Diff for /imach/src/imach.c between versions 1.17 and 1.109

version 1.17, 2002/02/20 17:15:02 version 1.109, 2006/01/24 19:37:15
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.109  2006/01/24 19:37:15  brouard
   individuals from different ages are interviewed on their health status    (Module): Comments (lines starting with a #) are allowed in data.
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.108  2006/01/19 18:05:42  lievre
   Health expectancies are computed from the transistions observed between    Gnuplot problem appeared...
   waves and are computed for each degree of severity of disability (number    To be fixed
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.107  2006/01/19 16:20:37  brouard
   The simplest model is the multinomial logistic model where pij is    Test existence of gnuplot in imach path
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.106  2006/01/19 13:24:36  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Some cleaning and links added in html output
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.105  2006/01/05 20:23:19  lievre
     *Covariates have to be included here again* invites you to do it.    *** empty log message ***
   More covariates you add, less is the speed of the convergence.  
     Revision 1.104  2005/09/30 16:11:43  lievre
   The advantage that this computer programme claims, comes from that if the    (Module): sump fixed, loop imx fixed, and simplifications.
   delay between waves is not identical for each individual, or if some    (Module): If the status is missing at the last wave but we know
   individual missed an interview, the information is not rounded or lost, but    that the person is alive, then we can code his/her status as -2
   taken into account using an interpolation or extrapolation.    (instead of missing=-1 in earlier versions) and his/her
   hPijx is the probability to be    contributions to the likelihood is 1 - Prob of dying from last
   observed in state i at age x+h conditional to the observed state i at age    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   x. The delay 'h' can be split into an exact number (nh*stepm) of    the healthy state at last known wave). Version is 0.98
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.103  2005/09/30 15:54:49  lievre
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    (Module): sump fixed, loop imx fixed, and simplifications.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add the possibility to read data file including tab characters.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.101  2004/09/15 10:38:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix on curr_time
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.100  2004/07/12 18:29:06  brouard
   from the European Union.    Add version for Mac OS X. Just define UNIX in Makefile
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.99  2004/06/05 08:57:40  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.98  2004/05/16 15:05:56  brouard
 #include <math.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <stdio.h>    directly from the data i.e. without the need of knowing the health
 #include <stdlib.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <unistd.h>    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXLINE 256    cross-longitudinal survey is different from the mortality estimated
 #define FILENAMELENGTH 80    from other sources like vital statistic data.
 /*#define DEBUG*/  
 #define windows    The same imach parameter file can be used but the option for mle should be -3.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Current limitations:
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    A) Even if you enter covariates, i.e. with the
 #define NCOVMAX 8 /* Maximum number of covariates */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define MAXN 20000    B) There is no computation of Life Expectancy nor Life Table.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.97  2004/02/20 13:25:42  lievre
 #define AGEBASE 40    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
 int nvar;    Revision 1.96  2003/07/15 15:38:55  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int npar=NPARMAX;    rewritten within the same printf. Workaround: many printfs.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.95  2003/07/08 07:54:34  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Repository):
 int popbased=0;    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.94  2003/06/27 13:00:02  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Just cleaning
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.93  2003/06/25 16:33:55  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): On windows (cygwin) function asctime_r doesn't
 double jmean; /* Mean space between 2 waves */    exist so I changed back to asctime which exists.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Version 0.96b
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.92  2003/06/25 16:30:45  brouard
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficreseij;    exist so I changed back to asctime which exists.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.91  2003/06/25 15:30:29  brouard
   char fileresv[FILENAMELENGTH];    * imach.c (Repository): Duplicated warning errors corrected.
  FILE  *ficresvpl;    (Repository): Elapsed time after each iteration is now output. It
   char fileresvpl[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define NR_END 1    concerning matrix of covariance. It has extension -cov.htm.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NRANSI    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ITMAX 200    of the covariance matrix to be input.
   
 #define TOL 2.0e-4    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define CGOLD 0.3819660    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ZEPS 1.0e-10    of the covariance matrix to be input.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define GOLD 1.618034    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.86  2003/06/17 20:04:08  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Change position of html and gnuplot routines and added
      routine fileappend.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 static double sqrarg;    current date of interview. It may happen when the death was just
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    prior to the death. In this case, dh was negative and likelihood
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 int imx;    interview.
 int stepm;    (Repository): Because some people have very long ID (first column)
 /* Stepm, step in month: minimum step interpolation*/    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 int m,nb;    truncation)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Repository): No more line truncation errors.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 double *weight;    place. It differs from routine "prevalence" which may be called
 int **s; /* Status */    many times. Probs is memory consuming and must be used with
 double *agedc, **covar, idx;    parcimony.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.83  2003/06/10 13:39:11  lievre
 double ftolhess; /* Tolerance for computing hessian */    *** empty log message ***
   
 /**************** split *************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 static  int split( char *path, char *dirc, char *name )    Add log in  imach.c and  fullversion number is now printed.
 {  
    char *s;                             /* pointer */  */
    int  l1, l2;                         /* length counters */  /*
      Interpolated Markov Chain
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Short summary of the programme:
    s = strrchr( path, '\\' );           /* find last / */    
    if ( s == NULL ) {                   /* no directory, so use current */    This program computes Healthy Life Expectancies from
 #if     defined(__bsd__)                /* get current working directory */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       extern char       *getwd( );    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
       if ( getwd( dirc ) == NULL ) {    case of a health survey which is our main interest) -2- at least a
 #else    second wave of interviews ("longitudinal") which measure each change
       extern char       *getcwd( );    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    model. More health states you consider, more time is necessary to reach the
 #endif    Maximum Likelihood of the parameters involved in the model.  The
          return( GLOCK_ERROR_GETCWD );    simplest model is the multinomial logistic model where pij is the
       }    probability to be observed in state j at the second wave
       strcpy( name, path );             /* we've got it */    conditional to be observed in state i at the first wave. Therefore
    } else {                             /* strip direcotry from path */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       s++;                              /* after this, the filename */    'age' is age and 'sex' is a covariate. If you want to have a more
       l2 = strlen( s );                 /* length of filename */    complex model than "constant and age", you should modify the program
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    where the markup *Covariates have to be included here again* invites
       strcpy( name, s );                /* save file name */    you to do it.  More covariates you add, slower the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    convergence.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    The advantage of this computer programme, compared to a simple
    l1 = strlen( dirc );                 /* length of directory */    multinomial logistic model, is clear when the delay between waves is not
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    identical for each individual. Also, if a individual missed an
    return( 0 );                         /* we're done */    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
     hPijx is the probability to be observed in state i at age x+h
 /******************************************/    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 void replace(char *s, char*t)    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   int i;    matrix is simply the matrix product of nh*stepm elementary matrices
   int lg=20;    and the contribution of each individual to the likelihood is simply
   i=0;    hPijx.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Also this programme outputs the covariance matrix of the parameters but also
     (s[i] = t[i]);    of the life expectancies. It also computes the stable prevalence. 
     if (t[i]== '\\') s[i]='/';    
   }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 int nbocc(char *s, char occ)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   int i,j=0;    software can be distributed freely for non commercial use. Latest version
   int lg=20;    can be accessed at http://euroreves.ined.fr/imach .
   i=0;  
   lg=strlen(s);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   for(i=0; i<= lg; i++) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if  (s[i] == occ ) j++;    
   }    **********************************************************************/
   return j;  /*
 }    main
     read parameterfile
 void cutv(char *u,char *v, char*t, char occ)    read datafile
 {    concatwav
   int i,lg,j,p=0;    freqsummary
   i=0;    if (mle >= 1)
   for(j=0; j<=strlen(t)-1; j++) {      mlikeli
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    print results files
   }    if mle==1 
        computes hessian
   lg=strlen(t);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for(j=0; j<p; j++) {        begin-prev-date,...
     (u[j] = t[j]);    open gnuplot file
   }    open html file
      u[p]='\0';    stable prevalence
      for age prevalim()
    for(j=0; j<= lg; j++) {    h Pij x
     if (j>=(p+1))(v[j-p-1] = t[j]);    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /********************** nrerror ********************/    prevalence()
      movingaverage()
 void nrerror(char error_text[])    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   fprintf(stderr,"ERREUR ...\n");    total life expectancies
   fprintf(stderr,"%s\n",error_text);    Variance of stable prevalence
   exit(1);   end
 }  */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  
 {  
   double *v;   
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <math.h>
   if (!v) nrerror("allocation failure in vector");  #include <stdio.h>
   return v-nl+NR_END;  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #include <limits.h>
 {  #include <sys/types.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /* #include <sys/time.h> */
 {  #include <time.h>
   int *v;  #include "timeval.h"
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /* #include <libintl.h> */
   return v-nl+NR_END;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(v+nl-NR_END));  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /******************* imatrix *******************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   /* allocate pointers to rows */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXN 20000
   m += NR_END;  #define YEARM 12. /* Number of months per year */
   m -= nrl;  #define AGESUP 130
    #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   /* allocate rows and set pointers to them */  #ifdef UNIX
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "/"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;  #else
    #define DIRSEPARATOR '\\'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   /* return pointer to array of pointers to rows */  #endif
   return m;  
 }  /* $Id$ */
   /* $State$ */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
       int **m;  char fullversion[]="$Revision$ $Date$"; 
       long nch,ncl,nrh,nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      /* free an int matrix allocated by imatrix() */  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int npar=NPARMAX;
   free((FREE_ARG) (m+nrl-NR_END));  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /******************* matrix *******************************/  int popbased=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   double **m;  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!m) nrerror("allocation failure 1 in matrix()");  int mle, weightopt;
   m += NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m -= nrl;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double jmean; /* Mean space between 2 waves */
   m[nrl] += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl] -= ncl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficlog, *ficrespow;
   return m;  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /*************************free matrix ************************/  double sw; /* Sum of weights */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char filerespow[FILENAMELENGTH];
 {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficresilk;
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /******************* ma3x *******************************/  FILE *ficreseij;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileresv[FILENAMELENGTH];
   double ***m;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char title[MAXLINE];
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   m -= nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int  outcmd=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] -= ncl;  
   char filelog[FILENAMELENGTH]; /* Log file */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char popfile[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     m[nrl][j]=m[nrl][j-1]+nlay;  struct timezone tzp;
    extern int gettimeofday();
   for (i=nrl+1; i<=nrh; i++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  long time_value;
     for (j=ncl+1; j<=nch; j++)  extern long time();
       m[i][j]=m[i][j-1]+nlay;  char strcurr[80], strfor[80];
   }  
   return m;  char *endptr;
 }  long lval;
   
 /*************************free ma3x ************************/  #define NR_END 1
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG)(m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /***************** f1dim *************************/  
 extern int ncom;  #define CGOLD 0.3819660 
 extern double *pcom,*xicom;  #define ZEPS 1.0e-10 
 extern double (*nrfunc)(double []);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
 double f1dim(double x)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int j;  #define TINY 1.0e-20 
   double f;  
   double *xt;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   xt=vector(1,ncom);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free_vector(xt,1,ncom);  #define rint(a) floor(a+0.5)
   return f;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*****************brent *************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int agegomp= AGEGOMP;
 {  
   int iter;  int imx; 
   double a,b,d,etemp;  int stepm=1;
   double fu,fv,fw,fx;  /* Stepm, step in month: minimum step interpolation*/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int estepm;
   double e=0.0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   a=(ax < cx ? ax : cx);  int m,nb;
   b=(ax > cx ? ax : cx);  long *num;
   x=w=v=bx;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   fw=fv=fx=(*f)(x);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (iter=1;iter<=ITMAX;iter++) {  double **pmmij, ***probs;
     xm=0.5*(a+b);  double *ageexmed,*agecens;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double dateintmean=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  double *weight;
 #ifdef DEBUG  int **s; /* Status */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *agedc, **covar, idx;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #endif  double *lsurv, *lpop, *tpop;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       return fx;  double ftolhess; /* Tolerance for computing hessian */
     }  
     ftemp=fu;  /**************** split *************************/
     if (fabs(e) > tol1) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       p=(x-v)*q-(x-w)*r;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       q=2.0*(q-r);    */ 
       if (q > 0.0) p = -p;    char  *ss;                            /* pointer */
       q=fabs(q);    int   l1, l2;                         /* length counters */
       etemp=e;  
       e=d;    l1 = strlen(path );                   /* length of path */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       else {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         d=p/q;      strcpy( name, path );               /* we got the fullname name because no directory */
         u=x+d;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         if (u-a < tol2 || b-u < tol2)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           d=SIGN(tol1,xm-x);      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
     } else {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        return( GLOCK_ERROR_GETCWD );
     }      }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      /* got dirc from getcwd*/
     fu=(*f)(u);      printf(" DIRC = %s \n",dirc);
     if (fu <= fx) {    } else {                              /* strip direcotry from path */
       if (u >= x) a=x; else b=x;      ss++;                               /* after this, the filename */
       SHFT(v,w,x,u)      l2 = strlen( ss );                  /* length of filename */
         SHFT(fv,fw,fx,fu)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         } else {      strcpy( name, ss );         /* save file name */
           if (u < x) a=u; else b=u;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           if (fu <= fw || w == x) {      dirc[l1-l2] = 0;                    /* add zero */
             v=w;      printf(" DIRC2 = %s \n",dirc);
             w=u;    }
             fv=fw;    /* We add a separator at the end of dirc if not exists */
             fw=fu;    l1 = strlen( dirc );                  /* length of directory */
           } else if (fu <= fv || v == x || v == w) {    if( dirc[l1-1] != DIRSEPARATOR ){
             v=u;      dirc[l1] =  DIRSEPARATOR;
             fv=fu;      dirc[l1+1] = 0; 
           }      printf(" DIRC3 = %s \n",dirc);
         }    }
   }    ss = strrchr( name, '.' );            /* find last / */
   nrerror("Too many iterations in brent");    if (ss >0){
   *xmin=x;      ss++;
   return fx;      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /****************** mnbrak ***********************/      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))  
 {    return( 0 );                          /* we're done */
   double ulim,u,r,q, dum;  }
   double fu;  
    
   *fa=(*func)(*ax);  /******************************************/
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  void replace_back_to_slash(char *s, char*t)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    int i;
       }    int lg=0;
   *cx=(*bx)+GOLD*(*bx-*ax);    i=0;
   *fc=(*func)(*cx);    lg=strlen(t);
   while (*fb > *fc) {    for(i=0; i<= lg; i++) {
     r=(*bx-*ax)*(*fb-*fc);      (s[i] = t[i]);
     q=(*bx-*cx)*(*fb-*fa);      if (t[i]== '\\') s[i]='/';
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  }
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  int nbocc(char *s, char occ)
       fu=(*func)(u);  {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    int i,j=0;
       fu=(*func)(u);    int lg=20;
       if (fu < *fc) {    i=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    lg=strlen(s);
           SHFT(*fb,*fc,fu,(*func)(u))    for(i=0; i<= lg; i++) {
           }    if  (s[i] == occ ) j++;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    }
       u=ulim;    return j;
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  void cutv(char *u,char *v, char*t, char occ)
       fu=(*func)(u);  {
     }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     SHFT(*ax,*bx,*cx,u)       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       SHFT(*fa,*fb,*fc,fu)       gives u="abcedf" and v="ghi2j" */
       }    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*************** linmin ************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 int ncom;  
 double *pcom,*xicom;    lg=strlen(t);
 double (*nrfunc)(double []);    for(j=0; j<p; j++) {
        (u[j] = t[j]);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {       u[p]='\0';
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);     for(j=0; j<= lg; j++) {
   double f1dim(double x);      if (j>=(p+1))(v[j-p-1] = t[j]);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /********************** nrerror ********************/
   double fx,fb,fa;  
    void nrerror(char error_text[])
   ncom=n;  {
   pcom=vector(1,n);    fprintf(stderr,"ERREUR ...\n");
   xicom=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   nrfunc=func;    exit(EXIT_FAILURE);
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  /*********************** vector *******************/
     xicom[j]=xi[j];  double *vector(int nl, int nh)
   }  {
   ax=0.0;    double *v;
   xx=1.0;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!v) nrerror("allocation failure in vector");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return v-nl+NR_END;
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /************************ free vector ******************/
   for (j=1;j<=n;j++) {  void free_vector(double*v, int nl, int nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    free((FREE_ARG)(v+nl-NR_END));
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /*************** powell ************************/    int *v;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             double (*func)(double []))    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /******************free ivector **************************/
   double del,t,*pt,*ptt,*xit;  void free_ivector(int *v, long nl, long nh)
   double fp,fptt;  {
   double *xits;    free((FREE_ARG)(v+nl-NR_END));
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /************************lvector *******************************/
   xits=vector(1,n);  long *lvector(long nl,long nh)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    long *v;
   for (*iter=1;;++(*iter)) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     fp=(*fret);    if (!v) nrerror("allocation failure in ivector");
     ibig=0;    return v-nl+NR_END;
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /******************free lvector **************************/
       printf(" %d %.12f",i, p[i]);  void free_lvector(long *v, long nl, long nh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    free((FREE_ARG)(v+nl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /******************* imatrix *******************************/
       printf("fret=%lf \n",*fret);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #endif       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf("%d",i);fflush(stdout);  { 
       linmin(p,xit,n,fret,func);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       if (fabs(fptt-(*fret)) > del) {    int **m; 
         del=fabs(fptt-(*fret));    
         ibig=i;    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("%d %.12e",i,(*fret));    m += NR_END; 
       for (j=1;j<=n;j++) {    m -= nrl; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    
       }    /* allocate rows and set pointers to them */ 
       for(j=1;j<=n;j++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf(" p=%.12e",p[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf("\n");    m[nrl] += NR_END; 
 #endif    m[nrl] -= ncl; 
     }    
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #ifdef DEBUG    
       int k[2],l;    /* return pointer to array of pointers to rows */ 
       k[0]=1;    return m; 
       k[1]=-1;  } 
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /****************** free_imatrix *************************/
         printf(" %.12e",p[j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("\n");        int **m;
       for(l=0;l<=1;l++) {        long nch,ncl,nrh,nrl; 
         for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         }    free((FREE_ARG) (m+nrl-NR_END)); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  } 
       }  
 #endif  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   {
       free_vector(xit,1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       free_vector(xits,1,n);    double **m;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       return;    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m -= nrl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       xit[j]=p[j]-pt[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       pt[j]=p[j];    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return m;
       if (t < 0.0) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         linmin(p,xit,n,fret,func);     */
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /*************************free matrix ************************/
         }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for(j=1;j<=n;j++)    free((FREE_ARG)(m+nrl-NR_END));
           printf(" %.12e",xit[j]);  }
         printf("\n");  
 #endif  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
 /**** Prevalence limit ****************/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m += NR_END;
 {    m -= nrl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i, ii,j,k;    m[nrl] += NR_END;
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl] -= ncl;
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl][ncl] += NR_END;
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl][ncl] -= nll;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     
    cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (j=ncl+1; j<=nch; j++) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        m[i][j]=m[i][j-1]+nlay;
     newm=savm;    }
     /* Covariates have to be included here again */    return m; 
      cov[2]=agefin;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (k=1; k<=cptcovn;k++) {    */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  /*************************free ma3x ************************/
       for (k=1; k<=cptcovage;k++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
   /*************** function subdirf ***********/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char *subdirf(char fileres[])
   {
     savm=oldm;    /* Caution optionfilefiname is hidden */
     oldm=newm;    strcpy(tmpout,optionfilefiname);
     maxmax=0.;    strcat(tmpout,"/"); /* Add to the right */
     for(j=1;j<=nlstate;j++){    strcat(tmpout,fileres);
       min=1.;    return tmpout;
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** function subdirf2 ***********/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *subdirf2(char fileres[], char *preop)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    
         min=FMIN(min,prlim[i][j]);    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       maxmin=max-min;    strcat(tmpout,"/");
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     if(maxmax < ftolpl){    return tmpout;
       return prlim;  }
     }  
   }  /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 /*************** transition probabilities ***************/    
     /* Caution optionfilefiname is hidden */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   double s1, s2;    strcat(tmpout,preop);
   /*double t34;*/    strcat(tmpout,preop2);
   int i,j,j1, nc, ii, jj;    strcat(tmpout,fileres);
     return tmpout;
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /***************** f1dim *************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  extern int ncom; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  extern double *pcom,*xicom;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  extern double (*nrfunc)(double []); 
       }   
       ps[i][j]=s2;  double f1dim(double x) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
     }    int j; 
     for(j=i+1; j<=nlstate+ndeath;j++){    double f;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double *xt; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[i][j]=(s2);    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
   }    return f; 
     /*ps[3][2]=1;*/  } 
   
   for(i=1; i<= nlstate; i++){  /*****************brent *************************/
      s1=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(j=1; j<i; j++)  { 
       s1+=exp(ps[i][j]);    int iter; 
     for(j=i+1; j<=nlstate+ndeath; j++)    double a,b,d,etemp;
       s1+=exp(ps[i][j]);    double fu,fv,fw,fx;
     ps[i][i]=1./(s1+1.);    double ftemp;
     for(j=1; j<i; j++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double e=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    a=(ax < cx ? ax : cx); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    b=(ax > cx ? ax : cx); 
   } /* end i */    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for (iter=1;iter<=ITMAX;iter++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){      xm=0.5*(a+b); 
       ps[ii][jj]=0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ps[ii][ii]=1;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(jj=1; jj<= nlstate+ndeath; jj++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      printf("%lf ",ps[ii][jj]);  #endif
    }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     printf("\n ");        *xmin=x; 
     }        return fx; 
     printf("\n ");printf("%lf ",cov[2]);*/      } 
 /*      ftemp=fu;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      if (fabs(e) > tol1) { 
   goto end;*/        r=(x-w)*(fx-fv); 
     return ps;        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 /**************** Product of 2 matrices ******************/        if (q > 0.0) p = -p; 
         q=fabs(q); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        etemp=e; 
 {        e=d; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* in, b, out are matrice of pointers which should have been initialized        else { 
      before: only the contents of out is modified. The function returns          d=p/q; 
      a pointer to pointers identical to out */          u=x+d; 
   long i, j, k;          if (u-a < tol2 || b-u < tol2) 
   for(i=nrl; i<= nrh; i++)            d=SIGN(tol1,xm-x); 
     for(k=ncolol; k<=ncoloh; k++)        } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } else { 
         out[i][k] +=in[i][j]*b[j][k];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   return out;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /************* Higher Matrix Product ***************/        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          } else { 
 {            if (u < x) a=u; else b=u; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month            if (fu <= fw || w == x) { 
      duration (i.e. until              v=w; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.              w=u; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step              fv=fw; 
      (typically every 2 years instead of every month which is too big).              fw=fu; 
      Model is determined by parameters x and covariates have to be            } else if (fu <= fv || v == x || v == w) { 
      included manually here.              v=u; 
               fv=fu; 
      */            } 
           } 
   int i, j, d, h, k;    } 
   double **out, cov[NCOVMAX];    nrerror("Too many iterations in brent"); 
   double **newm;    *xmin=x; 
     return fx; 
   /* Hstepm could be zero and should return the unit matrix */  } 
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /****************** mnbrak ***********************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(h=1; h <=nhstepm; h++){    double ulim,u,r,q, dum;
     for(d=1; d <=hstepm; d++){    double fu; 
       newm=savm;   
       /* Covariates have to be included here again */    *fa=(*func)(*ax); 
       cov[1]=1.;    *fb=(*func)(*bx); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    if (*fb > *fa) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      SHFT(dum,*ax,*bx,dum) 
       for (k=1; k<=cptcovage;k++)        SHFT(dum,*fb,*fa,dum) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } 
       for (k=1; k<=cptcovprod;k++)    *cx=(*bx)+GOLD*(*bx-*ax); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      q=(*bx-*cx)*(*fb-*fa); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       savm=oldm;      if ((*bx-u)*(u-*cx) > 0.0) { 
       oldm=newm;        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(i=1; i<=nlstate+ndeath; i++)        fu=(*func)(u); 
       for(j=1;j<=nlstate+ndeath;j++) {        if (fu < *fc) { 
         po[i][j][h]=newm[i][j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);            SHFT(*fb,*fc,fu,(*func)(u)) 
          */            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   } /* end h */        u=ulim; 
   return po;        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /*************** log-likelihood *************/      } 
 double func( double *x)      SHFT(*ax,*bx,*cx,u) 
 {        SHFT(*fa,*fb,*fc,fu) 
   int i, ii, j, k, mi, d, kk;        } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  /*************** linmin ************************/
   double lli; /* Individual log likelihood */  
   long ipmx;  int ncom; 
   /*extern weight */  double *pcom,*xicom;
   /* We are differentiating ll according to initial status */  double (*nrfunc)(double []); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/   
   /*for(i=1;i<imx;i++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     printf(" %d\n",s[4][i]);  { 
   */    double brent(double ax, double bx, double cx, 
   cov[1]=1.;                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){                double *fc, double (*func)(double)); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    int j; 
     for(mi=1; mi<= wav[i]-1; mi++){    double xx,xmin,bx,ax; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    double fx,fb,fa;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);   
       for(d=0; d<dh[mi][i]; d++){    ncom=n; 
         newm=savm;    pcom=vector(1,n); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    xicom=vector(1,n); 
         for (kk=1; kk<=cptcovage;kk++) {    nrfunc=func; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for (j=1;j<=n;j++) { 
         }      pcom[j]=p[j]; 
              xicom[j]=xi[j]; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    ax=0.0; 
         savm=oldm;    xx=1.0; 
         oldm=newm;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
            *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
          #ifdef DEBUG
       } /* end mult */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  #endif
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    for (j=1;j<=n;j++) { 
       ipmx +=1;      xi[j] *= xmin; 
       sw += weight[i];      p[j] += xi[j]; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    } 
     } /* end of wave */    free_vector(xicom,1,n); 
   } /* end of individual */    free_vector(pcom,1,n); 
   } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  char *asc_diff_time(long time_sec, char ascdiff[])
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /*********** Maximum Likelihood Estimation ***************/    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i,j, iter;    return ascdiff;
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  /*************** powell ************************/
   for (i=1;i<=npar;i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++)              double (*func)(double [])) 
       xi[i][j]=(i==j ? 1.0 : 0.0);  { 
   printf("Powell\n");    void linmin(double p[], double xi[], int n, double *fret, 
   powell(p,xi,npar,ftol,&iter,&fret,func);                double (*func)(double [])); 
     int i,ibig,j; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double del,t,*pt,*ptt,*xit;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    double fp,fptt;
     double *xits;
 }    int niterf, itmp;
   
 /**** Computes Hessian and covariance matrix ***/    pt=vector(1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   double  **a,**y,*x,pd;    xits=vector(1,n); 
   double **hess;    *fret=(*func)(p); 
   int i, j,jk;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int *indx;    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   double hessii(double p[], double delta, int theta, double delti[]);      ibig=0; 
   double hessij(double p[], double delti[], int i, int j);      del=0.0; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      last_time=curr_time;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   hess=matrix(1,npar,1,npar);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");      */
   for (i=1;i<=npar;i++){     for (i=1;i<=n;i++) {
     printf("%d",i);fflush(stdout);        printf(" %d %.12f",i, p[i]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog," %d %.12lf",i, p[i]);
     /*printf(" %f ",p[i]);*/        fprintf(ficrespow," %.12lf", p[i]);
     /*printf(" %lf ",hess[i][i]);*/      }
   }      printf("\n");
        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (j=1;j<=npar;j++)  {      if(*iter <=3){
       if (j>i) {        tm = *localtime(&curr_time.tv_sec);
         printf(".%d%d",i,j);fflush(stdout);        strcpy(strcurr,asctime(&tm));
         hess[i][j]=hessij(p,delti,i,j);  /*       asctime_r(&tm,strcurr); */
         hess[j][i]=hess[i][j];            forecast_time=curr_time; 
         /*printf(" %lf ",hess[i][j]);*/        itmp = strlen(strcurr);
       }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
   a=matrix(1,npar,1,npar);  /*      asctime_r(&tmf,strfor); */
   y=matrix(1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
   x=vector(1,npar);          itmp = strlen(strfor);
   indx=ivector(1,npar);          if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++)          strfor[itmp-1]='\0';
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=n;i++) { 
     x[j]=1;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     lubksb(a,npar,indx,x);        fptt=(*fret); 
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       matcov[i][j]=x[i];        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
         printf("%d",i);fflush(stdout);
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=npar;i++) {        linmin(p,xit,n,fret,func); 
     for (j=1;j<=npar;j++) {        if (fabs(fptt-(*fret)) > del) { 
       printf("%.3e ",hess[i][j]);          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     printf("\n");        } 
   }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   /* Recompute Inverse */        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   ludcmp(a,npar,indx,&pd);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");        }
         for(j=1;j<=n;j++) {
   for (j=1;j<=npar;j++) {          printf(" p=%.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog," p=%.12e",p[j]);
     x[j]=1;        }
     lubksb(a,npar,indx,x);        printf("\n");
     for (i=1;i<=npar;i++){        fprintf(ficlog,"\n");
       y[i][j]=x[i];  #endif
       printf("%.3e ",y[i][j]);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("\n");  #ifdef DEBUG
   }        int k[2],l;
   */        k[0]=1;
         k[1]=-1;
   free_matrix(a,1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   free_matrix(y,1,npar,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_vector(x,1,npar);        for (j=1;j<=n;j++) {
   free_ivector(indx,1,npar);          printf(" %.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*************** hessian matrix ****************/          for (j=1;j<=n;j++) {
 double hessii( double x[], double delta, int theta, double delti[])            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int l=1, lmax=20;          }
   double k1,k2;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double p2[NPARMAX+1];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;  
   int k=0,kmax=10;  
   double l1;        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   fx=func(x);        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(pt,1,n); 
   for(l=0 ; l <=lmax; l++){        return; 
     l1=pow(10,l);      } 
     delts=delt;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(k=1 ; k <kmax; k=k+1){      for (j=1;j<=n;j++) { 
       delt = delta*(l1*k);        ptt[j]=2.0*p[j]-pt[j]; 
       p2[theta]=x[theta] +delt;        xit[j]=p[j]-pt[j]; 
       k1=func(p2)-fx;        pt[j]=p[j]; 
       p2[theta]=x[theta]-delt;      } 
       k2=func(p2)-fx;      fptt=(*func)(ptt); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      if (fptt < fp) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
              if (t < 0.0) { 
 #ifdef DEBUG          linmin(p,xit,n,fret,func); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for (j=1;j<=n;j++) { 
 #endif            xi[j][ibig]=xi[j][n]; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            xi[j][n]=xit[j]; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          }
         k=kmax;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         k=kmax; l=lmax*10.;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            fprintf(ficlog," %.12e",xit[j]);
         delts=delt;          }
       }          printf("\n");
     }          fprintf(ficlog,"\n");
   }  #endif
   delti[theta]=delts;        }
   return res;      } 
      } 
 }  } 
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  /**** Prevalence limit (stable prevalence)  ****************/
 {  
   int i;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int l=1, l1, lmax=20;  {
   double k1,k2,k3,k4,res,fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double p2[NPARMAX+1];       matrix by transitions matrix until convergence is reached */
   int k;  
     int i, ii,j,k;
   fx=func(x);    double min, max, maxmin, maxmax,sumnew=0.;
   for (k=1; k<=2; k++) {    double **matprod2();
     for (i=1;i<=npar;i++) p2[i]=x[i];    double **out, cov[NCOVMAX], **pmij();
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double agefin, delaymax=50 ; /* Max number of years to converge */
     k1=func(p2)-fx;  
      for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k2=func(p2)-fx;      }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;     cov[1]=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k3=func(p2)-fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetai]=x[thetai]-delti[thetai]/k;      newm=savm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      /* Covariates have to be included here again */
     k4=func(p2)-fx;       cov[2]=agefin;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    
 #ifdef DEBUG        for (k=1; k<=cptcovn;k++) {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
   return res;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i,imax,j,k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double big,dum,sum,temp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double *vv;  
        savm=oldm;
   vv=vector(1,n);      oldm=newm;
   *d=1.0;      maxmax=0.;
   for (i=1;i<=n;i++) {      for(j=1;j<=nlstate;j++){
     big=0.0;        min=1.;
     for (j=1;j<=n;j++)        max=0.;
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(i=1; i<=nlstate; i++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          sumnew=0;
     vv[i]=1.0/big;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (j=1;j<=n;j++) {          max=FMAX(max,prlim[i][j]);
     for (i=1;i<j;i++) {          min=FMIN(min,prlim[i][j]);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        maxmin=max-min;
       a[i][j]=sum;        maxmax=FMAX(maxmax,maxmin);
     }      }
     big=0.0;      if(maxmax < ftolpl){
     for (i=j;i<=n;i++) {        return prlim;
       sum=a[i][j];      }
       for (k=1;k<j;k++)    }
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*************** transition probabilities ***************/ 
         big=dum;  
         imax=i;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
     }    double s1, s2;
     if (j != imax) {    /*double t34;*/
       for (k=1;k<=n;k++) {    int i,j,j1, nc, ii, jj;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];      for(i=1; i<= nlstate; i++){
         a[j][k]=dum;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       *d = -(*d);            /*s2 += param[i][j][nc]*cov[nc];*/
       vv[imax]=vv[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     indx[j]=imax;          }
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]=s2;
     if (j != n) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=i+1; j<=nlstate+ndeath;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_vector(vv,1,n);  /* Doesn't work */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 ;          }
 }          ps[i][j]=s2;
         }
 void lubksb(double **a, int n, int *indx, double b[])      }
 {      /*ps[3][2]=1;*/
   int i,ii=0,ip,j;      
   double sum;      for(i=1; i<= nlstate; i++){
          s1=0;
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     ip=indx[i];          s1+=exp(ps[i][j]);
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[ip]=b[i];          s1+=exp(ps[i][j]);
     if (ii)        ps[i][i]=1./(s1+1.);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=1; j<i; j++)
     else if (sum) ii=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[i]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=n;i>=1;i--) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     sum=b[i];      } /* end i */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      
     b[i]=sum/a[i][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint)      }
 {  /* Some frequencies */      
    
   int i, m, jk, k1, k2,i1, j1, bool, z1,z2,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double ***freq; /* Frequencies */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double *pp;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double pos;  /*       } */
   FILE *ficresp;  /*       printf("\n "); */
   char fileresp[FILENAMELENGTH];  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
   pp=vector(1,nlstate);         /*
   probs= ma3x(1,130 ,1,8, 1,8);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   strcpy(fileresp,"p");        goto end;*/
   strcat(fileresp,fileres);      return ps;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /**************** Product of 2 matrices ******************/
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   j1=0;  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   j=cptcoveff;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   for(k1=1; k1<=j;k1++){       a pointer to pointers identical to out */
    for(i1=1; i1<=ncodemax[k1];i1++){    long i, j, k;
        j1++;    for(i=nrl; i<= nrh; i++)
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(k=ncolol; k<=ncoloh; k++)
          scanf("%d", i);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for (i=-1; i<=nlstate+ndeath; i++)            out[i][k] +=in[i][j]*b[j][k];
          for (jk=-1; jk<=nlstate+ndeath; jk++)    
            for(m=agemin; m <= agemax+3; m++)    return out;
              freq[i][jk][m]=0;  }
          
        for (i=1; i<=imx; i++) {  
          bool=1;  /************* Higher Matrix Product ***************/
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
                bool=0;    /* Computes the transition matrix starting at age 'age' over 
          }       'nhstepm*hstepm*stepm' months (i.e. until
           if (bool==1) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             for(m=fprev1; m<=lprev1; m++){       nhstepm*hstepm matrices. 
              k2=anint[m][i]+(mint[m][i]/12.);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
              if ((k2>=1984) && (k2<=1988.5)) {       (typically every 2 years instead of every month which is too big 
              if(agev[m][i]==0) agev[m][i]=agemax+1;       for the memory).
              if(agev[m][i]==1) agev[m][i]=agemax+2;       Model is determined by parameters x and covariates have to be 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       included manually here. 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
              }       */
             }  
           }    int i, j, d, h, k;
        }    double **out, cov[NCOVMAX];
         if  (cptcovn>0) {    double **newm;
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Hstepm could be zero and should return the unit matrix */
        fprintf(ficresp, "**********\n#");    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
        for(i=1; i<=nlstate;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "\n");      }
            /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for(h=1; h <=nhstepm; h++){
     if(i==(int)agemax+3)      for(d=1; d <=hstepm; d++){
       printf("Total");        newm=savm;
     else        /* Covariates have to be included here again */
       printf("Age %d", i);        cov[1]=1.;
     for(jk=1; jk <=nlstate ; jk++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovprod;k++)
       for(m=-1, pos=0; m <=0 ; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       else        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
      for(jk=1; jk <=nlstate ; jk++){        oldm=newm;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
         pp[jk] += freq[jk][m][i];      for(i=1; i<=nlstate+ndeath; i++)
      }        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
     for(jk=1,pos=0; jk <=nlstate ; jk++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       pos += pp[jk];           */
     for(jk=1; jk <=nlstate ; jk++){        }
       if(pos>=1.e-5)    } /* end h */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    return po;
       else  }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){  
         if(pos>=1.e-5){  /*************** log-likelihood *************/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  double func( double *x)
           probs[i][jk][j1]= pp[jk]/pos;  {
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else    double **out;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     }    int s1, s2;
     for(jk=-1; jk <=nlstate+ndeath; jk++)    double bbh, survp;
       for(m=-1; m <=nlstate+ndeath; m++)    long ipmx;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /*extern weight */
     if(i <= (int) agemax)    /* We are differentiating ll according to initial status */
       fprintf(ficresp,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("\n");    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     }    */
  }    cov[1]=1.;
    
   fclose(ficresp);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Prevalence ********************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)            for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */          for(d=0; d<dh[mi][i]; d++){
   double *pp;            newm=savm;
   double pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,130 ,1,8, 1,8);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
  for(k1=1; k1<=j;k1++){          /* But now since version 0.9 we anticipate for bias at large stepm.
     for(i1=1; i1<=ncodemax[k1];i1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       j1++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=-1; i<=nlstate+ndeath; i++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(m=agemin; m <= agemax+3; m++)           * probability in order to take into account the bias as a fraction of the way
           freq[i][jk][m]=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
         bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
               }          /* bias bh is positive if real duration
         if (bool==1) {           * is higher than the multiple of stepm and negative otherwise.
           for(m=fprev1; m<=lprev1; m++){           */
             if(agev[m][i]==0) agev[m][i]=agemax+1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if(agev[m][i]==1) agev[m][i]=agemax+2;          if( s2 > nlstate){ 
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /* i.e. if s2 is a death state and if the date of death is known 
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];               then the contribution to the likelihood is the probability to 
           }               die between last step unit time and current  step unit time, 
         }               which is also equal to probability to die before dh 
       }               minus probability to die before dh-stepm . 
        for(i=(int)agemin; i <= (int)agemax+3; i++){               In version up to 0.92 likelihood was computed
         for(jk=1; jk <=nlstate ; jk++){          as if date of death was unknown. Death was treated as any other
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          health state: the date of the interview describes the actual state
             pp[jk] += freq[jk][m][i];          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
         for(jk=1; jk <=nlstate ; jk++){          (healthy, disable or death) and IMaCh was corrected; but when we
           for(m=-1, pos=0; m <=0 ; m++)          introduced the exact date of death then we should have modified
             pos += freq[jk][m][i];          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
                  stepm. It is no more the probability to die between last interview
          for(jk=1; jk <=nlstate ; jk++){          and month of death but the probability to survive from last
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          interview up to one month before death multiplied by the
              pp[jk] += freq[jk][m][i];          probability to die within a month. Thanks to Chris
          }          Jackson for correcting this bug.  Former versions increased
                    mortality artificially. The bad side is that we add another loop
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          which slows down the processing. The difference can be up to 10%
           lower mortality.
          for(jk=1; jk <=nlstate ; jk++){                      */
            if( i <= (int) agemax){            lli=log(out[s1][s2] - savm[s1][s2]);
              if(pos>=1.e-5){  
                probs[i][jk][j1]= pp[jk]/pos;  
              }          } else if  (s2==-2) {
            }            for (j=1,survp=0. ; j<=nlstate; j++) 
          }              survp += out[s1][j];
                      lli= survp;
          }          }
     }          
   }          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli= survp;
   free_vector(pp,1,nlstate);          }
            
 }  /* End of Freq */          else if  (s2==-5) {
 /************* Waves Concatenation ***************/            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            lli= survp;
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          else{
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      and mw[mi+1][i]. dh depends on stepm.            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      */          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int i, mi, m;          /*if(lli ==000.0)*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      double sum=0., jmean=0.;*/          ipmx +=1;
           sw += weight[i];
   int j, k=0,jk, ju, jl;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double sum=0.;        } /* end of wave */
   jmin=1e+5;      } /* end of individual */
   jmax=-1;    }  else if(mle==2){
   jmean=0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     mi=0;        for(mi=1; mi<= wav[i]-1; mi++){
     m=firstpass;          for (ii=1;ii<=nlstate+ndeath;ii++)
     while(s[m][i] <= nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       if(s[m][i]>=1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)            }
         break;          for(d=0; d<=dh[mi][i]; d++){
       else            newm=savm;
         m++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }/* end while */            for (kk=1; kk<=cptcovage;kk++) {
     if (s[m][i] > nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          /* Only death is a correct wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mw[mi][i]=m;            savm=oldm;
     }            oldm=newm;
           } /* end mult */
     wav[i]=mi;        
     if(mi==0)          s1=s[mw[mi][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(i=1; i<=imx; i++){          ipmx +=1;
     for(mi=1; mi<wav[i];mi++){          sw += weight[i];
       if (stepm <=0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         dh[mi][i]=1;        } /* end of wave */
       else{      } /* end of individual */
         if (s[mw[mi+1][i]][i] > nlstate) {    }  else if(mle==3){  /* exponential inter-extrapolation */
           if (agedc[i] < 2*AGESUP) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */        for(mi=1; mi<= wav[i]-1; mi++){
           k=k+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j >= jmax) jmax=j;            for (j=1;j<=nlstate+ndeath;j++){
           if (j <= jmin) jmin=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /* if (j<10) printf("j=%d num=%d ",j,i); */            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           else if (j <= jmin)jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           sum=sum+j;            savm=oldm;
         }            oldm=newm;
         jk= j/stepm;          } /* end mult */
         jl= j -jk*stepm;        
         ju= j -(jk+1)*stepm;          s1=s[mw[mi][i]][i];
         if(jl <= -ju)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk;          bbh=(double)bh[mi][i]/(double)stepm; 
         else          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   jmean=sum/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Tricode ****************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void tricode(int *Tvar, int **nbcode, int imx)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int Ndum[20],ij=1, k, j, i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;            }
   cptcoveff=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   for (k=0; k<19; k++) Ndum[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {          
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
     ij=1;            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {          ipmx +=1;
         if (Ndum[k] != 0) {          sw += weight[i];
           nbcode[Tvar[j]][ij]=k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           ij++;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         if (ij > ncodemax[j]) break;      } /* end of individual */
       }      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  for (k=0; k<19; k++) Ndum[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=ncovmodel-2; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=Tvar[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;            }
     }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  ij=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (i=1; i<=10; i++) {            for (kk=1; kk<=cptcovage;kk++) {
    if((Ndum[i]!=0) && (i<=ncov)){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      Tvaraff[ij]=i;            }
      ij++;          
    }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     cptcoveff=ij-1;            oldm=newm;
 }          } /* end mult */
         
 /*********** Health Expectancies ****************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          ipmx +=1;
   /* Health expectancies */          sw += weight[i];
   int i, j, nhstepm, hstepm, h;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age, agelim,hf;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
        } /* end of individual */
   fprintf(ficreseij,"# Health expectancies\n");    } /* End of if */
   fprintf(ficreseij,"# Age");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(j=1; j<=nlstate;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficreseij," %1d-%1d",i,j);    return -l;
   fprintf(ficreseij,"\n");  }
   
   hstepm=1*YEARM; /*  Every j years of age (in month) */  /*************** log-likelihood *************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  double funcone( double *x)
   {
   agelim=AGESUP;    /* Same as likeli but slower because of a lot of printf and if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, ii, j, k, mi, d, kk;
     /* nhstepm age range expressed in number of stepm */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double **out;
     /* Typically if 20 years = 20*12/6=40 stepm */    double lli; /* Individual log likelihood */
     if (stepm >= YEARM) hstepm=1;    double llt;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    int s1, s2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double bbh, survp;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*extern weight */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /* We are differentiating ll according to initial status */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++)    cov[1]=1.;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){  
           eij[i][j][(int)age] +=p3mat[i][j][h];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     hf=1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficreseij,"%.0f",age );        for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
     fprintf(ficreseij,"\n");        for(d=0; d<dh[mi][i]; d++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          newm=savm;
   }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance ******************/          }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Variance of health expectancies */          savm=oldm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          oldm=newm;
   double **newm;        } /* end mult */
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm, h;        s1=s[mw[mi][i]][i];
   int k, cptcode;        s2=s[mw[mi+1][i]][i];
   double *xp;        bbh=(double)bh[mi][i]/(double)stepm; 
   double **gp, **gm;        /* bias is positive if real duration
   double ***gradg, ***trgradg;         * is higher than the multiple of stepm and negative otherwise.
   double ***p3mat;         */
   double age,agelim;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int theta;          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficresvij,"# Age");        } else if(mle==2){
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(j=1; j<=nlstate;j++)        } else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficresvij,"\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   xp=vector(1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   dnewm=matrix(1,nlstate,1,npar);          lli=log(out[s1][s2]); /* Original formula */
   doldm=matrix(1,nlstate,1,nlstate);        } /* End of if */
          ipmx +=1;
   hstepm=1*YEARM; /* Every year of age */        sw += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   agelim = AGESUP;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(globpr){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     if (stepm >= YEARM) hstepm=1;   %10.6f %10.6f %10.6f ", \
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     gp=matrix(0,nhstepm,1,nlstate);            llt +=ll[k]*gipmx/gsw;
     gm=matrix(0,nhstepm,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     for(theta=1; theta <=npar; theta++){          fprintf(ficresilk," %10.6f\n", -llt);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of wave */
       }    } /* end of individual */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if (popbased==1) {    if(globpr==0){ /* First time we count the contributions and weights */
         for(i=1; i<=nlstate;i++)      gipmx=ipmx;
           prlim[i][i]=probs[(int)age][i][ij];      gsw=sw;
       }    }
          return -l;
       for(j=1; j<= nlstate; j++){  }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /*************** function likelione ***********/
         }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
        /* This routine should help understanding what is done with 
       for(i=1; i<=npar; i++) /* Computes gradient */       the selection of individuals/waves and
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       to check the exact contribution to the likelihood.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Plotting could be done.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     */
     int k;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
           prlim[i][i]=probs[(int)age][i][ij];      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate; j++){        printf("Problem with resultfile: %s\n", fileresilk);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
       for(j=1; j<= nlstate; j++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }  
     } /* End theta */    *fretone=(*funcone)(p);
     if(*globpri !=0){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(h=0; h<=nhstepm; h++)      fflush(fichtm); 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)    return;
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  /*********** Maximum Likelihood Estimation ***************/
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int i,j, iter;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double **xi;
         for(i=1;i<=nlstate;i++)    double fret;
           for(j=1;j<=nlstate;j++)    double fretone; /* Only one call to likelihood */
             vareij[i][j][(int)age] += doldm[i][j];    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
     }    for (i=1;i<=npar;i++)
     h=1;      for (j=1;j<=npar;j++)
     if (stepm >= YEARM) h=stepm/YEARM;        xi[i][j]=(i==j ? 1.0 : 0.0);
     fprintf(ficresvij,"%.0f ",age );    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       for(j=1; j<=nlstate;j++){    strcat(filerespow,fileres);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficresvij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=nlstate;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   } /* End age */    fprintf(ficrespow,"\n");
    
   free_vector(xp,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  }
 {  
   /* Variance of prevalence limit */  /**** Computes Hessian and covariance matrix ***/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double **newm;  {
   double **dnewm,**doldm;    double  **a,**y,*x,pd;
   int i, j, nhstepm, hstepm;    double **hess;
   int k, cptcode;    int i, j,jk;
   double *xp;    int *indx;
   double *gp, *gm;  
   double **gradg, **trgradg;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double age,agelim;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int theta;    void lubksb(double **a, int npar, int *indx, double b[]) ;
        void ludcmp(double **a, int npar, int *indx, double *d) ;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double gompertz(double p[]);
   fprintf(ficresvpl,"# Age");    hess=matrix(1,npar,1,npar);
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvpl,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   xp=vector(1,npar);      printf("%d",i);fflush(stdout);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   doldm=matrix(1,nlstate,1,nlstate);     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   hstepm=1*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*  printf(" %f ",p[i]);
   agelim = AGESUP;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     if (stepm >= YEARM) hstepm=1;    for (i=1;i<=npar;i++) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (j=1;j<=npar;j++)  {
     gradg=matrix(1,npar,1,nlstate);        if (j>i) { 
     gp=vector(1,nlstate);          printf(".%d%d",i,j);fflush(stdout);
     gm=vector(1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(theta=1; theta <=npar; theta++){          
       for(i=1; i<=npar; i++){ /* Computes gradient */          hess[j][i]=hess[i][j];    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*printf(" %lf ",hess[i][j]);*/
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)    }
         gp[i] = prlim[i][i];    printf("\n");
        fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1;i<=nlstate;i++)    
         gm[i] = prlim[i][i];    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    x=vector(1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    indx=ivector(1,npar);
     } /* End theta */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     trgradg =matrix(1,nlstate,1,npar);    ludcmp(a,npar,indx,&pd);
   
     for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
       for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++) x[i]=0;
         trgradg[j][theta]=gradg[theta][j];      x[j]=1;
       lubksb(a,npar,indx,x);
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       varpl[i][(int)age] =0.;        matcov[i][j]=x[i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficresvpl,"%.0f ",age );    for (i=1;i<=npar;i++) { 
     for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        printf("%.3e ",hess[i][j]);
     fprintf(ficresvpl,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);      printf("\n");
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficlog,"\n");
     free_matrix(trgradg,1,nlstate,1,npar);    }
   } /* End age */  
     /* Recompute Inverse */
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(doldm,1,nlstate,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   free_matrix(dnewm,1,nlstate,1,nlstate);    ludcmp(a,npar,indx,&pd);
   
 }    /*  printf("\n#Hessian matrix recomputed#\n");
   
 /************ Variance of one-step probabilities  ******************/    for (j=1;j<=npar;j++) {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      for (i=1;i<=npar;i++) x[i]=0;
 {      x[j]=1;
   int i, j;      lubksb(a,npar,indx,x);
   int k=0, cptcode;      for (i=1;i<=npar;i++){ 
   double **dnewm,**doldm;        y[i][j]=x[i];
   double *xp;        printf("%.3e ",y[i][j]);
   double *gp, *gm;        fprintf(ficlog,"%.3e ",y[i][j]);
   double **gradg, **trgradg;      }
   double age,agelim, cov[NCOVMAX];      printf("\n");
   int theta;      fprintf(ficlog,"\n");
   char fileresprob[FILENAMELENGTH];    }
     */
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    free_matrix(a,1,npar,1,npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_matrix(y,1,npar,1,npar);
     printf("Problem with resultfile: %s\n", fileresprob);    free_vector(x,1,npar);
   }    free_ivector(indx,1,npar);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    free_matrix(hess,1,npar,1,npar);
    
   
   xp=vector(1,npar);  }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  /*************** hessian matrix ****************/
    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   cov[1]=1;  {
   for (age=bage; age<=fage; age ++){    int i;
     cov[2]=age;    int l=1, lmax=20;
     gradg=matrix(1,npar,1,9);    double k1,k2;
     trgradg=matrix(1,9,1,npar);    double p2[NPARMAX+1];
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double res;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
     for(theta=1; theta <=npar; theta++){    int k=0,kmax=10;
       for(i=1; i<=npar; i++)    double l1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
          fx=func(x);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
        for(l=0 ; l <=lmax; l++){
       k=0;      l1=pow(10,l);
       for(i=1; i<= (nlstate+ndeath); i++){      delts=delt;
         for(j=1; j<=(nlstate+ndeath);j++){      for(k=1 ; k <kmax; k=k+1){
            k=k+1;        delt = delta*(l1*k);
           gp[k]=pmmij[i][j];        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
       for(i=1; i<=npar; i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
   #ifdef DEBUG
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       k=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=(nlstate+ndeath); i++){  #endif
         for(j=1; j<=(nlstate+ndeath);j++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           k=k+1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           gm[k]=pmmij[i][j];          k=kmax;
         }        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10.;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
         }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      }
       for(theta=1; theta <=npar; theta++)    }
       trgradg[j][theta]=gradg[theta][j];    delti[theta]=delts;
      return res; 
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  }
   
      pmij(pmmij,cov,ncovmodel,x,nlstate);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
      k=0;    int i;
      for(i=1; i<=(nlstate+ndeath); i++){    int l=1, l1, lmax=20;
        for(j=1; j<=(nlstate+ndeath);j++){    double k1,k2,k3,k4,res,fx;
          k=k+1;    double p2[NPARMAX+1];
          gm[k]=pmmij[i][j];    int k;
         }  
      }    fx=func(x);
          for (k=1; k<=2; k++) {
      /*printf("\n%d ",(int)age);      for (i=1;i<=npar;i++) p2[i]=x[i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
              p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    
      }*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprob,"\n%d ",(int)age);      k2=func(p2)-fx;
     
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      k3=func(p2)-fx;
   }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      k4=func(p2)-fx;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #ifdef DEBUG
 }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  free_vector(xp,1,npar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 fclose(ficresprob);  #endif
  exit(0);    }
 }    return res;
   }
 /***********************************************/  
 /**************** Main Program *****************/  /************** Inverse of matrix **************/
 /***********************************************/  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
 /*int main(int argc, char *argv[])*/    int i,imax,j,k; 
 int main()    double big,dum,sum,temp; 
 {    double *vv; 
    
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    vv=vector(1,n); 
   double agedeb, agefin,hf;    *d=1.0; 
   double agemin=1.e20, agemax=-1.e20;    for (i=1;i<=n;i++) { 
       big=0.0; 
   double fret;      for (j=1;j<=n;j++) 
   double **xi,tmp,delta;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double dum; /* Dummy variable */      vv[i]=1.0/big; 
   double ***p3mat;    } 
   int *indx;    for (j=1;j<=n;j++) { 
   char line[MAXLINE], linepar[MAXLINE];      for (i=1;i<j;i++) { 
   char title[MAXLINE];        sum=a[i][j]; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        a[i][j]=sum; 
   char filerest[FILENAMELENGTH];      } 
   char fileregp[FILENAMELENGTH];      big=0.0; 
   char popfile[FILENAMELENGTH];      for (i=j;i<=n;i++) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        sum=a[i][j]; 
   int firstobs=1, lastobs=10;        for (k=1;k<j;k++) 
   int sdeb, sfin; /* Status at beginning and end */          sum -= a[i][k]*a[k][j]; 
   int c,  h , cpt,l;        a[i][j]=sum; 
   int ju,jl, mi;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          big=dum; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          imax=i; 
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;        } 
   int hstepm, nhstepm;      } 
   int *popage;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   double bage, fage, age, agelim, agebase;          dum=a[imax][k]; 
   double ftolpl=FTOL;          a[imax][k]=a[j][k]; 
   double **prlim;          a[j][k]=dum; 
   double *severity;        } 
   double ***param; /* Matrix of parameters */        *d = -(*d); 
   double  *p;        vv[imax]=vv[j]; 
   double **matcov; /* Matrix of covariance */      } 
   double ***delti3; /* Scale */      indx[j]=imax; 
   double *delti; /* Scale */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double ***eij, ***vareij;      if (j != n) { 
   double **varpl; /* Variances of prevalence limits by age */        dum=1.0/(a[j][j]); 
   double *epj, vepp;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double kk1, kk2;      } 
   double *popeffectif,*popcount;    } 
     free_vector(vv,1,n);  /* Doesn't work */
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";  ;
   char *alph[]={"a","a","b","c","d","e"}, str[4];  } 
   
   void lubksb(double **a, int n, int *indx, double b[]) 
   char z[1]="c", occ;  { 
 #include <sys/time.h>    int i,ii=0,ip,j; 
 #include <time.h>    double sum; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];   
   /* long total_usecs;    for (i=1;i<=n;i++) { 
   struct timeval start_time, end_time;      ip=indx[i]; 
        sum=b[ip]; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      b[ip]=b[i]; 
       if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   printf("\nIMACH, Version 0.7");      else if (sum) ii=i; 
   printf("\nEnter the parameter file name: ");      b[i]=sum; 
     } 
 #ifdef windows    for (i=n;i>=1;i--) { 
   scanf("%s",pathtot);      sum=b[i]; 
   getcwd(pathcd, size);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /*cygwin_split_path(pathtot,path,optionfile);      b[i]=sum/a[i][i]; 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    } 
   /* cutv(path,optionfile,pathtot,'\\');*/  } 
   
 split(pathtot, path,optionfile);  /************ Frequencies ********************/
   chdir(path);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   replace(pathc,path);  {  /* Some frequencies */
 #endif    
 #ifdef unix    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   scanf("%s",optionfile);    int first;
 #endif    double ***freq; /* Frequencies */
     double *pp, **prop;
 /*-------- arguments in the command line --------*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
   strcpy(fileres,"r");    char fileresp[FILENAMELENGTH];
   strcat(fileres, optionfile);    
     pp=vector(1,nlstate);
   /*---------arguments file --------*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    strcat(fileresp,fileres);
     printf("Problem with optionfile %s\n",optionfile);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     goto end;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   if((ficparo=fopen(filereso,"w"))==NULL) {    j1=0;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    
   }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    first=1;
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    for(k1=1; k1<=j;k1++){
     puts(line);      for(i1=1; i1<=ncodemax[k1];i1++){
     fputs(line,ficparo);        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   ungetc(c,ficpar);          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);              freq[i][jk][m]=0;
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for (i=1; i<=nlstate; i++)  
     fgets(line, MAXLINE, ficpar);        for(m=iagemin; m <= iagemax+3; m++)
     puts(line);          prop[i][m]=0;
     fputs(line,ficparo);        
   }        dateintsum=0;
   ungetc(c,ficpar);        k2cpt=0;
          for (i=1; i<=imx; i++) {
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);          bool=1;
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
  while((c=getc(ficpar))=='#' && c!= EOF){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     ungetc(c,ficpar);                bool=0;
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          if (bool==1){
     fputs(line,ficparo);            for(m=firstpass; m<=lastpass; m++){
   }              k2=anint[m][i]+(mint[m][i]/12.);
   ungetc(c,ficpar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 while((c=getc(ficpar))=='#' && c!= EOF){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                
     puts(line);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     fputs(line,ficparo);                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
   ungetc(c,ficpar);                }
                  /*}*/
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);            }
            }
   covar=matrix(0,NCOVMAX,1,n);        }
   cptcovn=0;         
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(ficresp, "#Local time at start: %s", strstart);
   ncovmodel=2+cptcovn;        if  (cptcovn>0) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Read guess parameters */          fprintf(ficresp, "**********\n#");
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=nlstate;i++) 
     ungetc(c,ficpar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresp, "\n");
     puts(line);        
     fputs(line,ficparo);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   ungetc(c,ficpar);            fprintf(ficlog,"Total");
            }else{
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            if(first==1){
     for(i=1; i <=nlstate; i++)              first=0;
     for(j=1; j <=nlstate+ndeath-1; j++){              printf("See log file for details...\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);            }
       fprintf(ficparo,"%1d%1d",i1,j1);            fprintf(ficlog,"Age %d", i);
       printf("%1d%1d",i,j);          }
       for(k=1; k<=ncovmodel;k++){          for(jk=1; jk <=nlstate ; jk++){
         fscanf(ficpar," %lf",&param[i][j][k]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         printf(" %lf",param[i][j][k]);              pp[jk] += freq[jk][m][i]; 
         fprintf(ficparo," %lf",param[i][j][k]);          }
       }          for(jk=1; jk <=nlstate ; jk++){
       fscanf(ficpar,"\n");            for(m=-1, pos=0; m <=0 ; m++)
       printf("\n");              pos += freq[jk][m][i];
       fprintf(ficparo,"\n");            if(pp[jk]>=1.e-10){
     }              if(first==1){
                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   p=param[1][1];            }else{
                if(first==1)
   /* Reads comments: lines beginning with '#' */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   ungetc(c,ficpar);              pp[jk] += freq[jk][m][i];
           }       
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            pos += pp[jk];
   for(i=1; i <=nlstate; i++){            posprop += prop[jk][i];
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(jk=1; jk <=nlstate ; jk++){
       printf("%1d%1d",i,j);            if(pos>=1.e-5){
       fprintf(ficparo,"%1d%1d",i1,j1);              if(first==1)
       for(k=1; k<=ncovmodel;k++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fscanf(ficpar,"%le",&delti3[i][j][k]);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         printf(" %le",delti3[i][j][k]);            }else{
         fprintf(ficparo," %le",delti3[i][j][k]);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fscanf(ficpar,"\n");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("\n");            }
       fprintf(ficparo,"\n");            if( i <= iagemax){
     }              if(pos>=1.e-5){
   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   delti=delti3[1][1];                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /* Reads comments: lines beginning with '#' */              }
   while((c=getc(ficpar))=='#' && c!= EOF){              else
     ungetc(c,ficpar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   ungetc(c,ficpar);            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
   matcov=matrix(1,npar,1,npar);              if(first==1)
   for(i=1; i <=npar; i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fscanf(ficpar,"%s",&str);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("%s",str);              }
     fprintf(ficparo,"%s",str);          if(i <= iagemax)
     for(j=1; j <=i; j++){            fprintf(ficresp,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);          if(first==1)
       printf(" %.5le",matcov[i][j]);            printf("Others in log...\n");
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficlog,"\n");
     }        }
     fscanf(ficpar,"\n");      }
     printf("\n");    }
     fprintf(ficparo,"\n");    dateintmean=dateintsum/k2cpt; 
   }   
   for(i=1; i <=npar; i++)    fclose(ficresp);
     for(j=i+1;j<=npar;j++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       matcov[i][j]=matcov[j][i];    free_vector(pp,1,nlstate);
        free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   printf("\n");    /* End of Freq */
   }
   
     /*-------- data file ----------*/  /************ Prevalence ********************/
     if((ficres =fopen(fileres,"w"))==NULL) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       printf("Problem with resultfile: %s\n", fileres);goto end;  {  
     }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     fprintf(ficres,"#%s\n",version);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
     if((fic=fopen(datafile,"r"))==NULL)    {    */
       printf("Problem with datafile: %s\n", datafile);goto end;   
     }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     n= lastobs;    double *pp, **prop;
     severity = vector(1,maxwav);    double pos,posprop; 
     outcome=imatrix(1,maxwav+1,1,n);    double  y2; /* in fractional years */
     num=ivector(1,n);    int iagemin, iagemax;
     moisnais=vector(1,n);  
     annais=vector(1,n);    iagemin= (int) agemin;
     moisdc=vector(1,n);    iagemax= (int) agemax;
     andc=vector(1,n);    /*pp=vector(1,nlstate);*/
     agedc=vector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     cod=ivector(1,n);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     weight=vector(1,n);    j1=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);    j=cptcoveff;
     anint=matrix(1,maxwav,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     s=imatrix(1,maxwav+1,1,n);    
     adl=imatrix(1,maxwav+1,1,n);        for(k1=1; k1<=j;k1++){
     tab=ivector(1,NCOVMAX);      for(i1=1; i1<=ncodemax[k1];i1++){
     ncodemax=ivector(1,8);        j1++;
         
     i=1;        for (i=1; i<=nlstate; i++)  
     while (fgets(line, MAXLINE, fic) != NULL)    {          for(m=iagemin; m <= iagemax+3; m++)
       if ((i >= firstobs) && (i <=lastobs)) {            prop[i][m]=0.0;
               
         for (j=maxwav;j>=1;j--){        for (i=1; i<=imx; i++) { /* Each individual */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          bool=1;
           strcpy(line,stra);          if  (cptcovn>0) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for (z1=1; z1<=cptcoveff; z1++) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
                  } 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          if (bool==1) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for (j=ncov;j>=1;j--){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         num[i]=atol(stra);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                        } 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            } /* end selection of waves */
           }
         i=i+1;        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
     }          
     /* printf("ii=%d", ij);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        scanf("%d",i);*/            posprop += prop[jk][i]; 
   imx=i-1; /* Number of individuals */          } 
   
   /* for (i=1; i<=imx; i++){          for(jk=1; jk <=nlstate ; jk++){     
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            if( i <=  iagemax){ 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              if(posprop>=1.e-5){ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                probs[i][jk][j1]= prop[jk][i]/posprop;
     }              } 
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/            } 
           }/* end jk */ 
   /* Calculation of the number of parameter from char model*/        }/* end i */ 
   Tvar=ivector(1,15);      } /* end i1 */
   Tprod=ivector(1,15);    } /* end k1 */
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   Tage=ivector(1,15);          /*free_vector(pp,1,nlstate);*/
        free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if (strlen(model) >1){  }  /* End of prevalence */
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');  /************* Waves Concatenation ***************/
     j1=nbocc(model,'*');  
     cptcovn=j+1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     cptcovprod=j1;  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Death is a valid wave (if date is known).
     strcpy(modelsav,model);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       printf("Error. Non available option model=%s ",model);       and mw[mi+1][i]. dh depends on stepm.
       goto end;       */
     }  
        int i, mi, m;
     for(i=(j+1); i>=1;i--){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       cutv(stra,strb,modelsav,'+');       double sum=0., jmean=0.;*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    int first;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int j, k=0,jk, ju, jl;
       /*scanf("%d",i);*/    double sum=0.;
       if (strchr(strb,'*')) {    first=0;
         cutv(strd,strc,strb,'*');    jmin=1e+5;
         if (strcmp(strc,"age")==0) {    jmax=-1;
           cptcovprod--;    jmean=0.;
           cutv(strb,stre,strd,'V');    for(i=1; i<=imx; i++){
           Tvar[i]=atoi(stre);      mi=0;
           cptcovage++;      m=firstpass;
             Tage[cptcovage]=i;      while(s[m][i] <= nlstate){
             /*printf("stre=%s ", stre);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         }          mw[++mi][i]=m;
         else if (strcmp(strd,"age")==0) {        if(m >=lastpass)
           cptcovprod--;          break;
           cutv(strb,stre,strc,'V');        else
           Tvar[i]=atoi(stre);          m++;
           cptcovage++;      }/* end while */
           Tage[cptcovage]=i;      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
         else {        /* if(mi==0)  never been interviewed correctly before death */
           cutv(strb,stre,strc,'V');           /* Only death is a correct wave */
           Tvar[i]=ncov+k1;        mw[mi][i]=m;
           cutv(strb,strc,strd,'V');      }
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);      wav[i]=mi;
           Tvard[k1][2]=atoi(stre);      if(mi==0){
           Tvar[cptcovn+k2]=Tvard[k1][1];        nbwarn++;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        if(first==0){
           for (k=1; k<=lastobs;k++)          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          first=1;
           k1++;        }
           k2=k2+2;        if(first==1){
         }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       }        }
       else {      } /* end mi==0 */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    } /* End individuals */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    for(i=1; i<=imx; i++){
       Tvar[i]=atoi(strc);      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
       strcpy(modelsav,stra);            dh[mi][i]=1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        else{
         scanf("%d",i);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
 }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              else if(j<0){
   printf("cptcovprod=%d ", cptcovprod);                nberr++;
   scanf("%d ",i);*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fclose(fic);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     /*  if(mle==1){*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if (weightopt != 1) { /* Maximisation without weights*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(i=1;i<=n;i++) weight[i]=1.0;              }
     }              k=k+1;
     /*-calculation of age at interview from date of interview and age at death -*/              if (j >= jmax) jmax=j;
     agev=matrix(1,maxwav,1,imx);              if (j <= jmin) jmin=j;
               sum=sum+j;
    for (i=1; i<=imx; i++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      for(m=2; (m<= maxwav); m++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;          }
          s[m][i]=-1;          else{
        }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            k=k+1;
       for(m=1; (m<= maxwav); m++){            if (j >= jmax) jmax=j;
         if(s[m][i] >0){            else if (j <= jmin)jmin=j;
           if (s[m][i] == nlstate+1) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             if(agedc[i]>0)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               if(moisdc[i]!=99 && andc[i]!=9999)            if(j<0){
               agev[m][i]=agedc[i];              nberr++;
             else {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if (andc[i]!=9999){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            }
               agev[m][i]=-1;            sum=sum+j;
               }          }
             }          jk= j/stepm;
           }          jl= j -jk*stepm;
           else if(s[m][i] !=9){ /* Should no more exist */          ju= j -(jk+1)*stepm;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(mint[m][i]==99 || anint[m][i]==9999)            if(jl==0){
               agev[m][i]=1;              dh[mi][i]=jk;
             else if(agev[m][i] <agemin){              bh[mi][i]=0;
               agemin=agev[m][i];            }else{ /* We want a negative bias in order to only have interpolation ie
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    * at the price of an extra matrix product in likelihood */
             }              dh[mi][i]=jk+1;
             else if(agev[m][i] >agemax){              bh[mi][i]=ju;
               agemax=agev[m][i];            }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          }else{
             }            if(jl <= -ju){
             /*agev[m][i]=anint[m][i]-annais[i];*/              dh[mi][i]=jk;
             /*   agev[m][i] = age[i]+2*m;*/              bh[mi][i]=jl;       /* bias is positive if real duration
           }                                   * is higher than the multiple of stepm and negative otherwise.
           else { /* =9 */                                   */
             agev[m][i]=1;            }
             s[m][i]=-1;            else{
           }              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
         else /*= 0 Unknown */            }
           agev[m][i]=1;            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for (i=1; i<=imx; i++)  {            }
       for(m=1; (m<= maxwav); m++){          } /* end if mle */
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");        } /* end wave */
           goto end;    }
         }    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   /*********** Tricode ****************************/
     free_vector(severity,1,maxwav);  void tricode(int *Tvar, int **nbcode, int imx)
     free_imatrix(outcome,1,maxwav+1,1,n);  {
     free_vector(moisnais,1,n);    
     free_vector(annais,1,n);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     /* free_matrix(mint,1,maxwav,1,n);    int cptcode=0;
        free_matrix(anint,1,maxwav,1,n);*/    cptcoveff=0; 
     free_vector(moisdc,1,n);   
     free_vector(andc,1,n);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
      
     wav=ivector(1,imx);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                                 modality*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     /* Concatenates waves */        Ndum[ij]++; /*store the modality */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
       Tcode=ivector(1,100);                                         female is 1, then  cptcode=1.*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      for (i=0; i<=cptcode; i++) {
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    codtab=imatrix(1,100,1,10);      }
    h=0;  
    m=pow(2,cptcoveff);      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
    for(k=1;k<=cptcoveff; k++){        for (k=0; k<= maxncov; k++) {
      for(i=1; i <=(m/pow(2,k));i++){          if (Ndum[k] != 0) {
        for(j=1; j <= ncodemax[k]; j++){            nbcode[Tvar[j]][ij]=k; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
            h++;            
            if (h>m) h=1;codtab[h][k]=j;            ij++;
          }          }
        }          if (ij > ncodemax[j]) break; 
      }        }  
    }      } 
        }  
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint);  
     for (i=1; i<=ncovmodel-2; i++) { 
   free_matrix(mint,1,maxwav,1,n);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   free_matrix(anint,1,maxwav,1,n);     ij=Tvar[i];
       Ndum[ij]++;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   ij=1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for (i=1; i<= maxncov; i++) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     if((Ndum[i]!=0) && (i<=ncovcol)){
             Tvaraff[ij]=i; /*For printing */
     /* For Powell, parameters are in a vector p[] starting at p[1]       ij++;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */   }
    
     if(mle==1){   cptcoveff=ij-1; /*Number of simple covariates*/
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  }
     }  
      /*********** Health Expectancies ****************/
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);  
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);  {
     /* Health expectancies */
    jk=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    fprintf(ficres,"# Parameters\n");    double age, agelim, hf;
    printf("# Parameters\n");    double ***p3mat,***varhe;
    for(i=1,jk=1; i <=nlstate; i++){    double **dnewm,**doldm;
      for(k=1; k <=(nlstate+ndeath); k++){    double *xp;
        if (k != i)    double **gp, **gm;
          {    double ***gradg, ***trgradg;
            printf("%d%d ",i,k);    int theta;
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
              printf("%f ",p[jk]);    xp=vector(1,npar);
              fprintf(ficres,"%f ",p[jk]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
              jk++;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            }    
            printf("\n");    fprintf(ficreseij,"# Local time at start: %s", strstart);
            fprintf(ficres,"\n");    fprintf(ficreseij,"# Health expectancies\n");
          }    fprintf(ficreseij,"# Age");
      }    for(i=1; i<=nlstate;i++)
    }      for(j=1; j<=nlstate;j++)
  if(mle==1){        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     /* Computing hessian and covariance matrix */    fprintf(ficreseij,"\n");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);    if(estepm < stepm){
  }      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficres,"# Scales\n");    }
     printf("# Scales\n");    else  hstepm=estepm;   
      for(i=1,jk=1; i <=nlstate; i++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       for(j=1; j <=nlstate+ndeath; j++){     * This is mainly to measure the difference between two models: for example
         if (j!=i) {     * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficres,"%1d%1d",i,j);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           printf("%1d%1d",i,j);     * progression in between and thus overestimating or underestimating according
           for(k=1; k<=ncovmodel;k++){     * to the curvature of the survival function. If, for the same date, we 
             printf(" %.5e",delti[jk]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             fprintf(ficres," %.5e",delti[jk]);     * to compare the new estimate of Life expectancy with the same linear 
             jk++;     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
           printf("\n");  
           fprintf(ficres,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
           Look at hpijx to understand the reason of that which relies in memory size
     k=1;       and note for a fixed period like estepm months */
     fprintf(ficres,"# Covariance\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("# Covariance\n");       survival function given by stepm (the optimization length). Unfortunately it
     for(i=1;i<=npar;i++){       means that if the survival funtion is printed only each two years of age and if
       /*  if (k>nlstate) k=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       i1=(i-1)/(ncovmodel*nlstate)+1;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);    agelim=AGESUP;
       for(j=1; j<=i;j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficres," %.5e",matcov[i][j]);      /* nhstepm age range expressed in number of stepm */
         printf(" %.5e",matcov[i][j]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficres,"\n");      /* if (stepm >= YEARM) hstepm=1;*/
       printf("\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       k++;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       puts(line);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fputs(line,ficparo);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     }   
     ungetc(c,ficpar);  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
          /* Computing  Variances of health expectancies */
     if (fage <= 2) {  
       bage = agemin;       for(theta=1; theta <=npar; theta++){
       fage = agemax;        for(i=1; i<=npar; i++){ 
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    
         cptj=0;
            for(j=1; j<= nlstate; j++){
 /*------------ gnuplot -------------*/          for(i=1; i<=nlstate; i++){
 chdir(pathcd);            cptj=cptj+1;
   if((ficgp=fopen("graph.plt","w"))==NULL) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     printf("Problem with file graph.gp");goto end;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
 #ifdef windows          }
   fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif       
 m=pow(2,cptcoveff);       
          for(i=1; i<=npar; i++) 
  /* 1eme*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for (k1=1; k1<= m ; k1 ++) {        
         cptj=0;
 #ifdef windows        for(j=1; j<= nlstate; j++){
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(i=1;i<=nlstate;i++){
 #endif            cptj=cptj+1;
 #ifdef unix            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate*nlstate; j++)
 }          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     
 }  /* End theta */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");       for(h=0; h<=nhstepm-1; h++)
 }          for(j=1; j<=nlstate*nlstate;j++)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          for(theta=1; theta <=npar; theta++)
 #ifdef unix            trgradg[h][j][theta]=gradg[h][theta][j];
 fprintf(ficgp,"\nset ter gif small size 400,300");       
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       for(i=1;i<=nlstate*nlstate;i++)
    }        for(j=1;j<=nlstate*nlstate;j++)
   }          varhe[i][j][(int)age] =0.;
   /*2 eme*/  
        printf("%d|",(int)age);fflush(stdout);
   for (k1=1; k1<= m ; k1 ++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
     for (i=1; i<= nlstate+1 ; i ++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       k=2*i;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(i=1;i<=nlstate*nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {            for(j=1;j<=nlstate*nlstate;j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      /* Computing expectancies */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficreseij,"%3.0f",age );
   else fprintf(ficgp," \%%*lf (\%%*lf)");      cptj=0;
 }        for(i=1; i<=nlstate;i++)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1; j<=nlstate;j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");          cptj++;
     }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        }
   }      fprintf(ficreseij,"\n");
       
   /*3eme*/      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   for (k1=1; k1<= m ; k1 ++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       k=2+nlstate*(cpt-1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    }
       for (i=1; i< nlstate ; i ++) {    printf("\n");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    fprintf(ficlog,"\n");
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /* CV preval stat */  }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  /************ Variance ******************/
       k=3;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);  {
       for (i=1; i< nlstate ; i ++)    /* Variance of health expectancies */
         fprintf(ficgp,"+$%d",k+i+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* double **newm;*/
          double **dnewm,**doldm;
       l=3+(nlstate+ndeath)*cpt;    double **dnewmp,**doldmp;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int i, j, nhstepm, hstepm, h, nstepm ;
       for (i=1; i< nlstate ; i ++) {    int k, cptcode;
         l=3+(nlstate+ndeath)*cpt;    double *xp;
         fprintf(ficgp,"+$%d",l+i+1);    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }      double ***p3mat;
     double age,agelim, hf;
   /* proba elementaires */    double ***mobaverage;
    for(i=1,jk=1; i <=nlstate; i++){    int theta;
     for(k=1; k <=(nlstate+ndeath); k++){    char digit[4];
       if (k != i) {    char digitp[25];
         for(j=1; j <=ncovmodel; j++){  
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    char fileresprobmorprev[FILENAMELENGTH];
           /*fprintf(ficgp,"%s",alph[1]);*/  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    if(popbased==1){
           jk++;      if(mobilav!=0)
           fprintf(ficgp,"\n");        strcpy(digitp,"-populbased-mobilav-");
         }      else strcpy(digitp,"-populbased-nomobil-");
       }    }
     }    else 
     }      strcpy(digitp,"-stablbased-");
   
   for(jk=1; jk <=m; jk++) {    if (mobilav!=0) {
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    i=1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    for(k2=1; k2<=nlstate; k2++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      k3=i;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      for(k=1; k<=(nlstate+ndeath); k++) {      }
        if (k != k2){    }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;    strcpy(fileresprobmorprev,"prmorprev"); 
         for(j=3; j <=ncovmodel; j++) {    sprintf(digit,"%-d",ij);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             ij++;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           }    strcat(fileresprobmorprev,fileres);
           else    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficgp,")/(1");    }
            printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for(k1=1; k1 <=nlstate; k1++){     
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 ij=1;    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
           for(j=3; j <=ncovmodel; j++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             ij++;      fprintf(ficresprobmorprev," p.%-d SE",j);
           }      for(i=1; i<=nlstate;i++)
           else        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }  
           }    fprintf(ficresprobmorprev,"\n");
           fprintf(ficgp,")");    fprintf(ficgp,"\n# Routine varevsij");
         }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         i=i+ncovmodel;  /*   } */
        }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }   fprintf(ficresvij, "#Local time at start: %s", strstart);
    }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   fclose(ficgp);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
        fprintf(ficresvij,"\n");
 chdir(path);  
        xp=vector(1,npar);
     free_ivector(wav,1,imx);    dnewm=matrix(1,nlstate,1,npar);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    doldm=matrix(1,nlstate,1,nlstate);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     free_ivector(num,1,n);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(agedc,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     fclose(ficparo);    gpp=vector(nlstate+1,nlstate+ndeath);
     fclose(ficres);    gmp=vector(nlstate+1,nlstate+ndeath);
     /*  }*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
    /*________fin mle=1_________*/    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     }
      else  hstepm=estepm;   
     /* No more information from the sample is required now */    /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like k years */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);       results. So we changed our mind and took the option of the best precision.
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 /*--------- index.htm --------*/    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcpy(optionfilehtm,optionfile);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcat(optionfilehtm,".htm");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with %s \n",optionfilehtm);goto end;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">  
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
 Total number of observations=%d <br>      for(theta=1; theta <=npar; theta++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 <hr  size=\"2\" color=\"#EC5E5E\">          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 <li>Outputs files<br><br>\n        }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        if (popbased==1) {
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          if(mobilav ==0){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            for(i=1; i<=nlstate;i++)
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              prlim[i][i]=probs[(int)age][i][ij];
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          }else{ /* mobilav */ 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>            for(i=1; i<=nlstate;i++)
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>              prlim[i][i]=mobaverage[(int)age][i][ij];
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          }
         }
  fprintf(fichtm," <li>Graphs</li><p>");    
         for(j=1; j<= nlstate; j++){
  m=cptcoveff;          for(h=0; h<=nhstepm; h++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  j1=0;          }
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){        /* This for computing probability of death (h=1 means
        j1++;           computed over hstepm matrices product = hstepm*stepm months) 
        if (cptcovn > 0) {           as a weighted average of prlim.
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        */
          for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        }        }    
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        /* end probability of death */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(cpt=1; cpt<=nlstate;cpt++) {   
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if (popbased==1) {
 interval) in state (%d): v%s%d%d.gif <br>          if(mobilav ==0){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              for(i=1; i<=nlstate;i++)
      }              prlim[i][i]=probs[(int)age][i][ij];
      for(cpt=1; cpt<=nlstate;cpt++) {          }else{ /* mobilav */ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            for(i=1; i<=nlstate;i++)
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              prlim[i][i]=mobaverage[(int)age][i][ij];
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        for(j=1; j<= nlstate; j++){
 fprintf(fichtm,"\n</body>");          for(h=0; h<=nhstepm; h++){
    }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 fclose(fichtm);          }
         }
   /*--------------- Prevalence limit --------------*/        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(filerespl,"pl");           as a weighted average of prlim.
   strcat(filerespl,fileres);        */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }    
   fprintf(ficrespl,"#Prevalence limit\n");        /* end probability of death */
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficrespl,"\n");          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   prlim=matrix(1,nlstate,1,nlstate);          }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;      } /* End theta */
   agebase=agemin;  
   agelim=agemax;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   ftolpl=1.e-10;  
   i1=cptcoveff;      for(h=0; h<=nhstepm; h++) /* veij */
   if (cptcovn < 1){i1=1;}        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   for(cptcov=1;cptcov<=i1;cptcov++){            trgradg[h][j][theta]=gradg[h][theta][j];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(theta=1; theta <=npar; theta++)
         fprintf(ficrespl,"\n#******");          trgradgp[j][theta]=gradgp[theta][j];
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){        for(j=1;j<=nlstate;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          vareij[i][j][(int)age] =0.;
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      for(h=0;h<=nhstepm;h++){
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(k=0;k<=nhstepm;k++){
           fprintf(ficrespl,"\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
   fclose(ficrespl);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   /*------------- h Pij x at various ages ------------*/      }
      
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /* pptj */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("Computing pij: result on file '%s' \n", filerespij);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* end ppptj */
   /*if (stepm<=24) stepsize=2;*/      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   agelim=AGESUP;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   hstepm=stepsize*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      if (popbased==1) {
          if(mobilav ==0){
   k=0;          for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){            prlim[i][i]=probs[(int)age][i][ij];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }else{ /* mobilav */ 
       k=k+1;          for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"\n#****** ");            prlim[i][i]=mobaverage[(int)age][i][ij];
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficrespij,"******\n");               
              /* This for computing probability of death (h=1 means
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         as a weighted average of prlim.
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           oldm=oldms;savm=savms;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           fprintf(ficrespij,"# Age");      }    
           for(i=1; i<=nlstate;i++)      /* end probability of death */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           fprintf(ficrespij,"\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(i=1; i<=nlstate;i++){
             for(i=1; i<=nlstate;i++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               for(j=1; j<=nlstate+ndeath;j++)        }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      } 
             fprintf(ficrespij,"\n");      fprintf(ficresprobmorprev,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespij,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
     }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
       fprintf(ficresvij,"\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   fclose(ficrespij);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /*---------- Forecasting ------------------*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   strcpy(fileresf,"f");    free_vector(gpp,nlstate+1,nlstate+ndeath);
   strcat(fileresf,fileres);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  free_matrix(agev,1,maxwav,1,imx);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /* Mobile average */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   if (mobilav==1) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)  */
       for (i=1; i<=nlstate;i++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        free_vector(xp,1,npar);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    free_matrix(doldm,1,nlstate,1,nlstate);
       for (i=1; i<=nlstate;i++){    free_matrix(dnewm,1,nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (cpt=0;cpt<=4;cpt++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fclose(ficresprobmorprev);
         }    fflush(ficgp);
       }    fflush(fichtm); 
     }    }  /* end varevsij */
   }  
   /************ Variance of prevlim ******************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   if (stepm<=12) stepsize=1;  {
     /* Variance of prevalence limit */
   agelim=AGESUP;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   hstepm=stepsize*YEARM; /* Every year of age */    double **newm;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   if (popforecast==1) {    int k, cptcode;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    double *xp;
       printf("Problem with population file : %s\n",popfile);goto end;    double *gp, *gm;
     }    double **gradg, **trgradg;
     popage=ivector(0,AGESUP);    double age,agelim;
     popeffectif=vector(0,AGESUP);    int theta;
     popcount=vector(0,AGESUP);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     i=1;      fprintf(ficresvpl,"# Age");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    for(i=1; i<=nlstate;i++)
       {        fprintf(ficresvpl," %1d-%1d",i,i);
         i=i+1;    fprintf(ficresvpl,"\n");
       }  
     imx=i;    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    doldm=matrix(1,nlstate,1,nlstate);
   }    
     hstepm=1*YEARM; /* Every year of age */
   for(cptcov=1;cptcov<=i1;cptcov++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    agelim = AGESUP;
       k=k+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficresf,"\n#****** ");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(j=1;j<=cptcoveff;j++) {      if (stepm >= YEARM) hstepm=1;
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
       fprintf(ficresf,"******\n");      gp=vector(1,nlstate);
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");      gm=vector(1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
       if (popforecast==1)  fprintf(ficresf," [Population]");      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
       for (agedeb=fage; agedeb>=bage; agedeb--){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);        }
        if (mobilav==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1; j<=nlstate;j++)        for(i=1;i<=nlstate;i++)
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);          gp[i] = prlim[i][i];
         }      
         else {        for(i=1; i<=npar; i++) /* Computes gradient */
           for(j=1; j<=nlstate;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }          for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");  
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);        for(i=1;i<=nlstate;i++)
       }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
            } /* End theta */
       for (cpt=1; cpt<=nforecast;cpt++) {  
         fprintf(ficresf,"\n");      trgradg =matrix(1,nlstate,1,npar);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++)
         nhstepm = nhstepm/hstepm;        for(theta=1; theta <=npar; theta++)
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/          trgradg[j][theta]=gradg[theta][j];
   
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1;i<=nlstate;i++)
         oldm=oldms;savm=savms;        varpl[i][(int)age] =0.;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for (h=0; h<=nhstepm; h++){      for(i=1;i<=nlstate;i++)
                varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          if (h*hstepm/YEARM*stepm==cpt)  
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);      fprintf(ficresvpl,"%.0f ",age );
                for(i=1; i<=nlstate;i++)
                  fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficresvpl,"\n");
            kk1=0.;kk2=0;      free_vector(gp,1,nlstate);
            for(i=1; i<=nlstate;i++) {              free_vector(gm,1,nlstate);
              if (mobilav==1)      free_matrix(gradg,1,npar,1,nlstate);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];      free_matrix(trgradg,1,nlstate,1,npar);
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    } /* End age */
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];  
             }    free_vector(xp,1,npar);
            if (h*hstepm/YEARM*stepm==cpt) {    free_matrix(doldm,1,nlstate,1,npar);
              fprintf(ficresf," %.3f", kk1);    free_matrix(dnewm,1,nlstate,1,nlstate);
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);  
            }  }
           }  
         }  /************ Variance of one-step probabilities  ******************/
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
          {
       }    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
   }    int first=1, first1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (popforecast==1) {    double **dnewm,**doldm;
     free_ivector(popage,0,AGESUP);    double *xp;
     free_vector(popeffectif,0,AGESUP);    double *gp, *gm;
     free_vector(popcount,0,AGESUP);    double **gradg, **trgradg;
   }    double **mu;
   free_imatrix(s,1,maxwav+1,1,n);    double age,agelim, cov[NCOVMAX];
   free_vector(weight,1,n);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fclose(ficresf);    int theta;
   /*---------- Health expectancies and variances ------------*/    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   strcpy(filerest,"t");    char fileresprobcor[FILENAMELENGTH];
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    double ***varpij;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    strcpy(fileresprob,"prob"); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   strcpy(filerese,"e");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    strcpy(fileresprobcov,"probcov"); 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  strcpy(fileresv,"v");    }
   strcat(fileresv,fileres);    strcpy(fileresprobcor,"probcor"); 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcat(fileresprobcor,fileres);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   k=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       k=k+1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficrest,"\n#****** ");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprob, "#Local time at start: %s", strstart);
       fprintf(ficrest,"******\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
       fprintf(ficreseij,"\n#****** ");    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficresprobcov,"# Age");
       fprintf(ficreseij,"******\n");    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fprintf(ficresvij,"\n#****** ");    fprintf(ficresprobcov,"# Age");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       oldm=oldms;savm=savms;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          fprintf(ficresprobcor," p%1d-%1d ",i,j);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }  
       oldm=oldms;savm=savms;   /* fprintf(ficresprob,"\n");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresprobcov,"\n");
          fprintf(ficresprobcor,"\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   xp=vector(1,npar);
       fprintf(ficrest,"\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       hf=1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if (stepm >= YEARM) hf=stepm/YEARM;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       epj=vector(1,nlstate+1);    first=1;
       for(age=bage; age <=fage ;age++){    fprintf(ficgp,"\n# Routine varprob");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         if (popbased==1) {    fprintf(fichtm,"\n");
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            file %s<br>\n",optionfilehtmcov);
         fprintf(ficrest," %.0f",age);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  and drawn. It helps understanding how is the covariance between two incidences.\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           epj[nlstate+1] +=epj[j];  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         }  standard deviations wide on each axis. <br>\
         for(i=1, vepp=0.;i <=nlstate;i++)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           for(j=1;j <=nlstate;j++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             vepp += vareij[i][j][(int)age];  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    cov[1]=1;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    tj=cptcoveff;
         }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficrest,"\n");    j1=0;
       }    for(t=1; t<=tj;t++){
     }      for(i1=1; i1<=ncodemax[t];i1++){ 
   }        j1++;
                if  (cptcovn>0) {
                  fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
  fclose(ficreseij);          fprintf(ficresprobcov, "\n#********** Variable "); 
  fclose(ficresvij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficrest);          fprintf(ficresprobcov, "**********\n#\n");
   fclose(ficpar);          
   free_vector(epj,1,nlstate+1);          fprintf(ficgp, "\n#********** Variable "); 
   /*  scanf("%d ",i); */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   /*------- Variance limit prevalence------*/            
           
 strcpy(fileresvpl,"vpl");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   strcat(fileresvpl,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          
     exit(0);          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficresprobcor, "**********\n#");    
         }
  k=0;        
  for(cptcov=1;cptcov<=i1;cptcov++){        for (age=bage; age<=fage; age ++){ 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          cov[2]=age;
      k=k+1;          for (k=1; k<=cptcovn;k++) {
      fprintf(ficresvpl,"\n#****** ");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
      for(j=1;j<=cptcoveff;j++)          }
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      fprintf(ficresvpl,"******\n");          for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          
      oldm=oldms;savm=savms;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    }          gp=vector(1,(nlstate)*(nlstate+ndeath));
  }          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
   fclose(ficresvpl);          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   /*---------- End : free ----------------*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            k=0;
              for(i=1; i<= (nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                k=k+1;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                gp[k]=pmmij[i][j];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
              
   free_matrix(matcov,1,npar,1,npar);            for(i=1; i<=npar; i++)
   free_vector(delti,1,npar);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   printf("End of Imach\n");            for(i=1; i<=(nlstate); i++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                gm[k]=pmmij[i][j];
   /*printf("Total time was %d uSec.\n", total_usecs);*/              }
   /*------ End -----------*/            }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  end:              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 #ifdef windows          }
  chdir(pathcd);  
 #endif          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
  system("..\\gp37mgw\\wgnuplot graph.plt");              trgradg[j][theta]=gradg[theta][j];
           
 #ifdef windows          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   while (z[0] != 'q') {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     chdir(pathcd);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     scanf("%s",z);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     if (z[0] == 'c') system("./imach");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     else if (z[0] == 'e') {  
       chdir(path);          pmij(pmmij,cov,ncovmodel,x,nlstate);
       system(optionfilehtm);          
     }          k=0;
     else if (z[0] == 'q') exit(0);          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
 #endif              k=k+1;
 }              mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) ||((i >= firstobs) && (i <=lastobs)))    {
       linei=linei+1;
       printf("IIIII= %d linei=%d\n",i,linei);
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10);j--){;};line[j+1]=0;  /* Trims blanks at end of line */
         if(line[0]=='#'){
           fprintf(ficlog,"Comment line\n%s\n",line);
           printf("Comment line\n%s\n",line);
           continue;
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %d %s for individual %d\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n",lval, i,line,linei,j,maxwav);
             exit(1);
           }
           s[j][i]=lval;
   
           strcpy(line,stra);
           cutv(stra, strb,line,'/');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d'.at line number %ld %s for individual %d\nShould be a year of exam at wave %d.  Exiting.\n",lval, i,line,linei,j);
             exit(1);
           }
           anint[j][i]=(double)(lval); 
   
           strcpy(line,stra);
           cutv(stra, strb,line,' ');
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of exam at wave %d.  Exiting.\n",lval, i,line, linei,j);
             exit(1);
           }
           mint[j][i]=(double)(lval); 
           strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of death.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         andc[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of death.  Exiting.\n",lval,i,line, linei);
           exit(1);
         }
         moisdc[i]=(double)(lval); 
   
         strcpy(line,stra);
         cutv(stra, strb,line,'/'); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a year of birth.  Exiting.\n",lval, i,line, linei);
           exit(1);
         }
         annais[i]=(double)(lval);
   
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a month of birth.  Exiting.\n",lval,i,line,linei);
           exit(1);
         }
         moisnais[i]=(double)(lval); 
         strcpy(line,stra);
   
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
           exit(1);
         }
         weight[i]=(double)(lval); 
         strcpy(line,stra);
   
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); 
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, i,line,linei);
             exit(1);
           }
           if(lval <0 || lval >1){
             printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,i,line,linei,j);
             exit(1);
           }
           covar[j][i]=(double)(lval);
           strcpy(line,stra);
         } 
         lstra=strlen(stra);
   
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
         printf ("num [i] %ld %d\n",i, num[i]);fflush(stdout);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
   #ifndef UNIX
     /*  strcpy(plotcmd,"\""); */
   #endif
     strcpy(plotcmd,pathimach);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     /*  strcat(plotcmd,"\"");*/
   #endif
     if(stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     }
   
   #ifndef UNIX
     strcpy(plotcmd,"\"");
   #endif
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
   #ifndef UNIX
     strcat(plotcmd,".exe");
     strcat(plotcmd,"\"");
   #endif
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.17  
changed lines
  Added in v.1.109


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>