=(nlstate+ndeath);l2++){        }
           if(l2==k2) continue;      }
           j=(k2-1)*(nlstate+ndeath)+l2;               
           for (k1=1; k1<=(nlstate);k1++){      /* This for computing probability of death (h=1 means
             for (l1=1; l1<=(nlstate+ndeath);l1++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               if(l1==k1) continue;         as a weighted average of prlim.
               i=(k1-1)*(nlstate+ndeath)+l1;      */
               if(i<=j) continue;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               for (age=bage; age<=fage; age ++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                 if ((int)age %5==0){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      }    
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      /* end probability of death */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   mu2=mu[j][(int) age]/stepm*YEARM;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   c12=cv12/sqrt(v1*v2);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   /* Computing eigen value of matrix of covariance */        for(i=1; i<=nlstate;i++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }
                   /* Eigen vectors */      } 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      fprintf(ficresprobmorprev,"\n");
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;      fprintf(ficresvij,"%.0f ",age );
                   v12=-v21;      for(i=1; i<=nlstate;i++)
                   v22=v11;        for(j=1; j<=nlstate;j++){
                   tnalp=v21/v11;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   if(first1==1){        }
                     first1=0;      fprintf(ficresvij,"\n");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      free_matrix(gp,0,nhstepm,1,nlstate);
                   }      free_matrix(gm,0,nhstepm,1,nlstate);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   /*printf(fignu*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    } /* End age */
                   if(first==1){    free_vector(gpp,nlstate+1,nlstate+ndeath);
                     first=0;    free_vector(gmp,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nset parametric;unset label");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                   }else{    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     first=0;  
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    free_vector(xp,1,npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    free_matrix(doldm,1,nlstate,1,nlstate);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    free_matrix(dnewm,1,nlstate,1,npar);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   }/* if first */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 } /* age mod 5 */    fclose(ficresprobmorprev);
               } /* end loop age */    fflush(ficgp);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fflush(fichtm); 
               first=1;  }  /* end varevsij */
             } /*l12 */  
           } /* k12 */  /************ Variance of prevlim ******************/
         } /*l1 */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       }/* k1 */  {
     } /* loop covariates */    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double **dnewm,**doldm;
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    int i, j, nhstepm, hstepm;
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    double *xp;
   free_vector(xp,1,npar);    double *gp, *gm;
   fclose(ficresprob);    double **gradg, **trgradg;
   fclose(ficresprobcov);    double age,agelim;
   fclose(ficresprobcor);    int theta;
   fflush(ficgp);    
   fflush(fichtmcov);    pstamp(ficresvpl);
 }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
 /******************* Printing html file ***********/        fprintf(ficresvpl," %1d-%1d",i,i);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fprintf(ficresvpl,"\n");
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    xp=vector(1,npar);
                   int popforecast, int estepm ,\    dnewm=matrix(1,nlstate,1,npar);
                   double jprev1, double mprev1,double anprev1, \    doldm=matrix(1,nlstate,1,nlstate);
                   double jprev2, double mprev2,double anprev2){    
   int jj1, k1, i1, cpt;    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    agelim = AGESUP;
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 </ul>");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \      if (stepm >= YEARM) hstepm=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));      gradg=matrix(1,npar,1,nlstate);
    fprintf(fichtm,"\      gp=vector(1,nlstate);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",      gm=vector(1,nlstate);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));  
    fprintf(fichtm,"\      for(theta=1; theta <=npar; theta++){
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",        for(i=1; i<=npar; i++){ /* Computes gradient */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    fprintf(fichtm,"\        }
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    <a href=\"%s\">%s</a> <br>\n",        for(i=1;i<=nlstate;i++)
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          gp[i] = prlim[i][i];
    fprintf(fichtm,"\      
  - Population projections by age and states: \        for(i=1; i<=npar; i++) /* Computes gradient */
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  jj1=0;      } /* End theta */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      trgradg =matrix(1,nlstate,1,npar);
      jj1++;  
      if (cptcovn > 0) {      for(j=1; j<=nlstate;j++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(theta=1; theta <=npar; theta++)
        for (cpt=1; cpt<=cptcoveff;cpt++)          trgradg[j][theta]=gradg[theta][j];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(i=1;i<=nlstate;i++)
      }        varpl[i][(int)age] =0.;
      /* Pij */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          for(i=1;i<=nlstate;i++)
      /* Quasi-incidences */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \      fprintf(ficresvpl,"%.0f ",age );
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      for(i=1; i<=nlstate;i++)
        /* Period (stable) prevalence in each health state */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        for(cpt=1; cpt<nlstate;cpt++){      fprintf(ficresvpl,"\n");
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \      free_vector(gp,1,nlstate);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);      free_vector(gm,1,nlstate);
        }      free_matrix(gradg,1,npar,1,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \    } /* End age */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  
      }    free_vector(xp,1,npar);
    } /* end i1 */    free_matrix(doldm,1,nlstate,1,npar);
  }/* End k1 */    free_matrix(dnewm,1,nlstate,1,nlstate);
  fprintf(fichtm,"</ul>");  
   }
   
  fprintf(fichtm,"\  /************ Variance of one-step probabilities  ******************/
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  {
     int i, j=0,  k1, l1, tj;
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    int k2, l2, j1,  z1;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    int k=0, l;
  fprintf(fichtm,"\    int first=1, first1, first2;
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    double **dnewm,**doldm;
     double *xp;
  fprintf(fichtm,"\    double *gp, *gm;
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    double **gradg, **trgradg;
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    double **mu;
  fprintf(fichtm,"\    double age, cov[NCOVMAX+1];
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    <a href=\"%s\">%s</a> <br>\n</li>",    int theta;
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));    char fileresprob[FILENAMELENGTH];
  fprintf(fichtm,"\    char fileresprobcov[FILENAMELENGTH];
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \    char fileresprobcor[FILENAMELENGTH];
    <a href=\"%s\">%s</a> <br>\n</li>",    double ***varpij;
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));  
  fprintf(fichtm,"\    strcpy(fileresprob,"prob"); 
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    strcat(fileresprob,fileres);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  fprintf(fichtm,"\      printf("Problem with resultfile: %s\n", fileresprob);
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    }
  fprintf(fichtm,"\    strcpy(fileresprobcov,"probcov"); 
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\    strcat(fileresprobcov,fileres);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
 /*  if(popforecast==1) fprintf(fichtm,"\n */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    strcpy(fileresprobcor,"probcor"); 
 /*      <br>",fileres,fileres,fileres,fileres); */    strcat(fileresprobcor,fileres);
 /*  else  */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */      printf("Problem with resultfile: %s\n", fileresprobcor);
  fflush(fichtm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  m=cptcoveff;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  jj1=0;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  for(k1=1; k1<=m;k1++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    for(i1=1; i1<=ncodemax[k1];i1++){    pstamp(ficresprob);
      jj1++;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      if (cptcovn > 0) {    fprintf(ficresprob,"# Age");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    pstamp(ficresprobcov);
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresprobcov,"# Age");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    pstamp(ficresprobcor);
      }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresprobcor,"# Age");
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 health expectancies in states (1) and (2): %s%d.png<br>\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    } /* end i1 */      }  
  }/* End k1 */   /* fprintf(ficresprob,"\n");
  fprintf(fichtm,"</ul>");    fprintf(ficresprobcov,"\n");
  fflush(fichtm);    fprintf(ficresprobcor,"\n");
 }   */
     xp=vector(1,npar);
 /******************* Gnuplot file **************/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   char dirfileres[132],optfileres[132];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    first=1;
   int ng;    fprintf(ficgp,"\n# Routine varprob");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 /*     printf("Problem with file %s",optionfilegnuplot); */    fprintf(fichtm,"\n");
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  
 /*   } */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   /*#ifdef windows */    file %s<br>\n",optionfilehtmcov);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     /*#endif */  and drawn. It helps understanding how is the covariance between two incidences.\
   m=pow(2,cptcoveff);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   strcpy(dirfileres,optionfilefiname);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   strcpy(optfileres,"vpl");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  /* 1eme*/  standard deviations wide on each axis. <br>\
   for (cpt=1; cpt<= nlstate ; cpt ++) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    for (k1=1; k1<= m ; k1 ++) {   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \n\    cov[1]=1;
 set ylabel \"Probability\" \n\    /* tj=cptcoveff; */
 set ter png small\n\    tj = (int) pow(2,cptcoveff);
 set size 0.65,0.65\n\    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    j1=0;
     for(j1=1; j1<=tj;j1++){
      for (i=1; i<= nlstate ; i ++) {      /*for(i1=1; i1<=ncodemax[t];i1++){ */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /*j1++;*/
        else fprintf(ficgp," \%%*lf (\%%*lf)");        if  (cptcovn>0) {
      }          fprintf(ficresprob, "\n#********** Variable "); 
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprob, "**********\n#\n");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprobcov, "\n#********** Variable "); 
        else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprobcov, "**********\n#\n");
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);          
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficgp, "\n#********** Variable "); 
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficgp, "**********\n#\n");
      }            
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          
    }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*2 eme*/          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresprobcor, "\n#********** Variable ");    
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          fprintf(ficresprobcor, "**********\n#");    
            }
     for (i=1; i<= nlstate+1 ; i ++) {        
       k=2*i;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {        gp=vector(1,(nlstate)*(nlstate+ndeath));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        gm=vector(1,(nlstate)*(nlstate+ndeath));
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for (age=bage; age<=fage; age ++){ 
       }            cov[2]=age;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for (k=1; k<=cptcovn;k++) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                                                           * 1  1 1 1 1
       for (j=1; j<= nlstate+1 ; j ++) {                                                           * 2  2 1 1 1
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                                           * 3  1 2 1 1
         else fprintf(ficgp," \%%*lf (\%%*lf)");                                                           */
       }              /* nbcode[1][1]=0 nbcode[1][2]=1;*/
       fprintf(ficgp,"\" t\"\" w l 0,");          }
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (j=1; j<= nlstate+1 ; j ++) {          for (k=1; k<=cptcovprod;k++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else fprintf(ficgp," \%%*lf (\%%*lf)");          
       }        
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(theta=1; theta <=npar; theta++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*3eme*/            
              k=0;
   for (k1=1; k1<= m ; k1 ++) {            for(i=1; i<= (nlstate); i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              for(j=1; j<=(nlstate+ndeath);j++){
       /*       k=2+nlstate*(2*cpt-2); */                k=k+1;
       k=2+(nlstate+1)*(cpt-1);                gp[k]=pmmij[i][j];
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);              }
       fprintf(ficgp,"set ter png small\n\            }
 set size 0.65,0.65\n\            
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);            for(i=1; i<=npar; i++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            k=0;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            for(i=1; i<=(nlstate); i++){
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
       */                gm[k]=pmmij[i][j];
       for (i=1; i< nlstate ; i ++) {              }
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);            }
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/       
                    for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);          }
     }  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
   /* CV preval stable (period) */              trgradg[j][theta]=gradg[theta][j];
   for (k1=1; k1<= m ; k1 ++) {          
     for (cpt=1; cpt<=nlstate ; cpt ++) {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       k=3;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          pmij(pmmij,cov,ncovmodel,x,nlstate);
 set ter png small\nset size 0.65,0.65\n\          
 unset log y\n\          k=0;
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
       for (i=1; i< nlstate ; i ++)              k=k+1;
         fprintf(ficgp,"+$%d",k+i+1);              mu[k][(int) age]=pmmij[i][j];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                }
       l=3+(nlstate+ndeath)*cpt;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for (i=1; i< nlstate ; i ++) {              varpij[i][j][(int)age] = doldm[i][j];
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);          /*printf("\n%d ",(int)age);
       }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }              }*/
    
   /* proba elementaires */          fprintf(ficresprob,"\n%d ",(int)age);
   for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresprobcov,"\n%d ",(int)age);
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprobcor,"\n%d ",(int)age);
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           jk++;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficgp,"\n");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
     }          i=0;
    }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              i++;
      for(jk=1; jk <=m; jk++) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
        if (ng==2)              for (j=1; j<=i;j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
        else                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
          fprintf(ficgp,"\nset title \"Probability\"\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              }
        i=1;            }
        for(k2=1; k2<=nlstate; k2++) {          }/* end of loop for state */
          k3=i;        } /* end of loop for age */
          for(k=1; k<=(nlstate+ndeath); k++) {        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            if (k != k2){        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
              if(ng==2)        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
              else        
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        /* Confidence intervalle of pij  */
              ij=1;        /*
              for(j=3; j <=ncovmodel; j++) {          fprintf(ficgp,"\nunset parametric;unset label");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  ij++;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                else          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
              }        */
              fprintf(ficgp,")/(1");  
                      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
              for(k1=1; k1 <=nlstate; k1++){          first1=1;first2=2;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for (k2=1; k2<=(nlstate);k2++){
                ij=1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                for(j=3; j <=ncovmodel; j++){            if(l2==k2) continue;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            j=(k2-1)*(nlstate+ndeath)+l2;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for (k1=1; k1<=(nlstate);k1++){
                    ij++;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  }                if(l1==k1) continue;
                  else                i=(k1-1)*(nlstate+ndeath)+l1;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                if(i<=j) continue;
                }                for (age=bage; age<=fage; age ++){ 
                fprintf(ficgp,")");                  if ((int)age %5==0){
              }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
              i=i+ncovmodel;                    mu1=mu[i][(int) age]/stepm*YEARM ;
            }                    mu2=mu[j][(int) age]/stepm*YEARM;
          } /* end k */                    c12=cv12/sqrt(v1*v2);
        } /* end k2 */                    /* Computing eigen value of matrix of covariance */
      } /* end jk */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    } /* end ng */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    fflush(ficgp);                    if ((lc2 <0) || (lc1 <0) ){
 }  /* end gnuplot */                      if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 /*************** Moving average **************/                      }
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
   int i, cpt, cptcod;                      /* lc2=fabs(lc2); */
   int modcovmax =1;                    }
   int mobilavrange, mob;  
   double age;                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                    /*v21=sqrt(1.-v11*v11); *//* error */
                            a covariate has 2 modalities */                    v21=(lc1-v1)/cv12*v11;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                    v12=-v21;
                     v22=v11;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    tnalp=v21/v11;
     if(mobilav==1) mobilavrange=5; /* default */                    if(first1==1){
     else mobilavrange=mobilav;                      first1=0;
     for (age=bage; age<=fage; age++)                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for (i=1; i<=nlstate;i++)                    }
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                    /*printf(fignu*/
     /* We keep the original values on the extreme ages bage, fage and for                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
        we use a 5 terms etc. until the borders are no more concerned.                    if(first==1){
     */                      first=0;
     for (mob=3;mob <=mobilavrange;mob=mob+2){                      fprintf(ficgp,"\nset parametric;unset label");
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for (i=1; i<=nlstate;i++){                      fprintf(ficgp,"\nset ter png small size 320, 240");
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }/* end age */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }/* end mob */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }else return -1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   return 0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 }/* End movingaverage */                    }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 /************** Forecasting ******************/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /* proj1, year, month, day of starting projection                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
      agemin, agemax range of age                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      dateprev1 dateprev2 range of dates during which prevalence is computed                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      anproj2 year of en of projection (same day and month as proj1).                    }/* if first */
   */                  } /* age mod 5 */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;                } /* end loop age */
   int *popage;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double agec; /* generic age */                first=1;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              } /*l12 */
   double *popeffectif,*popcount;            } /* k12 */
   double ***p3mat;          } /*l1 */
   double ***mobaverage;        }/* k1 */
   char fileresf[FILENAMELENGTH];        /* } /* loop covariates */
     }
   agelim=AGESUP;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   strcpy(fileresf,"f");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   strcat(fileresf,fileres);    free_vector(xp,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fclose(ficresprob);
     printf("Problem with forecast resultfile: %s\n", fileresf);    fclose(ficresprobcov);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fclose(ficresprobcor);
   }    fflush(ficgp);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fflush(fichtmcov);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   /******************* Printing html file ***********/
   if (mobilav!=0) {  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    int lastpass, int stepm, int weightopt, char model[],\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                    int popforecast, int estepm ,\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                    double jprev1, double mprev1,double anprev1, \
     }                    double jprev2, double mprev2,double anprev2){
   }    int jj1, k1, i1, cpt;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   if (stepm<=12) stepsize=1;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   if(estepm < stepm){  </ul>");
     printf ("Problem %d lower than %d\n",estepm, stepm);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   else  hstepm=estepm;               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   hstepm=hstepm/stepm;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                                fractional in yp1 */     fprintf(fichtm,"\
   anprojmean=yp;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   yp2=modf((yp1*12),&yp);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   mprojmean=yp;     fprintf(fichtm,"\
   yp1=modf((yp2*30.5),&yp);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   jprojmean=yp;     <a href=\"%s\">%s</a> <br>\n",
   if(jprojmean==0) jprojmean=1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   if(mprojmean==0) jprojmean=1;     fprintf(fichtm,"\
    - Population projections by age and states: \
   i1=cptcoveff;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   if (cptcovn < 1){i1=1;}  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  
     m=pow(2,cptcoveff);
   fprintf(ficresf,"#****** Routine prevforecast **\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
 /*            if (h==(int)(YEARM*yearp)){ */   jj1=0;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){   for(k1=1; k1<=m;k1++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     for(i1=1; i1<=ncodemax[k1];i1++){
       k=k+1;       jj1++;
       fprintf(ficresf,"\n#******");       if (cptcovn > 0) {
       for(j=1;j<=cptcoveff;j++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficresf,"******\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");       }
       for(j=1; j<=nlstate+ndeath;j++){       /* Pij */
         for(i=1; i<=nlstate;i++)                     fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
           fprintf(ficresf," p%d%d",i,j);  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         fprintf(ficresf," p.%d",j);       /* Quasi-incidences */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
         fprintf(ficresf,"\n");  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
         for (agec=fage; agec>=(ageminpar-1); agec--){           fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           nhstepm = nhstepm/hstepm;         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(cpt=1; cpt<=nlstate;cpt++) {
           oldm=oldms;savm=savms;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
               }
           for (h=0; h<=nhstepm; h++){     } /* end i1 */
             if (h*hstepm/YEARM*stepm ==yearp) {   }/* End k1 */
               fprintf(ficresf,"\n");   fprintf(fichtm,"</ul>");
               for(j=1;j<=cptcoveff;j++)  
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);   fprintf(fichtm,"\
             }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
             for(j=1; j<=nlstate+ndeath;j++) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
               ppij=0.;  
               for(i=1; i<=nlstate;i++) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 if (mobilav==1)           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];   fprintf(fichtm,"\
                 else {   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {   fprintf(fichtm,"\
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
               } /* end i */   fprintf(fichtm,"\
               if (h*hstepm/YEARM*stepm==yearp) {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 fprintf(ficresf," %.3f", ppij);     <a href=\"%s\">%s</a> <br>\n</li>",
               }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
             }/* end j */   fprintf(fichtm,"\
           } /* end h */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     <a href=\"%s\">%s</a> <br>\n</li>",
         } /* end agec */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       } /* end yearp */   fprintf(fichtm,"\
     } /* end cptcod */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   } /* end  cptcov */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           fprintf(fichtm,"\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fclose(ficresf);   fprintf(fichtm,"\
 }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 /************** Forecasting *****not tested NB*************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*  if(popforecast==1) fprintf(fichtm,"\n */
    /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   int *popage;  /*      <br>",fileres,fileres,fileres,fileres); */
   double calagedatem, agelim, kk1, kk2;  /*  else  */
   double *popeffectif,*popcount;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   double ***p3mat,***tabpop,***tabpopprev;   fflush(fichtm);
   double ***mobaverage;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   char filerespop[FILENAMELENGTH];  
    m=pow(2,cptcoveff);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;   jj1=0;
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       jj1++;
         if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcpy(filerespop,"pop");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(filerespop,fileres);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with forecast resultfile: %s\n", filerespop);       }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       for(cpt=1; cpt<=nlstate;cpt++) {
   }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   printf("Computing forecasting: result on file '%s' \n", filerespop);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   if (mobilav!=0) {  true period expectancies (those weighted with period prevalences are also\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   drawn in addition to the population based expectancies computed using\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   observed and cahotic prevalences: %s%d.png<br>\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   if (stepm<=12) stepsize=1;  
    /******************* Gnuplot file **************/
   agelim=AGESUP;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   hstepm=1;    char dirfileres[132],optfileres[132];
   hstepm=hstepm/stepm;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
      int ng=0;
   if (popforecast==1) {  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     if((ficpop=fopen(popfile,"r"))==NULL) {  /*     printf("Problem with file %s",optionfilegnuplot); */
       printf("Problem with population file : %s\n",popfile);exit(0);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  /*   } */
     }  
     popage=ivector(0,AGESUP);    /*#ifdef windows */
     popeffectif=vector(0,AGESUP);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     popcount=vector(0,AGESUP);      /*#endif */
        m=pow(2,cptcoveff);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
     imx=i;   /* 1eme*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
       k=k+1;       fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficrespop,"\n#******");  set ylabel \"Probability\" \n\
       for(j=1;j<=cptcoveff;j++) {  set ter png small size 320, 240\n\
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       }  
       fprintf(ficrespop,"******\n");       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficrespop,"# Age");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
       if (popforecast==1)  fprintf(ficrespop," [Population]");       }
             fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       for (cpt=0; cpt<=0;cpt++) {       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                 else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){       } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           nhstepm = nhstepm/hstepm;       for (i=1; i<= nlstate ; i ++) {
                   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
           oldm=oldms;savm=savms;       }  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
             }
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedatem+YEARM*cpt)) {    /*2 eme*/
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
             }    for (k1=1; k1<= m ; k1 ++) { 
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
               kk1=0.;kk2=0;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
               for(i=1; i<=nlstate;i++) {                    
                 if (mobilav==1)      for (i=1; i<= nlstate+1 ; i ++) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        k=2*i;
                 else {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for (j=1; j<= nlstate+1 ; j ++) {
                 }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               }          else fprintf(ficgp," \%%*lf (\%%*lf)");
               if (h==(int)(calagedatem+12*cpt)){        }   
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   /*fprintf(ficrespop," %.3f", kk1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
               }        for (j=1; j<= nlstate+1 ; j ++) {
             }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             for(i=1; i<=nlstate;i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
               kk1=0.;        }   
                 for(j=1; j<=nlstate;j++){        fprintf(ficgp,"\" t\"\" w l lt 0,");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 }        for (j=1; j<= nlstate+1 ; j ++) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    
       }    /*3eme*/
      
   /******/    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        /*       k=2+nlstate*(2*cpt-2); */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          k=2+(nlstate+1)*(cpt-1);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficgp,"set ter png small size 320, 240\n\
           nhstepm = nhstepm/hstepm;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                  /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           oldm=oldms;savm=savms;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (h=0; h<=nhstepm; h++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          
             }        */
             for(j=1; j<=nlstate+ndeath;j++) {        for (i=1; i< nlstate ; i ++) {
               kk1=0.;kk2=0;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
               for(i=1; i<=nlstate;i++) {                        /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              
               }        } 
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             }      }
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    /* CV preval stable (period) */
       }    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
    }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   }        k=3;
          fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   if (popforecast==1) {  set ter png small size 320, 240\n\
     free_ivector(popage,0,AGESUP);  unset log y\n\
     free_vector(popeffectif,0,AGESUP);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
     free_vector(popcount,0,AGESUP);        for (i=1; i<= nlstate ; i ++){
   }          if(i==1)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else
   fclose(ficrespop);            fprintf(ficgp,", '' ");
 } /* End of popforecast */          l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
 int fileappend(FILE *fichier, char *optionfich)          for (j=1; j<= (nlstate-1) ; j ++)
 {            fprintf(ficgp,"+$%d",k+l+j);
   if((fichier=fopen(optionfich,"a"))==NULL) {          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
     printf("Problem with file: %s\n", optionfich);        } /* nlstate */
     fprintf(ficlog,"Problem with file: %s\n", optionfich);        fprintf(ficgp,"\n");
     return (0);      } /* end cpt state*/ 
   }    } /* end covariate */  
   fflush(fichier);    
   return (1);    /* proba elementaires */
 }    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
 /**************** function prwizard **********************/          for(j=1; j <=ncovmodel; j++){
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 {            jk++; 
             fprintf(ficgp,"\n");
   /* Wizard to print covariance matrix template */          }
         }
   char ca[32], cb[32], cc[32];      }
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;     }
   int numlinepar;    /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       for(jk=1; jk <=m; jk++) {
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   for(i=1; i <=nlstate; i++){         if (ng==2)
     jj=0;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     for(j=1; j <=nlstate+ndeath; j++){         else
       if(j==i) continue;           fprintf(ficgp,"\nset title \"Probability\"\n");
       jj++;         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       /*ca[0]= k+'a'-1;ca[1]='\0';*/         i=1;
       printf("%1d%1d",i,j);         for(k2=1; k2<=nlstate; k2++) {
       fprintf(ficparo,"%1d%1d",i,j);           k3=i;
       for(k=1; k<=ncovmodel;k++){           for(k=1; k<=(nlstate+ndeath); k++) {
         /*        printf(" %lf",param[i][j][k]); */             if (k != k2){
         /*        fprintf(ficparo," %lf",param[i][j][k]); */               if(ng==2)
         printf(" 0.");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         fprintf(ficparo," 0.");               else
       }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       printf("\n");               ij=1;/* To be checked else nbcode[0][0] wrong */
       fprintf(ficparo,"\n");               for(j=3; j <=ncovmodel; j++) {
     }                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
   }                 /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
   printf("# Scales (for hessian or gradient estimation)\n");                 /*        ij++; */
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                 /* } */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                 /* else */
   for(i=1; i <=nlstate; i++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     jj=0;               }
     for(j=1; j <=nlstate+ndeath; j++){               fprintf(ficgp,")/(1");
       if(j==i) continue;               
       jj++;               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficparo,"%1d%1d",i,j);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       printf("%1d%1d",i,j);                 ij=1;
       fflush(stdout);                 for(j=3; j <=ncovmodel; j++){
       for(k=1; k<=ncovmodel;k++){                   /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
         /*      printf(" %le",delti3[i][j][k]); */                   /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                   /*   ij++; */
         printf(" 0.");                   /* } */
         fprintf(ficparo," 0.");                   /* else */
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       numlinepar++;                 }
       printf("\n");                 fprintf(ficgp,")");
       fprintf(ficparo,"\n");               }
     }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   printf("# Covariance matrix\n");               i=i+ncovmodel;
 /* # 121 Var(a12)\n\ */             }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */           } /* end k */
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */         } /* end k2 */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */       } /* end jk */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */     } /* end ng */
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */   /* avoid: */
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */     fflush(ficgp); 
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  }  /* end gnuplot */
   fflush(stdout);  
   fprintf(ficparo,"# Covariance matrix\n");  
   /* # 121 Var(a12)\n\ */  /*************** Moving average **************/
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   /* #   ...\n\ */  
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    int i, cpt, cptcod;
      int modcovmax =1;
   for(itimes=1;itimes<=2;itimes++){    int mobilavrange, mob;
     jj=0;    double age;
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         if(j==i) continue;                             a covariate has 2 modalities */
         for(k=1; k<=ncovmodel;k++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           jj++;  
           ca[0]= k+'a'-1;ca[1]='\0';    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           if(itimes==1){      if(mobilav==1) mobilavrange=5; /* default */
             printf("#%1d%1d%d",i,j,k);      else mobilavrange=mobilav;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);      for (age=bage; age<=fage; age++)
           }else{        for (i=1; i<=nlstate;i++)
             printf("%1d%1d%d",i,j,k);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             fprintf(ficparo,"%1d%1d%d",i,j,k);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             /*  printf(" %.5le",matcov[i][j]); */      /* We keep the original values on the extreme ages bage, fage and for 
           }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           ll=0;         we use a 5 terms etc. until the borders are no more concerned. 
           for(li=1;li <=nlstate; li++){      */ 
             for(lj=1;lj <=nlstate+ndeath; lj++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
               if(lj==li) continue;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
               for(lk=1;lk<=ncovmodel;lk++){          for (i=1; i<=nlstate;i++){
                 ll++;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                 if(ll<=jj){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   cb[0]= lk +'a'-1;cb[1]='\0';                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   if(ll<jj){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                     if(itimes==1){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                }
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                     }else{            }
                       printf(" 0.");          }
                       fprintf(ficparo," 0.");        }/* end age */
                     }      }/* end mob */
                   }else{    }else return -1;
                     if(itimes==1){    return 0;
                       printf(" Var(%s%1d%1d)",ca,i,j);  }/* End movingaverage */
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);  
                     }else{  
                       printf(" 0.");  /************** Forecasting ******************/
                       fprintf(ficparo," 0.");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                     }    /* proj1, year, month, day of starting projection 
                   }       agemin, agemax range of age
                 }       dateprev1 dateprev2 range of dates during which prevalence is computed
               } /* end lk */       anproj2 year of en of projection (same day and month as proj1).
             } /* end lj */    */
           } /* end li */    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
           printf("\n");    double agec; /* generic age */
           fprintf(ficparo,"\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           numlinepar++;    double *popeffectif,*popcount;
         } /* end k*/    double ***p3mat;
       } /*end j */    double ***mobaverage;
     } /* end i */    char fileresf[FILENAMELENGTH];
   } /* end itimes */  
     agelim=AGESUP;
 } /* end of prwizard */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /******************* Gompertz Likelihood ******************************/   
 double gompertz(double x[])    strcpy(fileresf,"f"); 
 {    strcat(fileresf,fileres);
   double A,B,L=0.0,sump=0.,num=0.;    if((ficresf=fopen(fileresf,"w"))==NULL) {
   int i,n=0; /* n is the size of the sample */      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   for (i=0;i<=imx-1 ; i++) {    }
     sump=sump+weight[i];    printf("Computing forecasting: result on file '%s' \n", fileresf);
     /*    sump=sump+1;*/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     num=num+1;  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
      if (mobilav!=0) {
   /* for (i=0; i<=imx; i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for (i=1;i<=imx ; i++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     {      }
       if (cens[i] == 1 && wav[i]>1)    }
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));  
          stepsize=(int) (stepm+YEARM-1)/YEARM;
       if (cens[i] == 0 && wav[i]>1)    if (stepm<=12) stepsize=1;
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    if(estepm < stepm){
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);        printf ("Problem %d lower than %d\n",estepm, stepm);
          }
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */    else  hstepm=estepm;   
       if (wav[i] > 1 ) { /* ??? */  
         L=L+A*weight[i];    hstepm=hstepm/stepm; 
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       }                                 fractional in yp1 */
     }    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    mprojmean=yp;
      yp1=modf((yp2*30.5),&yp);
   return -2*L*num/sump;    jprojmean=yp;
 }    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
 /******************* Printing html file ***********/  
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    i1=cptcoveff;
                   int lastpass, int stepm, int weightopt, char model[],\    if (cptcovn < 1){i1=1;}
                   int imx,  double p[],double **matcov,double agemortsup){    
   int i,k;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    fprintf(ficresf,"#****** Routine prevforecast **\n");
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);  
   for (i=1;i<=2;i++)  /*            if (h==(int)(YEARM*yearp)){ */
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(fichtm,"</ul>");        k=k+1;
         fprintf(ficresf,"\n#******");
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");        }
         fprintf(ficresf,"******\n");
  for (k=agegomp;k<(agemortsup-2);k++)        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);        for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
              fprintf(ficresf," p%d%d",i,j);
   fflush(fichtm);          fprintf(ficresf," p.%d",j);
 }        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 /******************* Gnuplot file **************/          fprintf(ficresf,"\n");
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
   char dirfileres[132],optfileres[132];          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   int ng;            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   /*#ifdef windows */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficgp,"cd \"%s\" \n",pathc);          
     /*#endif */            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
   strcpy(dirfileres,optionfilefiname);                for(j=1;j<=cptcoveff;j++) 
   strcpy(optfileres,"vpl");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficgp,"set out \"graphmort.png\"\n ");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");              } 
   fprintf(ficgp, "set ter png small\n set log y\n");              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficgp, "set size 0.65,0.65\n");                ppij=0.;
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
 }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
 /***********************************************/                  }
 /**************** Main Program *****************/                } /* end i */
 /***********************************************/                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
 int main(int argc, char *argv[])                }
 {              }/* end j */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);            } /* end h */
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int linei, month, year,iout;          } /* end agec */
   int jj, ll, li, lj, lk, imk;        } /* end yearp */
   int numlinepar=0; /* Current linenumber of parameter file */      } /* end cptcod */
   int itimes;    } /* end  cptcov */
   int NDIM=2;         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char ca[32], cb[32], cc[32];  
   char dummy[]="                         ";    fclose(ficresf);
   /*  FILE *fichtm; *//* Html File */  }
   /* FILE *ficgp;*/ /*Gnuplot File */  
   struct stat info;  /************** Forecasting *****not tested NB*************/
   double agedeb, agefin,hf;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   double fret;    int *popage;
   double **xi,tmp,delta;    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   double dum; /* Dummy variable */    double ***p3mat,***tabpop,***tabpopprev;
   double ***p3mat;    double ***mobaverage;
   double ***mobaverage;    char filerespop[FILENAMELENGTH];
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char pathr[MAXLINE], pathimach[MAXLINE];    agelim=AGESUP;
   char **bp, *tok, *val; /* pathtot */    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   int firstobs=1, lastobs=10;    
   int sdeb, sfin; /* Status at beginning and end */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   int c,  h , cpt,l;    
   int ju,jl, mi;    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    strcpy(filerespop,"pop"); 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    strcat(filerespop,fileres);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   int mobilav=0,popforecast=0;      printf("Problem with forecast resultfile: %s\n", filerespop);
   int hstepm, nhstepm;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   int agemortsup;    }
   float  sumlpop=0.;    printf("Computing forecasting: result on file '%s' \n", filerespop);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    if (mobilav!=0) {
   double **prlim;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *severity;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   double ***param; /* Matrix of parameters */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double  *p;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double **matcov; /* Matrix of covariance */      }
   double ***delti3; /* Scale */    }
   double *delti; /* Scale */  
   double ***eij, ***vareij;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   double **varpl; /* Variances of prevalence limits by age */    if (stepm<=12) stepsize=1;
   double *epj, vepp;    
   double kk1, kk2;    agelim=AGESUP;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    
   double **ximort;    hstepm=1;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    hstepm=hstepm/stepm; 
   int *dcwave;    
     if (popforecast==1) {
   char z[1]="c", occ;      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   char  *strt, strtend[80];      } 
   char *stratrunc;      popage=ivector(0,AGESUP);
   int lstra;      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
   long total_usecs;      
        i=1;   
 /*   setlocale (LC_ALL, ""); */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */     
 /*   textdomain (PACKAGE); */      imx=i;
 /*   setlocale (LC_CTYPE, ""); */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
 /*   setlocale (LC_MESSAGES, ""); */    }
   
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   (void) gettimeofday(&start_time,&tzp);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   curr_time=start_time;        k=k+1;
   tm = *localtime(&start_time.tv_sec);        fprintf(ficrespop,"\n#******");
   tmg = *gmtime(&start_time.tv_sec);        for(j=1;j<=cptcoveff;j++) {
   strcpy(strstart,asctime(&tm));          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
 /*  printf("Localtime (at start)=%s",strstart); */        fprintf(ficrespop,"******\n");
 /*  tp.tv_sec = tp.tv_sec +86400; */        fprintf(ficrespop,"# Age");
 /*  tm = *localtime(&start_time.tv_sec); */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */        if (popforecast==1)  fprintf(ficrespop," [Population]");
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */        
 /*   tmg.tm_hour=tmg.tm_hour + 1; */        for (cpt=0; cpt<=0;cpt++) { 
 /*   tp.tv_sec = mktime(&tmg); */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 /*   strt=asctime(&tmg); */          
 /*   printf("Time(after) =%s",strstart);  */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 /*  (void) time (&time_value);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);            nhstepm = nhstepm/hstepm; 
 *  tm = *localtime(&time_value);            
 *  strstart=asctime(&tm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);            oldm=oldms;savm=savms;
 */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   nberr=0; /* Number of errors and warnings */            for (h=0; h<=nhstepm; h++){
   nbwarn=0;              if (h==(int) (calagedatem+YEARM*cpt)) {
   getcwd(pathcd, size);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   printf("\n%s\n%s",version,fullversion);              for(j=1; j<=nlstate+ndeath;j++) {
   if(argc <=1){                kk1=0.;kk2=0;
     printf("\nEnter the parameter file name: ");                for(i=1; i<=nlstate;i++) {              
     fgets(pathr,FILENAMELENGTH,stdin);                  if (mobilav==1) 
     i=strlen(pathr);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     if(pathr[i-1]=='\n')                  else {
       pathr[i-1]='\0';                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
    for (tok = pathr; tok != NULL; ){                  }
       printf("Pathr |%s|\n",pathr);                }
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');                if (h==(int)(calagedatem+12*cpt)){
       printf("val= |%s| pathr=%s\n",val,pathr);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       strcpy (pathtot, val);                    /*fprintf(ficrespop," %.3f", kk1);
       if(pathr[0] == '\0') break; /* Dirty */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     }                }
   }              }
   else{              for(i=1; i<=nlstate;i++){
     strcpy(pathtot,argv[1]);                kk1=0.;
   }                  for(j=1; j<=nlstate;j++){
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   /*cygwin_split_path(pathtot,path,optionfile);                  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   /* cutv(path,optionfile,pathtot,'\\');*/              }
   
   /* Split argv[0], imach program to get pathimach */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            }
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*   strcpy(pathimach,argv[0]); */          }
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */        }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /******/
   chdir(path); /* Can be a relative path */  
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     printf("Current directory %s!\n",pathcd);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   strcpy(command,"mkdir ");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   strcat(command,optionfilefiname);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   if((outcmd=system(command)) != 0){            nhstepm = nhstepm/hstepm; 
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);            
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* fclose(ficlog); */            oldm=oldms;savm=savms;
 /*     exit(1); */            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }            for (h=0; h<=nhstepm; h++){
 /*   if((imk=mkdir(optionfilefiname))<0){ */              if (h==(int) (calagedatem+YEARM*cpt)) {
 /*     perror("mkdir"); */                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 /*   } */              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   /*-------- arguments in the command line --------*/                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   /* Log file */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   strcat(filelog, optionfilefiname);                }
   strcat(filelog,".log");    /* */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   if((ficlog=fopen(filelog,"w"))==NULL)    {              }
     printf("Problem with logfile %s\n",filelog);            }
     goto end;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
   fprintf(ficlog,"Log filename:%s\n",filelog);        }
   fprintf(ficlog,"\n%s\n%s",version,fullversion);     } 
   fprintf(ficlog,"\nEnter the parameter file name: \n");    }
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\   
  path=%s \n\    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  optionfile=%s\n\  
  optionfilext=%s\n\    if (popforecast==1) {
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
   printf("Local time (at start):%s",strstart);      free_vector(popcount,0,AGESUP);
   fprintf(ficlog,"Local time (at start): %s",strstart);    }
   fflush(ficlog);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*   (void) gettimeofday(&curr_time,&tzp); */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fclose(ficrespop);
   } /* End of popforecast */
   /* */  
   strcpy(fileres,"r");  int fileappend(FILE *fichier, char *optionfich)
   strcat(fileres, optionfilefiname);  {
   strcat(fileres,".txt");    /* Other files have txt extension */    if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
   /*---------arguments file --------*/      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    fflush(fichier);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    return (1);
     fflush(ficlog);  }
     goto end;  
   }  
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    /* Wizard to print covariance matrix template */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  
     printf("Problem with Output resultfile: %s\n", filereso);    char ca[32], cb[32];
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     fflush(ficlog);    int numlinepar;
     goto end;  
   }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /* Reads comments: lines beginning with '#' */    for(i=1; i <=nlstate; i++){
   numlinepar=0;      jj=0;
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j <=nlstate+ndeath; j++){
     ungetc(c,ficpar);        if(j==i) continue;
     fgets(line, MAXLINE, ficpar);        jj++;
     numlinepar++;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     puts(line);        printf("%1d%1d",i,j);
     fputs(line,ficparo);        fprintf(ficparo,"%1d%1d",i,j);
     fputs(line,ficlog);        for(k=1; k<=ncovmodel;k++){
   }          /*        printf(" %lf",param[i][j][k]); */
   ungetc(c,ficpar);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficparo," 0.");
   numlinepar++;        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        printf("\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficparo,"\n");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      }
   fflush(ficlog);    }
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("# Scales (for hessian or gradient estimation)\n");
     ungetc(c,ficpar);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     fgets(line, MAXLINE, ficpar);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     numlinepar++;    for(i=1; i <=nlstate; i++){
     puts(line);      jj=0;
     fputs(line,ficparo);      for(j=1; j <=nlstate+ndeath; j++){
     fputs(line,ficlog);        if(j==i) continue;
   }        jj++;
   ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
            fflush(stdout);
   covar=matrix(0,NCOVMAX,1,n);        for(k=1; k<=ncovmodel;k++){
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/          /*      printf(" %le",delti3[i][j][k]); */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */          fprintf(ficparo," 0.");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        numlinepar++;
         printf("\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficparo,"\n");
   delti=delti3[1][1];      }
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    printf("# Covariance matrix\n");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  /* # 121 Var(a12)\n\ */
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     fclose (ficparo);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     fclose (ficlog);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     goto end;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     exit(0);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   }    fflush(stdout);
   else if(mle==-3) {    fprintf(ficparo,"# Covariance matrix\n");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    /* # 121 Var(a12)\n\ */
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    /* #   ...\n\ */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     matcov=matrix(1,npar,1,npar);    
   }    for(itimes=1;itimes<=2;itimes++){
   else{      jj=0;
     /* Read guess parameters */      for(i=1; i <=nlstate; i++){
     /* Reads comments: lines beginning with '#' */        for(j=1; j <=nlstate+ndeath; j++){
     while((c=getc(ficpar))=='#' && c!= EOF){          if(j==i) continue;
       ungetc(c,ficpar);          for(k=1; k<=ncovmodel;k++){
       fgets(line, MAXLINE, ficpar);            jj++;
       numlinepar++;            ca[0]= k+'a'-1;ca[1]='\0';
       puts(line);            if(itimes==1){
       fputs(line,ficparo);              printf("#%1d%1d%d",i,j,k);
       fputs(line,ficlog);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     }            }else{
     ungetc(c,ficpar);              printf("%1d%1d%d",i,j,k);
                  fprintf(ficparo,"%1d%1d%d",i,j,k);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              /*  printf(" %.5le",matcov[i][j]); */
     for(i=1; i <=nlstate; i++){            }
       j=0;            ll=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){            for(li=1;li <=nlstate; li++){
         if(jj==i) continue;              for(lj=1;lj <=nlstate+ndeath; lj++){
         j++;                if(lj==li) continue;
         fscanf(ficpar,"%1d%1d",&i1,&j1);                for(lk=1;lk<=ncovmodel;lk++){
         if ((i1 != i) && (j1 != j)){                  ll++;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \                  if(ll<=jj){
 It might be a problem of design; if ncovcol and the model are correct\n \                    cb[0]= lk +'a'-1;cb[1]='\0';
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);                    if(ll<jj){
           exit(1);                      if(itimes==1){
         }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         fprintf(ficparo,"%1d%1d",i1,j1);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
         if(mle==1)                      }else{
           printf("%1d%1d",i,j);                        printf(" 0.");
         fprintf(ficlog,"%1d%1d",i,j);                        fprintf(ficparo," 0.");
         for(k=1; k<=ncovmodel;k++){                      }
           fscanf(ficpar," %lf",&param[i][j][k]);                    }else{
           if(mle==1){                      if(itimes==1){
             printf(" %lf",param[i][j][k]);                        printf(" Var(%s%1d%1d)",ca,i,j);
             fprintf(ficlog," %lf",param[i][j][k]);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           }                      }else{
           else                        printf(" 0.");
             fprintf(ficlog," %lf",param[i][j][k]);                        fprintf(ficparo," 0.");
           fprintf(ficparo," %lf",param[i][j][k]);                      }
         }                    }
         fscanf(ficpar,"\n");                  }
         numlinepar++;                } /* end lk */
         if(mle==1)              } /* end lj */
           printf("\n");            } /* end li */
         fprintf(ficlog,"\n");            printf("\n");
         fprintf(ficparo,"\n");            fprintf(ficparo,"\n");
       }            numlinepar++;
     }            } /* end k*/
     fflush(ficlog);        } /*end j */
       } /* end i */
     p=param[1][1];    } /* end itimes */
      
     /* Reads comments: lines beginning with '#' */  } /* end of prwizard */
     while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Gompertz Likelihood ******************************/
       ungetc(c,ficpar);  double gompertz(double x[])
       fgets(line, MAXLINE, ficpar);  { 
       numlinepar++;    double A,B,L=0.0,sump=0.,num=0.;
       puts(line);    int i,n=0; /* n is the size of the sample */
       fputs(line,ficparo);  
       fputs(line,ficlog);    for (i=0;i<=imx-1 ; i++) {
     }      sump=sump+weight[i];
     ungetc(c,ficpar);      /*    sump=sump+1;*/
       num=num+1;
     for(i=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath-1; j++){   
         fscanf(ficpar,"%1d%1d",&i1,&j1);   
         if ((i1-i)*(j1-j)!=0){    /* for (i=0; i<=imx; i++) 
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           exit(1);  
         }    for (i=1;i<=imx ; i++)
         printf("%1d%1d",i,j);      {
         fprintf(ficparo,"%1d%1d",i1,j1);        if (cens[i] == 1 && wav[i]>1)
         fprintf(ficlog,"%1d%1d",i1,j1);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         for(k=1; k<=ncovmodel;k++){        
           fscanf(ficpar,"%le",&delti3[i][j][k]);        if (cens[i] == 0 && wav[i]>1)
           printf(" %le",delti3[i][j][k]);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           fprintf(ficparo," %le",delti3[i][j][k]);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
           fprintf(ficlog," %le",delti3[i][j][k]);        
         }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         fscanf(ficpar,"\n");        if (wav[i] > 1 ) { /* ??? */
         numlinepar++;          L=L+A*weight[i];
         printf("\n");          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         fprintf(ficparo,"\n");        }
         fprintf(ficlog,"\n");      }
       }  
     }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     fflush(ficlog);   
     return -2*L*num/sump;
     delti=delti3[1][1];  }
   
   #ifdef GSL
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  /******************* Gompertz_f Likelihood ******************************/
    double gompertz_f(const gsl_vector *v, void *params)
     /* Reads comments: lines beginning with '#' */  { 
     while((c=getc(ficpar))=='#' && c!= EOF){    double A,B,LL=0.0,sump=0.,num=0.;
       ungetc(c,ficpar);    double *x= (double *) v->data;
       fgets(line, MAXLINE, ficpar);    int i,n=0; /* n is the size of the sample */
       numlinepar++;  
       puts(line);    for (i=0;i<=imx-1 ; i++) {
       fputs(line,ficparo);      sump=sump+weight[i];
       fputs(line,ficlog);      /*    sump=sump+1;*/
     }      num=num+1;
     ungetc(c,ficpar);    }
     
     matcov=matrix(1,npar,1,npar);   
     for(i=1; i <=npar; i++){    /* for (i=0; i<=imx; i++) 
       fscanf(ficpar,"%s",&str);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       if(mle==1)    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
         printf("%s",str);    for (i=1;i<=imx ; i++)
       fprintf(ficlog,"%s",str);      {
       fprintf(ficparo,"%s",str);        if (cens[i] == 1 && wav[i]>1)
       for(j=1; j <=i; j++){          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         fscanf(ficpar," %le",&matcov[i][j]);        
         if(mle==1){        if (cens[i] == 0 && wav[i]>1)
           printf(" %.5le",matcov[i][j]);          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
         }               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         fprintf(ficlog," %.5le",matcov[i][j]);        
         fprintf(ficparo," %.5le",matcov[i][j]);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       }        if (wav[i] > 1 ) { /* ??? */
       fscanf(ficpar,"\n");          LL=LL+A*weight[i];
       numlinepar++;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       if(mle==1)        }
         printf("\n");      }
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     }    printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
     for(i=1; i <=npar; i++)   
       for(j=i+1;j<=npar;j++)    return -2*LL*num/sump;
         matcov[i][j]=matcov[j][i];  }
      #endif
     if(mle==1)  
       printf("\n");  /******************* Printing html file ***********/
     fprintf(ficlog,"\n");  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                        int lastpass, int stepm, int weightopt, char model[],\
     fflush(ficlog);                    int imx,  double p[],double **matcov,double agemortsup){
        int i,k;
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     strcat(rfileres,".");    /* */    for (i=1;i<=2;i++) 
     strcat(rfileres,optionfilext);    /* Other files have txt extension */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(fichtm,"</ul>");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     fprintf(ficres,"#%s\n",version);  
   }    /* End of mle != -3 */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   /*-------- data file ----------*/   for (k=agegomp;k<(agemortsup-2);k++) 
   if((fic=fopen(datafile,"r"))==NULL)    {     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     printf("Problem while opening datafile: %s\n", datafile);goto end;  
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;   
   }    fflush(fichtm);
   }
   n= lastobs;  
   severity = vector(1,maxwav);  /******************* Gnuplot file **************/
   outcome=imatrix(1,maxwav+1,1,n);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   num=lvector(1,n);  
   moisnais=vector(1,n);    char dirfileres[132],optfileres[132];
   annais=vector(1,n);  
   moisdc=vector(1,n);    int ng;
   andc=vector(1,n);  
   agedc=vector(1,n);  
   cod=ivector(1,n);    /*#ifdef windows */
   weight=vector(1,n);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /*#endif */
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);  
   s=imatrix(1,maxwav+1,1,n);    strcpy(dirfileres,optionfilefiname);
   tab=ivector(1,NCOVMAX);    strcpy(optfileres,"vpl");
   ncodemax=ivector(1,8);    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
   i=1;    fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
   linei=0;    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     linei=linei+1;  
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */  } 
       if(line[j] == '\t')  
         line[j] = ' ';  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
     }  {
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){  
       ;    /*-------- data file ----------*/
     };    FILE *fic;
     line[j+1]=0;  /* Trims blanks at end of line */    char dummy[]="                         ";
     if(line[0]=='#'){    int i=0, j=0, n=0;
       fprintf(ficlog,"Comment line\n%s\n",line);    int linei, month, year,iout;
       printf("Comment line\n%s\n",line);    char line[MAXLINE], linetmp[MAXLINE];
       continue;    char stra[MAXLINE], strb[MAXLINE];
     }    char *stratrunc;
     int lstra;
     for (j=maxwav;j>=1;j--){  
       cutv(stra, strb,line,' ');  
       errno=0;    if((fic=fopen(datafile,"r"))==NULL)    {
       lval=strtol(strb,&endptr,10);      printf("Problem while opening datafile: %s\n", datafile);return 1;
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
       if( strb[0]=='\0' || (*endptr != '\0')){    }
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);  
         exit(1);    i=1;
       }    linei=0;
       s[j][i]=lval;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
            linei=linei+1;
       strcpy(line,stra);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       cutv(stra, strb,line,' ');        if(line[j] == '\t')
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){          line[j] = ' ';
       }      }
       else  if(iout=sscanf(strb,"%s.") != 0){      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         month=99;        ;
         year=9999;      };
       }else{      line[j+1]=0;  /* Trims blanks at end of line */
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      if(line[0]=='#'){
         exit(1);        fprintf(ficlog,"Comment line\n%s\n",line);
       }        printf("Comment line\n%s\n",line);
       anint[j][i]= (double) year;        continue;
       mint[j][i]= (double)month;      }
       strcpy(line,stra);      trimbb(linetmp,line); /* Trims multiple blanks in line */
     } /* ENd Waves */      strcpy(line, linetmp);
        
     cutv(stra, strb,line,' ');  
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      for (j=maxwav;j>=1;j--){
     }        cutv(stra, strb, line, ' '); 
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){        if(strb[0]=='.') { /* Missing status */
       month=99;          lval=-1;
       year=9999;        }else{
     }else{          errno=0;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);          lval=strtol(strb,&endptr,10); 
       exit(1);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     }          if( strb[0]=='\0' || (*endptr != '\0')){
     andc[i]=(double) year;            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     moisdc[i]=(double) month;            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     strcpy(line,stra);            return 1;
              }
     cutv(stra, strb,line,' ');        }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        s[j][i]=lval;
     }        
     else  if(iout=sscanf(strb,"%s.") != 0){        strcpy(line,stra);
       month=99;        cutv(stra, strb,line,' ');
       year=9999;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     }else{        }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       exit(1);          month=99;
     }          year=9999;
     annais[i]=(double)(year);        }else{
     moisnais[i]=(double)(month);          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     strcpy(line,stra);          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
              return 1;
     cutv(stra, strb,line,' ');        }
     errno=0;        anint[j][i]= (double) year; 
     dval=strtod(strb,&endptr);        mint[j][i]= (double)month; 
     if( strb[0]=='\0' || (*endptr != '\0')){        strcpy(line,stra);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);      } /* ENd Waves */
       exit(1);      
     }      cutv(stra, strb,line,' '); 
     weight[i]=dval;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcpy(line,stra);      }
          else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     for (j=ncovcol;j>=1;j--){        month=99;
       cutv(stra, strb,line,' ');        year=9999;
       errno=0;      }else{
       lval=strtol(strb,&endptr,10);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       if( strb[0]=='\0' || (*endptr != '\0')){          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);          return 1;
         exit(1);      }
       }      andc[i]=(double) year; 
       if(lval <-1 || lval >1){      moisdc[i]=(double) month; 
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \      strcpy(line,stra);
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \      cutv(stra, strb,line,' '); 
  For example, for multinomial values like 1, 2 and 3,\n \      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
  build V1=0 V2=0 for the reference value (1),\n \      }
         V1=1 V2=0 for (2) \n \      else  if(iout=sscanf(strb,"%s.", dummy) != 0){
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \        month=99;
  output of IMaCh is often meaningless.\n \        year=9999;
  Exiting.\n",lval,linei, i,line,j);      }else{
         exit(1);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       }        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
       covar[j][i]=(double)(lval);          return 1;
       strcpy(line,stra);      }
     }      if (year==9999) {
     lstra=strlen(stra);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */          return 1;
       stratrunc = &(stra[lstra-9]);  
       num[i]=atol(stratrunc);      }
     }      annais[i]=(double)(year);
     else      moisnais[i]=(double)(month); 
       num[i]=atol(stra);      strcpy(line,stra);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      cutv(stra, strb,line,' '); 
          errno=0;
     i=i+1;      dval=strtod(strb,&endptr); 
   } /* End loop reading  data */      if( strb[0]=='\0' || (*endptr != '\0')){
   fclose(fic);        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   /* printf("ii=%d", ij);        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
      scanf("%d",i);*/        fflush(ficlog);
   imx=i-1; /* Number of individuals */        return 1;
       }
   /* for (i=1; i<=imx; i++){      weight[i]=dval; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      strcpy(line,stra);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for (j=ncovcol;j>=1;j--){
     }*/        cutv(stra, strb,line,' '); 
    /*  for (i=1; i<=imx; i++){        if(strb[0]=='.') { /* Missing status */
      if (s[4][i]==9)  s[4][i]=-1;          lval=-1;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        }else{
            errno=0;
   /* for (i=1; i<=imx; i++) */          lval=strtol(strb,&endptr,10); 
            if( strb[0]=='\0' || (*endptr != '\0')){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
      else weight[i]=1;*/            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
   /* Calculation of the number of parameters from char model */          }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);        if(lval <-1 || lval >1){
   Tvaraff=ivector(1,15);          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
   Tvard=imatrix(1,15,1,2);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   Tage=ivector(1,15);         for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
       For example, for multinomial values like 1, 2 and 3,\n \
   if (strlen(model) >1){ /* If there is at least 1 covariate */   build V1=0 V2=0 for the reference value (1),\n \
     j=0, j1=0, k1=1, k2=1;          V1=1 V2=0 for (2) \n \
     j=nbocc(model,'+'); /* j=Number of '+' */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     j1=nbocc(model,'*'); /* j1=Number of '*' */   output of IMaCh is often meaningless.\n \
     cptcovn=j+1;   Exiting.\n",lval,linei, i,line,j);
     cptcovprod=j1; /*Number of products */          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
       Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     strcpy(modelsav,model);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   For example, for multinomial values like 1, 2 and 3,\n \
       printf("Error. Non available option model=%s ",model);   build V1=0 V2=0 for the reference value (1),\n \
       fprintf(ficlog,"Error. Non available option model=%s ",model);          V1=1 V2=0 for (2) \n \
       goto end;   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     }   output of IMaCh is often meaningless.\n \
       Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
     /* This loop fills the array Tvar from the string 'model'.*/          return 1;
         }
     for(i=(j+1); i>=1;i--){        covar[j][i]=(double)(lval);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        strcpy(line,stra);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      }  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      lstra=strlen(stra);
       /*scanf("%d",i);*/       
       if (strchr(strb,'*')) {  /* Model includes a product */      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        stratrunc = &(stra[lstra-9]);
         if (strcmp(strc,"age")==0) { /* Vn*age */        num[i]=atol(stratrunc);
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');      else
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        num[i]=atol(stra);
           cptcovage++;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
             Tage[cptcovage]=i;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
             /*printf("stre=%s ", stre);*/      
         }      i=i+1;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    } /* End loop reading  data */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    *imax=i-1; /* Number of individuals */
           Tvar[i]=atoi(stre);    fclose(fic);
           cptcovage++;   
           Tage[cptcovage]=i;    return (0);
         }    /* endread: */
         else {  /* Age is not in the model */      printf("Exiting readdata: ");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      fclose(fic);
           Tvar[i]=ncovcol+k1;      return (1);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */  }
           Tvar[cptcovn+k2]=Tvard[k1][1];  void removespace(char *str) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    char *p1 = str, *p2 = str;
           for (k=1; k<=lastobs;k++)    do
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      while (*p2 == ' ')
           k1++;        p2++;
           k2=k2+2;    while (*p1++ = *p2++);
         }  }
       }  
       else { /* no more sum */  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/     * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
        /*  scanf("%d",i);*/     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
       cutv(strd,strc,strb,'V');     * - cptcovn or number of covariates k of the models excluding age*products =6
       Tvar[i]=atoi(strc);     * - cptcovage number of covariates with age*products =2
       }     * - cptcovs number of simple covariates
       strcpy(modelsav,stra);       * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     *     which is a new column after the 9 (ncovcol) variables. 
         scanf("%d",i);*/     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
     } /* end of loop + */     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
   } /* end model */     *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
       * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.   */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  {
     int i, j, k, ks;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int  j1, k1, k2;
   printf("cptcovprod=%d ", cptcovprod);    char modelsav[80];
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    char stra[80], strb[80], strc[80], strd[80],stre[80];
   
   scanf("%d ",i);*/    /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
     /*  if(mle==1){*/      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
   if (weightopt != 1) { /* Maximisation without weights*/      j=nbocc(model,'+'); /**< j=Number of '+' */
     for(i=1;i<=n;i++) weight[i]=1.0;      j1=nbocc(model,'*'); /**< j1=Number of '*' */
   }      cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
     /*-calculation of age at interview from date of interview and age at death -*/      cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
   agev=matrix(1,maxwav,1,imx);                    /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
   for (i=1; i<=imx; i++) {      cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
     for(m=2; (m<= maxwav); m++) {      cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      strcpy(modelsav,model); 
         anint[m][i]=9999;      if (strstr(model,"AGE") !=0){
         s[m][i]=-1;        printf("Error. AGE must be in lower case 'age' model=%s ",model);
       }        fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        return 1;
         nberr++;      }
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      if (strstr(model,"v") !=0){
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         s[m][i]=-1;        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
       }        return 1;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      }
         nberr++;      
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);      /*   Design
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */       *  <          ncovcol=8                >
       }       * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
     }       *   k=  1    2      3       4     5       6      7        8
   }       *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
   for (i=1; i<=imx; i++)  {       *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
     for(m=firstpass; (m<= lastpass); m++){       *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){       *  Tage[++cptcovage]=k
         if (s[m][i] >= nlstate+1) {       *       if products, new covar are created after ncovcol with k1
           if(agedc[i]>0)       *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)       *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
               agev[m][i]=agedc[i];       *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
             else {       *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
               if ((int)andc[i]!=9999){       *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
                 nbwarn++;       *  <          ncovcol=8                >
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);       *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);       *          k=  1    2      3       4     5       6      7        8    9   10   11  12
                 agev[m][i]=-1;       *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
               }       * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
             }       * p Tprod[1]@2={                         6, 5}
         }       *p Tvard[1][1]@4= {7, 8, 5, 6}
         else if(s[m][i] !=9){ /* Standard case, age in fractional       * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                                  years but with the precision of a month */       *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       *How to reorganize?
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)       * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
             agev[m][i]=1;       * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
           else if(agev[m][i] <agemin){       *       {2,   1,     4,      8,    5,      6,     3,       7}
             agemin=agev[m][i];       * Struct []
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       */
           }  
           else if(agev[m][i] >agemax){      /* This loop fills the array Tvar from the string 'model'.*/
             agemax=agev[m][i];      /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
           }      /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
           /*agev[m][i]=anint[m][i]-annais[i];*/      /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
           /*     agev[m][i] = age[i]+2*m;*/      /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
         }      /*  k=1 Tvar[1]=2 (from V2) */
         else { /* =9 */      /*  k=5 Tvar[5] */
           agev[m][i]=1;      /* for (k=1; k<=cptcovn;k++) { */
           s[m][i]=-1;      /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         }      /*  } */
       }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       else /*= 0 Unknown */      /*
         agev[m][i]=1;       * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
     }      for(k=cptcovt; k>=1;k--) /**< Number of covariates */
              Tvar[k]=0;
   }      cptcovage=0;
   for (i=1; i<=imx; i++)  {      for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
     for(m=firstpass; (m<=lastpass); m++){        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
       if (s[m][i] > (nlstate+ndeath)) {                                       modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         nberr++;        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            /*scanf("%d",i);*/
         goto end;        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
       }          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
     }          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
   }            /* covar is not filled and then is empty */
             cptcovprod--;
   /*for (i=1; i<=imx; i++){            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
   for (m=firstpass; (m<lastpass); m++){            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);            cptcovage++; /* Sums the number of covariates which include age as a product */
 }            Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
 }*/          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            Tvar[k]=atoi(stre);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            cptcovage++;
             Tage[cptcovage]=k;
   agegomp=(int)agemin;          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
   free_vector(severity,1,maxwav);            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
   free_imatrix(outcome,1,maxwav+1,1,n);            cptcovn++;
   free_vector(moisnais,1,n);            cptcovprodnoage++;k1++;
   free_vector(annais,1,n);            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
   /* free_matrix(mint,1,maxwav,1,n);            Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
      free_matrix(anint,1,maxwav,1,n);*/                                    because this model-covariate is a construction we invent a new column
   free_vector(moisdc,1,n);                                    ncovcol + k1
   free_vector(andc,1,n);                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
                cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
   wav=ivector(1,imx);            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            k2=k2+2;
                Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
   /* Concatenates waves */            Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
   Tcode=ivector(1,100);            }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          } /* End age is not in the model */
   ncodemax[1]=1;        } /* End if model includes a product */
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        else { /* no more sum */
                /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of         /*  scanf("%d",i);*/
                                  the estimations*/          cutl(strd,strc,strb,'V');
   h=0;          ks++; /**< Number of simple covariates */
   m=pow(2,cptcoveff);          cptcovn++;
            Tvar[k]=atoi(strd);
   for(k=1;k<=cptcoveff; k++){        }
     for(i=1; i <=(m/pow(2,k));i++){        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
       for(j=1; j <= ncodemax[k]; j++){        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          scanf("%d",i);*/
           h++;      } /* end of loop + */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    } /* end model */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
         }    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       }      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     }  
   }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    printf("cptcovprod=%d ", cptcovprod);
      codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   /* for(i=1; i <=m ;i++){  
      for(k=1; k <=cptcovn; k++){    scanf("%d ",i);*/
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
      }  
      printf("\n");    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
      }    /*endread:*/
      scanf("%d",i);*/      printf("Exiting decodemodel: ");
          return (1);
   /*------------ gnuplot -------------*/  }
   strcpy(optionfilegnuplot,optionfilefiname);  
   if(mle==-3)  calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
     strcat(optionfilegnuplot,"-mort");  {
   strcat(optionfilegnuplot,".gp");    int i, m;
   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    for (i=1; i<=imx; i++) {
     printf("Problem with file %s",optionfilegnuplot);      for(m=2; (m<= maxwav); m++) {
   }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
   else{          anint[m][i]=9999;
     fprintf(ficgp,"\n# %s\n", version);          s[m][i]=-1;
     fprintf(ficgp,"# %s\n", optionfilegnuplot);        }
     fprintf(ficgp,"set missing 'NaNq'\n");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
   }          *nberr++;
   /*  fclose(ficgp);*/          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   /*--------- index.htm --------*/          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        }
   if(mle==-3)        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     strcat(optionfilehtm,"-mort");          *nberr++;
   strcat(optionfilehtm,".htm");          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
     printf("Problem with %s \n",optionfilehtm), exit(0);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
   }        }
       }
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    }
   strcat(optionfilehtmcov,"-cov.htm");  
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    for (i=1; i<=imx; i++)  {
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   }      for(m=firstpass; (m<= lastpass); m++){
   else{        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \          if (s[m][i] >= nlstate+1) {
 <hr size=\"2\" color=\"#EC5E5E\"> \n\            if(agedc[i]>0)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);                agev[m][i]=agedc[i];
   }            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \                if ((int)andc[i]!=9999){
 <hr size=\"2\" color=\"#EC5E5E\"> \n\                  nbwarn++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
 \n\                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
 <hr  size=\"2\" color=\"#EC5E5E\">\                  agev[m][i]=-1;
  <ul><li><h4>Parameter files</h4>\n\                }
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\              }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\          }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\          else if(s[m][i] !=9){ /* Standard case, age in fractional
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\                                   years but with the precision of a month */
  - Date and time at start: %s</ul>\n",\            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\              agev[m][i]=1;
           fileres,fileres,\            else if(agev[m][i] < *agemin){ 
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);              *agemin=agev[m][i];
   fflush(fichtm);              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
   strcpy(pathr,path);            else if(agev[m][i] >*agemax){
   strcat(pathr,optionfilefiname);              *agemax=agev[m][i];
   chdir(optionfilefiname); /* Move to directory named optionfile */              /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
              }
   /* Calculates basic frequencies. Computes observed prevalence at single age            /*agev[m][i]=anint[m][i]-annais[i];*/
      and prints on file fileres'p'. */            /*     agev[m][i] = age[i]+2*m;*/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);          }
           else { /* =9 */
   fprintf(fichtm,"\n");            agev[m][i]=1;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\            s[m][i]=-1;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        }
           imx,agemin,agemax,jmin,jmax,jmean);        else /*= 0 Unknown */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          agev[m][i]=1;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (i=1; i<=imx; i++)  {
          for(m=firstpass; (m<=lastpass); m++){
            if (s[m][i] > (nlstate+ndeath)) {
   /* For Powell, parameters are in a vector p[] starting at p[1]          *nberr++;
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/        }
       }
   if (mle==-3){    }
     ximort=matrix(1,NDIM,1,NDIM);  
     cens=ivector(1,n);    /*for (i=1; i<=imx; i++){
     ageexmed=vector(1,n);    for (m=firstpass; (m<lastpass); m++){
     agecens=vector(1,n);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     dcwave=ivector(1,n);  }
    
     for (i=1; i<=imx; i++){  }*/
       dcwave[i]=-1;  
       for (m=firstpass; m<=lastpass; m++)  
         if (s[m][i]>nlstate) {    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
           dcwave[i]=m;    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  
           break;    return (0);
         }   /* endread:*/
     }      printf("Exiting calandcheckages: ");
       return (1);
     for (i=1; i<=imx; i++) {  }
       if (wav[i]>0){  
         ageexmed[i]=agev[mw[1][i]][i];  syscompilerinfo()
         j=wav[i];   {
         agecens[i]=1.;     /* #include "syscompilerinfo.h"*/
   #include <gnu/libc-version.h>
         if (ageexmed[i]> 1 && wav[i] > 0){  #if defined(__GNUC__)
           agecens[i]=agev[mw[j][i]][i];  # if defined(__GNUC_PATCHLEVEL__)
           cens[i]= 1;  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
         }else if (ageexmed[i]< 1)                              + __GNUC_MINOR__ * 100 \
           cens[i]= -1;                              + __GNUC_PATCHLEVEL__)
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)  # else
           cens[i]=0 ;  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
       }                              + __GNUC_MINOR__ * 100)
       else cens[i]=-1;  # endif
     }  #endif
      
     for (i=1;i<=NDIM;i++) {  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
       for (j=1;j<=NDIM;j++)  #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
         ximort[i][j]=(i == j ? 1.0 : 0.0);      // Windows (x64 and x86)
     }  #elif __unix__ // all unices, not all compilers
          // Unix
     p[1]=0.0268; p[NDIM]=0.083;  #elif __linux__
     /*printf("%lf %lf", p[1], p[2]);*/      // linux
      #elif __APPLE__
          // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
     printf("Powell\n");  fprintf(ficlog,"Powell\n");  #endif
     strcpy(filerespow,"pow-mort");  
     strcat(filerespow,fileres);  /*  __MINGW32__   */
     if((ficrespow=fopen(filerespow,"w"))==NULL) {  /*  __CYGWIN__   */
       printf("Problem with resultfile: %s\n", filerespow);  /* __MINGW64__  */
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
     }  /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
     fprintf(ficrespow,"# Powell\n# iter -2*LL");  /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
     /*  for (i=1;i<=nlstate;i++)  /* _WIN64  // Defined for applications for Win64. */
         for(j=1;j<=nlstate+ndeath;j++)  /* _M_X64 // Defined for compilations that target x64 processors. */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
     */  #include <stdint.h>
     fprintf(ficrespow,"\n");  #if UINTPTR_MAX == 0xffffffff
         printf("32-bit \n"); /* 32-bit */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  #elif UINTPTR_MAX == 0xffffffffffffffff
     fclose(ficrespow);    printf("64-bit \n");/* 64-bit */
      #else
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);   printf("wtf-bit \n"); /* wtf */
   #endif
     for(i=1; i <=NDIM; i++)  
       for(j=i+1;j<=NDIM;j++)  struct utsname sysInfo;
         matcov[i][j]=matcov[j][i];  
         if (uname(&sysInfo) != -1) {
     printf("\nCovariance matrix\n ");        puts(sysInfo.sysname);
     for(i=1; i <=NDIM; i++) {        puts(sysInfo.nodename);
       for(j=1;j<=NDIM;j++){        puts(sysInfo.release);
         printf("%f ",matcov[i][j]);        puts(sysInfo.version);
       }        puts(sysInfo.machine);
       printf("\n ");     }
     }     else
            perror("uname() error");
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);     printf("GNU C version %d\n", __GNUC_VERSION__);
     for (i=1;i<=NDIM;i++)    printf("GNU libc version: %s\n", gnu_get_libc_version());
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
    }
     lsurv=vector(1,AGESUP);  
     lpop=vector(1,AGESUP);  /***********************************************/
     tpop=vector(1,AGESUP);  /**************** Main Program *****************/
     lsurv[agegomp]=100000;  /***********************************************/
      
     for (k=agegomp;k<=AGESUP;k++) {  int main(int argc, char *argv[])
       agemortsup=k;  {
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;  #ifdef GSL
     }    const gsl_multimin_fminimizer_type *T;
        size_t iteri = 0, it;
     for (k=agegomp;k<agemortsup;k++)    int rval = GSL_CONTINUE;
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));    int status = GSL_SUCCESS;
        double ssval;
     for (k=agegomp;k<agemortsup;k++){  #endif
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       sumlpop=sumlpop+lpop[k];    int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     }  
        int jj, ll, li, lj, lk;
     tpop[agegomp]=sumlpop;    int numlinepar=0; /* Current linenumber of parameter file */
     for (k=agegomp;k<(agemortsup-3);k++){    int itimes;
       /*  tpop[k+1]=2;*/    int NDIM=2;
       tpop[k+1]=tpop[k]-lpop[k];    int vpopbased=0;
     }  
        char ca[32], cb[32];
        /*  FILE *fichtm; *//* Html File */
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");    /* FILE *ficgp;*/ /*Gnuplot File */
     for (k=agegomp;k<(agemortsup-2);k++)    struct stat info;
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    double agedeb;
        double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
      
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */    double fret;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    double dum; /* Dummy variable */
        double ***p3mat;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    double ***mobaverage;
                      stepm, weightopt,\  
                      model,imx,p,matcov,agemortsup);    char line[MAXLINE];
        char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     free_vector(lsurv,1,AGESUP);    char pathr[MAXLINE], pathimach[MAXLINE]; 
     free_vector(lpop,1,AGESUP);    char *tok, *val; /* pathtot */
     free_vector(tpop,1,AGESUP);    int firstobs=1, lastobs=10;
   } /* Endof if mle==-3 */    int c,  h , cpt;
      int jl;
   else{ /* For mle >=1 */    int i1, j1, jk, stepsize;
      int *tab; 
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    int mobilav=0,popforecast=0;
     for (k=1; k<=npar;k++)    int hstepm, nhstepm;
       printf(" %d %8.5f",k,p[k]);    int agemortsup;
     printf("\n");    float  sumlpop=0.;
     globpr=1; /* to print the contributions */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)    double bage=0, fage=110, age, agelim, agebase;
       printf(" %d %8.5f",k,p[k]);    double ftolpl=FTOL;
     printf("\n");    double **prlim;
     if(mle>=1){ /* Could be 1 or 2 */    double ***param; /* Matrix of parameters */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double  *p;
     }    double **matcov; /* Matrix of covariance */
        double ***delti3; /* Scale */
     /*--------- results files --------------*/    double *delti; /* Scale */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***eij, ***vareij;
        double **varpl; /* Variances of prevalence limits by age */
        double *epj, vepp;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **ximort;
     for(i=1,jk=1; i <=nlstate; i++){    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
       for(k=1; k <=(nlstate+ndeath); k++){    int *dcwave;
         if (k != i) {  
           printf("%d%d ",i,k);    char z[1]="c";
           fprintf(ficlog,"%d%d ",i,k);  
           fprintf(ficres,"%1d%1d ",i,k);    /*char  *strt;*/
           for(j=1; j <=ncovmodel; j++){    char strtend[80];
             printf("%lf ",p[jk]);  
             fprintf(ficlog,"%lf ",p[jk]);  
             fprintf(ficres,"%lf ",p[jk]);  /*   setlocale (LC_ALL, ""); */
             jk++;  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
           }  /*   textdomain (PACKAGE); */
           printf("\n");  /*   setlocale (LC_CTYPE, ""); */
           fprintf(ficlog,"\n");  /*   setlocale (LC_MESSAGES, ""); */
           fprintf(ficres,"\n");  
         }    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       }    rstart_time = time(NULL);  
     }    /*  (void) gettimeofday(&start_time,&tzp);*/
     if(mle!=0){    start_time = *localtime(&rstart_time);
       /* Computing hessian and covariance matrix */    curr_time=start_time;
       ftolhess=ftol; /* Usually correct */    /*tml = *localtime(&start_time.tm_sec);*/
       hesscov(matcov, p, npar, delti, ftolhess, func);    /* strcpy(strstart,asctime(&tml)); */
     }    strcpy(strstart,asctime(&start_time));
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");  /*  printf("Localtime (at start)=%s",strstart); */
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  /*  tp.tm_sec = tp.tm_sec +86400; */
     for(i=1,jk=1; i <=nlstate; i++){  /*  tm = *localtime(&start_time.tm_sec); */
       for(j=1; j <=nlstate+ndeath; j++){  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         if (j!=i) {  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
           fprintf(ficres,"%1d%1d",i,j);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
           printf("%1d%1d",i,j);  /*   tp.tm_sec = mktime(&tmg); */
           fprintf(ficlog,"%1d%1d",i,j);  /*   strt=asctime(&tmg); */
           for(k=1; k<=ncovmodel;k++){  /*   printf("Time(after) =%s",strstart);  */
             printf(" %.5e",delti[jk]);  /*  (void) time (&time_value);
             fprintf(ficlog," %.5e",delti[jk]);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
             fprintf(ficres," %.5e",delti[jk]);  *  tm = *localtime(&time_value);
             jk++;  *  strstart=asctime(&tm);
           }  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
           printf("\n");  */
           fprintf(ficlog,"\n");  
           fprintf(ficres,"\n");    nberr=0; /* Number of errors and warnings */
         }    nbwarn=0;
       }    getcwd(pathcd, size);
     }  
        printf("\n%s\n%s",version,fullversion);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if(argc <=1){
     if(mle>=1)      printf("\nEnter the parameter file name: ");
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fgets(pathr,FILENAMELENGTH,stdin);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      i=strlen(pathr);
     /* # 121 Var(a12)\n\ */      if(pathr[i-1]=='\n')
     /* # 122 Cov(b12,a12) Var(b12)\n\ */        pathr[i-1]='\0';
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      i=strlen(pathr);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        pathr[i-1]='\0';
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */     for (tok = pathr; tok != NULL; ){
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        printf("Pathr |%s|\n",pathr);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
            printf("val= |%s| pathr=%s\n",val,pathr);
            strcpy (pathtot, val);
     /* Just to have a covariance matrix which will be more understandable        if(pathr[0] == '\0') break; /* Dirty */
        even is we still don't want to manage dictionary of variables      }
     */    }
     for(itimes=1;itimes<=2;itimes++){    else{
       jj=0;      strcpy(pathtot,argv[1]);
       for(i=1; i <=nlstate; i++){    }
         for(j=1; j <=nlstate+ndeath; j++){    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
           if(j==i) continue;    /*cygwin_split_path(pathtot,path,optionfile);
           for(k=1; k<=ncovmodel;k++){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
             jj++;    /* cutv(path,optionfile,pathtot,'\\');*/
             ca[0]= k+'a'-1;ca[1]='\0';  
             if(itimes==1){    /* Split argv[0], imach program to get pathimach */
               if(mle>=1)    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                 printf("#%1d%1d%d",i,j,k);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
               fprintf(ficres,"#%1d%1d%d",i,j,k);   /*   strcpy(pathimach,argv[0]); */
             }else{    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
               if(mle>=1)    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                 printf("%1d%1d%d",i,j,k);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
               fprintf(ficlog,"%1d%1d%d",i,j,k);    chdir(path); /* Can be a relative path */
               fprintf(ficres,"%1d%1d%d",i,j,k);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
             }      printf("Current directory %s!\n",pathcd);
             ll=0;    strcpy(command,"mkdir ");
             for(li=1;li <=nlstate; li++){    strcat(command,optionfilefiname);
               for(lj=1;lj <=nlstate+ndeath; lj++){    if((outcmd=system(command)) != 0){
                 if(lj==li) continue;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                 for(lk=1;lk<=ncovmodel;lk++){      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   ll++;      /* fclose(ficlog); */
                   if(ll<=jj){  /*     exit(1); */
                     cb[0]= lk +'a'-1;cb[1]='\0';    }
                     if(ll<jj){  /*   if((imk=mkdir(optionfilefiname))<0){ */
                       if(itimes==1){  /*     perror("mkdir"); */
                         if(mle>=1)  /*   } */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    /*-------- arguments in the command line --------*/
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  
                       }else{    /* Log file */
                         if(mle>=1)    strcat(filelog, optionfilefiname);
                           printf(" %.5e",matcov[jj][ll]);    strcat(filelog,".log");    /* */
                         fprintf(ficlog," %.5e",matcov[jj][ll]);    if((ficlog=fopen(filelog,"w"))==NULL)    {
                         fprintf(ficres," %.5e",matcov[jj][ll]);      printf("Problem with logfile %s\n",filelog);
                       }      goto end;
                     }else{    }
                       if(itimes==1){    fprintf(ficlog,"Log filename:%s\n",filelog);
                         if(mle>=1)    fprintf(ficlog,"\n%s\n%s",version,fullversion);
                           printf(" Var(%s%1d%1d)",ca,i,j);    fprintf(ficlog,"\nEnter the parameter file name: \n");
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);   path=%s \n\
                       }else{   optionfile=%s\n\
                         if(mle>=1)   optionfilext=%s\n\
                           printf(" %.5e",matcov[jj][ll]);   optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);  
                         fprintf(ficres," %.5e",matcov[jj][ll]);    syscompilerinfo();
                       }  
                     }    printf("Local time (at start):%s",strstart);
                   }    fprintf(ficlog,"Local time (at start): %s",strstart);
                 } /* end lk */    fflush(ficlog);
               } /* end lj */  /*   (void) gettimeofday(&curr_time,&tzp); */
             } /* end li */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
             if(mle>=1)  
               printf("\n");    /* */
             fprintf(ficlog,"\n");    strcpy(fileres,"r");
             fprintf(ficres,"\n");    strcat(fileres, optionfilefiname);
             numlinepar++;    strcat(fileres,".txt");    /* Other files have txt extension */
           } /* end k*/  
         } /*end j */    /*---------arguments file --------*/
       } /* end i */  
     } /* end itimes */    if((ficpar=fopen(optionfile,"r"))==NULL)    {
          printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
     fflush(ficlog);      fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
     fflush(ficres);      fflush(ficlog);
          /* goto end; */
     while((c=getc(ficpar))=='#' && c!= EOF){      exit(70); 
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);  
       puts(line);  
       fputs(line,ficparo);  
     }    strcpy(filereso,"o");
     ungetc(c,ficpar);    strcat(filereso,fileres);
        if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     estepm=0;      printf("Problem with Output resultfile: %s\n", filereso);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     if (estepm==0 || estepm < stepm) estepm=stepm;      fflush(ficlog);
     if (fage <= 2) {      goto end;
       bage = ageminpar;    }
       fage = agemaxpar;  
     }    /* Reads comments: lines beginning with '#' */
        numlinepar=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      ungetc(c,ficpar);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fgets(line, MAXLINE, ficpar);
          numlinepar++;
     while((c=getc(ficpar))=='#' && c!= EOF){      fputs(line,stdout);
       ungetc(c,ficpar);      fputs(line,ficparo);
       fgets(line, MAXLINE, ficpar);      fputs(line,ficlog);
       puts(line);    }
       fputs(line,ficparo);    ungetc(c,ficpar);
     }  
     ungetc(c,ficpar);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
        numlinepar++;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    fflush(ficlog);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    while((c=getc(ficpar))=='#' && c!= EOF){
          ungetc(c,ficpar);
     while((c=getc(ficpar))=='#' && c!= EOF){      fgets(line, MAXLINE, ficpar);
       ungetc(c,ficpar);      numlinepar++;
       fgets(line, MAXLINE, ficpar);      fputs(line, stdout);
       puts(line);      //puts(line);
       fputs(line,ficparo);      fputs(line,ficparo);
     }      fputs(line,ficlog);
     ungetc(c,ficpar);    }
        ungetc(c,ficpar);
      
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;     
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;    covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
        cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     fscanf(ficpar,"pop_based=%d\n",&popbased);    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
     fprintf(ficparo,"pop_based=%d\n",popbased);         v1+v2*age+v2*v3 makes cptcovn = 3
     fprintf(ficres,"pop_based=%d\n",popbased);      */
        if (strlen(model)>1) 
     while((c=getc(ficpar))=='#' && c!= EOF){      ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
       ungetc(c,ficpar);    else
       fgets(line, MAXLINE, ficpar);      ncovmodel=2;
       puts(line);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       fputs(line,ficparo);    nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     }    npar= nforce*ncovmodel; /* Number of parameters like aij*/
     ungetc(c,ficpar);    if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
          printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fflush(stdout);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fclose (ficlog);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      goto end;
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    }
     /* day and month of proj2 are not used but only year anproj2.*/    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
        delti=delti3[1][1];
        /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
        if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
          fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      fclose (ficparo);
          fclose (ficlog);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      goto end;
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      exit(0);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }
          else if(mle==-3) {
    /*------------ free_vector  -------------*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
    /*  chdir(path); */      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
        fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     free_ivector(wav,1,imx);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      matcov=matrix(1,npar,1,npar);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      else{
     free_lvector(num,1,n);      /* Read guessed parameters */
     free_vector(agedc,1,n);      /* Reads comments: lines beginning with '#' */
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      while((c=getc(ficpar))=='#' && c!= EOF){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        ungetc(c,ficpar);
     fclose(ficparo);        fgets(line, MAXLINE, ficpar);
     fclose(ficres);        numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/        fputs(line,ficlog);
        }
     strcpy(filerespl,"pl");      ungetc(c,ficpar);
     strcat(filerespl,fileres);      
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      for(i=1; i <=nlstate; i++){
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;        j=0;
     }        for(jj=1; jj <=nlstate+ndeath; jj++){
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);          if(jj==i) continue;
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);          j++;
     pstamp(ficrespl);          fscanf(ficpar,"%1d%1d",&i1,&j1);
     fprintf(ficrespl,"# Period (stable) prevalence \n");          if ((i1 != i) && (j1 != j)){
     fprintf(ficrespl,"#Age ");            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  It might be a problem of design; if ncovcol and the model are correct\n \
     fprintf(ficrespl,"\n");  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
              exit(1);
     prlim=matrix(1,nlstate,1,nlstate);          }
           fprintf(ficparo,"%1d%1d",i1,j1);
     agebase=ageminpar;          if(mle==1)
     agelim=agemaxpar;            printf("%1d%1d",i,j);
     ftolpl=1.e-10;          fprintf(ficlog,"%1d%1d",i,j);
     i1=cptcoveff;          for(k=1; k<=ncovmodel;k++){
     if (cptcovn < 1){i1=1;}            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){              printf(" %lf",param[i][j][k]);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              fprintf(ficlog," %lf",param[i][j][k]);
         k=k+1;            }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            else
         fprintf(ficrespl,"\n#******");              fprintf(ficlog," %lf",param[i][j][k]);
         printf("\n#******");            fprintf(ficparo," %lf",param[i][j][k]);
         fprintf(ficlog,"\n#******");          }
         for(j=1;j<=cptcoveff;j++) {          fscanf(ficpar,"\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          numlinepar++;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if(mle==1)
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            printf("\n");
         }          fprintf(ficlog,"\n");
         fprintf(ficrespl,"******\n");          fprintf(ficparo,"\n");
         printf("******\n");        }
         fprintf(ficlog,"******\n");      }  
              fflush(ficlog);
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /* Reads scales values */
           fprintf(ficrespl,"%.0f ",age );      p=param[1][1];
           for(j=1;j<=cptcoveff;j++)      
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Reads comments: lines beginning with '#' */
           for(i=1; i<=nlstate;i++)      while((c=getc(ficpar))=='#' && c!= EOF){
             fprintf(ficrespl," %.5f", prlim[i][i]);        ungetc(c,ficpar);
           fprintf(ficrespl,"\n");        fgets(line, MAXLINE, ficpar);
         }        numlinepar++;
       }        fputs(line,stdout);
     }        fputs(line,ficparo);
     fclose(ficrespl);        fputs(line,ficlog);
       }
     /*------------- h Pij x at various ages ------------*/      ungetc(c,ficpar);
    
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(i=1; i <=nlstate; i++){
     if((ficrespij=fopen(filerespij,"w"))==NULL) {        for(j=1; j <=nlstate+ndeath-1; j++){
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fscanf(ficpar,"%1d%1d",&i1,&j1);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          if ( (i1-i) * (j1-j) != 0){
     }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     printf("Computing pij: result on file '%s' \n", filerespij);            exit(1);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          }
            printf("%1d%1d",i,j);
     stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficparo,"%1d%1d",i1,j1);
     /*if (stepm<=24) stepsize=2;*/          fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
     agelim=AGESUP;            fscanf(ficpar,"%le",&delti3[i][j][k]);
     hstepm=stepsize*YEARM; /* Every year of age */            printf(" %le",delti3[i][j][k]);
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
     /* hstepm=1;   aff par mois*/          }
     pstamp(ficrespij);          fscanf(ficpar,"\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");          numlinepar++;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          printf("\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficparo,"\n");
         k=k+1;          fprintf(ficlog,"\n");
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fflush(ficlog);
         fprintf(ficrespij,"******\n");  
              /* Reads covariance matrix */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      delti=delti3[1][1];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    
       /* Reads comments: lines beginning with '#' */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      while((c=getc(ficpar))=='#' && c!= EOF){
           oldm=oldms;savm=savms;        ungetc(c,ficpar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fgets(line, MAXLINE, ficpar);
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        numlinepar++;
           for(i=1; i<=nlstate;i++)        fputs(line,stdout);
             for(j=1; j<=nlstate+ndeath;j++)        fputs(line,ficparo);
               fprintf(ficrespij," %1d-%1d",i,j);        fputs(line,ficlog);
           fprintf(ficrespij,"\n");      }
           for (h=0; h<=nhstepm; h++){      ungetc(c,ficpar);
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    
             for(i=1; i<=nlstate;i++)      matcov=matrix(1,npar,1,npar);
               for(j=1; j<=nlstate+ndeath;j++)      for(i=1; i <=npar; i++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(j=1; j <=npar; j++) matcov[i][j]=0.;
             fprintf(ficrespij,"\n");        
           }      for(i=1; i <=npar; i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fscanf(ficpar,"%s",str);
           fprintf(ficrespij,"\n");        if(mle==1)
         }          printf("%s",str);
       }        fprintf(ficlog,"%s",str);
     }        fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);          fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
     fclose(ficrespij);            printf(" %.5le",matcov[i][j]);
           }
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog," %.5le",matcov[i][j]);
     for(i=1;i<=AGESUP;i++)          fprintf(ficparo," %.5le",matcov[i][j]);
       for(j=1;j<=NCOVMAX;j++)        }
         for(k=1;k<=NCOVMAX;k++)        fscanf(ficpar,"\n");
           probs[i][j][k]=0.;        numlinepar++;
         if(mle==1)
     /*---------- Forecasting ------------------*/          printf("\n");
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/        fprintf(ficlog,"\n");
     if(prevfcast==1){        fprintf(ficparo,"\n");
       /*    if(stepm ==1){*/      }
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      for(i=1; i <=npar; i++)
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/        for(j=i+1;j<=npar;j++)
       /*      }  */          matcov[i][j]=matcov[j][i];
       /*      else{ */      
       /*        erreur=108; */      if(mle==1)
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        printf("\n");
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      fprintf(ficlog,"\n");
       /*      } */      
     }      fflush(ficlog);
        
       /*-------- Rewriting parameter file ----------*/
     /*---------- Health expectancies and variances ------------*/      strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcpy(filerest,"t");      strcat(rfileres,".");    /* */
     strcat(filerest,fileres);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficrest=fopen(filerest,"w"))==NULL) {      if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      fprintf(ficres,"#%s\n",version);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);    }    /* End of mle != -3 */
   
   
     strcpy(filerese,"e");    n= lastobs;
     strcat(filerese,fileres);    num=lvector(1,n);
     if((ficreseij=fopen(filerese,"w"))==NULL) {    moisnais=vector(1,n);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    annais=vector(1,n);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    moisdc=vector(1,n);
     }    andc=vector(1,n);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);    agedc=vector(1,n);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    cod=ivector(1,n);
     weight=vector(1,n);
     strcpy(fileresstde,"stde");    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     strcat(fileresstde,fileres);    mint=matrix(1,maxwav,1,n);
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {    anint=matrix(1,maxwav,1,n);
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    tab=ivector(1,NCOVMAX);
     }    ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
     strcpy(filerescve,"cve");      goto end;
     strcat(filerescve,fileres);  
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {    /* Calculation of the number of parameters from char model */
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);          k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
     }          k=3 V4 Tvar[k=3]= 4 (from V4)
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);          k=2 V1 Tvar[k=2]= 1 (from V1)
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);          k=1 Tvar[1]=2 (from V2)
       */
     strcpy(fileresv,"v");    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     strcat(fileresv,fileres);    /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
     if((ficresvij=fopen(fileresv,"w"))==NULL) {        For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    */
     }    /* For model-covariate k tells which data-covariate to use but
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      because this model-covariate is a construction we invent a new column
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      Tvar[3=V1*V4]=4+1 etc */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);       if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */    */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     if (mobilav!=0) {    Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                              * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                              * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
         printf(" Error in movingaverage mobilav=%d\n",mobilav);                           4 covariates (3 plus signs)
       }                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
     }                        */  
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    if(decodemodel(model, lastobs) == 1)
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      goto end;
         k=k+1;  
         fprintf(ficrest,"\n#****** ");    if((double)(lastobs-imx)/(double)imx > 1.10){
         for(j=1;j<=cptcoveff;j++)      nbwarn++;
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
         fprintf(ficrest,"******\n");      fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
         fprintf(ficreseij,"\n#****** ");      /*  if(mle==1){*/
         fprintf(ficresstdeij,"\n#****** ");    if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
         fprintf(ficrescveij,"\n#****** ");      for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
         for(j=1;j<=cptcoveff;j++) {    }
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /*-calculation of age at interview from date of interview and age at death -*/
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agev=matrix(1,maxwav,1,imx);
         }  
         fprintf(ficreseij,"******\n");    if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
         fprintf(ficresstdeij,"******\n");      goto end;
         fprintf(ficrescveij,"******\n");  
   
         fprintf(ficresvij,"\n#****** ");    agegomp=(int)agemin;
         for(j=1;j<=cptcoveff;j++)    free_vector(moisnais,1,n);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(annais,1,n);
         fprintf(ficresvij,"******\n");    /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_vector(moisdc,1,n);
         oldm=oldms;savm=savms;    free_vector(andc,1,n);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);      /* */
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);      
      wav=ivector(1,imx);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
         oldm=oldms;savm=savms;    bh=imatrix(1,lastpass-firstpass+1,1,imx);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
         if(popbased==1){     
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);    /* Concatenates waves */
         }    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
         pstamp(ficrest);   
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
         fprintf(ficrest,"\n");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
         epj=vector(1,nlstate+1);    Ndum =ivector(-1,NCOVMAX);  
         for(age=bage; age <=fage ;age++){    if (ncovmodel > 2)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
           if (popbased==1) {  
             if(mobilav ==0){    codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
               for(i=1; i<=nlstate;i++)    /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
                 prlim[i][i]=probs[(int)age][i][k];    h=0;
             }else{ /* mobilav */  
               for(i=1; i<=nlstate;i++)  
                 prlim[i][i]=mobaverage[(int)age][i][k];    /*if (cptcovn > 0) */
             }        
           }   
            m=pow(2,cptcoveff);
           fprintf(ficrest," %4.0f",age);   
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             }            h++;
             epj[nlstate+1] +=epj[j];            if (h>m) 
           }              h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
           for(i=1, vepp=0.;i <=nlstate;i++)             *     h     1     2     3     4
             for(j=1;j <=nlstate;j++)             *______________________________  
               vepp += vareij[i][j][(int)age];             *     1 i=1 1 i=1 1 i=1 1 i=1 1
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));             *     2     2     1     1     1
           for(j=1;j <=nlstate;j++){             *     3 i=2 1     2     1     1
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));             *     4     2     2     1     1
           }             *     5 i=3 1 i=2 1     2     1
           fprintf(ficrest,"\n");             *     6     2     1     2     1
         }             *     7 i=4 1     2     2     1
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);             *     8     2     2     2     1
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);             *     9 i=5 1 i=3 1 i=2 1     1
         free_vector(epj,1,nlstate+1);             *    10     2     1     1     1
       }             *    11 i=6 1     2     1     1
     }             *    12     2     2     1     1
     free_vector(weight,1,n);             *    13 i=7 1 i=4 1     2     1    
     free_imatrix(Tvard,1,15,1,2);             *    14     2     1     2     1
     free_imatrix(s,1,maxwav+1,1,n);             *    15 i=8 1     2     2     1
     free_matrix(anint,1,maxwav,1,n);             *    16     2     2     2     1
     free_matrix(mint,1,maxwav,1,n);             */
     free_ivector(cod,1,n);            codtab[h][k]=j;
     free_ivector(tab,1,NCOVMAX);            /*codtab[h][Tvar[k]]=j;*/
     fclose(ficreseij);            printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
     fclose(ficresstdeij);          } 
     fclose(ficrescveij);        }
     fclose(ficresvij);      }
     fclose(ficrest);    } 
     fclose(ficpar);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
         codtab[1][2]=1;codtab[2][2]=2; */
     /*------- Variance of period (stable) prevalence------*/      /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
     strcpy(fileresvpl,"vpl");         printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     strcat(fileresvpl,fileres);       }
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       printf("\n");
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);       }
       exit(0);       scanf("%d",i);*/
     }  
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);   free_ivector(Ndum,-1,NCOVMAX);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
         k=k+1;    /*------------ gnuplot -------------*/
         fprintf(ficresvpl,"\n#****** ");    strcpy(optionfilegnuplot,optionfilefiname);
         for(j=1;j<=cptcoveff;j++)    if(mle==-3)
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(optionfilegnuplot,"-mort");
         fprintf(ficresvpl,"******\n");    strcat(optionfilegnuplot,".gp");
        
         varpl=matrix(1,nlstate,(int) bage, (int) fage);    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
         oldm=oldms;savm=savms;      printf("Problem with file %s",optionfilegnuplot);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);    }
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    else{
       }      fprintf(ficgp,"\n# %s\n", version); 
     }      fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
     fclose(ficresvpl);      fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*---------- End : free ----------------*/    /*  fclose(ficgp);*/
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*--------- index.htm --------*/
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   }  /* mle==-3 arrives here for freeing */    if(mle==-3)
   free_matrix(prlim,1,nlstate,1,nlstate);      strcat(optionfilehtm,"-mort");
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    strcat(optionfilehtm,".htm");
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf("Problem with %s \n",optionfilehtm);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      exit(0);
     free_matrix(covar,0,NCOVMAX,1,n);    }
     free_matrix(matcov,1,npar,1,npar);  
     /*free_vector(delti,1,npar);*/    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcat(optionfilehtmcov,"-cov.htm");
     free_matrix(agev,1,maxwav,1,imx);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     free_ivector(ncodemax,1,8);    else{
     free_ivector(Tvar,1,15);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     free_ivector(Tprod,1,15);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     free_ivector(Tvaraff,1,15);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
     free_ivector(Tage,1,15);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     free_ivector(Tcode,1,100);    }
   
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     free_imatrix(codtab,1,100,1,10);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   fflush(fichtm);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   fflush(ficgp);  \n\
    <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
   if((nberr >0) || (nbwarn>0)){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
   }else{   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     printf("End of Imach\n");   - Date and time at start: %s</ul>\n",\
     fprintf(ficlog,"End of Imach\n");            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
   }            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   printf("See log file on %s\n",filelog);            fileres,fileres,\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
   (void) gettimeofday(&end_time,&tzp);    fflush(fichtm);
   tm = *localtime(&end_time.tv_sec);  
   tmg = *gmtime(&end_time.tv_sec);    strcpy(pathr,path);
   strcpy(strtend,asctime(&tm));    strcat(pathr,optionfilefiname);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);    chdir(optionfilefiname); /* Move to directory named optionfile */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);    
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    fprintf(fichtm,"\n");
   /*  printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
 /*   if(fileappend(fichtm,optionfilehtm)){ */  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
   fclose(fichtm);            imx,agemin,agemax,jmin,jmax,jmean);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   fclose(fichtmcov);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   fclose(ficgp);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   fclose(ficlog);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   /*------ End -----------*/      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
    printf("Before Current directory %s!\n",pathcd);    /* For Powell, parameters are in a vector p[] starting at p[1]
    if(chdir(pathcd) != 0)       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     printf("Can't move to directory %s!\n",path);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   if(getcwd(pathcd,MAXLINE) > 0)  
     printf("Current directory %s!\n",pathcd);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   /*strcat(plotcmd,CHARSEPARATOR);*/  
   sprintf(plotcmd,"gnuplot");    if (mle==-3){
 #ifndef UNIX      ximort=matrix(1,NDIM,1,NDIM); 
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);  /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
 #endif      cens=ivector(1,n);
   if(!stat(plotcmd,&info)){      ageexmed=vector(1,n);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      agecens=vector(1,n);
     if(!stat(getenv("GNUPLOTBIN"),&info)){      dcwave=ivector(1,n);
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);   
     }else      for (i=1; i<=imx; i++){
       strcpy(pplotcmd,plotcmd);        dcwave[i]=-1;
 #ifdef UNIX        for (m=firstpass; m<=lastpass; m++)
     strcpy(plotcmd,GNUPLOTPROGRAM);          if (s[m][i]>nlstate) {
     if(!stat(plotcmd,&info)){            dcwave[i]=m;
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     }else            break;
       strcpy(pplotcmd,plotcmd);          }
 #endif      }
   }else  
     strcpy(pplotcmd,plotcmd);      for (i=1; i<=imx; i++) {
          if (wav[i]>0){
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);          ageexmed[i]=agev[mw[1][i]][i];
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);          j=wav[i];
           agecens[i]=1.; 
   if((outcmd=system(plotcmd)) != 0){  
     printf("\n Problem with gnuplot\n");          if (ageexmed[i]> 1 && wav[i] > 0){
   }            agecens[i]=agev[mw[j][i]][i];
   printf(" Wait...");            cens[i]= 1;
   while (z[0] != 'q') {          }else if (ageexmed[i]< 1) 
     /* chdir(path); */            cens[i]= -1;
     printf("\nType e to edit output files, g to graph again and q for exiting: ");          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     scanf("%s",z);            cens[i]=0 ;
 /*     if (z[0] == 'c') system("./imach"); */        }
     if (z[0] == 'e') {        else cens[i]=-1;
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      }
       system(optionfilehtm);      
     }      for (i=1;i<=NDIM;i++) {
     else if (z[0] == 'g') system(plotcmd);        for (j=1;j<=NDIM;j++)
     else if (z[0] == 'q') exit(0);          ximort[i][j]=(i == j ? 1.0 : 0.0);
   }      }
   end:      
   while (z[0] != 'q') {      /*p[1]=0.0268; p[NDIM]=0.083;*/
     printf("\nType  q for exiting: ");      /*printf("%lf %lf", p[1], p[2]);*/
     scanf("%s",z);      
   }      
 }  #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.168


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>