Diff for /imach/src/imach.c between versions 1.14 and 1.114

version 1.14, 2002/02/20 17:05:44 version 1.114, 2006/02/26 12:57:58
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.114  2006/02/26 12:57:58  brouard
   individuals from different ages are interviewed on their health status    (Module): Some improvements in processing parameter
   or degree of  disability. At least a second wave of interviews    filename with strsep.
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.113  2006/02/24 14:20:24  brouard
   waves and are computed for each degree of severity of disability (number    (Module): Memory leaks checks with valgrind and:
   of life states). More degrees you consider, more time is necessary to    datafile was not closed, some imatrix were not freed and on matrix
   reach the Maximum Likelihood of the parameters involved in the model.    allocation too.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.112  2006/01/30 09:55:26  brouard
   to be observed in state i at the first wave. Therefore the model is:    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.111  2006/01/25 20:38:18  brouard
   age", you should modify the program where the markup    (Module): Lots of cleaning and bugs added (Gompertz)
     *Covariates have to be included here again* invites you to do it.    (Module): Comments can be added in data file. Missing date values
   More covariates you add, less is the speed of the convergence.    can be a simple dot '.'.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.110  2006/01/25 00:51:50  brouard
   delay between waves is not identical for each individual, or if some    (Module): Lots of cleaning and bugs added (Gompertz)
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx is the probability to be    (Module): Comments (lines starting with a #) are allowed in data.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.108  2006/01/19 18:05:42  lievre
   unobserved intermediate  states. This elementary transition (by month or    Gnuplot problem appeared...
   quarter trimester, semester or year) is model as a multinomial logistic.    To be fixed
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.105  2006/01/05 20:23:19  lievre
   This software have been partly granted by Euro-REVES, a concerted action    *** empty log message ***
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.104  2005/09/30 16:11:43  lievre
   software can be distributed freely for non commercial use. Latest version    (Module): sump fixed, loop imx fixed, and simplifications.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): If the status is missing at the last wave but we know
   **********************************************************************/    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
 #include <math.h>    contributions to the likelihood is 1 - Prob of dying from last
 #include <stdio.h>    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #include <stdlib.h>    the healthy state at last known wave). Version is 0.98
 #include <unistd.h>  
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define MAXLINE 256    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.102  2004/09/15 17:31:30  brouard
 #define windows    Add the possibility to read data file including tab characters.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    *** empty log message ***
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.98  2004/05/16 15:05:56  brouard
 #define YEARM 12. /* Number of months per year */    New version 0.97 . First attempt to estimate force of mortality
 #define AGESUP 130    directly from the data i.e. without the need of knowing the health
 #define AGEBASE 40    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 int nvar;    cross-longitudinal survey is different from the mortality estimated
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    from other sources like vital statistic data.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    The same imach parameter file can be used but the option for mle should be -3.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Agnès, who wrote this part of the code, tried to keep most of the
 int popbased=0, fprev,lprev;    former routines in order to include the new code within the former code.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    The output is very simple: only an estimate of the intercept and of
 int maxwav; /* Maxim number of waves */    the slope with 95% confident intervals.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Current limitations:
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    A) Even if you enter covariates, i.e. with the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double jmean; /* Mean space between 2 waves */    B) There is no computation of Life Expectancy nor Life Table.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.97  2004/02/20 13:25:42  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Version 0.96d. Population forecasting command line is (temporarily)
 FILE *ficgp, *fichtm,*ficresprob;    suppressed.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
  FILE  *ficresvij;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   char fileresv[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define NR_END 1    (Repository): Using imachwizard code to output a more meaningful covariance
 #define FREE_ARG char*    matrix (cov(a12,c31) instead of numbers.
 #define FTOL 1.0e-10  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define NRANSI    Just cleaning
 #define ITMAX 200  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define TOL 2.0e-4    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define CGOLD 0.3819660    (Module): Version 0.96b
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define GOLD 1.618034    exist so I changed back to asctime which exists.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 static double maxarg1,maxarg2;    (Repository): Elapsed time after each iteration is now output. It
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    helps to forecast when convergence will be reached. Elapsed time
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    is stamped in powell.  We created a new html file for the graphs
      concerning matrix of covariance. It has extension -cov.htm.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 static double sqrarg;    mle=-1 a template is output in file "or"mypar.txt with the design
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    of the covariance matrix to be input.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.89  2003/06/24 12:30:52  brouard
 int imx;    (Module): Some bugs corrected for windows. Also, when
 int stepm;    mle=-1 a template is output in file "or"mypar.txt with the design
 /* Stepm, step in month: minimum step interpolation*/    of the covariance matrix to be input.
   
 int m,nb;    Revision 1.88  2003/06/23 17:54:56  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 double *weight;  
 int **s; /* Status */    Revision 1.86  2003/06/17 20:04:08  brouard
 double *agedc, **covar, idx;    (Module): Change position of html and gnuplot routines and added
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    routine fileappend.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.85  2003/06/17 13:12:43  brouard
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /**************** split *************************/    prior to the death. In this case, dh was negative and likelihood
 static  int split( char *path, char *dirc, char *name )    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
    char *s;                             /* pointer */    interview.
    int  l1, l2;                         /* length counters */    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
    l1 = strlen( path );                 /* length of path */    memory allocation. But we also truncated to 8 characters (left
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    truncation)
    s = strrchr( path, '\\' );           /* find last / */    (Repository): No more line truncation errors.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.84  2003/06/13 21:44:43  brouard
       extern char       *getwd( );    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
       if ( getwd( dirc ) == NULL ) {    many times. Probs is memory consuming and must be used with
 #else    parcimony.
       extern char       *getcwd( );    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.83  2003/06/10 13:39:11  lievre
 #endif    *** empty log message ***
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.82  2003/06/05 15:57:20  brouard
       strcpy( name, path );             /* we've got it */    Add log in  imach.c and  fullversion number is now printed.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  */
       l2 = strlen( s );                 /* length of filename */  /*
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );     Interpolated Markov Chain
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Short summary of the programme:
       dirc[l1-l2] = 0;                  /* add zero */    
    }    This program computes Healthy Life Expectancies from
    l1 = strlen( dirc );                 /* length of directory */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    first survey ("cross") where individuals from different ages are
    return( 0 );                         /* we're done */    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /******************************************/    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 void replace(char *s, char*t)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   int i;    probability to be observed in state j at the second wave
   int lg=20;    conditional to be observed in state i at the first wave. Therefore
   i=0;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   lg=strlen(t);    'age' is age and 'sex' is a covariate. If you want to have a more
   for(i=0; i<= lg; i++) {    complex model than "constant and age", you should modify the program
     (s[i] = t[i]);    where the markup *Covariates have to be included here again* invites
     if (t[i]== '\\') s[i]='/';    you to do it.  More covariates you add, slower the
   }    convergence.
 }  
     The advantage of this computer programme, compared to a simple
 int nbocc(char *s, char occ)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   int i,j=0;    intermediate interview, the information is lost, but taken into
   int lg=20;    account using an interpolation or extrapolation.  
   i=0;  
   lg=strlen(s);    hPijx is the probability to be observed in state i at age x+h
   for(i=0; i<= lg; i++) {    conditional to the observed state i at age x. The delay 'h' can be
   if  (s[i] == occ ) j++;    split into an exact number (nh*stepm) of unobserved intermediate
   }    states. This elementary transition (by month, quarter,
   return j;    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 void cutv(char *u,char *v, char*t, char occ)    hPijx.
 {  
   int i,lg,j,p=0;    Also this programme outputs the covariance matrix of the parameters but also
   i=0;    of the life expectancies. It also computes the stable prevalence. 
   for(j=0; j<=strlen(t)-1; j++) {    
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
   lg=strlen(t);    from the European Union.
   for(j=0; j<p; j++) {    It is copyrighted identically to a GNU software product, ie programme and
     (u[j] = t[j]);    software can be distributed freely for non commercial use. Latest version
   }    can be accessed at http://euroreves.ined.fr/imach .
      u[p]='\0';  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    for(j=0; j<= lg; j++) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (j>=(p+1))(v[j-p-1] = t[j]);    
   }    **********************************************************************/
 }  /*
     main
 /********************** nrerror ********************/    read parameterfile
     read datafile
 void nrerror(char error_text[])    concatwav
 {    freqsummary
   fprintf(stderr,"ERREUR ...\n");    if (mle >= 1)
   fprintf(stderr,"%s\n",error_text);      mlikeli
   exit(1);    print results files
 }    if mle==1 
 /*********************** vector *******************/       computes hessian
 double *vector(int nl, int nh)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   double *v;    open gnuplot file
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    open html file
   if (!v) nrerror("allocation failure in vector");    stable prevalence
   return v-nl+NR_END;     for age prevalim()
 }    h Pij x
     variance of p varprob
 /************************ free vector ******************/    forecasting if prevfcast==1 prevforecast call prevalence()
 void free_vector(double*v, int nl, int nh)    health expectancies
 {    Variance-covariance of DFLE
   free((FREE_ARG)(v+nl-NR_END));    prevalence()
 }     movingaverage()
     varevsij() 
 /************************ivector *******************************/    if popbased==1 varevsij(,popbased)
 int *ivector(long nl,long nh)    total life expectancies
 {    Variance of stable prevalence
   int *v;   end
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  
 }  
    
 /******************free ivector **************************/  #include <math.h>
 void free_ivector(int *v, long nl, long nh)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <string.h>
 }  #include <unistd.h>
   
 /******************* imatrix *******************************/  #include <limits.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <sys/types.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <sys/stat.h>
 {  #include <errno.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  extern int errno;
   int **m;  
    /* #include <sys/time.h> */
   /* allocate pointers to rows */  #include <time.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include "timeval.h"
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <libintl.h> */
   m -= nrl;  /* #define _(String) gettext (String) */
    
    #define MAXLINE 256
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m[nrl] += NR_END;  #define FILENAMELENGTH 132
   m[nrl] -= ncl;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
   /* return pointer to array of pointers to rows */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   return m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /****************** free_imatrix *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       int **m;  #define NCOVMAX 8 /* Maximum number of covariates */
       long nch,ncl,nrh,nrl;  #define MAXN 20000
      /* free an int matrix allocated by imatrix() */  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define AGEBASE 40
   free((FREE_ARG) (m+nrl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************* matrix *******************************/  #define CHARSEPARATOR "/"
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define ODIRSEPARATOR '\\'
 {  #else
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define DIRSEPARATOR '\\'
   double **m;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #endif
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* $Id$ */
   m -= nrl;  /* $State$ */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fullversion[]="$Revision$ $Date$"; 
   m[nrl] += NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl] -= ncl;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int npar=NPARMAX;
   return m;  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /*************************free matrix ************************/  int popbased=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int maxwav; /* Maxim number of waves */
   free((FREE_ARG)(m+nrl-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
 /******************* ma3x *******************************/                     to the likelihood and the sum of weights (done by funcone)*/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   double ***m;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double jmean; /* Mean space between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m += NR_END;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m -= nrl;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int globpr; /* Global variable for printing or not */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double fretone; /* Only one call to likelihood */
   m[nrl] += NR_END;  long ipmx; /* Number of contributions */
   m[nrl] -= ncl;  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE *ficresprobmorprev;
   m[nrl][ncl] += NR_END;  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl][ncl] -= nll;  FILE *ficreseij;
   for (j=ncl+1; j<=nch; j++)  char filerese[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  FILE  *ficresvpl;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char fileresvpl[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  char title[MAXLINE];
       m[i][j]=m[i][j-1]+nlay;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filerest[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /***************** f1dim *************************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 extern int ncom;  
 extern double *pcom,*xicom;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 extern double (*nrfunc)(double []);  struct timezone tzp;
    extern int gettimeofday();
 double f1dim(double x)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   int j;  extern long time();
   double f;  char strcurr[80], strfor[80];
   double *xt;  
    char *endptr;
   xt=vector(1,ncom);  long lval;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NR_END 1
   free_vector(xt,1,ncom);  #define FREE_ARG char*
   return f;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /*****************brent *************************/  #define ITMAX 200 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #define TOL 2.0e-4 
   int iter;  
   double a,b,d,etemp;  #define CGOLD 0.3819660 
   double fu,fv,fw,fx;  #define ZEPS 1.0e-10 
   double ftemp;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
   a=(ax < cx ? ax : cx);  #define TINY 1.0e-20 
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  static double maxarg1,maxarg2;
   fw=fv=fx=(*f)(x);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for (iter=1;iter<=ITMAX;iter++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define rint(a) floor(a+0.5)
     printf(".");fflush(stdout);  
 #ifdef DEBUG  static double sqrarg;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int imx; 
       return fx;  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     ftemp=fu;  
     if (fabs(e) > tol1) {  int estepm;
       r=(x-w)*(fx-fv);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  int m,nb;
       q=2.0*(q-r);  long *num;
       if (q > 0.0) p = -p;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       q=fabs(q);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       etemp=e;  double **pmmij, ***probs;
       e=d;  double *ageexmed,*agecens;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double dateintmean=0;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  double *weight;
         d=p/q;  int **s; /* Status */
         u=x+d;  double *agedc, **covar, idx;
         if (u-a < tol2 || b-u < tol2)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           d=SIGN(tol1,xm-x);  double *lsurv, *lpop, *tpop;
       }  
     } else {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftolhess; /* Tolerance for computing hessian */
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /**************** split *************************/
     fu=(*f)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if (fu <= fx) {  {
       if (u >= x) a=x; else b=x;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       SHFT(v,w,x,u)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         SHFT(fv,fw,fx,fu)    */ 
         } else {    char  *ss;                            /* pointer */
           if (u < x) a=u; else b=u;    int   l1, l2;                         /* length counters */
           if (fu <= fw || w == x) {  
             v=w;    l1 = strlen(path );                   /* length of path */
             w=u;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
             fv=fw;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
             fw=fu;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           } else if (fu <= fv || v == x || v == w) {      strcpy( name, path );               /* we got the fullname name because no directory */
             v=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             fv=fu;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           }      /* get current working directory */
         }      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   nrerror("Too many iterations in brent");        return( GLOCK_ERROR_GETCWD );
   *xmin=x;      }
   return fx;      /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 /****************** mnbrak ***********************/      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             double (*func)(double))      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double ulim,u,r,q, dum;      dirc[l1-l2] = 0;                    /* add zero */
   double fu;      printf(" DIRC2 = %s \n",dirc);
      }
   *fa=(*func)(*ax);    /* We add a separator at the end of dirc if not exists */
   *fb=(*func)(*bx);    l1 = strlen( dirc );                  /* length of directory */
   if (*fb > *fa) {    if( dirc[l1-1] != DIRSEPARATOR ){
     SHFT(dum,*ax,*bx,dum)      dirc[l1] =  DIRSEPARATOR;
       SHFT(dum,*fb,*fa,dum)      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);    ss = strrchr( name, '.' );            /* find last / */
   while (*fb > *fc) {    if (ss >0){
     r=(*bx-*ax)*(*fb-*fc);      ss++;
     q=(*bx-*cx)*(*fb-*fa);      strcpy(ext,ss);                     /* save extension */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      l1= strlen( name);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      l2= strlen(ss)+1;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      strncpy( finame, name, l1-l2);
     if ((*bx-u)*(u-*cx) > 0.0) {      finame[l1-l2]= 0;
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    return( 0 );                          /* we're done */
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /******************************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
     } else {    int i;
       u=(*cx)+GOLD*(*cx-*bx);    int lg=0;
       fu=(*func)(u);    i=0;
     }    lg=strlen(t);
     SHFT(*ax,*bx,*cx,u)    for(i=0; i<= lg; i++) {
       SHFT(*fa,*fb,*fc,fu)      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************** linmin ************************/  
   int nbocc(char *s, char occ)
 int ncom;  {
 double *pcom,*xicom;    int i,j=0;
 double (*nrfunc)(double []);    int lg=20;
      i=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   double brent(double ax, double bx, double cx,    if  (s[i] == occ ) j++;
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);    return j;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  void cutv(char *u,char *v, char*t, char occ)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   ncom=n;       gives u="abcedf" and v="ghi2j" */
   pcom=vector(1,n);    int i,lg,j,p=0;
   xicom=vector(1,n);    i=0;
   nrfunc=func;    for(j=0; j<=strlen(t)-1; j++) {
   for (j=1;j<=n;j++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];  
   }    lg=strlen(t);
   ax=0.0;    for(j=0; j<p; j++) {
   xx=1.0;      (u[j] = t[j]);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       u[p]='\0';
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     for(j=0; j<= lg; j++) {
 #endif      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /********************** nrerror ********************/
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*************** powell ************************/    fprintf(stderr,"%s\n",error_text);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    exit(EXIT_FAILURE);
             double (*func)(double []))  }
 {  /*********************** vector *******************/
   void linmin(double p[], double xi[], int n, double *fret,  double *vector(int nl, int nh)
               double (*func)(double []));  {
   int i,ibig,j;    double *v;
   double del,t,*pt,*ptt,*xit;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double fp,fptt;    if (!v) nrerror("allocation failure in vector");
   double *xits;    return v-nl+NR_END;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /************************ free vector ******************/
   xits=vector(1,n);  void free_vector(double*v, int nl, int nh)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  /************************ivector *******************************/
     del=0.0;  int *ivector(long nl,long nh)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    int *v;
       printf(" %d %.12f",i, p[i]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf("\n");    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=n;i++) {    return v-nl+NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /******************free ivector **************************/
       printf("fret=%lf \n",*fret);  void free_ivector(int *v, long nl, long nh)
 #endif  {
       printf("%d",i);fflush(stdout);    free((FREE_ARG)(v+nl-NR_END));
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /************************lvector *******************************/
         ibig=i;  long *lvector(long nl,long nh)
       }  {
 #ifdef DEBUG    long *v;
       printf("%d %.12e",i,(*fret));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    return v-nl+NR_END;
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /******************free lvector **************************/
         printf(" p=%.12e",p[j]);  void free_lvector(long *v, long nl, long nh)
       printf("\n");  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************* imatrix *******************************/
       int k[2],l;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       k[0]=1;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (j=1;j<=n;j++)    int **m; 
         printf(" %.12e",p[j]);    
       printf("\n");    /* allocate pointers to rows */ 
       for(l=0;l<=1;l++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m += NR_END; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
       free_vector(xit,1,n);    m[nrl] -= ncl; 
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       free_vector(pt,1,n);    
       return;    /* return pointer to array of pointers to rows */ 
     }    return m; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  } 
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /****************** free_imatrix *************************/
       xit[j]=p[j]-pt[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
       pt[j]=p[j];        int **m;
     }        long nch,ncl,nrh,nrl; 
     fptt=(*func)(ptt);       /* free an int matrix allocated by imatrix() */ 
     if (fptt < fp) {  { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       if (t < 0.0) {    free((FREE_ARG) (m+nrl-NR_END)); 
         linmin(p,xit,n,fret,func);  } 
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /******************* matrix *******************************/
           xi[j][n]=xit[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
         }  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double **m;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
       }    m -= nrl;
     }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /**** Prevalence limit ****************/    m[nrl] -= ncl;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      matrix by transitions matrix until convergence is reached */     */
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /*************************free matrix ************************/
   double **matprod2();  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /******************* ma3x *******************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
    cov[1]=1.;    double ***m;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (!m) nrerror("allocation failure 1 in matrix()");
     newm=savm;    m += NR_END;
     /* Covariates have to be included here again */    m -= nrl;
      cov[2]=agefin;  
      m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] += NR_END;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m[nrl] -= ncl;
       }  
       for (k=1; k<=cptcovage;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl][ncl] -= nll;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    
     for (i=nrl+1; i<=nrh; i++) {
     savm=oldm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     oldm=newm;      for (j=ncl+1; j<=nch; j++) 
     maxmax=0.;        m[i][j]=m[i][j-1]+nlay;
     for(j=1;j<=nlstate;j++){    }
       min=1.;    return m; 
       max=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(i=1; i<=nlstate; i++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         sumnew=0;    */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************************free ma3x ************************/
         min=FMIN(min,prlim[i][j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       }  {
       maxmin=max-min;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
 }  {
     /* Caution optionfilefiname is hidden */
 /*************** transition probabilities ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,fileres);
 {    return tmpout;
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         /*s2 += param[i][j][nc]*cov[nc];*/    strcpy(tmpout,optionfilefiname);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,"/");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
       ps[i][j]=s2;    return tmpout;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************** function subdirf3 ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf3(char fileres[], char *preop, char *preop2)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    
       }    /* Caution optionfilefiname is hidden */
       ps[i][j]=(s2);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
     /*ps[3][2]=1;*/    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   for(i=1; i<= nlstate; i++){    return tmpout;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /***************** f1dim *************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  extern int ncom; 
       s1+=exp(ps[i][j]);  extern double *pcom,*xicom;
     ps[i][i]=1./(s1+1.);  extern double (*nrfunc)(double []); 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double f1dim(double x) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int j; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double f;
   } /* end i */    double *xt; 
    
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    xt=vector(1,ncom); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[ii][jj]=0;    f=(*nrfunc)(xt); 
       ps[ii][ii]=1;    free_vector(xt,1,ncom); 
     }    return f; 
   }  } 
   
   /*****************brent *************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(jj=1; jj<= nlstate+ndeath; jj++){  { 
      printf("%lf ",ps[ii][jj]);    int iter; 
    }    double a,b,d,etemp;
     printf("\n ");    double fu,fv,fw,fx;
     }    double ftemp;
     printf("\n ");printf("%lf ",cov[2]);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /*    double e=0.0; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);   
   goto end;*/    a=(ax < cx ? ax : cx); 
     return ps;    b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /**************** Product of 2 matrices ******************/    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      printf(".");fflush(stdout);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fprintf(ficlog,".");fflush(ficlog);
   /* in, b, out are matrice of pointers which should have been initialized  #ifdef DEBUG
      before: only the contents of out is modified. The function returns      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      a pointer to pointers identical to out */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   long i, j, k;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(i=nrl; i<= nrh; i++)  #endif
     for(k=ncolol; k<=ncoloh; k++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        *xmin=x; 
         out[i][k] +=in[i][j]*b[j][k];        return fx; 
       } 
   return out;      ftemp=fu;
 }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 /************* Higher Matrix Product ***************/        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        if (q > 0.0) p = -p; 
 {        q=fabs(q); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        etemp=e; 
      duration (i.e. until        e=d; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      (typically every 2 years instead of every month which is too big).        else { 
      Model is determined by parameters x and covariates have to be          d=p/q; 
      included manually here.          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
      */            d=SIGN(tol1,xm-x); 
         } 
   int i, j, d, h, k;      } else { 
   double **out, cov[NCOVMAX];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **newm;      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /* Hstepm could be zero and should return the unit matrix */      fu=(*f)(u); 
   for (i=1;i<=nlstate+ndeath;i++)      if (fu <= fx) { 
     for (j=1;j<=nlstate+ndeath;j++){        if (u >= x) a=x; else b=x; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        SHFT(v,w,x,u) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          SHFT(fv,fw,fx,fu) 
     }          } else { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            if (u < x) a=u; else b=u; 
   for(h=1; h <=nhstepm; h++){            if (fu <= fw || w == x) { 
     for(d=1; d <=hstepm; d++){              v=w; 
       newm=savm;              w=u; 
       /* Covariates have to be included here again */              fv=fw; 
       cov[1]=1.;              fw=fu; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            } else if (fu <= fv || v == x || v == w) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];              v=u; 
       for (k=1; k<=cptcovage;k++)              fv=fu; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            } 
       for (k=1; k<=cptcovprod;k++)          } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return fx; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /****************** mnbrak ***********************/
       savm=oldm;  
       oldm=newm;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    double ulim,u,r,q, dum;
         po[i][j][h]=newm[i][j];    double fu; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);   
          */    *fa=(*func)(*ax); 
       }    *fb=(*func)(*bx); 
   } /* end h */    if (*fb > *fa) { 
   return po;      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 /*************** log-likelihood *************/    *fc=(*func)(*cx); 
 double func( double *x)    while (*fb > *fc) { 
 {      r=(*bx-*ax)*(*fb-*fc); 
   int i, ii, j, k, mi, d, kk;      q=(*bx-*cx)*(*fb-*fa); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double **out;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double sw; /* Sum of weights */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double lli; /* Individual log likelihood */      if ((*bx-u)*(u-*cx) > 0.0) { 
   long ipmx;        fu=(*func)(u); 
   /*extern weight */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /* We are differentiating ll according to initial status */        fu=(*func)(u); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        if (fu < *fc) { 
   /*for(i=1;i<imx;i++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     printf(" %d\n",s[4][i]);            SHFT(*fb,*fc,fu,(*func)(u)) 
   */            } 
   cov[1]=1.;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        fu=(*func)(u); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } else { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        u=(*cx)+GOLD*(*cx-*bx); 
     for(mi=1; mi<= wav[i]-1; mi++){        fu=(*func)(u); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      SHFT(*ax,*bx,*cx,u) 
       for(d=0; d<dh[mi][i]; d++){        SHFT(*fa,*fb,*fc,fu) 
         newm=savm;        } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  } 
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** linmin ************************/
         }  
          int ncom; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double *pcom,*xicom;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double (*nrfunc)(double []); 
         savm=oldm;   
         oldm=newm;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
          { 
            double brent(double ax, double bx, double cx, 
       } /* end mult */                 double (*f)(double), double tol, double *xmin); 
          double f1dim(double x); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/                double *fc, double (*func)(double)); 
       ipmx +=1;    int j; 
       sw += weight[i];    double xx,xmin,bx,ax; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double fx,fb,fa;
     } /* end of wave */   
   } /* end of individual */    ncom=n; 
     pcom=vector(1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    xicom=vector(1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    nrfunc=func; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    for (j=1;j<=n;j++) { 
   return -l;      pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
     ax=0.0; 
 /*********** Maximum Likelihood Estimation ***************/    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   int i,j, iter;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **xi,*delti;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double fret;  #endif
   xi=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++)      xi[j] *= xmin; 
     for (j=1;j<=npar;j++)      p[j] += xi[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    } 
   printf("Powell\n");    free_vector(xicom,1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    free_vector(pcom,1,n); 
   } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  char *asc_diff_time(long time_sec, char ascdiff[])
   {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /**** Computes Hessian and covariance matrix ***/    sec_left = (time_sec) % (60*60*24);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   double  **a,**y,*x,pd;    minutes = (sec_left) /60;
   double **hess;    sec_left = (sec_left) % (60);
   int i, j,jk;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int *indx;    return ascdiff;
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /*************** powell ************************/
   void lubksb(double **a, int npar, int *indx, double b[]) ;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   void ludcmp(double **a, int npar, int *indx, double *d) ;              double (*func)(double [])) 
   { 
   hess=matrix(1,npar,1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    int i,ibig,j; 
   for (i=1;i<=npar;i++){    double del,t,*pt,*ptt,*xit;
     printf("%d",i);fflush(stdout);    double fp,fptt;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double *xits;
     /*printf(" %f ",p[i]);*/    int niterf, itmp;
     /*printf(" %lf ",hess[i][i]);*/  
   }    pt=vector(1,n); 
      ptt=vector(1,n); 
   for (i=1;i<=npar;i++) {    xit=vector(1,n); 
     for (j=1;j<=npar;j++)  {    xits=vector(1,n); 
       if (j>i) {    *fret=(*func)(p); 
         printf(".%d%d",i,j);fflush(stdout);    for (j=1;j<=n;j++) pt[j]=p[j]; 
         hess[i][j]=hessij(p,delti,i,j);    for (*iter=1;;++(*iter)) { 
         hess[j][i]=hess[i][j];          fp=(*fret); 
         /*printf(" %lf ",hess[i][j]);*/      ibig=0; 
       }      del=0.0; 
     }      last_time=curr_time;
   }      (void) gettimeofday(&curr_time,&tzp);
   printf("\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
        */
   a=matrix(1,npar,1,npar);     for (i=1;i<=n;i++) {
   y=matrix(1,npar,1,npar);        printf(" %d %.12f",i, p[i]);
   x=vector(1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
   indx=ivector(1,npar);        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      printf("\n");
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   for (j=1;j<=npar;j++) {      if(*iter <=3){
     for (i=1;i<=npar;i++) x[i]=0;        tm = *localtime(&curr_time.tv_sec);
     x[j]=1;        strcpy(strcurr,asctime(&tm));
     lubksb(a,npar,indx,x);  /*       asctime_r(&tm,strcurr); */
     for (i=1;i<=npar;i++){        forecast_time=curr_time; 
       matcov[i][j]=x[i];        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) {        for(niterf=10;niterf<=30;niterf+=10){
     for (j=1;j<=npar;j++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       printf("%.3e ",hess[i][j]);          tmf = *localtime(&forecast_time.tv_sec);
     }  /*      asctime_r(&tmf,strfor); */
     printf("\n");          strcpy(strfor,asctime(&tmf));
   }          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   /* Recompute Inverse */          strfor[itmp-1]='\0';
   for (i=1;i<=npar;i++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   ludcmp(a,npar,indx,&pd);        }
       }
   /*  printf("\n#Hessian matrix recomputed#\n");      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (j=1;j<=npar;j++) {        fptt=(*fret); 
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;        printf("fret=%lf \n",*fret);
     lubksb(a,npar,indx,x);        fprintf(ficlog,"fret=%lf \n",*fret);
     for (i=1;i<=npar;i++){  #endif
       y[i][j]=x[i];        printf("%d",i);fflush(stdout);
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
     printf("\n");        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
   */          ibig=i; 
         } 
   free_matrix(a,1,npar,1,npar);  #ifdef DEBUG
   free_matrix(y,1,npar,1,npar);        printf("%d %.12e",i,(*fret));
   free_vector(x,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_ivector(indx,1,npar);        for (j=1;j<=n;j++) {
   free_matrix(hess,1,npar,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 }        }
         for(j=1;j<=n;j++) {
 /*************** hessian matrix ****************/          printf(" p=%.12e",p[j]);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog," p=%.12e",p[j]);
 {        }
   int i;        printf("\n");
   int l=1, lmax=20;        fprintf(ficlog,"\n");
   double k1,k2;  #endif
   double p2[NPARMAX+1];      } 
   double res;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #ifdef DEBUG
   double fx;        int k[2],l;
   int k=0,kmax=10;        k[0]=1;
   double l1;        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   fx=func(x);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++) p2[i]=x[i];        for (j=1;j<=n;j++) {
   for(l=0 ; l <=lmax; l++){          printf(" %.12e",p[j]);
     l1=pow(10,l);          fprintf(ficlog," %.12e",p[j]);
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){        printf("\n");
       delt = delta*(l1*k);        fprintf(ficlog,"\n");
       p2[theta]=x[theta] +delt;        for(l=0;l<=1;l++) {
       k1=func(p2)-fx;          for (j=1;j<=n;j++) {
       p2[theta]=x[theta]-delt;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       k2=func(p2)-fx;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          }
                printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #ifdef DEBUG          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        free_vector(ptt,1,n); 
         k=kmax; l=lmax*10.;        free_vector(pt,1,n); 
       }        return; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } 
         delts=delt;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   delti[theta]=delts;        pt[j]=p[j]; 
   return res;      } 
        fptt=(*func)(ptt); 
 }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        if (t < 0.0) { 
 {          linmin(p,xit,n,fret,func); 
   int i;          for (j=1;j<=n;j++) { 
   int l=1, l1, lmax=20;            xi[j][ibig]=xi[j][n]; 
   double k1,k2,k3,k4,res,fx;            xi[j][n]=xit[j]; 
   double p2[NPARMAX+1];          }
   int k;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fx=func(x);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (k=1; k<=2; k++) {          for(j=1;j<=n;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];            printf(" %.12e",xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;            fprintf(ficlog," %.12e",xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }
     k1=func(p2)-fx;          printf("\n");
            fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k2=func(p2)-fx;      } 
      } 
     p2[thetai]=x[thetai]-delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  /**** Prevalence limit (stable prevalence)  ****************/
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k4=func(p2)-fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       matrix by transitions matrix until convergence is reached */
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i, ii,j,k;
 #endif    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
   return res;    double **out, cov[NCOVMAX], **pmij();
 }    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i,imax,j,k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;      }
   double *vv;  
       cov[1]=1.;
   vv=vector(1,n);   
   *d=1.0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=n;i++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     big=0.0;      newm=savm;
     for (j=1;j<=n;j++)      /* Covariates have to be included here again */
       if ((temp=fabs(a[i][j])) > big) big=temp;       cov[2]=agefin;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    
     vv[i]=1.0/big;        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (j=1;j<=n;j++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (i=1;i<j;i++) {        }
       sum=a[i][j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovprod;k++)
       a[i][j]=sum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
     big=0.0;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (i=j;i<=n;i++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       sum=a[i][j];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1;k<j;k++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;      savm=oldm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      oldm=newm;
         big=dum;      maxmax=0.;
         imax=i;      for(j=1;j<=nlstate;j++){
       }        min=1.;
     }        max=0.;
     if (j != imax) {        for(i=1; i<=nlstate; i++) {
       for (k=1;k<=n;k++) {          sumnew=0;
         dum=a[imax][k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         a[imax][k]=a[j][k];          prlim[i][j]= newm[i][j]/(1-sumnew);
         a[j][k]=dum;          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
       *d = -(*d);        }
       vv[imax]=vv[j];        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;      if(maxmax < ftolpl){
     if (j != n) {        return prlim;
       dum=1.0/(a[j][j]);      }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    }
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /*************** transition probabilities ***************/ 
 ;  
 }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 void lubksb(double **a, int n, int *indx, double b[])    double s1, s2;
 {    /*double t34;*/
   int i,ii=0,ip,j;    int i,j,j1, nc, ii, jj;
   double sum;  
        for(i=1; i<= nlstate; i++){
   for (i=1;i<=n;i++) {        for(j=1; j<i;j++){
     ip=indx[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     sum=b[ip];            /*s2 += param[i][j][nc]*cov[nc];*/
     b[ip]=b[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (ii)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          }
     else if (sum) ii=i;          ps[i][j]=s2;
     b[i]=sum;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   for (i=n;i>=1;i--) {        for(j=i+1; j<=nlstate+ndeath;j++){
     sum=b[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     b[i]=sum/a[i][i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   }          }
 }          ps[i][j]=s2;
         }
 /************ Frequencies ********************/      }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)      /*ps[3][2]=1;*/
 {  /* Some frequencies */      
        for(i=1; i<= nlstate; i++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        s1=0;
   double ***freq; /* Frequencies */        for(j=1; j<i; j++)
   double *pp;          s1+=exp(ps[i][j]);
   double pos;        for(j=i+1; j<=nlstate+ndeath; j++)
   FILE *ficresp;          s1+=exp(ps[i][j]);
   char fileresp[FILENAMELENGTH];        ps[i][i]=1./(s1+1.);
         for(j=1; j<i; j++)
   pp=vector(1,nlstate);          ps[i][j]= exp(ps[i][j])*ps[i][i];
  probs= ma3x(1,130 ,1,8, 1,8);        for(j=i+1; j<=nlstate+ndeath; j++)
   strcpy(fileresp,"p");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   strcat(fileresp,fileres);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   if((ficresp=fopen(fileresp,"w"))==NULL) {      } /* end i */
     printf("Problem with prevalence resultfile: %s\n", fileresp);      
     exit(0);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ps[ii][jj]=0;
   j1=0;          ps[ii][ii]=1;
         }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      
   
   for(k1=1; k1<=j;k1++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
        j1++;  /*         printf("ddd %lf ",ps[ii][jj]); */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*       } */
          scanf("%d", i);*/  /*       printf("\n "); */
         for (i=-1; i<=nlstate+ndeath; i++)    /*        } */
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /*        printf("\n ");printf("%lf ",cov[2]); */
            for(m=agemin; m <= agemax+3; m++)         /*
              freq[i][jk][m]=0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                goto end;*/
        for (i=1; i<=imx; i++) {      return ps;
          bool=1;  }
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)  /**************** Product of 2 matrices ******************/
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
                bool=0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          }  {
           if (bool==1) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
            for(m=fprev; m<=lprev; m++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
              if(agev[m][i]==0) agev[m][i]=agemax+1;    /* in, b, out are matrice of pointers which should have been initialized 
              if(agev[m][i]==1) agev[m][i]=agemax+2;       before: only the contents of out is modified. The function returns
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       a pointer to pointers identical to out */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    long i, j, k;
            }    for(i=nrl; i<= nrh; i++)
          }      for(k=ncolol; k<=ncoloh; k++)
        }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         if  (cptcovn>0) {          out[i][k] +=in[i][j]*b[j][k];
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return out;
        fprintf(ficresp, "**********\n#");  }
         }  
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /************* Higher Matrix Product ***************/
        fprintf(ficresp, "\n");  
          double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for(i=(int)agemin; i <= (int)agemax+3; i++){  {
     if(i==(int)agemax+3)    /* Computes the transition matrix starting at age 'age' over 
       printf("Total");       'nhstepm*hstepm*stepm' months (i.e. until
     else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       printf("Age %d", i);       nhstepm*hstepm matrices. 
     for(jk=1; jk <=nlstate ; jk++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       (typically every 2 years instead of every month which is too big 
         pp[jk] += freq[jk][m][i];       for the memory).
     }       Model is determined by parameters x and covariates have to be 
     for(jk=1; jk <=nlstate ; jk++){       included manually here. 
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];       */
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int i, j, d, h, k;
       else    double **out, cov[NCOVMAX];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double **newm;
     }  
     /* Hstepm could be zero and should return the unit matrix */
      for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=nlstate+ndeath;i++)
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (j=1;j<=nlstate+ndeath;j++){
         pp[jk] += freq[jk][m][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
      }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
     for(jk=1,pos=0; jk <=nlstate ; jk++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       pos += pp[jk];    for(h=1; h <=nhstepm; h++){
     for(jk=1; jk <=nlstate ; jk++){      for(d=1; d <=hstepm; d++){
       if(pos>=1.e-5)        newm=savm;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        /* Covariates have to be included here again */
       else        cov[1]=1.;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if(pos>=1.e-5){        for (k=1; k<=cptcovage;k++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovprod;k++)
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
       else  
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(jk=-1; jk <=nlstate+ndeath; jk++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(m=-1; m <=nlstate+ndeath; m++)        savm=oldm;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        oldm=newm;
     if(i <= (int) agemax)      }
       fprintf(ficresp,"\n");      for(i=1; i<=nlstate+ndeath; i++)
     printf("\n");        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
  }           */
          }
   fclose(ficresp);    } /* end h */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return po;
   free_vector(pp,1,nlstate);  }
   
 }  /* End of Freq */  
   /*************** log-likelihood *************/
 /************* Waves Concatenation ***************/  double func( double *x)
   {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double **out;
      Death is a valid wave (if date is known).    double sw; /* Sum of weights */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double lli; /* Individual log likelihood */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int s1, s2;
      and mw[mi+1][i]. dh depends on stepm.    double bbh, survp;
      */    long ipmx;
     /*extern weight */
   int i, mi, m;    /* We are differentiating ll according to initial status */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      double sum=0., jmean=0.;*/    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   int j, k=0,jk, ju, jl;    */
   double sum=0.;    cov[1]=1.;
   jmin=1e+5;  
   jmax=-1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   jmean=0.;  
   for(i=1; i<=imx; i++){    if(mle==1){
     mi=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     m=firstpass;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     while(s[m][i] <= nlstate){        for(mi=1; mi<= wav[i]-1; mi++){
       if(s[m][i]>=1)          for (ii=1;ii<=nlstate+ndeath;ii++)
         mw[++mi][i]=m;            for (j=1;j<=nlstate+ndeath;j++){
       if(m >=lastpass)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else            }
         m++;          for(d=0; d<dh[mi][i]; d++){
     }/* end while */            newm=savm;
     if (s[m][i] > nlstate){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mi++;     /* Death is another wave */            for (kk=1; kk<=cptcovage;kk++) {
       /* if(mi==0)  never been interviewed correctly before death */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          /* Only death is a correct wave */            }
       mw[mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     wav[i]=mi;            oldm=newm;
     if(mi==0)          } /* end mult */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   for(i=1; i<=imx; i++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(mi=1; mi<wav[i];mi++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       if (stepm <=0)           * the nearest (and in case of equal distance, to the lowest) interval but now
         dh[mi][i]=1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       else{           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if (s[mw[mi+1][i]][i] > nlstate) {           * probability in order to take into account the bias as a fraction of the way
           if (agedc[i] < 2*AGESUP) {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * -stepm/2 to stepm/2 .
           if(j==0) j=1;  /* Survives at least one month after exam */           * For stepm=1 the results are the same as for previous versions of Imach.
           k=k+1;           * For stepm > 1 the results are less biased than in previous versions. 
           if (j >= jmax) jmax=j;           */
           if (j <= jmin) jmin=j;          s1=s[mw[mi][i]][i];
           sum=sum+j;          s2=s[mw[mi+1][i]][i];
           /* if (j<10) printf("j=%d num=%d ",j,i); */          bbh=(double)bh[mi][i]/(double)stepm; 
           }          /* bias bh is positive if real duration
         }           * is higher than the multiple of stepm and negative otherwise.
         else{           */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           k=k+1;          if( s2 > nlstate){ 
           if (j >= jmax) jmax=j;            /* i.e. if s2 is a death state and if the date of death is known 
           else if (j <= jmin)jmin=j;               then the contribution to the likelihood is the probability to 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */               die between last step unit time and current  step unit time, 
           sum=sum+j;               which is also equal to probability to die before dh 
         }               minus probability to die before dh-stepm . 
         jk= j/stepm;               In version up to 0.92 likelihood was computed
         jl= j -jk*stepm;          as if date of death was unknown. Death was treated as any other
         ju= j -(jk+1)*stepm;          health state: the date of the interview describes the actual state
         if(jl <= -ju)          and not the date of a change in health state. The former idea was
           dh[mi][i]=jk;          to consider that at each interview the state was recorded
         else          (healthy, disable or death) and IMaCh was corrected; but when we
           dh[mi][i]=jk+1;          introduced the exact date of death then we should have modified
         if(dh[mi][i]==0)          the contribution of an exact death to the likelihood. This new
           dh[mi][i]=1; /* At least one step */          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   jmean=sum/k;          probability to die within a month. Thanks to Chris
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          Jackson for correcting this bug.  Former versions increased
  }          mortality artificially. The bad side is that we add another loop
 /*********** Tricode ****************************/          which slows down the processing. The difference can be up to 10%
 void tricode(int *Tvar, int **nbcode, int imx)          lower mortality.
 {            */
   int Ndum[20],ij=1, k, j, i;            lli=log(out[s1][s2] - savm[s1][s2]);
   int cptcode=0;  
   cptcoveff=0;  
            } else if  (s2==-2) {
   for (k=0; k<19; k++) Ndum[k]=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
   for (k=1; k<=7; k++) ncodemax[k]=0;              survp += out[s1][j];
             lli= survp;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) {          
       ij=(int)(covar[Tvar[j]][i]);          else if  (s2==-4) {
       Ndum[ij]++;            for (j=3,survp=0. ; j<=nlstate; j++) 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              survp += out[s1][j];
       if (ij > cptcode) cptcode=ij;            lli= survp;
     }          }
           
     for (i=0; i<=cptcode; i++) {          else if  (s2==-5) {
       if(Ndum[i]!=0) ncodemax[j]++;            for (j=1,survp=0. ; j<=2; j++) 
     }              survp += out[s1][j];
     ij=1;            lli= survp;
           }
   
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {          else{
         if (Ndum[k] != 0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           nbcode[Tvar[j]][ij]=k;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           ij++;          } 
         }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if (ij > ncodemax[j]) break;          /*if(lli ==000.0)*/
       }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
   }            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
       } /* end of individual */
  for (i=1; i<=ncovmodel-2; i++) {    }  else if(mle==2){
       ij=Tvar[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       Ndum[ij]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  ij=1;            for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=10; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncov)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;            }
      ij++;          for(d=0; d<=dh[mi][i]; d++){
    }            newm=savm;
  }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     cptcoveff=ij-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Health Expectancies ****************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            oldm=newm;
 {          } /* end mult */
   /* Health expectancies */        
   int i, j, nhstepm, hstepm, h;          s1=s[mw[mi][i]][i];
   double age, agelim,hf;          s2=s[mw[mi+1][i]][i];
   double ***p3mat;          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficreseij," %1d-%1d",i,j);      } /* end of individual */
   fprintf(ficreseij,"\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   agelim=AGESUP;            for (j=1;j<=nlstate+ndeath;j++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* nhstepm age range expressed in number of stepm */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years = 20*12/6=40 stepm */          for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hstepm=1;            newm=savm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       for(j=1; j<=nlstate;j++)          } /* end mult */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        
           eij[i][j][(int)age] +=p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
     hf=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (stepm >= YEARM) hf=stepm/YEARM;          ipmx +=1;
     fprintf(ficreseij,"%.0f",age );          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++){        } /* end of wave */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Variance of health expectancies */          for(d=0; d<dh[mi][i]; d++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            newm=savm;
   double **newm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;            for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int k, cptcode;            }
   double *xp;          
   double **gp, **gm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat;            savm=oldm;
   double age,agelim;            oldm=newm;
   int theta;          } /* end mult */
         
    fprintf(ficresvij,"# Covariances of life expectancies\n");          s1=s[mw[mi][i]][i];
   fprintf(ficresvij,"# Age");          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
     for(j=1; j<=nlstate;j++)            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          }else{
   fprintf(ficresvij,"\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   xp=vector(1,npar);          ipmx +=1;
   dnewm=matrix(1,nlstate,1,npar);          sw += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   hstepm=1*YEARM; /* Every year of age */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end of individual */
   agelim = AGESUP;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hstepm=1;        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
     for(theta=1; theta <=npar; theta++){            newm=savm;
       for(i=1; i<=npar; i++){ /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (popbased==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1; i<=nlstate;i++)            savm=oldm;
           prlim[i][i]=probs[(int)age][i][ij];            oldm=newm;
       }          } /* end mult */
              
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(h=0; h<=nhstepm; h++){          s2=s[mw[mi+1][i]][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if (popbased==1) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(i=1; i<=nlstate;i++)    return -l;
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
   /*************** log-likelihood *************/
       for(j=1; j<= nlstate; j++){  double funcone( double *x)
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       }    double **out;
     double lli; /* Individual log likelihood */
       for(j=1; j<= nlstate; j++)    double llt;
         for(h=0; h<=nhstepm; h++){    int s1, s2;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double bbh, survp;
         }    /*extern weight */
     } /* End theta */    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(h=0; h<=nhstepm; h++)    */
       for(j=1; j<=nlstate;j++)    cov[1]=1.;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     for(i=1;i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1;j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         vareij[i][j][(int)age] =0.;      for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0;h<=nhstepm;h++){        for (ii=1;ii<=nlstate+ndeath;ii++)
       for(k=0;k<=nhstepm;k++){          for (j=1;j<=nlstate+ndeath;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++)          }
           for(j=1;j<=nlstate;j++)        for(d=0; d<dh[mi][i]; d++){
             vareij[i][j][(int)age] += doldm[i][j];          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
     h=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) h=stepm/YEARM;          }
     fprintf(ficresvij,"%.0f ",age );          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++){          savm=oldm;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          oldm=newm;
       }        } /* end mult */
     fprintf(ficresvij,"\n");        
     free_matrix(gp,0,nhstepm,1,nlstate);        s1=s[mw[mi][i]][i];
     free_matrix(gm,0,nhstepm,1,nlstate);        s2=s[mw[mi+1][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        /* bias is positive if real duration
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         * is higher than the multiple of stepm and negative otherwise.
   } /* End age */         */
          if( s2 > nlstate && (mle <5) ){  /* Jackson */
   free_vector(xp,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   free_matrix(doldm,1,nlstate,1,npar);        } else if (mle==1){
   free_matrix(dnewm,1,nlstate,1,nlstate);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 /************ Variance of prevlim ******************/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 {          lli=log(out[s1][s2]); /* Original formula */
   /* Variance of prevalence limit */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lli=log(out[s1][s2]); /* Original formula */
   double **newm;        } /* End of if */
   double **dnewm,**doldm;        ipmx +=1;
   int i, j, nhstepm, hstepm;        sw += weight[i];
   int k, cptcode;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double *gp, *gm;        if(globpr){
   double **gradg, **trgradg;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double age,agelim;   %10.6f %10.6f %10.6f ", \
   int theta;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                      2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficresvpl,"# Age");            llt +=ll[k]*gipmx/gsw;
   for(i=1; i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       fprintf(ficresvpl," %1d-%1d",i,i);          }
   fprintf(ficresvpl,"\n");          fprintf(ficresilk," %10.6f\n", -llt);
         }
   xp=vector(1,npar);      } /* end of wave */
   dnewm=matrix(1,nlstate,1,npar);    } /* end of individual */
   doldm=matrix(1,nlstate,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   hstepm=1*YEARM; /* Every year of age */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    if(globpr==0){ /* First time we count the contributions and weights */
   agelim = AGESUP;      gipmx=ipmx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      gsw=sw;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    return -l;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* This routine should help understanding what is done with 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Plotting could be done.
       for(i=1;i<=nlstate;i++)     */
         gp[i] = prlim[i][i];    int k;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    if(*globpri !=0){ /* Just counts and sums, no printings */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      strcpy(fileresilk,"ilk"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      strcat(fileresilk,fileres);
       for(i=1;i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         gm[i] = prlim[i][i];        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(i=1;i<=nlstate;i++)      }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     } /* End theta */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     trgradg =matrix(1,nlstate,1,npar);      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for(j=1; j<=nlstate;j++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];  
     *fretone=(*funcone)(p);
     for(i=1;i<=nlstate;i++)    if(*globpri !=0){
       varpl[i][(int)age] =0.;      fclose(ficresilk);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      fflush(fichtm); 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    return;
   }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*********** Maximum Likelihood Estimation ***************/
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    int i,j, iter;
     free_matrix(trgradg,1,nlstate,1,npar);    double **xi;
   } /* End age */    double fret;
     double fretone; /* Only one call to likelihood */
   free_vector(xp,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
   free_matrix(doldm,1,nlstate,1,npar);    xi=matrix(1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
 /************ Variance of one-step probabilities  ******************/    strcpy(filerespow,"pow"); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    strcat(filerespow,fileres);
 {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, j;      printf("Problem with resultfile: %s\n", filerespow);
   int k=0, cptcode;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double **dnewm,**doldm;    }
   double *xp;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double *gp, *gm;    for (i=1;i<=nlstate;i++)
   double **gradg, **trgradg;      for(j=1;j<=nlstate+ndeath;j++)
   double age,agelim, cov[NCOVMAX];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int theta;    fprintf(ficrespow,"\n");
   char fileresprob[FILENAMELENGTH];  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    fclose(ficrespow);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     printf("Problem with resultfile: %s\n", fileresprob);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
    }
   
   xp=vector(1,npar);  /**** Computes Hessian and covariance matrix ***/
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  {
      double  **a,**y,*x,pd;
   cov[1]=1;    double **hess;
   for (age=bage; age<=fage; age ++){    int i, j,jk;
     cov[2]=age;    int *indx;
     gradg=matrix(1,npar,1,9);  
     trgradg=matrix(1,9,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    void lubksb(double **a, int npar, int *indx, double b[]) ;
        void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(theta=1; theta <=npar; theta++){    double gompertz(double p[]);
       for(i=1; i<=npar; i++)    hess=matrix(1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
          printf("\nCalculation of the hessian matrix. Wait...\n");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
       k=0;      printf("%d",i);fflush(stdout);
       for(i=1; i<= (nlstate+ndeath); i++){      fprintf(ficlog,"%d",i);fflush(ficlog);
         for(j=1; j<=(nlstate+ndeath);j++){     
            k=k+1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           gp[k]=pmmij[i][j];      
         }      /*  printf(" %f ",p[i]);
       }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
       for(i=1; i<=npar; i++)    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) {
          for (j=1;j<=npar;j++)  {
         if (j>i) { 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          printf(".%d%d",i,j);fflush(stdout);
       k=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(i=1; i<=(nlstate+ndeath); i++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
         for(j=1; j<=(nlstate+ndeath);j++){          
           k=k+1;          hess[j][i]=hess[i][j];    
           gm[k]=pmmij[i][j];          /*printf(" %lf ",hess[i][j]);*/
         }        }
       }      }
          }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    printf("\n");
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      fprintf(ficlog,"\n");
     }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(theta=1; theta <=npar; theta++)    
       trgradg[j][theta]=gradg[theta][j];    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    x=vector(1,npar);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
      pmij(pmmij,cov,ncovmodel,x,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
      k=0;  
      for(i=1; i<=(nlstate+ndeath); i++){    for (j=1;j<=npar;j++) {
        for(j=1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) x[i]=0;
          k=k+1;      x[j]=1;
          gm[k]=pmmij[i][j];      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
      }        matcov[i][j]=x[i];
            }
      /*printf("\n%d ",(int)age);    }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
            printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for (i=1;i<=npar;i++) { 
      }*/      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      printf("\n");
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      fprintf(ficlog,"\n");
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    }
   }  
     /* Recompute Inverse */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    ludcmp(a,npar,indx,&pd);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }    /*  printf("\n#Hessian matrix recomputed#\n");
  free_vector(xp,1,npar);  
 fclose(ficresprob);    for (j=1;j<=npar;j++) {
  exit(0);      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /***********************************************/      for (i=1;i<=npar;i++){ 
 /**************** Main Program *****************/        y[i][j]=x[i];
 /***********************************************/        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /*int main(int argc, char *argv[])*/      }
 int main()      printf("\n");
 {      fprintf(ficlog,"\n");
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    */
   double agedeb, agefin,hf;  
   double agemin=1.e20, agemax=-1.e20;    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   double fret;    free_vector(x,1,npar);
   double **xi,tmp,delta;    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   double dum; /* Dummy variable */  
   double ***p3mat;  
   int *indx;  }
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];  /*************** hessian matrix ****************/
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  {
   char filerest[FILENAMELENGTH];    int i;
   char fileregp[FILENAMELENGTH];    int l=1, lmax=20;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double k1,k2;
   int firstobs=1, lastobs=10;    double p2[NPARMAX+1];
   int sdeb, sfin; /* Status at beginning and end */    double res;
   int c,  h , cpt,l;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   int ju,jl, mi;    double fx;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int k=0,kmax=10;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double l1;
   int mobilav=0, fprevfore=1, lprevfore=1;  
   int hstepm, nhstepm;    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   double bage, fage, age, agelim, agebase;    for(l=0 ; l <=lmax; l++){
   double ftolpl=FTOL;      l1=pow(10,l);
   double **prlim;      delts=delt;
   double *severity;      for(k=1 ; k <kmax; k=k+1){
   double ***param; /* Matrix of parameters */        delt = delta*(l1*k);
   double  *p;        p2[theta]=x[theta] +delt;
   double **matcov; /* Matrix of covariance */        k1=func(p2)-fx;
   double ***delti3; /* Scale */        p2[theta]=x[theta]-delt;
   double *delti; /* Scale */        k2=func(p2)-fx;
   double ***eij, ***vareij;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double **varpl; /* Variances of prevalence limits by age */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double *epj, vepp;        
   double kk1;  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   char z[1]="c", occ;          k=kmax;
 #include <sys/time.h>        }
 #include <time.h>        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          k=kmax; l=lmax*10.;
   /* long total_usecs;        }
   struct timeval start_time, end_time;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
       }
     }
   printf("\nIMACH, Version 0.64b");    delti[theta]=delts;
   printf("\nEnter the parameter file name: ");    return res; 
     
 #ifdef windows  }
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   /*cygwin_split_path(pathtot,path,optionfile);  {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int i;
   /* cutv(path,optionfile,pathtot,'\\');*/    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 split(pathtot, path,optionfile);    double p2[NPARMAX+1];
   chdir(path);    int k;
   replace(pathc,path);  
 #endif    fx=func(x);
 #ifdef unix    for (k=1; k<=2; k++) {
   scanf("%s",optionfile);      for (i=1;i<=npar;i++) p2[i]=x[i];
 #endif      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 /*-------- arguments in the command line --------*/      k1=func(p2)-fx;
     
   strcpy(fileres,"r");      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileres, optionfile);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   /*---------arguments file --------*/    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with optionfile %s\n",optionfile);      k3=func(p2)-fx;
     goto end;    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(filereso,"o");      k4=func(p2)-fx;
   strcat(filereso,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficparo=fopen(filereso,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    return res;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************** Inverse of matrix **************/
     fputs(line,ficparo);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   ungetc(c,ficpar);    int i,imax,j,k; 
     double big,dum,sum,temp; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double *vv; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);   
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    vv=vector(1,n); 
 while((c=getc(ficpar))=='#' && c!= EOF){    *d=1.0; 
     ungetc(c,ficpar);    for (i=1;i<=n;i++) { 
     fgets(line, MAXLINE, ficpar);      big=0.0; 
     puts(line);      for (j=1;j<=n;j++) 
     fputs(line,ficparo);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   ungetc(c,ficpar);      vv[i]=1.0/big; 
      } 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);    for (j=1;j<=n;j++) { 
  while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1;i<j;i++) { 
     ungetc(c,ficpar);        sum=a[i][j]; 
     fgets(line, MAXLINE, ficpar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     puts(line);        a[i][j]=sum; 
     fputs(line,ficparo);      } 
   }      big=0.0; 
   ungetc(c,ficpar);      for (i=j;i<=n;i++) { 
          sum=a[i][j]; 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   covar=matrix(0,NCOVMAX,1,n);        a[i][j]=sum; 
   cptcovn=0;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          big=dum; 
           imax=i; 
   ncovmodel=2+cptcovn;        } 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      } 
        if (j != imax) { 
   /* Read guess parameters */        for (k=1;k<=n;k++) { 
   /* Reads comments: lines beginning with '#' */          dum=a[imax][k]; 
   while((c=getc(ficpar))=='#' && c!= EOF){          a[imax][k]=a[j][k]; 
     ungetc(c,ficpar);          a[j][k]=dum; 
     fgets(line, MAXLINE, ficpar);        } 
     puts(line);        *d = -(*d); 
     fputs(line,ficparo);        vv[imax]=vv[j]; 
   }      } 
   ungetc(c,ficpar);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      if (j != n) { 
     for(i=1; i <=nlstate; i++)        dum=1.0/(a[j][j]); 
     for(j=1; j <=nlstate+ndeath-1; j++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } 
       fprintf(ficparo,"%1d%1d",i1,j1);    } 
       printf("%1d%1d",i,j);    free_vector(vv,1,n);  /* Doesn't work */
       for(k=1; k<=ncovmodel;k++){  ;
         fscanf(ficpar," %lf",&param[i][j][k]);  } 
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       fscanf(ficpar,"\n");    int i,ii=0,ip,j; 
       printf("\n");    double sum; 
       fprintf(ficparo,"\n");   
     }    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      sum=b[ip]; 
       b[ip]=b[i]; 
   p=param[1][1];      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   /* Reads comments: lines beginning with '#' */      else if (sum) ii=i; 
   while((c=getc(ficpar))=='#' && c!= EOF){      b[i]=sum; 
     ungetc(c,ficpar);    } 
     fgets(line, MAXLINE, ficpar);    for (i=n;i>=1;i--) { 
     puts(line);      sum=b[i]; 
     fputs(line,ficparo);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   ungetc(c,ficpar);    } 
   } 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /************ Frequencies ********************/
   for(i=1; i <=nlstate; i++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     for(j=1; j <=nlstate+ndeath-1; j++){  {  /* Some frequencies */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       printf("%1d%1d",i,j);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       fprintf(ficparo,"%1d%1d",i1,j1);    int first;
       for(k=1; k<=ncovmodel;k++){    double ***freq; /* Frequencies */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double *pp, **prop;
         printf(" %le",delti3[i][j][k]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         fprintf(ficparo," %le",delti3[i][j][k]);    FILE *ficresp;
       }    char fileresp[FILENAMELENGTH];
       fscanf(ficpar,"\n");    
       printf("\n");    pp=vector(1,nlstate);
       fprintf(ficparo,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
   delti=delti3[1][1];    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   while((c=getc(ficpar))=='#' && c!= EOF){      exit(0);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     puts(line);    j1=0;
     fputs(line,ficparo);    
   }    j=cptcoveff;
   ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
   matcov=matrix(1,npar,1,npar);    first=1;
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    for(k1=1; k1<=j;k1++){
     printf("%s",str);      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficparo,"%s",str);        j1++;
     for(j=1; j <=i; j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fscanf(ficpar," %le",&matcov[i][j]);          scanf("%d", i);*/
       printf(" %.5le",matcov[i][j]);        for (i=-5; i<=nlstate+ndeath; i++)  
       fprintf(ficparo," %.5le",matcov[i][j]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     }            for(m=iagemin; m <= iagemax+3; m++)
     fscanf(ficpar,"\n");              freq[i][jk][m]=0;
     printf("\n");  
     fprintf(ficparo,"\n");      for (i=1; i<=nlstate; i++)  
   }        for(m=iagemin; m <= iagemax+3; m++)
   for(i=1; i <=npar; i++)          prop[i][m]=0;
     for(j=i+1;j<=npar;j++)        
       matcov[i][j]=matcov[j][i];        dateintsum=0;
            k2cpt=0;
   printf("\n");        for (i=1; i<=imx; i++) {
           bool=1;
           if  (cptcovn>0) {
     /*-------- data file ----------*/            for (z1=1; z1<=cptcoveff; z1++) 
     if((ficres =fopen(fileres,"w"))==NULL) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf("Problem with resultfile: %s\n", fileres);goto end;                bool=0;
     }          }
     fprintf(ficres,"#%s\n",version);          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
     if((fic=fopen(datafile,"r"))==NULL)    {              k2=anint[m][i]+(mint[m][i]/12.);
       printf("Problem with datafile: %s\n", datafile);goto end;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     n= lastobs;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     severity = vector(1,maxwav);                if (m<lastpass) {
     outcome=imatrix(1,maxwav+1,1,n);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     num=ivector(1,n);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     moisnais=vector(1,n);                }
     annais=vector(1,n);                
     moisdc=vector(1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     andc=vector(1,n);                  dateintsum=dateintsum+k2;
     agedc=vector(1,n);                  k2cpt++;
     cod=ivector(1,n);                }
     weight=vector(1,n);                /*}*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);          }
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);         
     adl=imatrix(1,maxwav+1,1,n);            /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     tab=ivector(1,NCOVMAX);  fprintf(ficresp, "#Local time at start: %s", strstart);
     ncodemax=ivector(1,8);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     i=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficresp, "**********\n#");
       if ((i >= firstobs) && (i <=lastobs)) {        }
                for(i=1; i<=nlstate;i++) 
         for (j=maxwav;j>=1;j--){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficresp, "\n");
           strcpy(line,stra);        
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
                  }else{
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            if(first==1){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              first=0;
               printf("See log file for details...\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         for (j=ncov;j>=1;j--){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              pp[jk] += freq[jk][m][i]; 
         }          }
         num[i]=atol(stra);          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pos=0; m <=0 ; m++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              pos += freq[jk][m][i];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            if(pp[jk]>=1.e-10){
               if(first==1){
         i=i+1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /* printf("ii=%d", ij);            }else{
        scanf("%d",i);*/              if(first==1)
   imx=i-1; /* Number of individuals */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* for (i=1; i<=imx; i++){            }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              pp[jk] += freq[jk][m][i];
           }       
   /* Calculation of the number of parameter from char model*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   Tvar=ivector(1,15);            pos += pp[jk];
   Tprod=ivector(1,15);            posprop += prop[jk][i];
   Tvaraff=ivector(1,15);          }
   Tvard=imatrix(1,15,1,2);          for(jk=1; jk <=nlstate ; jk++){
   Tage=ivector(1,15);                  if(pos>=1.e-5){
                  if(first==1)
   if (strlen(model) >1){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     j=0, j1=0, k1=1, k2=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     j=nbocc(model,'+');            }else{
     j1=nbocc(model,'*');              if(first==1)
     cptcovn=j+1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     cptcovprod=j1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
                if( i <= iagemax){
     strcpy(modelsav,model);              if(pos>=1.e-5){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       printf("Error. Non available option model=%s ",model);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       goto end;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
                  else
     for(i=(j+1); i>=1;i--){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       cutv(stra,strb,modelsav,'+');            }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          
       /*scanf("%d",i);*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
       if (strchr(strb,'*')) {            for(m=-1; m <=nlstate+ndeath; m++)
         cutv(strd,strc,strb,'*');              if(freq[jk][m][i] !=0 ) {
         if (strcmp(strc,"age")==0) {              if(first==1)
           cptcovprod--;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           cutv(strb,stre,strd,'V');                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           Tvar[i]=atoi(stre);              }
           cptcovage++;          if(i <= iagemax)
             Tage[cptcovage]=i;            fprintf(ficresp,"\n");
             /*printf("stre=%s ", stre);*/          if(first==1)
         }            printf("Others in log...\n");
         else if (strcmp(strd,"age")==0) {          fprintf(ficlog,"\n");
           cptcovprod--;        }
           cutv(strb,stre,strc,'V');      }
           Tvar[i]=atoi(stre);    }
           cptcovage++;    dateintmean=dateintsum/k2cpt; 
           Tage[cptcovage]=i;   
         }    fclose(ficresp);
         else {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           cutv(strb,stre,strc,'V');    free_vector(pp,1,nlstate);
           Tvar[i]=ncov+k1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           cutv(strb,strc,strd,'V');    /* End of Freq */
           Tprod[k1]=i;  }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);  /************ Prevalence ********************/
           Tvar[cptcovn+k2]=Tvard[k1][1];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  {  
           for (k=1; k<=lastobs;k++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       in each health status at the date of interview (if between dateprev1 and dateprev2).
           k1++;       We still use firstpass and lastpass as another selection.
           k2=k2+2;    */
         }   
       }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       else {    double ***freq; /* Frequencies */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double *pp, **prop;
        /*  scanf("%d",i);*/    double pos,posprop; 
       cutv(strd,strc,strb,'V');    double  y2; /* in fractional years */
       Tvar[i]=atoi(strc);    int iagemin, iagemax;
       }  
       strcpy(modelsav,stra);      iagemin= (int) agemin;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    iagemax= (int) agemax;
         scanf("%d",i);*/    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    
   printf("cptcovprod=%d ", cptcovprod);    j=cptcoveff;
   scanf("%d ",i);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fclose(fic);    
     for(k1=1; k1<=j;k1++){
     /*  if(mle==1){*/      for(i1=1; i1<=ncodemax[k1];i1++){
     if (weightopt != 1) { /* Maximisation without weights*/        j1++;
       for(i=1;i<=n;i++) weight[i]=1.0;        
     }        for (i=1; i<=nlstate; i++)  
     /*-calculation of age at interview from date of interview and age at death -*/          for(m=iagemin; m <= iagemax+3; m++)
     agev=matrix(1,maxwav,1,imx);            prop[i][m]=0.0;
        
    for (i=1; i<=imx; i++)        for (i=1; i<=imx; i++) { /* Each individual */
      for(m=2; (m<= maxwav); m++)          bool=1;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          if  (cptcovn>0) {
          anint[m][i]=9999;            for (z1=1; z1<=cptcoveff; z1++) 
          s[m][i]=-1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        }                bool=0;
              } 
     for (i=1; i<=imx; i++)  {          if (bool==1) { 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(m=1; (m<= maxwav); m++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         if(s[m][i] >0){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           if (s[m][i] == nlstate+1) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             if(agedc[i]>0)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if(moisdc[i]!=99 && andc[i]!=9999)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               agev[m][i]=agedc[i];                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             else {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               if (andc[i]!=9999){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                  prop[s[m][i]][iagemax+3] += weight[i]; 
               agev[m][i]=-1;                } 
               }              }
             }            } /* end selection of waves */
           }          }
           else if(s[m][i] !=9){ /* Should no more exist */        }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(i=iagemin; i <= iagemax+3; i++){  
             if(mint[m][i]==99 || anint[m][i]==9999)          
               agev[m][i]=1;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             else if(agev[m][i] <agemin){            posprop += prop[jk][i]; 
               agemin=agev[m][i];          } 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }          for(jk=1; jk <=nlstate ; jk++){     
             else if(agev[m][i] >agemax){            if( i <=  iagemax){ 
               agemax=agev[m][i];              if(posprop>=1.e-5){ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
             }              } 
             /*agev[m][i]=anint[m][i]-annais[i];*/            } 
             /*   agev[m][i] = age[i]+2*m;*/          }/* end jk */ 
           }        }/* end i */ 
           else { /* =9 */      } /* end i1 */
             agev[m][i]=1;    } /* end k1 */
             s[m][i]=-1;    
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         }    /*free_vector(pp,1,nlstate);*/
         else /*= 0 Unknown */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           agev[m][i]=1;  }  /* End of prevalence */
       }  
      /************* Waves Concatenation ***************/
     }  
     for (i=1; i<=imx; i++)  {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       for(m=1; (m<= maxwav); m++){  {
         if (s[m][i] > (nlstate+ndeath)) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           printf("Error: Wrong value in nlstate or ndeath\n");         Death is a valid wave (if date is known).
           goto end;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
     }       */
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(severity,1,maxwav);       double sum=0., jmean=0.;*/
     free_imatrix(outcome,1,maxwav+1,1,n);    int first;
     free_vector(moisnais,1,n);    int j, k=0,jk, ju, jl;
     free_vector(annais,1,n);    double sum=0.;
     free_matrix(mint,1,maxwav,1,n);    first=0;
     free_matrix(anint,1,maxwav,1,n);    jmin=1e+5;
     free_vector(moisdc,1,n);    jmax=-1;
     free_vector(andc,1,n);    jmean=0.;
     for(i=1; i<=imx; i++){
          mi=0;
     wav=ivector(1,imx);      m=firstpass;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      while(s[m][i] <= nlstate){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     /* Concatenates waves */        if(m >=lastpass)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          break;
         else
           m++;
       Tcode=ivector(1,100);      }/* end while */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      if (s[m][i] > nlstate){
       ncodemax[1]=1;        mi++;     /* Death is another wave */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        /* if(mi==0)  never been interviewed correctly before death */
                 /* Only death is a correct wave */
    codtab=imatrix(1,100,1,10);        mw[mi][i]=m;
    h=0;      }
    m=pow(2,cptcoveff);  
        wav[i]=mi;
    for(k=1;k<=cptcoveff; k++){      if(mi==0){
      for(i=1; i <=(m/pow(2,k));i++){        nbwarn++;
        for(j=1; j <= ncodemax[k]; j++){        if(first==0){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            h++;          first=1;
            if (h>m) h=1;codtab[h][k]=j;        }
          }        if(first==1){
        }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      }        }
    }      } /* end mi==0 */
     } /* End individuals */
   
    /*for(i=1; i <=m ;i++){    for(i=1; i<=imx; i++){
      for(k=1; k <=cptcovn; k++){      for(mi=1; mi<wav[i];mi++){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        if (stepm <=0)
      }          dh[mi][i]=1;
      printf("\n");        else{
    }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    scanf("%d",i);*/            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    /* Calculates basic frequencies. Computes observed prevalence at single age              if(j==0) j=1;  /* Survives at least one month after exam */
        and prints on file fileres'p'. */              else if(j<0){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                j=1; /* Temporary Dangerous patch */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              }
                    k=k+1;
     /* For Powell, parameters are in a vector p[] starting at p[1]              if (j >= jmax){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                jmax=j;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                ijmax=i;
               }
     if(mle==1){              if (j <= jmin){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                jmin=j;
     }                ijmin=i;
                  }
     /*--------- results files --------------*/              sum=sum+j;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    jk=1;            }
    fprintf(ficres,"# Parameters\n");          }
    printf("# Parameters\n");          else{
    for(i=1,jk=1; i <=nlstate; i++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      for(k=1; k <=(nlstate+ndeath); k++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        if (k != i)  
          {            k=k+1;
            printf("%d%d ",i,k);            if (j >= jmax) {
            fprintf(ficres,"%1d%1d ",i,k);              jmax=j;
            for(j=1; j <=ncovmodel; j++){              ijmax=i;
              printf("%f ",p[jk]);            }
              fprintf(ficres,"%f ",p[jk]);            else if (j <= jmin){
              jk++;              jmin=j;
            }              ijmin=i;
            printf("\n");            }
            fprintf(ficres,"\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
          }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      }            if(j<0){
    }              nberr++;
  if(mle==1){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /* Computing hessian and covariance matrix */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ftolhess=ftol; /* Usually correct */            }
     hesscov(matcov, p, npar, delti, ftolhess, func);            sum=sum+j;
  }          }
     fprintf(ficres,"# Scales\n");          jk= j/stepm;
     printf("# Scales\n");          jl= j -jk*stepm;
      for(i=1,jk=1; i <=nlstate; i++){          ju= j -(jk+1)*stepm;
       for(j=1; j <=nlstate+ndeath; j++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         if (j!=i) {            if(jl==0){
           fprintf(ficres,"%1d%1d",i,j);              dh[mi][i]=jk;
           printf("%1d%1d",i,j);              bh[mi][i]=0;
           for(k=1; k<=ncovmodel;k++){            }else{ /* We want a negative bias in order to only have interpolation ie
             printf(" %.5e",delti[jk]);                    * at the price of an extra matrix product in likelihood */
             fprintf(ficres," %.5e",delti[jk]);              dh[mi][i]=jk+1;
             jk++;              bh[mi][i]=ju;
           }            }
           printf("\n");          }else{
           fprintf(ficres,"\n");            if(jl <= -ju){
         }              dh[mi][i]=jk;
       }              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
     k=1;            }
     fprintf(ficres,"# Covariance\n");            else{
     printf("# Covariance\n");              dh[mi][i]=jk+1;
     for(i=1;i<=npar;i++){              bh[mi][i]=ju;
       /*  if (k>nlstate) k=1;            }
       i1=(i-1)/(ncovmodel*nlstate)+1;            if(dh[mi][i]==0){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              dh[mi][i]=1; /* At least one step */
       printf("%s%d%d",alph[k],i1,tab[i]);*/              bh[mi][i]=ju; /* At least one step */
       fprintf(ficres,"%3d",i);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       printf("%3d",i);            }
       for(j=1; j<=i;j++){          } /* end if mle */
         fprintf(ficres," %.5e",matcov[i][j]);        }
         printf(" %.5e",matcov[i][j]);      } /* end wave */
       }    }
       fprintf(ficres,"\n");    jmean=sum/k;
       printf("\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       k++;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
      
     while((c=getc(ficpar))=='#' && c!= EOF){  /*********** Tricode ****************************/
       ungetc(c,ficpar);  void tricode(int *Tvar, int **nbcode, int imx)
       fgets(line, MAXLINE, ficpar);  {
       puts(line);    
       fputs(line,ficparo);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     }    int cptcode=0;
     ungetc(c,ficpar);    cptcoveff=0; 
     
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    for (k=0; k<maxncov; k++) Ndum[k]=0;
        for (k=1; k<=7; k++) ncodemax[k]=0;
     if (fage <= 2) {  
       bage = agemin;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fage = agemax;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        Ndum[ij]++; /*store the modality */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                             Tvar[j]. If V=sex and male is 0 and 
 /*------------ gnuplot -------------*/                                         female is 1, then  cptcode=1.*/
 chdir(pathcd);      }
   if((ficgp=fopen("graph.plt","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;      for (i=0; i<=cptcode; i++) {
   }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 #ifdef windows      }
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      ij=1; 
 m=pow(2,cptcoveff);      for (i=1; i<=ncodemax[j]; i++) {
          for (k=0; k<= maxncov; k++) {
  /* 1eme*/          if (Ndum[k] != 0) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {            nbcode[Tvar[j]][ij]=k; 
    for (k1=1; k1<= m ; k1 ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
 #ifdef windows            ij++;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          }
 #endif          if (ij > ncodemax[j]) break; 
 #ifdef unix        }  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      } 
 #endif    }  
   
 for (i=1; i<= nlstate ; i ++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<=ncovmodel-2; i++) { 
 }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     ij=Tvar[i];
     for (i=1; i<= nlstate ; i ++) {     Ndum[ij]++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }   ij=1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);   for (i=1; i<= maxncov; i++) {
      for (i=1; i<= nlstate ; i ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       Tvaraff[ij]=i; /*For printing */
   else fprintf(ficgp," \%%*lf (\%%*lf)");       ij++;
 }       }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   }
 #ifdef unix   
 fprintf(ficgp,"\nset ter gif small size 400,300");   cptcoveff=ij-1; /*Number of simple covariates*/
 #endif  }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }  /*********** Health Expectancies ****************/
   }  
   /*2 eme*/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
   for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    /* Health expectancies */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (i=1; i<= nlstate+1 ; i ++) {    double age, agelim, hf;
       k=2*i;    double ***p3mat,***varhe;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double **dnewm,**doldm;
       for (j=1; j<= nlstate+1 ; j ++) {    double *xp;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **gp, **gm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***gradg, ***trgradg;
 }      int theta;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    xp=vector(1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      fprintf(ficreseij,"# Local time at start: %s", strstart);
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficreseij,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {    for(i=1; i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 }      fprintf(ficreseij,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    }
   }    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /*3eme*/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   for (k1=1; k1<= m ; k1 ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * progression in between and thus overestimating or underestimating according
       k=2+nlstate*(cpt-1);     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1; i< nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * hypothesis. A more precise result, taking into account a more precise
       }     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   /* CV preval stat */       nstepm is the number of stepm from age to agelin. 
   for (k1=1; k1<= m ; k1 ++) {       Look at hpijx to understand the reason of that which relies in memory size
     for (cpt=1; cpt<nlstate ; cpt ++) {       and note for a fixed period like estepm months */
       k=3;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i< nlstate ; i ++)       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficgp,"+$%d",k+i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       results. So we changed our mind and took the option of the best precision.
          */
       l=3+(nlstate+ndeath)*cpt;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    agelim=AGESUP;
         l=3+(nlstate+ndeath)*cpt;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficgp,"+$%d",l+i+1);      /* nhstepm age range expressed in number of stepm */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* proba elementaires */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
    for(i=1,jk=1; i <=nlstate; i++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(j=1; j <=ncovmodel; j++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           /*fprintf(ficgp,"%s",alph[1]);*/   
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficgp,"\n");  
         }      /* Computing  Variances of health expectancies */
       }  
     }       for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(jk=1; jk <=m; jk++) {        }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    i=1;    
    for(k2=1; k2<=nlstate; k2++) {        cptj=0;
      k3=i;        for(j=1; j<= nlstate; j++){
      for(k=1; k<=(nlstate+ndeath); k++) {          for(i=1; i<=nlstate; i++){
        if (k != k2){            cptj=cptj+1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 ij=1;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(j=3; j <=ncovmodel; j++) {            }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;       
           }       
           else        for(i=1; i<=npar; i++) 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficgp,")/(1");        
                cptj=0;
         for(k1=1; k1 <=nlstate; k1++){          for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(i=1;i<=nlstate;i++){
 ij=1;            cptj=cptj+1;
           for(j=3; j <=ncovmodel; j++){            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             ij++;            }
           }          }
           else        }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for(j=1; j<= nlstate*nlstate; j++)
           }          for(h=0; h<=nhstepm-1; h++){
           fprintf(ficgp,")");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       } 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     
         i=i+ncovmodel;  /* End theta */
        }  
      }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
   fclose(ficgp);            trgradg[h][j][theta]=gradg[h][theta][j];
           
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);       for(i=1;i<=nlstate*nlstate;i++)
     free_ivector(wav,1,imx);        for(j=1;j<=nlstate*nlstate;j++)
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          varhe[i][j][(int)age] =0.;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
           printf("%d|",(int)age);fflush(stdout);
     free_imatrix(s,1,maxwav+1,1,n);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
     free_ivector(num,1,n);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     free_vector(agedc,1,n);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     free_vector(weight,1,n);          for(i=1;i<=nlstate*nlstate;i++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            for(j=1;j<=nlstate*nlstate;j++)
     fclose(ficparo);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     fclose(ficres);        }
     /*  }*/      }
          /* Computing expectancies */
    /*________fin mle=1_________*/      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     /* No more information from the sample is required now */            
   /* Reads comments: lines beginning with '#' */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficreseij,"%3.0f",age );
     fputs(line,ficparo);      cptj=0;
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
            cptj++;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficreseij,"\n");
 /*--------- index.htm --------*/     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   strcpy(optionfilehtm,optionfile);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   strcat(optionfilehtm,".htm");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Problem with %s \n",optionfilehtm);goto end;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    }
     printf("\n");
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">    fprintf(ficlog,"\n");
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
 Total number of observations=%d <br>    free_vector(xp,1,npar);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 <li>Outputs files<br><br>\n    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  /************ Variance ******************/
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  {
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    /* Variance of health expectancies */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    /* double **newm;*/
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    double **dnewm,**doldm;
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    double **dnewmp,**doldmp;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
  fprintf(fichtm," <li>Graphs</li><p>");    double *xp;
     double **gp, **gm;  /* for var eij */
  m=cptcoveff;    double ***gradg, ***trgradg; /*for var eij */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
  j1=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  for(k1=1; k1<=m;k1++){    double ***p3mat;
    for(i1=1; i1<=ncodemax[k1];i1++){    double age,agelim, hf;
        j1++;    double ***mobaverage;
        if (cptcovn > 0) {    int theta;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    char digit[4];
          for (cpt=1; cpt<=cptcoveff;cpt++)    char digitp[25];
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    char fileresprobmorprev[FILENAMELENGTH];
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    if(popbased==1){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          if(mobilav!=0)
        for(cpt=1; cpt<nlstate;cpt++){        strcpy(digitp,"-populbased-mobilav-");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      else strcpy(digitp,"-populbased-nomobil-");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    }
        }    else 
     for(cpt=1; cpt<=nlstate;cpt++) {      strcpy(digitp,"-stablbased-");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>    if (mobilav!=0) {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      for(cpt=1; cpt<=nlstate;cpt++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      }
      }    }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>    strcpy(fileresprobmorprev,"prmorprev"); 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    sprintf(digit,"%-d",ij);
 fprintf(fichtm,"\n</body>");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 fclose(fichtm);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   /*--------------- Prevalence limit --------------*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficrespl,"#Age ");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficrespl,"\n");      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   prlim=matrix(1,nlstate,1,nlstate);    }  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobmorprev,"\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n# Routine varevsij");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   k=0;  /*   } */
   agebase=agemin;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   agelim=agemax;   fprintf(ficresvij, "#Local time at start: %s", strstart);
   ftolpl=1.e-10;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   i1=cptcoveff;    fprintf(ficresvij,"# Age");
   if (cptcovn < 1){i1=1;}    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresvij,"\n");
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    xp=vector(1,npar);
         fprintf(ficrespl,"\n#******");    dnewm=matrix(1,nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficrespl,"******\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          
         for (age=agebase; age<=agelim; age++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    gpp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespl,"%.0f",age );    gmp=vector(nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    
           fprintf(ficrespl,"\n");    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
   fclose(ficrespl);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /*------------- h Pij x at various ages ------------*/       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       and note for a fixed period like k years */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   printf("Computing pij: result on file '%s' \n", filerespij);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   stepsize=(int) (stepm+YEARM-1)/YEARM;       results. So we changed our mind and took the option of the best precision.
   /*if (stepm<=24) stepsize=2;*/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   agelim=AGESUP;    agelim = AGESUP;
   hstepm=stepsize*YEARM; /* Every year of age */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   k=0;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      gp=matrix(0,nhstepm,1,nlstate);
       k=k+1;      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(theta=1; theta <=npar; theta++){
         fprintf(ficrespij,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;        if (popbased==1) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if(mobilav ==0){
           fprintf(ficrespij,"# Age");            for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)              prlim[i][i]=probs[(int)age][i][ij];
             for(j=1; j<=nlstate+ndeath;j++)          }else{ /* mobilav */ 
               fprintf(ficrespij," %1d-%1d",i,j);            for(i=1; i<=nlstate;i++)
           fprintf(ficrespij,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }
             for(i=1; i<=nlstate;i++)    
               for(j=1; j<=nlstate+ndeath;j++)        for(j=1; j<= nlstate; j++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           fprintf(ficrespij,"\n");        }
         }        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
         */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fclose(ficrespij);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /*---------- Forecasting ------------------*/        /* end probability of death */
   
   strcpy(fileresf,"f");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   strcat(fileresf,fileres);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
   printf("Computing forecasting: result on file '%s' \n", fileresf);        if (popbased==1) {
           if(mobilav ==0){
   /* Mobile average */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* for (agedeb=bage; agedeb<=fage; agedeb++)          }else{ /* mobilav */ 
     for (i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)              prlim[i][i]=mobaverage[(int)age][i][ij];
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/          }
         }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(j=1; j<= nlstate; j++){
   if (mobilav==1) {          for(h=0; h<=nhstepm; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     for (agedeb=bage+4; agedeb<=fage; agedeb++){           as a weighted average of prlim.
       for (i=1; i<=nlstate;i++){        */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for (cpt=0;cpt<=4;cpt++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /* end probability of death */
         }  
       }        for(j=1; j<= nlstate; j++) /* vareij */
     }            for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=24) stepsize=2;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   agelim=AGESUP;        }
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      } /* End theta */
   hstepm=12;  
    k=0;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(h=0; h<=nhstepm; h++) /* veij */
       k=k+1;        for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"\n#****** ");          for(theta=1; theta <=npar; theta++)
       for(j=1;j<=cptcoveff;j++) {            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              for(theta=1; theta <=npar; theta++)
       fprintf(ficresf,"******\n");          trgradgp[j][theta]=gradgp[theta][j];
     
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
       for (agedeb=fage; agedeb>=bage; agedeb--){        for(j=1;j<=nlstate;j++)
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);          vareij[i][j][(int)age] =0.;
        if (mobilav==1) {  
         for(j=1; j<=nlstate;j++)      for(h=0;h<=nhstepm;h++){
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         else {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(j=1; j<=nlstate;j++)          for(i=1;i<=nlstate;i++)
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);            for(j=1;j<=nlstate;j++)
         }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");      }
       }    
       for (cpt=1; cpt<=NCOVMAX;cpt++)        /* pptj */
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  x centered again */
         oldm=oldms;savm=savms;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   
         for (h=0; h<=nhstepm; h++){      if (popbased==1) {
                if(mobilav ==0){
           if (h*hstepm/YEARM*stepm==cpt)          for(i=1; i<=nlstate;i++)
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);            prlim[i][i]=probs[(int)age][i][ij];
                  }else{ /* mobilav */ 
           for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=nlstate;i++)
             kk1=0.;            prlim[i][i]=mobaverage[(int)age][i][ij];
             for(i=1; i<=nlstate;i++) {                }
               if (mobilav==1)      }
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];               
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];      /* This for computing probability of death (h=1 means
             }             computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);         as a weighted average of prlim.
           }      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
   }      /* end probability of death */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresf);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   /*---------- Health expectancies and variances ------------*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   strcpy(filerest,"t");        for(i=1; i<=nlstate;i++){
   strcat(filerest,fileres);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      } 
   }      fprintf(ficresprobmorprev,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   strcpy(filerese,"e");        for(j=1; j<=nlstate;j++){
   strcat(filerese,fileres);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
  strcpy(fileresv,"v");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcat(fileresv,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    } /* End age */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   k=0;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   for(cptcov=1;cptcov<=i1;cptcov++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       k=k+1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrest,"\n#****** ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(j=1;j<=cptcoveff;j++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"******\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficreseij,"\n#****** ");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficreseij,"******\n");  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fprintf(ficresvij,"\n#****** ");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_vector(xp,1,npar);
       fprintf(ficresvij,"******\n");    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       oldm=oldms;savm=savms;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       oldm=oldms;savm=savms;    fclose(ficresprobmorprev);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fflush(ficgp);
          fflush(fichtm); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  }  /* end varevsij */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  /************ Variance of prevlim ******************/
          void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       hf=1;  {
       if (stepm >= YEARM) hf=stepm/YEARM;    /* Variance of prevalence limit */
       epj=vector(1,nlstate+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       for(age=bage; age <=fage ;age++){    double **newm;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double **dnewm,**doldm;
         if (popbased==1) {    int i, j, nhstepm, hstepm;
           for(i=1; i<=nlstate;i++)    int k, cptcode;
             prlim[i][i]=probs[(int)age][i][k];    double *xp;
         }    double *gp, *gm;
            double **gradg, **trgradg;
         fprintf(ficrest," %.0f",age);    double age,agelim;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int theta;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           }    fprintf(ficresvpl,"# Age");
           epj[nlstate+1] +=epj[j];    for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %1d-%1d",i,i);
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficresvpl,"\n");
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    xp=vector(1,npar);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    dnewm=matrix(1,nlstate,1,npar);
         for(j=1;j <=nlstate;j++){    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    
         }    hstepm=1*YEARM; /* Every year of age */
         fprintf(ficrest,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       }    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
              if (stepm >= YEARM) hstepm=1;
              nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
  fclose(ficreseij);      gm=vector(1,nlstate);
  fclose(ficresvij);  
   fclose(ficrest);      for(theta=1; theta <=npar; theta++){
   fclose(ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
   free_vector(epj,1,nlstate+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*  scanf("%d ",i); */        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*------- Variance limit prevalence------*/          for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 strcpy(fileresvpl,"vpl");      
   strcat(fileresvpl,fileres);        for(i=1; i<=npar; i++) /* Computes gradient */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     exit(0);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
         for(i=1;i<=nlstate;i++)
  k=0;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  for(cptcov=1;cptcov<=i1;cptcov++){      } /* End theta */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;      trgradg =matrix(1,nlstate,1,npar);
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcoveff;j++)      for(j=1; j<=nlstate;j++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(theta=1; theta <=npar; theta++)
      fprintf(ficresvpl,"******\n");          trgradg[j][theta]=gradg[theta][j];
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      for(i=1;i<=nlstate;i++)
      oldm=oldms;savm=savms;        varpl[i][(int)age] =0.;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fclose(ficresvpl);  
       fprintf(ficresvpl,"%.0f ",age );
   /*---------- End : free ----------------*/      for(i=1; i<=nlstate;i++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_vector(gp,1,nlstate);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    } /* End age */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(xp,1,npar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  }
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   printf("End of Imach\n");  {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int k=0,l, cptcode;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    int first=1, first1;
   /*------ End -----------*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
  end:    double *gp, *gm;
 #ifdef windows    double **gradg, **trgradg;
  chdir(pathcd);    double **mu;
 #endif    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  system("..\\gp37mgw\\wgnuplot graph.plt");    int theta;
     char fileresprob[FILENAMELENGTH];
 #ifdef windows    char fileresprobcov[FILENAMELENGTH];
   while (z[0] != 'q') {    char fileresprobcor[FILENAMELENGTH];
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    double ***varpij;
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    strcpy(fileresprob,"prob"); 
     else if (z[0] == 'e') {    strcat(fileresprob,fileres);
       chdir(path);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       system(optionfilehtm);      printf("Problem with resultfile: %s\n", fileresprob);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     else if (z[0] == 'q') exit(0);    }
   }    strcpy(fileresprobcov,"probcov"); 
 #endif    strcat(fileresprobcov,fileres);
 }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.14  
changed lines
  Added in v.1.114


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>