Diff for /imach/src/imach.c between versions 1.48 and 1.186

version 1.48, 2002/06/10 13:12:49 version 1.186, 2015/04/23 12:01:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.186  2015/04/23 12:01:52  brouard
      Summary: V1*age is working now, version 0.98q1
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Some codes had been disabled in order to simplify and Vn*age was
   first survey ("cross") where individuals from different ages are    working in the optimization phase, ie, giving correct MLE parameters,
   interviewed on their health status or degree of disability (in the    but, as usual, outputs were not correct and program core dumped.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.185  2015/03/11 13:26:42  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Inclusion of compile and links command line for Intel Compiler
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.184  2015/03/11 11:52:39  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Back from Windows 8. Intel Compiler
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.183  2015/03/10 20:34:32  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: 0.98q0, trying with directest, mnbrak fixed
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    We use directest instead of original Powell test; probably no
   complex model than "constant and age", you should modify the program    incidence on the results, but better justifications;
   where the markup *Covariates have to be included here again* invites    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   you to do it.  More covariates you add, slower the    wrong results.
   convergence.  
     Revision 1.182  2015/02/12 08:19:57  brouard
   The advantage of this computer programme, compared to a simple    Summary: Trying to keep directest which seems simpler and more general
   multinomial logistic model, is clear when the delay between waves is not    Author: Nicolas Brouard
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.181  2015/02/11 23:22:24  brouard
   account using an interpolation or extrapolation.      Summary: Comments on Powell added
   
   hPijx is the probability to be observed in state i at age x+h    Author:
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.180  2015/02/11 17:33:45  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.179  2015/01/04 09:57:06  brouard
   and the contribution of each individual to the likelihood is simply    Summary: back to OS/X
   hPijx.  
     Revision 1.178  2015/01/04 09:35:48  brouard
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.177  2015/01/03 18:40:56  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Still testing ilc32 on OSX
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.176  2015/01/03 16:45:04  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.175  2015/01/03 16:33:42  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.174  2015/01/03 16:15:49  brouard
 #include <math.h>    Summary: Still in cross-compilation
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.173  2015/01/03 12:06:26  brouard
 #include <unistd.h>    Summary: trying to detect cross-compilation
   
 #define MAXLINE 256    Revision 1.172  2014/12/27 12:07:47  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.171  2014/12/23 13:26:59  brouard
 /*#define DEBUG*/    Summary: Back from Visual C
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Still problem with utsname.h on Windows
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.170  2014/12/23 11:17:12  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: Cleaning some \%% back to %%
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.169  2014/12/22 23:08:31  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: 0.98p
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.168  2014/12/22 15:17:42  brouard
 #define AGEBASE 40    Summary: update
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.167  2014/12/22 13:50:56  brouard
 #else    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define DIRSEPARATOR '/'  
 #endif    Testing on Linux 64
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Revision 1.166  2014/12/22 11:40:47  brouard
 int erreur; /* Error number */    *** empty log message ***
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.165  2014/12/16 11:20:36  brouard
 int npar=NPARMAX;    Summary: After compiling on Visual C
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Merging 1.61 to 1.162
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    * imach.c (Module): Merging 1.61 to 1.162
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.163  2014/12/16 10:30:11  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Module): Merging 1.61 to 1.162
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.162  2014/09/25 11:43:39  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: temporary backup 0.99!
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.1  2014/09/16 11:06:58  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Summary: With some code (wrong) for nlopt
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Author:
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.161  2014/09/15 20:41:41  brouard
 char fileresv[FILENAMELENGTH];    Summary: Problem with macro SQR on Intel compiler
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.160  2014/09/02 09:24:05  brouard
 char title[MAXLINE];    *** empty log message ***
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Author: Brouard
   
 char filerest[FILENAMELENGTH];    Revision 1.158  2014/08/27 17:11:51  brouard
 char fileregp[FILENAMELENGTH];    *** empty log message ***
 char popfile[FILENAMELENGTH];  
     Revision 1.157  2014/08/27 16:26:55  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define NR_END 1  
 #define FREE_ARG char*    In order to compile on Visual studio, time.h is now correct and time_t
 #define FTOL 1.0e-10    and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 #define NRANSI    Trying to suppress #ifdef LINUX
 #define ITMAX 200    Add xdg-open for __linux in order to open default browser.
   
 #define TOL 2.0e-4    Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.155  2014/08/25 18:32:34  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: New compile, minor changes
     Author: Brouard
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.154  2014/06/20 17:32:08  brouard
 #define TINY 1.0e-20    Summary: Outputs now all graphs of convergence to period prevalence
   
 static double maxarg1,maxarg2;    Revision 1.153  2014/06/20 16:45:46  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: If 3 live state, convergence to period prevalence on same graph
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Author: Brouard
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.152  2014/06/18 17:54:09  brouard
 #define rint(a) floor(a+0.5)    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
 static double sqrarg;    Revision 1.151  2014/06/18 16:43:30  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    *** empty log message ***
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.150  2014/06/18 16:42:35  brouard
 int imx;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 int stepm;    Author: brouard
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.149  2014/06/18 15:51:14  brouard
 int estepm;    Summary: Some fixes in parameter files errors
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Author: Nicolas Brouard
   
 int m,nb;    Revision 1.148  2014/06/17 17:38:48  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: Nothing new
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Author: Brouard
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Just a new packaging for OS/X version 0.98nS
   
 double *weight;    Revision 1.147  2014/06/16 10:33:11  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Author: Brouard
 double ftolhess; /* Tolerance for computing hessian */  
     Merge, before building revised version.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.145  2014/06/10 21:23:15  brouard
 {    Summary: Debugging with valgrind
    char *s;                             /* pointer */    Author: Nicolas Brouard
    int  l1, l2;                         /* length counters */  
     Lot of changes in order to output the results with some covariates
    l1 = strlen( path );                 /* length of path */    After the Edimburgh REVES conference 2014, it seems mandatory to
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    improve the code.
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    No more memory valgrind error but a lot has to be done in order to
    if ( s == NULL ) {                   /* no directory, so use current */    continue the work of splitting the code into subroutines.
 #if     defined(__bsd__)                /* get current working directory */    Also, decodemodel has been improved. Tricode is still not
       extern char       *getwd( );    optimal. nbcode should be improved. Documentation has been added in
     the source code.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.143  2014/01/26 09:45:38  brouard
       extern char       *getcwd( );    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #endif    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.142  2014/01/26 03:57:36  brouard
       strcpy( name, path );             /* we've got it */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.141  2014/01/26 02:42:01  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.140  2011/09/02 10:37:54  brouard
    }    Summary: times.h is ok with mingw32 now.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.139  2010/06/14 07:50:17  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #else    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.138  2010/04/30 18:19:40  brouard
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.137  2010/04/29 18:11:38  brouard
    l1= strlen( name);    (Module): Checking covariates for more complex models
    l2= strlen( s)+1;    than V1+V2. A lot of change to be done. Unstable.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.136  2010/04/26 20:30:53  brouard
    return( 0 );                         /* we're done */    (Module): merging some libgsl code. Fixing computation
 }    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 /******************************************/  
     Revision 1.135  2009/10/29 15:33:14  brouard
 void replace(char *s, char*t)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   int i;    Revision 1.134  2009/10/29 13:18:53  brouard
   int lg=20;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   i=0;  
   lg=strlen(t);    Revision 1.133  2009/07/06 10:21:25  brouard
   for(i=0; i<= lg; i++) {    just nforces
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.132  2009/07/06 08:22:05  brouard
   }    Many tings
 }  
     Revision 1.131  2009/06/20 16:22:47  brouard
 int nbocc(char *s, char occ)    Some dimensions resccaled
 {  
   int i,j=0;    Revision 1.130  2009/05/26 06:44:34  brouard
   int lg=20;    (Module): Max Covariate is now set to 20 instead of 8. A
   i=0;    lot of cleaning with variables initialized to 0. Trying to make
   lg=strlen(s);    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.129  2007/08/31 13:49:27  lievre
   }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   return j;  
 }    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.127  2006/04/28 18:11:50  brouard
   int i,lg,j,p=0;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   for(j=0; j<=strlen(t)-1; j++) {    loop. Now we define nhstepma in the age loop.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): In order to speed up (in case of numerous covariates) we
   }    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
   lg=strlen(t);    deviation (needs data from the Hessian matrices) which slows the
   for(j=0; j<p; j++) {    computation.
     (u[j] = t[j]);    In the future we should be able to stop the program is only health
   }    expectancies and graph are needed without standard deviations.
      u[p]='\0';  
     Revision 1.126  2006/04/28 17:23:28  brouard
    for(j=0; j<= lg; j++) {    (Module): Yes the sum of survivors was wrong since
     if (j>=(p+1))(v[j-p-1] = t[j]);    imach-114 because nhstepm was no more computed in the age
   }    loop. Now we define nhstepma in the age loop.
 }    Version 0.98h
   
 /********************** nrerror ********************/    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 void nrerror(char error_text[])    Forecasting file added.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.124  2006/03/22 17:13:53  lievre
   fprintf(stderr,"%s\n",error_text);    Parameters are printed with %lf instead of %f (more numbers after the comma).
   exit(1);    The log-likelihood is printed in the log file
 }  
 /*********************** vector *******************/    Revision 1.123  2006/03/20 10:52:43  brouard
 double *vector(int nl, int nh)    * imach.c (Module): <title> changed, corresponds to .htm file
 {    name. <head> headers where missing.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Module): Weights can have a decimal point as for
   if (!v) nrerror("allocation failure in vector");    English (a comma might work with a correct LC_NUMERIC environment,
   return v-nl+NR_END;    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /************************ free vector ******************/    Version 0.98g
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /************************ivector *******************************/    Modification of warning when the covariates values are not 0 or
 int *ivector(long nl,long nh)    1.
 {    Version 0.98g
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.121  2006/03/16 17:45:01  lievre
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Module): Comments concerning covariates added
   return v-nl+NR_END;  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /******************free ivector **************************/    not 1 month. Version 0.98f
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.120  2006/03/16 15:10:38  lievre
   free((FREE_ARG)(v+nl-NR_END));    (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.119  2006/03/15 17:42:26  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   /* allocate pointers to rows */    table of variances if popbased=1 .
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Function pstamp added
   m += NR_END;    (Module): Version 0.98d
   m -= nrl;  
      Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
   /* allocate rows and set pointers to them */    table of variances if popbased=1 .
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Function pstamp added
   m[nrl] += NR_END;    (Module): Version 0.98d
   m[nrl] -= ncl;  
      Revision 1.116  2006/03/06 10:29:27  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 /****************** free_imatrix *************************/    Revision 1.114  2006/02/26 12:57:58  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Some improvements in processing parameter
       int **m;    filename with strsep.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    datafile was not closed, some imatrix were not freed and on matrix
   free((FREE_ARG) (m+nrl-NR_END));    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
 /******************* matrix *******************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Lots of cleaning and bugs added (Gompertz)
   double **m;    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.110  2006/01/25 00:51:50  brouard
   m += NR_END;    (Module): Lots of cleaning and bugs added (Gompertz)
   m -= nrl;  
     Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Comments (lines starting with a #) are allowed in data.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.108  2006/01/19 18:05:42  lievre
   m[nrl] -= ncl;    Gnuplot problem appeared...
     To be fixed
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.107  2006/01/19 16:20:37  brouard
 }    Test existence of gnuplot in imach path
   
 /*************************free matrix ************************/    Revision 1.106  2006/01/19 13:24:36  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Some cleaning and links added in html output
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.105  2006/01/05 20:23:19  lievre
   free((FREE_ARG)(m+nrl-NR_END));    *** empty log message ***
 }  
     Revision 1.104  2005/09/30 16:11:43  lievre
 /******************* ma3x *******************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): If the status is missing at the last wave but we know
 {    that the person is alive, then we can code his/her status as -2
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (instead of missing=-1 in earlier versions) and his/her
   double ***m;    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    the healthy state at last known wave). Version is 0.98
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.103  2005/09/30 15:54:49  lievre
   m -= nrl;    (Module): sump fixed, loop imx fixed, and simplifications.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.102  2004/09/15 17:31:30  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Add the possibility to read data file including tab characters.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
   m[nrl][ncl] -= nll;    *** empty log message ***
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   for (i=nrl+1; i<=nrh; i++) {    directly from the data i.e. without the need of knowing the health
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    state at each age, but using a Gompertz model: log u =a + b*age .
     for (j=ncl+1; j<=nch; j++)    This is the basic analysis of mortality and should be done before any
       m[i][j]=m[i][j-1]+nlay;    other analysis, in order to test if the mortality estimated from the
   }    cross-longitudinal survey is different from the mortality estimated
   return m;    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Agnès, who wrote this part of the code, tried to keep most of the
 {    former routines in order to include the new code within the former code.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    The output is very simple: only an estimate of the intercept and of
   free((FREE_ARG)(m+nrl-NR_END));    the slope with 95% confident intervals.
 }  
     Current limitations:
 /***************** f1dim *************************/    A) Even if you enter covariates, i.e. with the
 extern int ncom;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 extern double *pcom,*xicom;    B) There is no computation of Life Expectancy nor Life Table.
 extern double (*nrfunc)(double []);  
      Revision 1.97  2004/02/20 13:25:42  lievre
 double f1dim(double x)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   int j;  
   double f;    Revision 1.96  2003/07/15 15:38:55  brouard
   double *xt;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.95  2003/07/08 07:54:34  brouard
   f=(*nrfunc)(xt);    * imach.c (Repository):
   free_vector(xt,1,ncom);    (Repository): Using imachwizard code to output a more meaningful covariance
   return f;    matrix (cov(a12,c31) instead of numbers.
 }  
     Revision 1.94  2003/06/27 13:00:02  brouard
 /*****************brent *************************/    Just cleaning
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   int iter;    (Module): On windows (cygwin) function asctime_r doesn't
   double a,b,d,etemp;    exist so I changed back to asctime which exists.
   double fu,fv,fw,fx;    (Module): Version 0.96b
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.92  2003/06/25 16:30:45  brouard
   double e=0.0;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.91  2003/06/25 15:30:29  brouard
   x=w=v=bx;    * imach.c (Repository): Duplicated warning errors corrected.
   fw=fv=fx=(*f)(x);    (Repository): Elapsed time after each iteration is now output. It
   for (iter=1;iter<=ITMAX;iter++) {    helps to forecast when convergence will be reached. Elapsed time
     xm=0.5*(a+b);    is stamped in powell.  We created a new html file for the graphs
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    concerning matrix of covariance. It has extension -cov.htm.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.90  2003/06/24 12:34:15  brouard
 #ifdef DEBUG    (Module): Some bugs corrected for windows. Also, when
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    mle=-1 a template is output in file "or"mypar.txt with the design
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    of the covariance matrix to be input.
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.89  2003/06/24 12:30:52  brouard
       *xmin=x;    (Module): Some bugs corrected for windows. Also, when
       return fx;    mle=-1 a template is output in file "or"mypar.txt with the design
     }    of the covariance matrix to be input.
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.88  2003/06/23 17:54:56  brouard
       r=(x-w)*(fx-fv);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.87  2003/06/18 12:26:01  brouard
       q=2.0*(q-r);    Version 0.96
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.86  2003/06/17 20:04:08  brouard
       etemp=e;    (Module): Change position of html and gnuplot routines and added
       e=d;    routine fileappend.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.85  2003/06/17 13:12:43  brouard
       else {    * imach.c (Repository): Check when date of death was earlier that
         d=p/q;    current date of interview. It may happen when the death was just
         u=x+d;    prior to the death. In this case, dh was negative and likelihood
         if (u-a < tol2 || b-u < tol2)    was wrong (infinity). We still send an "Error" but patch by
           d=SIGN(tol1,xm-x);    assuming that the date of death was just one stepm after the
       }    interview.
     } else {    (Repository): Because some people have very long ID (first column)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    we changed int to long in num[] and we added a new lvector for
     }    memory allocation. But we also truncated to 8 characters (left
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    truncation)
     fu=(*f)(u);    (Repository): No more line truncation errors.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    Revision 1.84  2003/06/13 21:44:43  brouard
       SHFT(v,w,x,u)    * imach.c (Repository): Replace "freqsummary" at a correct
         SHFT(fv,fw,fx,fu)    place. It differs from routine "prevalence" which may be called
         } else {    many times. Probs is memory consuming and must be used with
           if (u < x) a=u; else b=u;    parcimony.
           if (fu <= fw || w == x) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
             v=w;  
             w=u;    Revision 1.83  2003/06/10 13:39:11  lievre
             fv=fw;    *** empty log message ***
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.82  2003/06/05 15:57:20  brouard
             v=u;    Add log in  imach.c and  fullversion number is now printed.
             fv=fu;  
           }  */
         }  /*
   }     Interpolated Markov Chain
   nrerror("Too many iterations in brent");  
   *xmin=x;    Short summary of the programme:
   return fx;    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 /****************** mnbrak ***********************/    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    case of a health survey which is our main interest) -2- at least a
             double (*func)(double))    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   double ulim,u,r,q, dum;    computed from the time spent in each health state according to a
   double fu;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   *fa=(*func)(*ax);    simplest model is the multinomial logistic model where pij is the
   *fb=(*func)(*bx);    probability to be observed in state j at the second wave
   if (*fb > *fa) {    conditional to be observed in state i at the first wave. Therefore
     SHFT(dum,*ax,*bx,dum)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       SHFT(dum,*fb,*fa,dum)    'age' is age and 'sex' is a covariate. If you want to have a more
       }    complex model than "constant and age", you should modify the program
   *cx=(*bx)+GOLD*(*bx-*ax);    where the markup *Covariates have to be included here again* invites
   *fc=(*func)(*cx);    you to do it.  More covariates you add, slower the
   while (*fb > *fc) {    convergence.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    The advantage of this computer programme, compared to a simple
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    multinomial logistic model, is clear when the delay between waves is not
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    identical for each individual. Also, if a individual missed an
     ulim=(*bx)+GLIMIT*(*cx-*bx);    intermediate interview, the information is lost, but taken into
     if ((*bx-u)*(u-*cx) > 0.0) {    account using an interpolation or extrapolation.  
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    hPijx is the probability to be observed in state i at age x+h
       fu=(*func)(u);    conditional to the observed state i at age x. The delay 'h' can be
       if (fu < *fc) {    split into an exact number (nh*stepm) of unobserved intermediate
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    states. This elementary transition (by month, quarter,
           SHFT(*fb,*fc,fu,(*func)(u))    semester or year) is modelled as a multinomial logistic.  The hPx
           }    matrix is simply the matrix product of nh*stepm elementary matrices
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    and the contribution of each individual to the likelihood is simply
       u=ulim;    hPijx.
       fu=(*func)(u);  
     } else {    Also this programme outputs the covariance matrix of the parameters but also
       u=(*cx)+GOLD*(*cx-*bx);    of the life expectancies. It also computes the period (stable) prevalence. 
       fu=(*func)(u);    
     }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     SHFT(*ax,*bx,*cx,u)             Institut national d'études démographiques, Paris.
       SHFT(*fa,*fb,*fc,fu)    This software have been partly granted by Euro-REVES, a concerted action
       }    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /*************** linmin ************************/    can be accessed at http://euroreves.ined.fr/imach .
   
 int ncom;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double *pcom,*xicom;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double (*nrfunc)(double []);    
      **********************************************************************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*
 {    main
   double brent(double ax, double bx, double cx,    read parameterfile
                double (*f)(double), double tol, double *xmin);    read datafile
   double f1dim(double x);    concatwav
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    freqsummary
               double *fc, double (*func)(double));    if (mle >= 1)
   int j;      mlikeli
   double xx,xmin,bx,ax;    print results files
   double fx,fb,fa;    if mle==1 
         computes hessian
   ncom=n;    read end of parameter file: agemin, agemax, bage, fage, estepm
   pcom=vector(1,n);        begin-prev-date,...
   xicom=vector(1,n);    open gnuplot file
   nrfunc=func;    open html file
   for (j=1;j<=n;j++) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     pcom[j]=p[j];     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     xicom[j]=xi[j];                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   }      freexexit2 possible for memory heap.
   ax=0.0;  
   xx=1.0;    h Pij x                         | pij_nom  ficrestpij
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef DEBUG         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   for (j=1;j<=n;j++) {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     xi[j] *= xmin;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     p[j] += xi[j];     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /*************** powell ************************/    prevalence()
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     movingaverage()
             double (*func)(double []))    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   void linmin(double p[], double xi[], int n, double *fret,    total life expectancies
               double (*func)(double []));    Variance of period (stable) prevalence
   int i,ibig,j;   end
   double del,t,*pt,*ptt,*xit;  */
   double fp,fptt;  
   double *xits;  #define POWELL /* Instead of NLOPT */
   pt=vector(1,n);  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   ptt=vector(1,n);  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   xit=vector(1,n);  
   xits=vector(1,n);  #include <math.h>
   *fret=(*func)(p);  #include <stdio.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #include <stdlib.h>
   for (*iter=1;;++(*iter)) {  #include <string.h>
     fp=(*fret);  
     ibig=0;  #ifdef _WIN32
     del=0.0;  #include <io.h>
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #include <windows.h>
     for (i=1;i<=n;i++)  #include <tchar.h>
       printf(" %d %.12f",i, p[i]);  #else
     printf("\n");  #include <unistd.h>
     for (i=1;i<=n;i++) {  #endif
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  #include <limits.h>
 #ifdef DEBUG  #include <sys/types.h>
       printf("fret=%lf \n",*fret);  
 #endif  #if defined(__GNUC__)
       printf("%d",i);fflush(stdout);  #include <sys/utsname.h> /* Doesn't work on Windows */
       linmin(p,xit,n,fret,func);  #endif
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  #include <sys/stat.h>
         ibig=i;  #include <errno.h>
       }  /* extern int errno; */
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /* #ifdef LINUX */
       for (j=1;j<=n;j++) {  /* #include <time.h> */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /* #include "timeval.h" */
         printf(" x(%d)=%.12e",j,xit[j]);  /* #else */
       }  /* #include <sys/time.h> */
       for(j=1;j<=n;j++)  /* #endif */
         printf(" p=%.12e",p[j]);  
       printf("\n");  #include <time.h>
 #endif  
     }  #ifdef GSL
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <gsl/gsl_errno.h>
 #ifdef DEBUG  #include <gsl/gsl_multimin.h>
       int k[2],l;  #endif
       k[0]=1;  
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  #ifdef NLOPT
       for (j=1;j<=n;j++)  #include <nlopt.h>
         printf(" %.12e",p[j]);  typedef struct {
       printf("\n");    double (* function)(double [] );
       for(l=0;l<=1;l++) {  } myfunc_data ;
         for (j=1;j<=n;j++) {  #endif
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* #include <libintl.h> */
         }  /* #define _(String) gettext (String) */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 #endif  
   #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       free_vector(xit,1,n);  #define FILENAMELENGTH 132
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       free_vector(pt,1,n);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       return;  
     }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  #define NINTERVMAX 8
       xit[j]=p[j]-pt[j];  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       pt[j]=p[j];  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     fptt=(*func)(ptt);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     if (fptt < fp) {  #define MAXN 20000
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define YEARM 12. /**< Number of months per year */
       if (t < 0.0) {  #define AGESUP 130
         linmin(p,xit,n,fret,func);  #define AGEBASE 40
         for (j=1;j<=n;j++) {  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
           xi[j][ibig]=xi[j][n];  #ifdef _WIN32
           xi[j][n]=xit[j];  #define DIRSEPARATOR '\\'
         }  #define CHARSEPARATOR "\\"
 #ifdef DEBUG  #define ODIRSEPARATOR '/'
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #else
         for(j=1;j<=n;j++)  #define DIRSEPARATOR '/'
           printf(" %.12e",xit[j]);  #define CHARSEPARATOR "/"
         printf("\n");  #define ODIRSEPARATOR '\\'
 #endif  #endif
       }  
     }  /* $Id$ */
   }  /* $State$ */
 }  
   char version[]="Imach version 0.98q1, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 /**** Prevalence limit ****************/  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int nvar=0, nforce=0; /* Number of variables, number of forces */
      matrix by transitions matrix until convergence is reached */  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int i, ii,j,k;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   double min, max, maxmin, maxmax,sumnew=0.;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   double **matprod2();  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   double **out, cov[NCOVMAX], **pmij();  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   double **newm;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   double agefin, delaymax=50 ; /* Max number of years to converge */  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
   for (ii=1;ii<=nlstate+ndeath;ii++)  int nlstate=2; /* Number of live states */
     for (j=1;j<=nlstate+ndeath;j++){  int ndeath=1; /* Number of dead states */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
   
    cov[1]=1.;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav=0; /* Maxim number of waves */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     newm=savm;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     /* Covariates have to be included here again */                     to the likelihood and the sum of weights (done by funcone)*/
      cov[2]=agefin;  int mle=1, weightopt=0;
    int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       for (k=1; k<=cptcovn;k++) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       }  int countcallfunc=0;  /* Count the number of calls to func */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double jmean=1; /* Mean space between 2 waves */
       for (k=1; k<=cptcovprod;k++)  double **matprod2(); /* test */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*FILE *fic ; */ /* Used in readdata only */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  FILE *ficlog, *ficrespow;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int globpr=0; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
     savm=oldm;  long ipmx=0; /* Number of contributions */
     oldm=newm;  double sw; /* Sum of weights */
     maxmax=0.;  char filerespow[FILENAMELENGTH];
     for(j=1;j<=nlstate;j++){  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       min=1.;  FILE *ficresilk;
       max=0.;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       for(i=1; i<=nlstate; i++) {  FILE *ficresprobmorprev;
         sumnew=0;  FILE *fichtm, *fichtmcov; /* Html File */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  FILE *ficreseij;
         prlim[i][j]= newm[i][j]/(1-sumnew);  char filerese[FILENAMELENGTH];
         max=FMAX(max,prlim[i][j]);  FILE *ficresstdeij;
         min=FMIN(min,prlim[i][j]);  char fileresstde[FILENAMELENGTH];
       }  FILE *ficrescveij;
       maxmin=max-min;  char filerescve[FILENAMELENGTH];
       maxmax=FMAX(maxmax,maxmin);  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
     if(maxmax < ftolpl){  FILE  *ficresvpl;
       return prlim;  char fileresvpl[FILENAMELENGTH];
     }  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /*************** transition probabilities ***************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double s1, s2;  
   /*double t34;*/  char filelog[FILENAMELENGTH]; /* Log file */
   int i,j,j1, nc, ii, jj;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
     for(i=1; i<= nlstate; i++){  char popfile[FILENAMELENGTH];
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /* struct timezone tzp; */
       }  /* extern int gettimeofday(); */
       ps[i][j]=s2;  struct tm tml, *gmtime(), *localtime();
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  extern time_t time();
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  struct tm tm;
       }  
       ps[i][j]=s2;  char strcurr[80], strfor[80];
     }  
   }  char *endptr;
     /*ps[3][2]=1;*/  long lval;
   double dval;
   for(i=1; i<= nlstate; i++){  
      s1=0;  #define NR_END 1
     for(j=1; j<i; j++)  #define FREE_ARG char*
       s1+=exp(ps[i][j]);  #define FTOL 1.0e-10
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  #define NRANSI 
     ps[i][i]=1./(s1+1.);  #define ITMAX 200 
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define TOL 2.0e-4 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define CGOLD 0.3819660 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define ZEPS 1.0e-10 
   } /* end i */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #define GOLD 1.618034 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define GLIMIT 100.0 
       ps[ii][jj]=0;  #define TINY 1.0e-20 
       ps[ii][ii]=1;  
     }  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define rint(a) floor(a+0.5)
      printf("%lf ",ps[ii][jj]);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
    }  #define mytinydouble 1.0e-16
     printf("\n ");  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     printf("\n ");printf("%lf ",cov[2]);*/  /* static double dsqrarg; */
 /*  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  static double sqrarg;
   goto end;*/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     return ps;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /**************** Product of 2 matrices ******************/  int imx; 
   int stepm=1;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /* Stepm, step in month: minimum step interpolation*/
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int estepm;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  int m,nb;
      a pointer to pointers identical to out */  long *num;
   long i, j, k;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for(i=nrl; i<= nrh; i++)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(k=ncolol; k<=ncoloh; k++)  double **pmmij, ***probs;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double *ageexmed,*agecens;
         out[i][k] +=in[i][j]*b[j][k];  double dateintmean=0;
   
   return out;  double *weight;
 }  int **s; /* Status */
   double *agedc;
   double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 /************* Higher Matrix Product ***************/                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double  idx; 
 {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int *Ndum; /** Freq of modality (tricode */
      duration (i.e. until  int **codtab; /**< codtab=imatrix(1,100,1,10); */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  double *lsurv, *lpop, *tpop;
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
      included manually here.  double ftolhess; /**< Tolerance for computing hessian */
   
      */  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double **newm;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
   /* Hstepm could be zero and should return the unit matrix */    char  *ss;                            /* pointer */
   for (i=1;i<=nlstate+ndeath;i++)    int   l1=0, l2=0;                             /* length counters */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    l1 = strlen(path );                   /* length of path */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for(h=1; h <=nhstepm; h++){      strcpy( name, path );               /* we got the fullname name because no directory */
     for(d=1; d <=hstepm; d++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       newm=savm;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* Covariates have to be included here again */      /* get current working directory */
       cov[1]=1.;      /*    extern  char* getcwd ( char *buf , int len);*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #ifdef WIN32
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
       for (k=1; k<=cptcovage;k++)  #else
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if (getcwd(dirc, FILENAME_MAX) == NULL) {
       for (k=1; k<=cptcovprod;k++)  #endif
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return( GLOCK_ERROR_GETCWD );
       }
       /* got dirc from getcwd*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      printf(" DIRC = %s \n",dirc);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    } else {                              /* strip direcotry from path */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      ss++;                               /* after this, the filename */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      l2 = strlen( ss );                  /* length of filename */
       savm=oldm;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       oldm=newm;      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(i=1; i<=nlstate+ndeath; i++)      dirc[l1-l2] = '\0';                 /* add zero */
       for(j=1;j<=nlstate+ndeath;j++) {      printf(" DIRC2 = %s \n",dirc);
         po[i][j][h]=newm[i][j];    }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /* We add a separator at the end of dirc if not exists */
          */    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
   } /* end h */      dirc[l1] =  DIRSEPARATOR;
   return po;      dirc[l1+1] = 0; 
 }      printf(" DIRC3 = %s \n",dirc);
     }
     ss = strrchr( name, '.' );            /* find last / */
 /*************** log-likelihood *************/    if (ss >0){
 double func( double *x)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   int i, ii, j, k, mi, d, kk;      l1= strlen( name);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      l2= strlen(ss)+1;
   double **out;      strncpy( finame, name, l1-l2);
   double sw; /* Sum of weights */      finame[l1-l2]= 0;
   double lli; /* Individual log likelihood */    }
   long ipmx;  
   /*extern weight */    return( 0 );                          /* we're done */
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /******************************************/
   */  
   cov[1]=1.;  void replace_back_to_slash(char *s, char*t)
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int i;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    int lg=0;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    i=0;
     for(mi=1; mi<= wav[i]-1; mi++){    lg=strlen(t);
       for (ii=1;ii<=nlstate+ndeath;ii++)    for(i=0; i<= lg; i++) {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      (s[i] = t[i]);
       for(d=0; d<dh[mi][i]; d++){      if (t[i]== '\\') s[i]='/';
         newm=savm;    }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  char *trimbb(char *out, char *in)
         }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
            char *s;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    s=out;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    while (*in != '\0'){
         savm=oldm;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         oldm=newm;        in++;
              }
              *out++ = *in++;
       } /* end mult */    }
          *out='\0';
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    return s;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  char *cutl(char *blocc, char *alocc, char *in, char occ)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   } /* end of individual */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    char *s, *t;
   return -l;    t=in;s=in;
 }    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
     }
 /*********** Maximum Likelihood Estimation ***************/    if( *in == occ){
       *(alocc)='\0';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      s=++in;
 {    }
   int i,j, iter;   
   double **xi,*delti;    if (s == t) {/* occ not found */
   double fret;      *(alocc-(in-s))='\0';
   xi=matrix(1,npar,1,npar);      in=s;
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++)    while ( *in != '\0'){
       xi[i][j]=(i==j ? 1.0 : 0.0);      *blocc++ = *in++;
   printf("Powell\n");    }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     *blocc='\0';
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return t;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 }  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 /**** Computes Hessian and covariance matrix ***/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       gives blocc="abcdef2ghi" and alocc="j".
 {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double  **a,**y,*x,pd;    */
   double **hess;    char *s, *t;
   int i, j,jk;    t=in;s=in;
   int *indx;    while (*in != '\0'){
       while( *in == occ){
   double hessii(double p[], double delta, int theta, double delti[]);        *blocc++ = *in++;
   double hessij(double p[], double delti[], int i, int j);        s=in;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;      *blocc++ = *in++;
     }
   hess=matrix(1,npar,1,npar);    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
   printf("\nCalculation of the hessian matrix. Wait...\n");    else
   for (i=1;i<=npar;i++){      *(blocc-(in-s)-1)='\0';
     printf("%d",i);fflush(stdout);    in=s;
     hess[i][i]=hessii(p,ftolhess,i,delti);    while ( *in != '\0'){
     /*printf(" %f ",p[i]);*/      *alocc++ = *in++;
     /*printf(" %lf ",hess[i][i]);*/    }
   }  
      *alocc='\0';
   for (i=1;i<=npar;i++) {    return s;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  int nbocc(char *s, char occ)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        int i,j=0;
         /*printf(" %lf ",hess[i][j]);*/    int lg=20;
       }    i=0;
     }    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
   printf("\n");    if  (s[i] == occ ) j++;
     }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return j;
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /* void cutv(char *u,char *v, char*t, char occ) */
   x=vector(1,npar);  /* { */
   indx=ivector(1,npar);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   for (i=1;i<=npar;i++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*      gives u="abcdef2ghi" and v="j" *\/ */
   ludcmp(a,npar,indx,&pd);  /*   int i,lg,j,p=0; */
   /*   i=0; */
   for (j=1;j<=npar;j++) {  /*   lg=strlen(t); */
     for (i=1;i<=npar;i++) x[i]=0;  /*   for(j=0; j<=lg-1; j++) { */
     x[j]=1;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     lubksb(a,npar,indx,x);  /*   } */
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /*   for(j=0; j<p; j++) { */
     }  /*     (u[j] = t[j]); */
   }  /*   } */
   /*      u[p]='\0'; */
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /*    for(j=0; j<= lg; j++) { */
     for (j=1;j<=npar;j++) {  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       printf("%.3e ",hess[i][j]);  /*   } */
     }  /* } */
     printf("\n");  
   }  #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    char *p, *q;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           
   ludcmp(a,npar,indx,&pd);    if ((p = *pp) == NULL)
       return 0;
   /*  printf("\n#Hessian matrix recomputed#\n");    if ((q = strpbrk (p, delim)) != NULL)
     {
   for (j=1;j<=npar;j++) {      *pp = q + 1;
     for (i=1;i<=npar;i++) x[i]=0;      *q = '\0';
     x[j]=1;    }
     lubksb(a,npar,indx,x);    else
     for (i=1;i<=npar;i++){      *pp = 0;
       y[i][j]=x[i];    return p;
       printf("%.3e ",y[i][j]);  }
     }  #endif
     printf("\n");  
   }  /********************** nrerror ********************/
   */  
   void nrerror(char error_text[])
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    fprintf(stderr,"ERREUR ...\n");
   free_vector(x,1,npar);    fprintf(stderr,"%s\n",error_text);
   free_ivector(indx,1,npar);    exit(EXIT_FAILURE);
   free_matrix(hess,1,npar,1,npar);  }
   /*********************** vector *******************/
   double *vector(int nl, int nh)
 }  {
     double *v;
 /*************** hessian matrix ****************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 double hessii( double x[], double delta, int theta, double delti[])    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   int i;  }
   int l=1, lmax=20;  
   double k1,k2;  /************************ free vector ******************/
   double p2[NPARMAX+1];  void free_vector(double*v, int nl, int nh)
   double res;  {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    free((FREE_ARG)(v+nl-NR_END));
   double fx;  }
   int k=0,kmax=10;  
   double l1;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   fx=func(x);  {
   for (i=1;i<=npar;i++) p2[i]=x[i];    int *v;
   for(l=0 ; l <=lmax; l++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     l1=pow(10,l);    if (!v) nrerror("allocation failure in ivector");
     delts=delt;    return v-nl+NR_END;
     for(k=1 ; k <kmax; k=k+1){  }
       delt = delta*(l1*k);  
       p2[theta]=x[theta] +delt;  /******************free ivector **************************/
       k1=func(p2)-fx;  void free_ivector(int *v, long nl, long nh)
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    free((FREE_ARG)(v+nl-NR_END));
       /*res= (k1-2.0*fx+k2)/delt/delt; */  }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /************************lvector *******************************/
 #ifdef DEBUG  long *lvector(long nl,long nh)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    long *v;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    if (!v) nrerror("allocation failure in ivector");
         k=kmax;    return v-nl+NR_END;
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /******************free lvector **************************/
       }  void free_lvector(long *v, long nl, long nh)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  {
         delts=delt;    free((FREE_ARG)(v+nl-NR_END));
       }  }
     }  
   }  /******************* imatrix *******************************/
   delti[theta]=delts;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   return res;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
    { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    
 {    /* allocate pointers to rows */ 
   int i;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   int l=1, l1, lmax=20;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double k1,k2,k3,k4,res,fx;    m += NR_END; 
   double p2[NPARMAX+1];    m -= nrl; 
   int k;    
     
   fx=func(x);    /* allocate rows and set pointers to them */ 
   for (k=1; k<=2; k++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl] += NR_END; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m[nrl] -= ncl; 
     k1=func(p2)-fx;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* return pointer to array of pointers to rows */ 
     k2=func(p2)-fx;    return m; 
    } 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /****************** free_imatrix *************************/
     k3=func(p2)-fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
          int **m;
     p2[thetai]=x[thetai]-delti[thetai]/k;        long nch,ncl,nrh,nrl; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       /* free an int matrix allocated by imatrix() */ 
     k4=func(p2)-fx;  { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #ifdef DEBUG    free((FREE_ARG) (m+nrl-NR_END)); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  } 
 #endif  
   }  /******************* matrix *******************************/
   return res;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /************** Inverse of matrix **************/    double **m;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i,imax,j,k;    if (!m) nrerror("allocation failure 1 in matrix()");
   double big,dum,sum,temp;    m += NR_END;
   double *vv;    m -= nrl;
    
   vv=vector(1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *d=1.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=n;i++) {    m[nrl] += NR_END;
     big=0.0;    m[nrl] -= ncl;
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    return m;
     vv[i]=1.0/big;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   for (j=1;j<=n;j++) {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (i=1;i<j;i++) {     */
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     big=0.0;  {
     for (i=j;i<=n;i++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       sum=a[i][j];    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1;k<j;k++)  }
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /******************* ma3x *******************************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         big=dum;  {
         imax=i;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
     }  
     if (j != imax) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1;k<=n;k++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         dum=a[imax][k];    m += NR_END;
         a[imax][k]=a[j][k];    m -= nrl;
         a[j][k]=dum;  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       *d = -(*d);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       vv[imax]=vv[j];    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (j != n) {  
       dum=1.0/(a[j][j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   free_vector(vv,1,n);  /* Doesn't work */    for (j=ncl+1; j<=nch; j++) 
 ;      m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
 void lubksb(double **a, int n, int *indx, double b[])      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   int i,ii=0,ip,j;        m[i][j]=m[i][j-1]+nlay;
   double sum;    }
      return m; 
   for (i=1;i<=n;i++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     ip=indx[i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     sum=b[ip];    */
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*************************free ma3x ************************/
     else if (sum) ii=i;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     b[i]=sum;  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (i=n;i>=1;i--) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     sum=b[i];    free((FREE_ARG)(m+nrl-NR_END));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /*************** function subdirf ***********/
 }  char *subdirf(char fileres[])
   {
 /************ Frequencies ********************/    /* Caution optionfilefiname is hidden */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    strcpy(tmpout,optionfilefiname);
 {  /* Some frequencies */    strcat(tmpout,"/"); /* Add to the right */
      strcat(tmpout,fileres);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    return tmpout;
   double ***freq; /* Frequencies */  }
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /*************** function subdirf2 ***********/
   FILE *ficresp;  char *subdirf2(char fileres[], char *preop)
   char fileresp[FILENAMELENGTH];  {
      
   pp=vector(1,nlstate);    /* Caution optionfilefiname is hidden */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(tmpout,optionfilefiname);
   strcpy(fileresp,"p");    strcat(tmpout,"/");
   strcat(fileresp,fileres);    strcat(tmpout,preop);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    strcat(tmpout,fileres);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    return tmpout;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** function subdirf3 ***********/
   j1=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   for(k1=1; k1<=j;k1++){    strcat(tmpout,"/");
     for(i1=1; i1<=ncodemax[k1];i1++){    strcat(tmpout,preop);
       j1++;    strcat(tmpout,preop2);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    strcat(tmpout,fileres);
         scanf("%d", i);*/    return tmpout;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  char *asc_diff_time(long time_sec, char ascdiff[])
             freq[i][jk][m]=0;  {
          long sec_left, days, hours, minutes;
       dateintsum=0;    days = (time_sec) / (60*60*24);
       k2cpt=0;    sec_left = (time_sec) % (60*60*24);
       for (i=1; i<=imx; i++) {    hours = (sec_left) / (60*60) ;
         bool=1;    sec_left = (sec_left) %(60*60);
         if  (cptcovn>0) {    minutes = (sec_left) /60;
           for (z1=1; z1<=cptcoveff; z1++)    sec_left = (sec_left) % (60);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
               bool=0;    return ascdiff;
         }  }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /***************** f1dim *************************/
             k2=anint[m][i]+(mint[m][i]/12.);  extern int ncom; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  extern double *pcom,*xicom;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  extern double (*nrfunc)(double []); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;   
               if (m<lastpass) {  double f1dim(double x) 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  { 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    int j; 
               }    double f;
                  double *xt; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {   
                 dateintsum=dateintsum+k2;    xt=vector(1,ncom); 
                 k2cpt++;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
               }    f=(*nrfunc)(xt); 
             }    free_vector(xt,1,ncom); 
           }    return f; 
         }  } 
       }  
          /*****************brent *************************/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
       if  (cptcovn>0) {    int iter; 
         fprintf(ficresp, "\n#********** Variable ");    double a,b,d,etemp;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double fu=0,fv,fw,fx;
         fprintf(ficresp, "**********\n#");    double ftemp=0.;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for(i=1; i<=nlstate;i++)    double e=0.0; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);   
       fprintf(ficresp, "\n");    a=(ax < cx ? ax : cx); 
          b=(ax > cx ? ax : cx); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    x=w=v=bx; 
         if(i==(int)agemax+3)    fw=fv=fx=(*f)(x); 
           printf("Total");    for (iter=1;iter<=ITMAX;iter++) { 
         else      xm=0.5*(a+b); 
           printf("Age %d", i);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         for(jk=1; jk <=nlstate ; jk++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      printf(".");fflush(stdout);
             pp[jk] += freq[jk][m][i];      fprintf(ficlog,".");fflush(ficlog);
         }  #ifdef DEBUGBRENT
         for(jk=1; jk <=nlstate ; jk++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           for(m=-1, pos=0; m <=0 ; m++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             pos += freq[jk][m][i];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           if(pp[jk]>=1.e-10)  #endif
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           else        *xmin=x; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        return fx; 
         }      } 
       ftemp=fu;
         for(jk=1; jk <=nlstate ; jk++){      if (fabs(e) > tol1) { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        r=(x-w)*(fx-fv); 
             pp[jk] += freq[jk][m][i];        q=(x-v)*(fx-fw); 
         }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        if (q > 0.0) p = -p; 
           pos += pp[jk];        q=fabs(q); 
         for(jk=1; jk <=nlstate ; jk++){        etemp=e; 
           if(pos>=1.e-5)        e=d; 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           else          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        else { 
           if( i <= (int) agemax){          d=p/q; 
             if(pos>=1.e-5){          u=x+d; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          if (u-a < tol2 || b-u < tol2) 
               probs[i][jk][j1]= pp[jk]/pos;            d=SIGN(tol1,xm-x); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } 
             }      } else { 
             else        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } 
           }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         }      fu=(*f)(u); 
              if (fu <= fx) { 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        if (u >= x) a=x; else b=x; 
           for(m=-1; m <=nlstate+ndeath; m++)        SHFT(v,w,x,u) 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        SHFT(fv,fw,fx,fu) 
         if(i <= (int) agemax)      } else { 
           fprintf(ficresp,"\n");        if (u < x) a=u; else b=u; 
         printf("\n");        if (fu <= fw || w == x) { 
       }          v=w; 
     }          w=u; 
   }          fv=fw; 
   dateintmean=dateintsum/k2cpt;          fw=fu; 
          } else if (fu <= fv || v == x || v == w) { 
   fclose(ficresp);          v=u; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          fv=fu; 
   free_vector(pp,1,nlstate);        } 
        } 
   /* End of Freq */    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /************ Prevalence ********************/    return fx; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  } 
 {  /* Some frequencies */  
    /****************** mnbrak ***********************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double *pp;              double (*func)(double)) 
   double pos, k2;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   the downhill direction (defined by the function as evaluated at the initial points) and returns
   pp=vector(1,nlstate);  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
       */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double ulim,u,r,q, dum;
   j1=0;    double fu; 
     
   j=cptcoveff;    *fa=(*func)(*ax); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
   for(k1=1; k1<=j;k1++){      SHFT(dum,*ax,*bx,dum) 
     for(i1=1; i1<=ncodemax[k1];i1++){      SHFT(dum,*fb,*fa,dum) 
       j1++;    } 
          *cx=(*bx)+GOLD*(*bx-*ax); 
       for (i=-1; i<=nlstate+ndeath; i++)      *fc=(*func)(*cx); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
             freq[i][jk][m]=0;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
        #endif
       for (i=1; i<=imx; i++) {    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
         bool=1;      r=(*bx-*ax)*(*fb-*fc); 
         if  (cptcovn>0) {      q=(*bx-*cx)*(*fb-*fa); 
           for (z1=1; z1<=cptcoveff; z1++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
               bool=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
         }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         if (bool==1) {        fu=(*func)(u); 
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);        /* f(x)=A(x-u)**2+f(u) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        double A, fparabu; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fparabu= *fa - A*(*ax-u)*(*ax-u);
               if (m<lastpass) {        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                 if (calagedate>0)        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        /* And thus,it can be that fu > *fc even if fparabu < *fc */
                 else        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
               }  #endif 
             }  #ifdef MNBRAKORIGINAL
           }  #else
         }        if (fu > *fc) {
       }  #ifdef DEBUG
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("mnbrak4  fu > fc \n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog, "mnbrak4 fu > fc\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
             pp[jk] += freq[jk][m][i];          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
         }          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
         for(jk=1; jk <=nlstate ; jk++){          dum=u; /* Shifting c and u */
           for(m=-1, pos=0; m <=0 ; m++)          u = *cx;
             pos += freq[jk][m][i];          *cx = dum;
         }          dum = fu;
                  fu = *fc;
         for(jk=1; jk <=nlstate ; jk++){          *fc =dum;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } else { /* end */
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        printf("mnbrak3  fu < fc \n");
                fprintf(ficlog, "mnbrak3 fu < fc\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #endif
                  dum=u; /* Shifting c and u */
         for(jk=1; jk <=nlstate ; jk++){              u = *cx;
           if( i <= (int) agemax){          *cx = dum;
             if(pos>=1.e-5){          dum = fu;
               probs[i][jk][j1]= pp[jk]/pos;          fu = *fc;
             }          *fc =dum;
           }        }
         }  #endif
              } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       }  #ifdef DEBUG
     }        printf("mnbrak2  u after c but before ulim\n");
   }        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
          fu=(*func)(u); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if (fu < *fc) { 
   free_vector(pp,1,nlstate);  #ifdef DEBUG
          printf("mnbrak2  u after c but before ulim AND fu < fc\n");
 }  /* End of Freq */        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   #endif
 /************* Waves Concatenation ***************/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u)) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  #ifdef DEBUG
      Death is a valid wave (if date is known).        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  #endif
      and mw[mi+1][i]. dh depends on stepm.        u=ulim; 
      */        fu=(*func)(u); 
       } else { /* u could be left to b (if r > q parabola has a maximum) */
   int i, mi, m;  #ifdef DEBUG
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
      double sum=0., jmean=0.;*/        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   #endif
   int j, k=0,jk, ju, jl;        u=(*cx)+GOLD*(*cx-*bx); 
   double sum=0.;        fu=(*func)(u); 
   jmin=1e+5;      } /* end tests */
   jmax=-1;      SHFT(*ax,*bx,*cx,u) 
   jmean=0.;      SHFT(*fa,*fb,*fc,fu) 
   for(i=1; i<=imx; i++){  #ifdef DEBUG
     mi=0;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     m=firstpass;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     while(s[m][i] <= nlstate){  #endif
       if(s[m][i]>=1)    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         mw[++mi][i]=m;  } 
       if(m >=lastpass)  
         break;  /*************** linmin ************************/
       else  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         m++;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     }/* end while */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     if (s[m][i] > nlstate){  the value of func at the returned location p . This is actually all accomplished by calling the
       mi++;     /* Death is another wave */  routines mnbrak and brent .*/
       /* if(mi==0)  never been interviewed correctly before death */  int ncom; 
          /* Only death is a correct wave */  double *pcom,*xicom;
       mw[mi][i]=m;  double (*nrfunc)(double []); 
     }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     wav[i]=mi;  { 
     if(mi==0)    double brent(double ax, double bx, double cx, 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for(i=1; i<=imx; i++){                double *fc, double (*func)(double)); 
     for(mi=1; mi<wav[i];mi++){    int j; 
       if (stepm <=0)    double xx,xmin,bx,ax; 
         dh[mi][i]=1;    double fx,fb,fa;
       else{   
         if (s[mw[mi+1][i]][i] > nlstate) {    ncom=n; 
           if (agedc[i] < 2*AGESUP) {    pcom=vector(1,n); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    xicom=vector(1,n); 
           if(j==0) j=1;  /* Survives at least one month after exam */    nrfunc=func; 
           k=k+1;    for (j=1;j<=n;j++) { 
           if (j >= jmax) jmax=j;      pcom[j]=p[j]; 
           if (j <= jmin) jmin=j;      xicom[j]=xi[j]; 
           sum=sum+j;    } 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    ax=0.0; 
           }    xx=1.0; 
         }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         else{    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  #ifdef DEBUG
           k=k+1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           if (j >= jmax) jmax=j;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           else if (j <= jmin)jmin=j;  #endif
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for (j=1;j<=n;j++) { 
           sum=sum+j;      xi[j] *= xmin; 
         }      p[j] += xi[j]; 
         jk= j/stepm;    } 
         jl= j -jk*stepm;    free_vector(xicom,1,n); 
         ju= j -(jk+1)*stepm;    free_vector(pcom,1,n); 
         if(jl <= -ju)  } 
           dh[mi][i]=jk;  
         else  
           dh[mi][i]=jk+1;  /*************** powell ************************/
         if(dh[mi][i]==0)  /*
           dh[mi][i]=1; /* At least one step */  Minimization of a function func of n variables. Input consists of an initial starting point
       }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
     }  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   }  such that failure to decrease by more than this amount on one iteration signals doneness. On
   jmean=sum/k;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  }   */
 /*********** Tricode ****************************/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 void tricode(int *Tvar, int **nbcode, int imx)              double (*func)(double [])) 
 {  { 
   int Ndum[20],ij=1, k, j, i;    void linmin(double p[], double xi[], int n, double *fret, 
   int cptcode=0;                double (*func)(double [])); 
   cptcoveff=0;    int i,ibig,j; 
      double del,t,*pt,*ptt,*xit;
   for (k=0; k<19; k++) Ndum[k]=0;    double directest;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double fp,fptt;
     double *xits;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int niterf, itmp;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    pt=vector(1,n); 
       Ndum[ij]++;    ptt=vector(1,n); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    xit=vector(1,n); 
       if (ij > cptcode) cptcode=ij;    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (i=0; i<=cptcode; i++) {      rcurr_time = time(NULL);  
       if(Ndum[i]!=0) ncodemax[j]++;    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     ij=1;      ibig=0; 
       del=0.0; 
       rlast_time=rcurr_time;
     for (i=1; i<=ncodemax[j]; i++) {      /* (void) gettimeofday(&curr_time,&tzp); */
       for (k=0; k<=19; k++) {      rcurr_time = time(NULL);  
         if (Ndum[k] != 0) {      curr_time = *localtime(&rcurr_time);
           nbcode[Tvar[j]][ij]=k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
           ij++;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         }     for (i=1;i<=n;i++) {
         if (ij > ncodemax[j]) break;        printf(" %d %.12f",i, p[i]);
       }          fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
   }        }
       printf("\n");
  for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
  for (i=1; i<=ncovmodel-2; i++) {      if(*iter <=3){
       ij=Tvar[i];        tml = *localtime(&rcurr_time);
       Ndum[ij]++;        strcpy(strcurr,asctime(&tml));
     }        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
  ij=1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
  for (i=1; i<=10; i++) {          strcurr[itmp-1]='\0';
    if((Ndum[i]!=0) && (i<=ncovcol)){        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
      Tvaraff[ij]=i;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
      ij++;        for(niterf=10;niterf<=30;niterf+=10){
    }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
  }          forecast_time = *localtime(&rforecast_time);
            strcpy(strfor,asctime(&forecast_time));
     cptcoveff=ij-1;          itmp = strlen(strfor);
 }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 /*********** Health Expectancies ****************/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        }
       }
 {      for (i=1;i<=n;i++) { 
   /* Health expectancies */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        fptt=(*fret); 
   double age, agelim, hf;  #ifdef DEBUG
   double ***p3mat,***varhe;            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   double **dnewm,**doldm;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   double *xp;  #endif
   double **gp, **gm;        printf("%d",i);fflush(stdout);
   double ***gradg, ***trgradg;        fprintf(ficlog,"%d",i);fflush(ficlog);
   int theta;        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
         if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                                         because that direction will be replaced unless the gain del is small
   xp=vector(1,npar);                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
   dnewm=matrix(1,nlstate*2,1,npar);                                        Unless the n directions are conjugate some gain in the determinant may be obtained
   doldm=matrix(1,nlstate*2,1,nlstate*2);                                        with the new direction.
                                          */
   fprintf(ficreseij,"# Health expectancies\n");          del=fabs(fptt-(*fret)); 
   fprintf(ficreseij,"# Age");          ibig=i; 
   for(i=1; i<=nlstate;i++)        } 
     for(j=1; j<=nlstate;j++)  #ifdef DEBUG
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        printf("%d %.12e",i,(*fret));
   fprintf(ficreseij,"\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   if(estepm < stepm){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     printf ("Problem %d lower than %d\n",estepm, stepm);          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months        for(j=1;j<=n;j++) {
    * This is mainly to measure the difference between two models: for example          printf(" p(%d)=%.12e",j,p[j]);
    * if stepm=24 months pijx are given only every 2 years and by summing them          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression inbetween and thus overestimating or underestimating according        printf("\n");
    * to the curvature of the survival function. If, for the same date, we        fprintf(ficlog,"\n");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #endif
    * to compare the new estimate of Life expectancy with the same linear      } /* end i */
    * hypothesis. A more precise result, taking into account a more precise      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
    * curvature will be obtained if estepm is as small as stepm. */  #ifdef DEBUG
         int k[2],l;
   /* For example we decided to compute the life expectancy with the smallest unit */        k[0]=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k[1]=-1;
      nhstepm is the number of hstepm from age to agelim        printf("Max: %.12e",(*func)(p));
      nstepm is the number of stepm from age to agelin.        fprintf(ficlog,"Max: %.12e",(*func)(p));
      Look at hpijx to understand the reason of that which relies in memory size        for (j=1;j<=n;j++) {
      and note for a fixed period like estepm months */          printf(" %.12e",p[j]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficlog," %.12e",p[j]);
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        printf("\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficlog,"\n");
      results. So we changed our mind and took the option of the best precision.        for(l=0;l<=1;l++) {
   */          for (j=1;j<=n;j++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   agelim=AGESUP;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     /* nhstepm age range expressed in number of stepm */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        }
     /* if (stepm >= YEARM) hstepm=1;*/  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        free_vector(xit,1,n); 
     gp=matrix(0,nhstepm,1,nlstate*2);        free_vector(xits,1,n); 
     gm=matrix(0,nhstepm,1,nlstate*2);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        return; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
         ptt[j]=2.0*p[j]-pt[j]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
     /* Computing Variances of health expectancies */      } 
       fptt=(*func)(ptt); /* f_3 */
      for(theta=1; theta <=npar; theta++){      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       for(i=1; i<=npar; i++){        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       }        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
          /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       cptj=0;        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
       for(j=1; j<= nlstate; j++){        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         for(i=1; i<=nlstate; i++){  #ifdef NRCORIGINAL
           cptj=cptj+1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  #else
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
           }        t= t- del*SQR(fp-fptt);
         }  #endif
       }        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
        #ifdef DEBUG
              printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       for(i=1; i<=npar; i++)        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
              fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       cptj=0;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(j=1; j<= nlstate; j++){        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         for(i=1;i<=nlstate;i++){        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           cptj=cptj+1;  #endif
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  #ifdef POWELLORIGINAL
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if (t < 0.0) { /* Then we use it for new direction */
           }  #else
         }        if (directest*t < 0.0) { /* Contradiction between both tests */
       }        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       for(j=1; j<= nlstate*2; j++)        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         for(h=0; h<=nhstepm-1; h++){        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         }      } 
      }        if (directest < 0.0) { /* Then we use it for new direction */
      #endif
 /* End theta */          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
           for (j=1;j<=n;j++) { 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
             xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
      for(h=0; h<=nhstepm-1; h++)          }
       for(j=1; j<=nlstate*2;j++)          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           trgradg[h][j][theta]=gradg[h][theta][j];  
        #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      for(i=1;i<=nlstate*2;i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(j=1;j<=nlstate*2;j++)          for(j=1;j<=n;j++){
         varhe[i][j][(int)age] =0.;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
      printf("%d|",(int)age);fflush(stdout);          }
      for(h=0;h<=nhstepm-1;h++){          printf("\n");
       for(k=0;k<=nhstepm-1;k++){          fprintf(ficlog,"\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  #endif
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        } /* end of t negative */
         for(i=1;i<=nlstate*2;i++)      } /* end if (fptt < fp)  */
           for(j=1;j<=nlstate*2;j++)    } 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  } 
       }  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for(j=1; j<=nlstate;j++)  {
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;       matrix by transitions matrix until convergence is reached */
              
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
         }    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
     fprintf(ficreseij,"%3.0f",age );    double **newm;
     cptj=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++){    for (ii=1;ii<=nlstate+ndeath;ii++)
         cptj++;      for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
     fprintf(ficreseij,"\n");    
        cov[1]=1.;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    
     free_matrix(gp,0,nhstepm,1,nlstate*2);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      newm=savm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Covariates have to be included here again */
   }      cov[2]=agefin;
   printf("\n");      
       for (k=1; k<=cptcovn;k++) {
   free_vector(xp,1,npar);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(dnewm,1,nlstate*2,1,npar);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
       for (k=1; k<=cptcovprod;k++) /* Useless */
 /************ Variance ******************/        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      
 {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /* Variance of health expectancies */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double **newm;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double **dnewm,**doldm;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   int i, j, nhstepm, hstepm, h, nstepm ;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   int k, cptcode;      
   double *xp;      savm=oldm;
   double **gp, **gm;      oldm=newm;
   double ***gradg, ***trgradg;      maxmax=0.;
   double ***p3mat;      for(j=1;j<=nlstate;j++){
   double age,agelim, hf;        min=1.;
   int theta;        max=0.;
         for(i=1; i<=nlstate; i++) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          sumnew=0;
   fprintf(ficresvij,"# Age");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for(i=1; i<=nlstate;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
     for(j=1; j<=nlstate;j++)          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          max=FMAX(max,prlim[i][j]);
   fprintf(ficresvij,"\n");          min=FMIN(min,prlim[i][j]);
         }
   xp=vector(1,npar);        maxmin=max-min;
   dnewm=matrix(1,nlstate,1,npar);        maxmax=FMAX(maxmax,maxmin);
   doldm=matrix(1,nlstate,1,nlstate);      } /* j loop */
        if(maxmax < ftolpl){
   if(estepm < stepm){        return prlim;
     printf ("Problem %d lower than %d\n",estepm, stepm);      }
   }    } /* age loop */
   else  hstepm=estepm;      return prlim; /* should not reach here */
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /*************** transition probabilities ***************/ 
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      and note for a fixed period like k years */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* According to parameters values stored in x and the covariate's values stored in cov,
      survival function given by stepm (the optimization length). Unfortunately it       computes the probability to be observed in state j being in state i by appying the
      means that if the survival funtion is printed only each two years of age and if       model to the ncovmodel covariates (including constant and age).
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      results. So we changed our mind and took the option of the best precision.       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   */       ncth covariate in the global vector x is given by the formula:
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   agelim = AGESUP;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       Outputs ps[i][j] the probability to be observed in j being in j according to
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    */
     gp=matrix(0,nhstepm,1,nlstate);    double s1, lnpijopii;
     gm=matrix(0,nhstepm,1,nlstate);    /*double t34;*/
     int i,j, nc, ii, jj;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(i=1; i<= nlstate; i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<i;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /*lnpijopii += param[i][j][nc]*cov[nc];*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           prlim[i][i]=probs[(int)age][i][ij];  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }        }
          for(j=i+1; j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(h=0; h<=nhstepm; h++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
       }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
            }
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<= nlstate; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        s1=0;
          for(j=1; j<i; j++){
       if (popbased==1) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(i=1; i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           prlim[i][i]=probs[(int)age][i][ij];        }
       }        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(j=1; j<= nlstate; j++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
       }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=1; j<= nlstate; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         for(h=0; h<=nhstepm; h++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
     } /* End theta */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
     for(h=0; h<=nhstepm; h++)          ps[ii][ii]=1;
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)      }
           trgradg[h][j][theta]=gradg[h][theta][j];      
       
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     for(i=1;i<=nlstate;i++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for(j=1;j<=nlstate;j++)      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         vareij[i][j][(int)age] =0.;      /*   } */
       /*   printf("\n "); */
     for(h=0;h<=nhstepm;h++){      /* } */
       for(k=0;k<=nhstepm;k++){      /* printf("\n ");printf("%lf ",cov[2]);*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      /*
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(i=1;i<=nlstate;i++)        goto end;*/
           for(j=1;j<=nlstate;j++)      return ps;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  /**************** Product of 2 matrices ******************/
   
     fprintf(ficresvij,"%.0f ",age );  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }    /* in, b, out are matrice of pointers which should have been initialized 
     fprintf(ficresvij,"\n");       before: only the contents of out is modified. The function returns
     free_matrix(gp,0,nhstepm,1,nlstate);       a pointer to pointers identical to out */
     free_matrix(gm,0,nhstepm,1,nlstate);    int i, j, k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for(i=nrl; i<= nrh; i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(k=ncolol; k<=ncoloh; k++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        out[i][k]=0.;
   } /* End age */        for(j=ncl; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);    return out;
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  
   /************* Higher Matrix Product ***************/
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Variance of prevalence limit */    /* Computes the transition matrix starting at age 'age' over 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       'nhstepm*hstepm*stepm' months (i.e. until
   double **newm;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double **dnewm,**doldm;       nhstepm*hstepm matrices. 
   int i, j, nhstepm, hstepm;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   int k, cptcode;       (typically every 2 years instead of every month which is too big 
   double *xp;       for the memory).
   double *gp, *gm;       Model is determined by parameters x and covariates have to be 
   double **gradg, **trgradg;       included manually here. 
   double age,agelim;  
   int theta;       */
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int i, j, d, h, k;
   fprintf(ficresvpl,"# Age");    double **out, cov[NCOVMAX+1];
   for(i=1; i<=nlstate;i++)    double **newm;
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   xp=vector(1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   hstepm=1*YEARM; /* Every year of age */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(h=1; h <=nhstepm; h++){
   agelim = AGESUP;      for(d=1; d <=hstepm; d++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        newm=savm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* Covariates have to be included here again */
     if (stepm >= YEARM) hstepm=1;        cov[1]=1.;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     gradg=matrix(1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++) 
     gp=vector(1,nlstate);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     gm=vector(1,nlstate);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     for(theta=1; theta <=npar; theta++){          cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         gp[i] = prlim[i][i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(i=1; i<=npar; i++) /* Computes gradient */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        oldm=newm;
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
       for(i=1;i<=nlstate;i++)          po[i][j][h]=newm[i][j];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     } /* End theta */        }
       /*printf("h=%d ",h);*/
     trgradg =matrix(1,nlstate,1,npar);    } /* end h */
   /*     printf("\n H=%d \n",h); */
     for(j=1; j<=nlstate;j++)    return po;
       for(theta=1; theta <=npar; theta++)  }
         trgradg[j][theta]=gradg[theta][j];  
   #ifdef NLOPT
     for(i=1;i<=nlstate;i++)    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       varpl[i][(int)age] =0.;    double fret;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double *xt;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int j;
     for(i=1;i<=nlstate;i++)    myfunc_data *d2 = (myfunc_data *) pd;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /* xt = (p1-1); */
     xt=vector(1,n); 
     fprintf(ficresvpl,"%.0f ",age );    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     fprintf(ficresvpl,"\n");    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     free_vector(gp,1,nlstate);    printf("Function = %.12lf ",fret);
     free_vector(gm,1,nlstate);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     free_matrix(gradg,1,npar,1,nlstate);    printf("\n");
     free_matrix(trgradg,1,nlstate,1,npar);   free_vector(xt,1,n);
   } /* End age */    return fret;
   }
   free_vector(xp,1,npar);  #endif
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*************** log-likelihood *************/
   double func( double *x)
 }  {
     int i, ii, j, k, mi, d, kk;
 /************ Variance of one-step probabilities  ******************/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double **out;
 {    double sw; /* Sum of weights */
   int i, j,  i1, k1, l1;    double lli; /* Individual log likelihood */
   int k2, l2, j1,  z1;    int s1, s2;
   int k=0,l, cptcode;    double bbh, survp;
   int first=1;    long ipmx;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    /*extern weight */
   double **dnewm,**doldm;    /* We are differentiating ll according to initial status */
   double *xp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double *gp, *gm;    /*for(i=1;i<imx;i++) 
   double **gradg, **trgradg;      printf(" %d\n",s[4][i]);
   double **mu;    */
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    ++countcallfunc;
   int theta;  
   char fileresprob[FILENAMELENGTH];    cov[1]=1.;
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   double ***varpij;    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcpy(fileresprob,"prob");        /* Computes the values of the ncovmodel covariates of the model
   strcat(fileresprob,fileres);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     printf("Problem with resultfile: %s\n", fileresprob);           to be observed in j being in i according to the model.
   }         */
   strcpy(fileresprobcov,"probcov");        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   strcat(fileresprobcov,fileres);          cov[2+k]=covar[Tvar[k]][i];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprobcov);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   strcpy(fileresprobcor,"probcor");           has been calculated etc */
   strcat(fileresprobcor,fileres);        for(mi=1; mi<= wav[i]-1; mi++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("Problem with resultfile: %s\n", fileresprobcor);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresprob,"# Age");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   fprintf(ficresprobcov,"# Age");            }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresprobcov,"# Age");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
   for(i=1; i<=nlstate;i++)          } /* end mult */
     for(j=1; j<=(nlstate+ndeath);j++){        
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          /* But now since version 0.9 we anticipate for bias at large stepm.
       fprintf(ficresprobcor," p%1d-%1d ",i,j);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }             * (in months) between two waves is not a multiple of stepm, we rounded to 
   fprintf(ficresprob,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficresprobcov,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   fprintf(ficresprobcor,"\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   xp=vector(1,npar);           * probability in order to take into account the bias as a fraction of the way
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));           * -stepm/2 to stepm/2 .
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);           * For stepm=1 the results are the same as for previous versions of Imach.
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);           * For stepm > 1 the results are less biased than in previous versions. 
   first=1;           */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          s2=s[mw[mi+1][i]][i];
     exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias bh is positive if real duration
   else{           * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficgp,"\n# Routine varprob");           */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          if( s2 > nlstate){ 
     printf("Problem with html file: %s\n", optionfilehtm);            /* i.e. if s2 is a death state and if the date of death is known 
     exit(0);               then the contribution to the likelihood is the probability to 
   }               die between last step unit time and current  step unit time, 
   else{               which is also equal to probability to die before dh 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");               minus probability to die before dh-stepm . 
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");               In version up to 0.92 likelihood was computed
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   }          and not the date of a change in health state. The former idea was
   cov[1]=1;          to consider that at each interview the state was recorded
   j=cptcoveff;          (healthy, disable or death) and IMaCh was corrected; but when we
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          introduced the exact date of death then we should have modified
   j1=0;          the contribution of an exact death to the likelihood. This new
   for(k1=1; k1<=1;k1++){          contribution is smaller and very dependent of the step unit
     for(i1=1; i1<=ncodemax[k1];i1++){          stepm. It is no more the probability to die between last interview
     j1++;          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     if  (cptcovn>0) {          probability to die within a month. Thanks to Chris
       fprintf(ficresprob, "\n#********** Variable ");          Jackson for correcting this bug.  Former versions increased
       fprintf(ficresprobcov, "\n#********** Variable ");          mortality artificially. The bad side is that we add another loop
       fprintf(ficgp, "\n#********** Variable ");          which slows down the processing. The difference can be up to 10%
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          lower mortality.
       fprintf(ficresprobcor, "\n#********** Variable ");            */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* If, at the beginning of the maximization mostly, the
       fprintf(ficresprob, "**********\n#");             cumulative probability or probability to be dead is
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             constant (ie = 1) over time d, the difference is equal to
       fprintf(ficresprobcov, "**********\n#");             0.  out[s1][3] = savm[s1][3]: probability, being at state
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             s1 at precedent wave, to be dead a month before current
       fprintf(ficgp, "**********\n#");             wave is equal to probability, being at state s1 at
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             precedent wave, to be dead at mont of the current
       fprintf(ficgp, "**********\n#");             wave. Then the observed probability (that this person died)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);             is null according to current estimated parameter. In fact,
       fprintf(fichtm, "**********\n#");             it should be very low but not zero otherwise the log go to
     }             infinity.
              */
       for (age=bage; age<=fage; age ++){  /* #ifdef INFINITYORIGINAL */
         cov[2]=age;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
         for (k=1; k<=cptcovn;k++) {  /* #else */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
         }  /*          lli=log(mytinydouble); */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*        else */
         for (k=1; k<=cptcovprod;k++)  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /* #endif */
                      lli=log(out[s1][s2] - savm[s1][s2]);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          } else if  (s2==-2) {
         gp=vector(1,(nlstate)*(nlstate+ndeath));            for (j=1,survp=0. ; j<=nlstate; j++) 
         gm=vector(1,(nlstate)*(nlstate+ndeath));              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                /*survp += out[s1][j]; */
         for(theta=1; theta <=npar; theta++){            lli= log(survp);
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          
                    else if  (s2==-4) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (j=3,survp=0. ; j<=nlstate; j++)  
                        survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           k=0;            lli= log(survp); 
           for(i=1; i<= (nlstate); i++){          } 
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;          else if  (s2==-5) { 
               gp[k]=pmmij[i][j];            for (j=1,survp=0. ; j<=2; j++)  
             }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            lli= log(survp); 
                    } 
           for(i=1; i<=npar; i++)          
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          else{
                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           k=0;          } 
           for(i=1; i<=(nlstate); i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             for(j=1; j<=(nlstate+ndeath);j++){          /*if(lli ==000.0)*/
               k=k+1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               gm[k]=pmmij[i][j];          ipmx +=1;
             }          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                /* if (lli < log(mytinydouble)){ */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
         }          /* } */
         } /* end of wave */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      } /* end of individual */
           for(theta=1; theta <=npar; theta++)    }  else if(mle==2){
             trgradg[j][theta]=gradg[theta][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=0;            }
         for(i=1; i<=(nlstate); i++){          for(d=0; d<=dh[mi][i]; d++){
           for(j=1; j<=(nlstate+ndeath);j++){            newm=savm;
             k=k+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             mu[k][(int) age]=pmmij[i][j];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             varpij[i][j][(int)age] = doldm[i][j];            savm=oldm;
             oldm=newm;
         /*printf("\n%d ",(int)age);          } /* end mult */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          s1=s[mw[mi][i]][i];
      }*/          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficresprob,"\n%d ",(int)age);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficresprobcov,"\n%d ",(int)age);          ipmx +=1;
         fprintf(ficresprobcor,"\n%d ",(int)age);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        } /* end of wave */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      } /* end of individual */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         i=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (k=1; k<=(nlstate);k++){            for (j=1;j<=nlstate+ndeath;j++){
           for (l=1; l<=(nlstate+ndeath);l++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             i=i++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          for(d=0; d<dh[mi][i]; d++){
             for (j=1; j<=i;j++){            newm=savm;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }/* end of loop for state */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       } /* end of loop for age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            savm=oldm;
       for (k1=1; k1<=(nlstate);k1++){            oldm=newm;
         for (l1=1; l1<=(nlstate+ndeath);l1++){          } /* end mult */
           if(l1==k1) continue;        
           i=(k1-1)*(nlstate+ndeath)+l1;          s1=s[mw[mi][i]][i];
           for (k2=1; k2<=(nlstate);k2++){          s2=s[mw[mi+1][i]][i];
             for (l2=1; l2<=(nlstate+ndeath);l2++){          bbh=(double)bh[mi][i]/(double)stepm; 
               if(l2==k2) continue;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               j=(k2-1)*(nlstate+ndeath)+l2;          ipmx +=1;
               if(j<=i) continue;          sw += weight[i];
               for (age=bage; age<=fage; age ++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 if ((int)age %5==0){        } /* end of wave */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      } /* end of individual */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   mu2=mu[j][(int) age]/stepm*YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
                   /* Computing eigen value of matrix of covariance */          for (ii=1;ii<=nlstate+ndeath;ii++)
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            for (j=1;j<=nlstate+ndeath;j++){
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   /* Eigen vectors */            }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(d=0; d<dh[mi][i]; d++){
                   v21=sqrt(1.-v11*v11);            newm=savm;
                   v12=-v21;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   v22=v11;            for (kk=1; kk<=cptcovage;kk++) {
                   /*printf(fignu*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            }
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          
                   if(first==1){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                     first=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     fprintf(ficgp,"\nset parametric;set nolabel");            savm=oldm;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);            oldm=newm;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          } /* end mult */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);        
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);          s1=s[mw[mi][i]][i];
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);          s2=s[mw[mi+1][i]][i];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          if( s2 > nlstate){ 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            lli=log(out[s1][s2] - savm[s1][s2]);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          }else{
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          }
                   }else{          ipmx +=1;
                     first=0;          sw += weight[i];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        } /* end of wave */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      } /* end of individual */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   }/* if first */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 } /* age mod 5 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               } /* end loop age */        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          for (ii=1;ii<=nlstate+ndeath;ii++)
               first=1;            for (j=1;j<=nlstate+ndeath;j++){
             } /*l12 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           } /* k12 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         } /*l1 */            }
       }/* k1 */          for(d=0; d<dh[mi][i]; d++){
     } /* loop covariates */            newm=savm;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            for (kk=1; kk<=cptcovage;kk++) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   fclose(ficresprob);            oldm=newm;
   fclose(ficresprobcov);          } /* end mult */
   fclose(ficresprobcor);        
   fclose(ficgp);          s1=s[mw[mi][i]][i];
   fclose(fichtm);          s2=s[mw[mi+1][i]][i];
 }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
           sw += weight[i];
 /******************* Printing html file ***********/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   int lastpass, int stepm, int weightopt, char model[],\        } /* end of wave */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      } /* end of individual */
                   int popforecast, int estepm ,\    } /* End of if */
                   double jprev1, double mprev1,double anprev1, \    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   double jprev2, double mprev2,double anprev2){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int jj1, k1, i1, cpt;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /*char optionfilehtm[FILENAMELENGTH];*/    return -l;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  /*************** log-likelihood *************/
   double funcone( double *x)
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  {
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    /* Same as likeli but slower because of a lot of printf and if */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    int i, ii, j, k, mi, d, kk;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
  - Life expectancies by age and initial health status (estepm=%2d months):    double **out;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    double lli; /* Individual log likelihood */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    double llt;
     int s1, s2;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    double bbh, survp;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /*extern weight */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* We are differentiating ll according to initial status */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    /*for(i=1;i<imx;i++) 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      printf(" %d\n",s[4][i]);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    cov[1]=1.;
   
  if(popforecast==1) fprintf(fichtm,"\n    for(k=1; k<=nlstate; k++) ll[k]=0.;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         <br>",fileres,fileres,fileres,fileres);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  else      for(mi=1; mi<= wav[i]-1; mi++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for (ii=1;ii<=nlstate+ndeath;ii++)
 fprintf(fichtm," <li>Graphs</li><p>");          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  m=cptcoveff;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }
         for(d=0; d<dh[mi][i]; d++){
  jj1=0;          newm=savm;
  for(k1=1; k1<=m;k1++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    for(i1=1; i1<=ncodemax[k1];i1++){          for (kk=1; kk<=cptcovage;kk++) {
      jj1++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      if (cptcovn > 0) {          }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
        for (cpt=1; cpt<=cptcoveff;cpt++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
      }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
      /* Pij */          savm=oldm;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          oldm=newm;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            } /* end mult */
      /* Quasi-incidences */        
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        s1=s[mw[mi][i]][i];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        s2=s[mw[mi+1][i]][i];
        /* Stable prevalence in each health state */        bbh=(double)bh[mi][i]/(double)stepm; 
        for(cpt=1; cpt<nlstate;cpt++){        /* bias is positive if real duration
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>         * is higher than the multiple of stepm and negative otherwise.
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         */
        }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(cpt=1; cpt<=nlstate;cpt++) {          lli=log(out[s1][s2] - savm[s1][s2]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        } else if  (s2==-2) {
 interval) in state (%d): v%s%d%d.png <br>          for (j=1,survp=0. ; j<=nlstate; j++) 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      }          lli= log(survp);
      for(cpt=1; cpt<=nlstate;cpt++) {        }else if (mle==1){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } else if(mle==2){
      }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        } else if(mle==3){  /* exponential inter-extrapolation */
 health expectancies in states (1) and (2): e%s%d.png<br>          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    }          lli=log(out[s1][s2]); /* Original formula */
  }        } else{  /* mle=0 back to 1 */
 fclose(fichtm);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }          /*lli=log(out[s1][s2]); */ /* Original formula */
         } /* End of if */
 /******************* Gnuplot file **************/        ipmx +=1;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int ng;        if(globpr){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     printf("Problem with file %s",optionfilegnuplot);   %11.6f %11.6f %11.6f ", \
   }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 #ifdef windows          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);            llt +=ll[k]*gipmx/gsw;
 #endif            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 m=pow(2,cptcoveff);          }
            fprintf(ficresilk," %10.6f\n", -llt);
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {      } /* end of wave */
    for (k1=1; k1<= m ; k1 ++) {    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 #ifdef windows    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    if(globpr==0){ /* First time we count the contributions and weights */
 #endif      gipmx=ipmx;
 #ifdef unix      gsw=sw;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    return -l;
 #endif  }
   
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*************** function likelione ***********/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 }  {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* This routine should help understanding what is done with 
     for (i=1; i<= nlstate ; i ++) {       the selection of individuals/waves and
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       to check the exact contribution to the likelihood.
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Plotting could be done.
 }     */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int k;
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if(*globpri !=0){ /* Just counts and sums, no printings */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      strcpy(fileresilk,"ilk"); 
 }        strcat(fileresilk,fileres);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 #ifdef unix        printf("Problem with resultfile: %s\n", fileresilk);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 #endif      }
    }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   /*2 eme*/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    }
      
     for (i=1; i<= nlstate+1 ; i ++) {    *fretone=(*funcone)(p);
       k=2*i;    if(*globpri !=0){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      fclose(ficresilk);
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fflush(fichtm); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } 
 }      return;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /*********** Maximum Likelihood Estimation ***************/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 }    {
       fprintf(ficgp,"\" t\"\" w l 0,");    int i,j, iter=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **xi;
       for (j=1; j<= nlstate+1 ; j ++) {    double fret;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double fretone; /* Only one call to likelihood */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  char filerespow[FILENAMELENGTH];*/
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  #ifdef NLOPT
       else fprintf(ficgp,"\" t\"\" w l 0,");    int creturn;
     }    nlopt_opt opt;
   }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
      double *lb;
   /*3eme*/    double minf; /* the minimum objective value, upon return */
     double * p1; /* Shifted parameters from 0 instead of 1 */
   for (k1=1; k1<= m ; k1 ++) {    myfunc_data dinst, *d = &dinst;
     for (cpt=1; cpt<= nlstate ; cpt ++) {  #endif
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    xi=matrix(1,npar,1,npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (i=1;i<=npar;i++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (j=1;j<=npar;j++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        xi[i][j]=(i==j ? 1.0 : 0.0);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    strcpy(filerespow,"pow"); 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 */      printf("Problem with resultfile: %s\n", filerespow);
       for (i=1; i< nlstate ; i ++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       }    for (i=1;i<=nlstate;i++)
     }      for(j=1;j<=nlstate+ndeath;j++)
   }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
   /* CV preval stat */  #ifdef POWELL
     for (k1=1; k1<= m ; k1 ++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
     for (cpt=1; cpt<nlstate ; cpt ++) {  #endif
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  #ifdef NLOPT
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  #ifdef NEWUOA
     opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
       for (i=1; i< nlstate ; i ++)  #else
         fprintf(ficgp,"+$%d",k+i+1);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  #endif
          lb=vector(0,npar-1);
       l=3+(nlstate+ndeath)*cpt;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    nlopt_set_lower_bounds(opt, lb);
       for (i=1; i< nlstate ; i ++) {    nlopt_set_initial_step1(opt, 0.1);
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
       }    d->function = func;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     }    nlopt_set_min_objective(opt, myfunc, d);
   }      nlopt_set_xtol_rel(opt, ftol);
      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   /* proba elementaires */      printf("nlopt failed! %d\n",creturn); 
    for(i=1,jk=1; i <=nlstate; i++){    }
     for(k=1; k <=(nlstate+ndeath); k++){    else {
       if (k != i) {      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
         for(j=1; j <=ncovmodel; j++){      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
              iter=1; /* not equal */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    nlopt_destroy(opt);
           fprintf(ficgp,"\n");  #endif
         }    free_matrix(xi,1,npar,1,npar);
       }    fclose(ficrespow);
     }    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
    }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {  }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)  /**** Computes Hessian and covariance matrix ***/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        else  {
          fprintf(ficgp,"\nset title \"Probability\"\n");    double  **a,**y,*x,pd;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double **hess;
        i=1;    int i, j;
        for(k2=1; k2<=nlstate; k2++) {    int *indx;
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
            if (k != k2){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
              if(ng==2)    void lubksb(double **a, int npar, int *indx, double b[]) ;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    void ludcmp(double **a, int npar, int *indx, double *d) ;
              else    double gompertz(double p[]);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    hess=matrix(1,npar,1,npar);
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (i=1;i<=npar;i++){
                  ij++;      printf("%d",i);fflush(stdout);
                }      fprintf(ficlog,"%d",i);fflush(ficlog);
                else     
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
              }      
              fprintf(ficgp,")/(1");      /*  printf(" %f ",p[i]);
                        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
              for(k1=1; k1 <=nlstate; k1++){      }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    
                ij=1;    for (i=1;i<=npar;i++) {
                for(j=3; j <=ncovmodel; j++){      for (j=1;j<=npar;j++)  {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (j>i) { 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          printf(".%d%d",i,j);fflush(stdout);
                    ij++;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                  }          hess[i][j]=hessij(p,delti,i,j,func,npar);
                  else          
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          hess[j][i]=hess[i][j];    
                }          /*printf(" %lf ",hess[i][j]);*/
                fprintf(ficgp,")");        }
              }      }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    printf("\n");
              i=i+ncovmodel;    fprintf(ficlog,"\n");
            }  
          }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      }    
    }    a=matrix(1,npar,1,npar);
    fclose(ficgp);    y=matrix(1,npar,1,npar);
 }  /* end gnuplot */    x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 /*************** Moving average **************/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    ludcmp(a,npar,indx,&pd);
   
   int i, cpt, cptcod;    for (j=1;j<=npar;j++) {
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for (i=1;i<=npar;i++) x[i]=0;
       for (i=1; i<=nlstate;i++)      x[j]=1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      lubksb(a,npar,indx,x);
           mobaverage[(int)agedeb][i][cptcod]=0.;      for (i=1;i<=npar;i++){ 
            matcov[i][j]=x[i];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      }
       for (i=1; i<=nlstate;i++){    }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    printf("\n#Hessian matrix#\n");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    fprintf(ficlog,"\n#Hessian matrix#\n");
           }    for (i=1;i<=npar;i++) { 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
          printf("\n");
 }      fprintf(ficlog,"\n");
     }
   
 /************** Forecasting ******************/    /* Recompute Inverse */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    ludcmp(a,npar,indx,&pd);
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /*  printf("\n#Hessian matrix recomputed#\n");
   double *popeffectif,*popcount;  
   double ***p3mat;    for (j=1;j<=npar;j++) {
   char fileresf[FILENAMELENGTH];      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
  agelim=AGESUP;      lubksb(a,npar,indx,x);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        printf("%.3e ",y[i][j]);
          fprintf(ficlog,"%.3e ",y[i][j]);
        }
   strcpy(fileresf,"f");      printf("\n");
   strcat(fileresf,fileres);      fprintf(ficlog,"\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    }
     printf("Problem with forecast resultfile: %s\n", fileresf);    */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
   if (mobilav==1) {    free_matrix(hess,1,npar,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*************** hessian matrix ****************/
   if (stepm<=12) stepsize=1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   agelim=AGESUP;    int i;
      int l=1, lmax=20;
   hstepm=1;    double k1,k2;
   hstepm=hstepm/stepm;    double p2[MAXPARM+1]; /* identical to x */
   yp1=modf(dateintmean,&yp);    double res;
   anprojmean=yp;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   yp2=modf((yp1*12),&yp);    double fx;
   mprojmean=yp;    int k=0,kmax=10;
   yp1=modf((yp2*30.5),&yp);    double l1;
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    fx=func(x);
   if(mprojmean==0) jprojmean=1;    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      l1=pow(10,l);
        delts=delt;
   for(cptcov=1;cptcov<=i2;cptcov++){      for(k=1 ; k <kmax; k=k+1){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        delt = delta*(l1*k);
       k=k+1;        p2[theta]=x[theta] +delt;
       fprintf(ficresf,"\n#******");        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       for(j=1;j<=cptcoveff;j++) {        p2[theta]=x[theta]-delt;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresf,"******\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       fprintf(ficresf,"# StartingAge FinalAge");        
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  #ifdef DEBUGHESS
              printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
              fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  #endif
         fprintf(ficresf,"\n");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           nhstepm = nhstepm/hstepm;          k=kmax; l=lmax*10;
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           oldm=oldms;savm=savms;          delts=delt;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
              }
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    delti[theta]=delts;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    return res; 
             }    
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                 if (mobilav==1)  {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    int i;
                 else {    int l=1, lmax=20;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double k1,k2,k3,k4,res,fx;
                 }    double p2[MAXPARM+1];
                    int k;
               }  
               if (h==(int)(calagedate+12*cpt)){    fx=func(x);
                 fprintf(ficresf," %.3f", kk1);    for (k=1; k<=2; k++) {
                              for (i=1;i<=npar;i++) p2[i]=x[i];
               }      p2[thetai]=x[thetai]+delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k1=func(p2)-fx;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k2=func(p2)-fx;
   }    
              p2[thetai]=x[thetai]-delti[thetai]/k;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   fclose(ficresf);    
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
 /************** Forecasting ******************/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  #ifdef DEBUG
   int *popage;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double *popeffectif,*popcount;  #endif
   double ***p3mat,***tabpop,***tabpopprev;    }
   char filerespop[FILENAMELENGTH];    return res;
   }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************** Inverse of matrix **************/
   agelim=AGESUP;  void ludcmp(double **a, int n, int *indx, double *d) 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  { 
      int i,imax,j,k; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double big,dum,sum,temp; 
      double *vv; 
     
   strcpy(filerespop,"pop");    vv=vector(1,n); 
   strcat(filerespop,fileres);    *d=1.0; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with forecast resultfile: %s\n", filerespop);      big=0.0; 
   }      for (j=1;j<=n;j++) 
   printf("Computing forecasting: result on file '%s' \n", filerespop);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      vv[i]=1.0/big; 
     } 
   if (mobilav==1) {    for (j=1;j<=n;j++) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1;i<j;i++) { 
     movingaverage(agedeb, fage, ageminpar, mobaverage);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } 
   if (stepm<=12) stepsize=1;      big=0.0; 
        for (i=j;i<=n;i++) { 
   agelim=AGESUP;        sum=a[i][j]; 
          for (k=1;k<j;k++) 
   hstepm=1;          sum -= a[i][k]*a[k][j]; 
   hstepm=hstepm/stepm;        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (popforecast==1) {          big=dum; 
     if((ficpop=fopen(popfile,"r"))==NULL) {          imax=i; 
       printf("Problem with population file : %s\n",popfile);exit(0);        } 
     }      } 
     popage=ivector(0,AGESUP);      if (j != imax) { 
     popeffectif=vector(0,AGESUP);        for (k=1;k<=n;k++) { 
     popcount=vector(0,AGESUP);          dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
     i=1;            a[j][k]=dum; 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        } 
            *d = -(*d); 
     imx=i;        vv[imax]=vv[j]; 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      } 
   }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   for(cptcov=1;cptcov<=i2;cptcov++){      if (j != n) { 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        dum=1.0/(a[j][j]); 
       k=k+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficrespop,"\n#******");      } 
       for(j=1;j<=cptcoveff;j++) {    } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
       fprintf(ficrespop,"******\n");  } 
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  void lubksb(double **a, int n, int *indx, double b[]) 
       if (popforecast==1)  fprintf(ficrespop," [Population]");  { 
          int i,ii=0,ip,j; 
       for (cpt=0; cpt<=0;cpt++) {    double sum; 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
            for (i=1;i<=n;i++) { 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      ip=indx[i]; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      sum=b[ip]; 
           nhstepm = nhstepm/hstepm;      b[ip]=b[i]; 
                if (ii) 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           oldm=oldms;savm=savms;      else if (sum) ii=i; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        b[i]=sum; 
            } 
           for (h=0; h<=nhstepm; h++){    for (i=n;i>=1;i--) { 
             if (h==(int) (calagedate+YEARM*cpt)) {      sum=b[i]; 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
             }      b[i]=sum/a[i][i]; 
             for(j=1; j<=nlstate+ndeath;j++) {    } 
               kk1=0.;kk2=0;  } 
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)  void pstamp(FILE *fichier)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  {
                 else {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  }
                 }  
               }  /************ Frequencies ********************/
               if (h==(int)(calagedate+12*cpt)){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  {  /* Some frequencies */
                   /*fprintf(ficrespop," %.3f", kk1);    
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    int i, m, jk, j1, bool, z1,j;
               }    int first;
             }    double ***freq; /* Frequencies */
             for(i=1; i<=nlstate;i++){    double *pp, **prop;
               kk1=0.;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
                 for(j=1; j<=nlstate;j++){    char fileresp[FILENAMELENGTH];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }    pp=vector(1,nlstate);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    prop=matrix(1,nlstate,iagemin,iagemax+3);
             }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      exit(0);
         }    }
       }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   /******/    
     j=cptcoveff;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    first=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
              /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*    j1++; */
           oldm=oldms;savm=savms;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for (h=0; h<=nhstepm; h++){          scanf("%d", i);*/
             if (h==(int) (calagedate+YEARM*cpt)) {        for (i=-5; i<=nlstate+ndeath; i++)  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             }            for(m=iagemin; m <= iagemax+3; m++)
             for(j=1; j<=nlstate+ndeath;j++) {              freq[i][jk][m]=0;
               kk1=0.;kk2=0;        
               for(i=1; i<=nlstate;i++) {                      for (i=1; i<=nlstate; i++)  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(m=iagemin; m <= iagemax+3; m++)
               }            prop[i][m]=0;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
             }        dateintsum=0;
           }        k2cpt=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=1; i<=imx; i++) {
         }          bool=1;
       }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
    }            for (z1=1; z1<=cptcoveff; z1++)       
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                    /* Tests if the value of each of the covariates of i is equal to filter j1 */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   if (popforecast==1) {                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     free_ivector(popage,0,AGESUP);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     free_vector(popeffectif,0,AGESUP);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     free_vector(popcount,0,AGESUP);              } 
   }          }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (bool==1){
   fclose(ficrespop);            for(m=firstpass; m<=lastpass; m++){
 }              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 /***********************************************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /**************** Main Program *****************/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /***********************************************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 int main(int argc, char *argv[])                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                
   double agedeb, agefin,hf;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                  dateintsum=dateintsum+k2;
                   k2cpt++;
   double fret;                }
   double **xi,tmp,delta;                /*}*/
             }
   double dum; /* Dummy variable */          }
   double ***p3mat;        } /* end i */
   int *indx;         
   char line[MAXLINE], linepar[MAXLINE];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        pstamp(ficresp);
   int firstobs=1, lastobs=10;        if  (cptcovn>0) {
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresp, "\n#********** Variable "); 
   int c,  h , cpt,l;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int ju,jl, mi;          fprintf(ficresp, "**********\n#");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          fprintf(ficlog, "\n#********** Variable "); 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int mobilav=0,popforecast=0;          fprintf(ficlog, "**********\n#");
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double bage, fage, age, agelim, agebase;        fprintf(ficresp, "\n");
   double ftolpl=FTOL;        
   double **prlim;        for(i=iagemin; i <= iagemax+3; i++){
   double *severity;          if(i==iagemax+3){
   double ***param; /* Matrix of parameters */            fprintf(ficlog,"Total");
   double  *p;          }else{
   double **matcov; /* Matrix of covariance */            if(first==1){
   double ***delti3; /* Scale */              first=0;
   double *delti; /* Scale */              printf("See log file for details...\n");
   double ***eij, ***vareij;            }
   double **varpl; /* Variances of prevalence limits by age */            fprintf(ficlog,"Age %d", i);
   double *epj, vepp;          }
   double kk1, kk2;          for(jk=1; jk <=nlstate ; jk++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
           }
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
   char z[1]="c", occ;            if(pp[jk]>=1.e-10){
 #include <sys/time.h>              if(first==1){
 #include <time.h>                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* long total_usecs;            }else{
   struct timeval start_time, end_time;              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   getcwd(pathcd, size);            }
           }
   printf("\n%s",version);  
   if(argc <=1){          for(jk=1; jk <=nlstate ; jk++){
     printf("\nEnter the parameter file name: ");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     scanf("%s",pathtot);              pp[jk] += freq[jk][m][i];
   }          }       
   else{          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     strcpy(pathtot,argv[1]);            pos += pp[jk];
   }            posprop += prop[jk][i];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          }
   /*cygwin_split_path(pathtot,path,optionfile);          for(jk=1; jk <=nlstate ; jk++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            if(pos>=1.e-5){
   /* cutv(path,optionfile,pathtot,'\\');*/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            }else{
   chdir(path);              if(first==1)
   replace(pathc,path);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /*-------- arguments in the command line --------*/            }
             if( i <= iagemax){
   strcpy(fileres,"r");              if(pos>=1.e-5){
   strcat(fileres, optionfilefiname);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcat(fileres,".txt");    /* Other files have txt extension */                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /*---------arguments file --------*/              }
               else
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     printf("Problem with optionfile %s\n",optionfile);            }
     goto end;          }
   }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   strcpy(filereso,"o");            for(m=-1; m <=nlstate+ndeath; m++)
   strcat(filereso,fileres);              if(freq[jk][m][i] !=0 ) {
   if((ficparo=fopen(filereso,"w"))==NULL) {              if(first==1)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
   /* Reads comments: lines beginning with '#' */          if(i <= iagemax)
   while((c=getc(ficpar))=='#' && c!= EOF){            fprintf(ficresp,"\n");
     ungetc(c,ficpar);          if(first==1)
     fgets(line, MAXLINE, ficpar);            printf("Others in log...\n");
     puts(line);          fprintf(ficlog,"\n");
     fputs(line,ficparo);        }
   }        /*}*/
   ungetc(c,ficpar);    }
     dateintmean=dateintsum/k2cpt; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fclose(ficresp);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(pp,1,nlstate);
     ungetc(c,ficpar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     fgets(line, MAXLINE, ficpar);    /* End of Freq */
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Prevalence ********************/
   ungetc(c,ficpar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   covar=matrix(0,NCOVMAX,1,n);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   cptcovn=0;       We still use firstpass and lastpass as another selection.
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    */
    
   ncovmodel=2+cptcovn;    int i, m, jk, j1, bool, z1,j;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      double **prop;
   /* Read guess parameters */    double posprop; 
   /* Reads comments: lines beginning with '#' */    double  y2; /* in fractional years */
   while((c=getc(ficpar))=='#' && c!= EOF){    int iagemin, iagemax;
     ungetc(c,ficpar);    int first; /** to stop verbosity which is redirected to log file */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    iagemin= (int) agemin;
     fputs(line,ficparo);    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    j1=0;
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){    /*j=cptcoveff;*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficparo,"%1d%1d",i1,j1);    
       printf("%1d%1d",i,j);    first=1;
       for(k=1; k<=ncovmodel;k++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         fscanf(ficpar," %lf",&param[i][j][k]);      /*for(i1=1; i1<=ncodemax[k1];i1++){
         printf(" %lf",param[i][j][k]);        j1++;*/
         fprintf(ficparo," %lf",param[i][j][k]);        
       }        for (i=1; i<=nlstate; i++)  
       fscanf(ficpar,"\n");          for(m=iagemin; m <= iagemax+3; m++)
       printf("\n");            prop[i][m]=0.0;
       fprintf(ficparo,"\n");       
     }        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   p=param[1][1];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   /* Reads comments: lines beginning with '#' */          } 
   while((c=getc(ficpar))=='#' && c!= EOF){          if (bool==1) { 
     ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fgets(line, MAXLINE, ficpar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     puts(line);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fputs(line,ficparo);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   ungetc(c,ficpar);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i <=nlstate; i++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
     for(j=1; j <=nlstate+ndeath-1; j++){                } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);              }
       printf("%1d%1d",i,j);            } /* end selection of waves */
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        for(i=iagemin; i <= iagemax+3; i++){  
         printf(" %le",delti3[i][j][k]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficparo," %le",delti3[i][j][k]);            posprop += prop[jk][i]; 
       }          } 
       fscanf(ficpar,"\n");          
       printf("\n");          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficparo,"\n");            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
   }                probs[i][jk][j1]= prop[jk][i]/posprop;
   delti=delti3[1][1];              } else{
                  if(first==1){
   /* Reads comments: lines beginning with '#' */                  first=0;
   while((c=getc(ficpar))=='#' && c!= EOF){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            } 
     fputs(line,ficparo);          }/* end jk */ 
   }        }/* end i */ 
   ungetc(c,ficpar);      /*} *//* end i1 */
      } /* end j1 */
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fscanf(ficpar,"%s",&str);    /*free_vector(pp,1,nlstate);*/
     printf("%s",str);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     fprintf(ficparo,"%s",str);  }  /* End of prevalence */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);  /************* Waves Concatenation ***************/
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
     fscanf(ficpar,"\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     printf("\n");       Death is a valid wave (if date is known).
     fprintf(ficparo,"\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   for(i=1; i <=npar; i++)       and mw[mi+1][i]. dh depends on stepm.
     for(j=i+1;j<=npar;j++)       */
       matcov[i][j]=matcov[j][i];  
        int i, mi, m;
   printf("\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first;
     /*-------- Rewriting paramater file ----------*/    int j, k=0,jk, ju, jl;
      strcpy(rfileres,"r");    /* "Rparameterfile */    double sum=0.;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    first=0;
      strcat(rfileres,".");    /* */    jmin=100000;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    jmax=-1;
     if((ficres =fopen(rfileres,"w"))==NULL) {    jmean=0.;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    for(i=1; i<=imx; i++){
     }      mi=0;
     fprintf(ficres,"#%s\n",version);      m=firstpass;
          while(s[m][i] <= nlstate){
     /*-------- data file ----------*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     if((fic=fopen(datafile,"r"))==NULL)    {          mw[++mi][i]=m;
       printf("Problem with datafile: %s\n", datafile);goto end;        if(m >=lastpass)
     }          break;
         else
     n= lastobs;          m++;
     severity = vector(1,maxwav);      }/* end while */
     outcome=imatrix(1,maxwav+1,1,n);      if (s[m][i] > nlstate){
     num=ivector(1,n);        mi++;     /* Death is another wave */
     moisnais=vector(1,n);        /* if(mi==0)  never been interviewed correctly before death */
     annais=vector(1,n);           /* Only death is a correct wave */
     moisdc=vector(1,n);        mw[mi][i]=m;
     andc=vector(1,n);      }
     agedc=vector(1,n);  
     cod=ivector(1,n);      wav[i]=mi;
     weight=vector(1,n);      if(mi==0){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        nbwarn++;
     mint=matrix(1,maxwav,1,n);        if(first==0){
     anint=matrix(1,maxwav,1,n);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     s=imatrix(1,maxwav+1,1,n);          first=1;
     adl=imatrix(1,maxwav+1,1,n);            }
     tab=ivector(1,NCOVMAX);        if(first==1){
     ncodemax=ivector(1,8);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
     i=1;      } /* end mi==0 */
     while (fgets(line, MAXLINE, fic) != NULL)    {    } /* End individuals */
       if ((i >= firstobs) && (i <=lastobs)) {  
            for(i=1; i<=imx; i++){
         for (j=maxwav;j>=1;j--){      for(mi=1; mi<wav[i];mi++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        if (stepm <=0)
           strcpy(line,stra);          dh[mi][i]=1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        else{
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
                      j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(j==0) j=1;  /* Survives at least one month after exam */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              else if(j<0){
                 nberr++;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (j=ncovcol;j>=1;j--){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
         }              k=k+1;
         num[i]=atol(stra);              if (j >= jmax){
                        jmax=j;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                ijmax=i;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              }
               if (j <= jmin){
         i=i+1;                jmin=j;
       }                ijmin=i;
     }              }
     /* printf("ii=%d", ij);              sum=sum+j;
        scanf("%d",i);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   imx=i-1; /* Number of individuals */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          else{
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     }*/  
    /*  for (i=1; i<=imx; i++){            k=k+1;
      if (s[4][i]==9)  s[4][i]=-1;            if (j >= jmax) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              jmax=j;
                ijmax=i;
              }
   /* Calculation of the number of parameter from char model*/            else if (j <= jmin){
   Tvar=ivector(1,15);              jmin=j;
   Tprod=ivector(1,15);              ijmin=i;
   Tvaraff=ivector(1,15);            }
   Tvard=imatrix(1,15,1,2);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   Tage=ivector(1,15);                  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                if(j<0){
   if (strlen(model) >1){              nberr++;
     j=0, j1=0, k1=1, k2=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     j=nbocc(model,'+');              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     j1=nbocc(model,'*');            }
     cptcovn=j+1;            sum=sum+j;
     cptcovprod=j1;          }
              jk= j/stepm;
     strcpy(modelsav,model);          jl= j -jk*stepm;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          ju= j -(jk+1)*stepm;
       printf("Error. Non available option model=%s ",model);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       goto end;            if(jl==0){
     }              dh[mi][i]=jk;
                  bh[mi][i]=0;
     for(i=(j+1); i>=1;i--){            }else{ /* We want a negative bias in order to only have interpolation ie
       cutv(stra,strb,modelsav,'+');                    * to avoid the price of an extra matrix product in likelihood */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              dh[mi][i]=jk+1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              bh[mi][i]=ju;
       /*scanf("%d",i);*/            }
       if (strchr(strb,'*')) {          }else{
         cutv(strd,strc,strb,'*');            if(jl <= -ju){
         if (strcmp(strc,"age")==0) {              dh[mi][i]=jk;
           cptcovprod--;              bh[mi][i]=jl;       /* bias is positive if real duration
           cutv(strb,stre,strd,'V');                                   * is higher than the multiple of stepm and negative otherwise.
           Tvar[i]=atoi(stre);                                   */
           cptcovage++;            }
             Tage[cptcovage]=i;            else{
             /*printf("stre=%s ", stre);*/              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
         else if (strcmp(strd,"age")==0) {            }
           cptcovprod--;            if(dh[mi][i]==0){
           cutv(strb,stre,strc,'V');              dh[mi][i]=1; /* At least one step */
           Tvar[i]=atoi(stre);              bh[mi][i]=ju; /* At least one step */
           cptcovage++;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           Tage[cptcovage]=i;            }
         }          } /* end if mle */
         else {        }
           cutv(strb,stre,strc,'V');      } /* end wave */
           Tvar[i]=ncovcol+k1;    }
           cutv(strb,strc,strd,'V');    jmean=sum/k;
           Tprod[k1]=i;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           Tvard[k1][1]=atoi(strc);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           Tvard[k1][2]=atoi(stre);   }
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  /*********** Tricode ****************************/
           for (k=1; k<=lastobs;k++)  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  {
           k1++;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           k2=k2+2;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         }     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       else {     * nbcode[Tvar[j]][1]= 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    */
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       Tvar[i]=atoi(strc);    int modmaxcovj=0; /* Modality max of covariates j */
       }    int cptcode=0; /* Modality max of covariates j */
       strcpy(modelsav,stra);      int modmincovj=0; /* Modality min of covariates j */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  
     }    cptcoveff=0; 
 }   
      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/    /* Loop on covariates without age and products */
     fclose(fic);    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
     /*  if(mle==1){*/                                 modality of this covariate Vj*/ 
     if (weightopt != 1) { /* Maximisation without weights*/        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
       for(i=1;i<=n;i++) weight[i]=1.0;                                      * If product of Vn*Vm, still boolean *:
     }                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     /*-calculation of age at interview from date of interview and age at death -*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     agev=matrix(1,maxwav,1,imx);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
     for (i=1; i<=imx; i++) {        if (ij > modmaxcovj)
       for(m=2; (m<= maxwav); m++) {          modmaxcovj=ij; 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        else if (ij < modmincovj) 
          anint[m][i]=9999;          modmincovj=ij; 
          s[m][i]=-1;        if ((ij < -1) && (ij > NCOVMAX)){
        }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          exit(1);
       }        }else
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     for (i=1; i<=imx; i++)  {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        /* getting the maximum value of the modality of the covariate
       for(m=1; (m<= maxwav); m++){           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         if(s[m][i] >0){           female is 1, then modmaxcovj=1.*/
           if (s[m][i] >= nlstate+1) {      }
             if(agedc[i]>0)      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
               if(moisdc[i]!=99 && andc[i]!=9999)      cptcode=modmaxcovj;
                 agev[m][i]=agedc[i];      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/     /*for (i=0; i<=cptcode; i++) {*/
            else {      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
               if (andc[i]!=9999){        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
               agev[m][i]=-1;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
               }        }
             }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           else if(s[m][i] !=9){ /* Should no more exist */      } /* Ndum[-1] number of undefined modalities */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
               agev[m][i]=1;      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
             else if(agev[m][i] <agemin){         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
               agemin=agev[m][i];         modmincovj=3; modmaxcovj = 7;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
             }         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
             else if(agev[m][i] >agemax){         defining two dummy variables: variables V1_1 and V1_2.
               agemax=agev[m][i];         nbcode[Tvar[j]][ij]=k;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/         nbcode[Tvar[j]][1]=0;
             }         nbcode[Tvar[j]][2]=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/         nbcode[Tvar[j]][3]=2;
             /*   agev[m][i] = age[i]+2*m;*/      */
           }      ij=1; /* ij is similar to i but can jumps over null modalities */
           else { /* =9 */      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
             agev[m][i]=1;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
             s[m][i]=-1;          /*recode from 0 */
           }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
         }            nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
         else /*= 0 Unknown */                                       k is a modality. If we have model=V1+V1*sex 
           agev[m][i]=1;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            ij++;
              }
     }          if (ij > ncodemax[j]) break; 
     for (i=1; i<=imx; i++)  {        }  /* end of loop on */
       for(m=1; (m<= maxwav); m++){      } /* end of loop on modality */ 
         if (s[m][i] > (nlstate+ndeath)) {    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
           printf("Error: Wrong value in nlstate or ndeath\n");      
           goto end;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         }    
       }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     Ndum[ij]++; 
    } 
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);   ij=1;
     free_vector(moisnais,1,n);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     free_vector(annais,1,n);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     /* free_matrix(mint,1,maxwav,1,n);     if((Ndum[i]!=0) && (i<=ncovcol)){
        free_matrix(anint,1,maxwav,1,n);*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     free_vector(moisdc,1,n);       Tvaraff[ij]=i; /*For printing (unclear) */
     free_vector(andc,1,n);       ij++;
      }else
             Tvaraff[ij]=0;
     wav=ivector(1,imx);   }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   ij--;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   cptcoveff=ij; /*Number of total covariates*/
      
     /* Concatenates waves */  }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
   
   /*********** Health Expectancies ****************/
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  {
          /* Health expectancies, no variances */
    codtab=imatrix(1,100,1,10);    int i, j, nhstepm, hstepm, h, nstepm;
    h=0;    int nhstepma, nstepma; /* Decreasing with age */
    m=pow(2,cptcoveff);    double age, agelim, hf;
      double ***p3mat;
    for(k=1;k<=cptcoveff; k++){    double eip;
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    pstamp(ficreseij);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
            h++;    fprintf(ficreseij,"# Age");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    for(i=1; i<=nlstate;i++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(j=1; j<=nlstate;j++){
          }        fprintf(ficreseij," e%1d%1d ",i,j);
        }      }
      }      fprintf(ficreseij," e%1d. ",i);
    }    }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficreseij,"\n");
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){    
       for(k=1; k <=cptcovn; k++){    if(estepm < stepm){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       printf("\n");    else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
       scanf("%d",i);*/     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
    /* Calculates basic frequencies. Computes observed prevalence at single age     * we are calculating an estimate of the Life Expectancy assuming a linear 
        and prints on file fileres'p'. */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
         * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * hypothesis. A more precise result, taking into account a more precise
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * curvature will be obtained if estepm is as small as stepm. */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* For example we decided to compute the life expectancy with the smallest unit */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
     /* For Powell, parameters are in a vector p[] starting at p[1]       nstepm is the number of stepm from age to agelin. 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       Look at hpijx to understand the reason of that which relies in memory size
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if(mle==1){       survival function given by stepm (the optimization length). Unfortunately it
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     /*--------- results files --------------*/    */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
     agelim=AGESUP;
    jk=1;    /* If stepm=6 months */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(i=1,jk=1; i <=nlstate; i++){      
      for(k=1; k <=(nlstate+ndeath); k++){  /* nhstepm age range expressed in number of stepm */
        if (k != i)    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            printf("%d%d ",i,k);    /* if (stepm >= YEARM) hstepm=1;*/
            fprintf(ficres,"%1d%1d ",i,k);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            for(j=1; j <=ncovmodel; j++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    for (age=bage; age<=fage; age ++){ 
              jk++;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            printf("\n");      /* if (stepm >= YEARM) hstepm=1;*/
            fprintf(ficres,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
          }  
      }      /* If stepm=6 months */
    }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
  if(mle==1){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     /* Computing hessian and covariance matrix */      
     ftolhess=ftol; /* Usually correct */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     hesscov(matcov, p, npar, delti, ftolhess, func);      
  }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      
     printf("# Scales (for hessian or gradient estimation)\n");      printf("%d|",(int)age);fflush(stdout);
      for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1; j <=nlstate+ndeath; j++){      
         if (j!=i) {      /* Computing expectancies */
           fprintf(ficres,"%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
           printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             printf(" %.5e",delti[jk]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             fprintf(ficres," %.5e",delti[jk]);            
             jk++;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           }  
           printf("\n");          }
           fprintf(ficres,"\n");  
         }      fprintf(ficreseij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
      }        eip=0;
            for(j=1; j<=nlstate;j++){
     k=1;          eip +=eij[i][j][(int)age];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     for(i=1;i<=npar;i++){        fprintf(ficreseij,"%9.4f", eip );
       /*  if (k>nlstate) k=1;      }
       i1=(i-1)/(ncovmodel*nlstate)+1;      fprintf(ficreseij,"\n");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%3d",i);    printf("\n");
       for(j=1; j<=i;j++){    fprintf(ficlog,"\n");
         fprintf(ficres," %.5e",matcov[i][j]);    
         printf(" %.5e",matcov[i][j]);  }
       }  
       fprintf(ficres,"\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       printf("\n");  
       k++;  {
     }    /* Covariances of health expectancies eij and of total life expectancies according
         to initial status i, ei. .
     while((c=getc(ficpar))=='#' && c!= EOF){    */
       ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       fgets(line, MAXLINE, ficpar);    int nhstepma, nstepma; /* Decreasing with age */
       puts(line);    double age, agelim, hf;
       fputs(line,ficparo);    double ***p3matp, ***p3matm, ***varhe;
     }    double **dnewm,**doldm;
     ungetc(c,ficpar);    double *xp, *xm;
     estepm=0;    double **gp, **gm;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    double ***gradg, ***trgradg;
     if (estepm==0 || estepm < stepm) estepm=stepm;    int theta;
     if (fage <= 2) {  
       bage = ageminpar;    double eip, vip;
       fage = agemaxpar;  
     }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    xm=vector(1,npar);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
     while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresstdeij);
     ungetc(c,ficpar);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresstdeij,"# Age");
     puts(line);    for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   ungetc(c,ficpar);      fprintf(ficresstdeij," e%1d. ",i);
      }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fprintf(ficresstdeij,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    pstamp(ficrescveij);
          fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrescveij,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++){
     puts(line);        cptj= (j-1)*nlstate+i;
     fputs(line,ficparo);        for(i2=1; i2<=nlstate;i2++)
   }          for(j2=1; j2<=nlstate;j2++){
   ungetc(c,ficpar);            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      }
     fprintf(ficrescveij,"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);    
   fprintf(ficparo,"pop_based=%d\n",popbased);      if(estepm < stepm){
   fprintf(ficres,"pop_based=%d\n",popbased);        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   while((c=getc(ficpar))=='#' && c!= EOF){    else  hstepm=estepm;   
     ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fgets(line, MAXLINE, ficpar);     * This is mainly to measure the difference between two models: for example
     puts(line);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fputs(line,ficparo);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     * to compare the new estimate of Life expectancy with the same linear 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     * hypothesis. A more precise result, taking into account a more precise
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
 while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at hpijx to understand the reason of that which relies in memory size
     fputs(line,ficparo);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     /* If stepm=6 months */
 /*------------ gnuplot -------------*/    /* nhstepm age range expressed in number of stepm */
   strcpy(optionfilegnuplot,optionfilefiname);    agelim=AGESUP;
   strcat(optionfilegnuplot,".gp");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with file %s",optionfilegnuplot);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficgp);    
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*--------- index.htm --------*/    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(optionfilehtm,optionfile);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(optionfilehtm,".htm");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      /* if (stepm >= YEARM) hstepm=1;*/
 \n      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      /* If stepm=6 months */
 <hr  size=\"2\" color=\"#EC5E5E\">      /* Computed by stepm unit matrices, product of hstepma matrices, stored
  <ul><li>Parameter files<br>\n         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(fichtm);  
       /* Computing  Variances of health expectancies */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           decrease memory allocation */
 /*------------ free_vector  -------------*/      for(theta=1; theta <=npar; theta++){
  chdir(path);        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
  free_ivector(wav,1,imx);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
  free_ivector(num,1,n);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(j=1; j<= nlstate; j++){
  fclose(ficparo);          for(i=1; i<=nlstate; i++){
  fclose(ficres);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   /*--------------- Prevalence limit --------------*/            }
            }
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);       
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(ij=1; ij<= nlstate*nlstate; ij++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficrespl,"#Prevalence limit\n");      }/* End theta */
   fprintf(ficrespl,"#Age ");      
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      
   fprintf(ficrespl,"\n");      for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   prlim=matrix(1,nlstate,1,nlstate);          for(theta=1; theta <=npar; theta++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            trgradg[h][j][theta]=gradg[h][theta][j];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(ij=1;ij<=nlstate*nlstate;ij++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(ji=1;ji<=nlstate*nlstate;ji++)
   k=0;          varhe[ij][ji][(int)age] =0.;
   agebase=ageminpar;  
   agelim=agemaxpar;       printf("%d|",(int)age);fflush(stdout);
   ftolpl=1.e-10;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   i1=cptcoveff;       for(h=0;h<=nhstepm-1;h++){
   if (cptcovn < 1){i1=1;}        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   for(cptcov=1;cptcov<=i1;cptcov++){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(ij=1;ij<=nlstate*nlstate;ij++)
         k=k+1;            for(ji=1;ji<=nlstate*nlstate;ji++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         fprintf(ficrespl,"\n#******");        }
         for(j=1;j<=cptcoveff;j++)      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      /* Computing expectancies */
              hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         for (age=agebase; age<=agelim; age++){      for(i=1; i<=nlstate;i++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=1; j<=nlstate;j++)
           fprintf(ficrespl,"%.0f",age );          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for(i=1; i<=nlstate;i++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           fprintf(ficrespl," %.5f", prlim[i][i]);            
           fprintf(ficrespl,"\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         }  
       }          }
     }  
   fclose(ficrespl);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   /*------------- h Pij x at various ages ------------*/        eip=0.;
          vip=0.;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        for(j=1; j<=nlstate;j++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          eip += eij[i][j][(int)age];
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   /*if (stepm<=24) stepsize=2;*/      }
       fprintf(ficresstdeij,"\n");
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficrescveij,"%3.0f",age );
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   k=0;          cptj= (j-1)*nlstate+i;
   for(cptcov=1;cptcov<=i1;cptcov++){          for(i2=1; i2<=nlstate;i2++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(j2=1; j2<=nlstate;j2++){
       k=k+1;              cptj2= (j2-1)*nlstate+i2;
         fprintf(ficrespij,"\n#****** ");              if(cptj2 <= cptj)
         for(j=1;j<=cptcoveff;j++)                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         fprintf(ficrespij,"******\n");        }
              fprintf(ficrescveij,"\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficrespij,"# Age");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++)    printf("\n");
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficlog,"\n");
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    free_vector(xm,1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    free_vector(xp,1,npar);
             for(i=1; i<=nlstate;i++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               for(j=1; j<=nlstate+ndeath;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             fprintf(ficrespij,"\n");  }
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /************ Variance ******************/
           fprintf(ficrespij,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         }  {
     }    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
   fclose(ficrespij);    int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   /*---------- Forecasting ------------------*/    int i, j, nhstepm, hstepm, h, nstepm ;
   if((stepm == 1) && (strcmp(model,".")==0)){    int k;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double *xp;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   else{    double **gradgp, **trgradgp; /* for var p point j */
     erreur=108;    double *gpp, *gmp; /* for var p point j */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
      double age,agelim, hf;
     double ***mobaverage;
   /*---------- Health expectancies and variances ------------*/    int theta;
     char digit[4];
   strcpy(filerest,"t");    char digitp[25];
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    char fileresprobmorprev[FILENAMELENGTH];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    if(popbased==1){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   strcpy(filerese,"e");    }
   strcat(filerese,fileres);    else 
   if((ficreseij=fopen(filerese,"w"))==NULL) {      strcpy(digitp,"-stablbased-");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    if (mobilav!=0) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  strcpy(fileresv,"v");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresv,fileres);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    }
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    strcpy(fileresprobmorprev,"prmorprev"); 
   calagedate=-1;    sprintf(digit,"%-d",ij);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   k=0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresprobmorprev,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       k=k+1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrest,"\n#****** ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficrest,"******\n");   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficreseij,"\n#****** ");    pstamp(ficresprobmorprev);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficreseij,"******\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficresvij,"\n#****** ");      for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }  
       fprintf(ficresvij,"******\n");    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       oldm=oldms;savm=savms;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       oldm=oldms;savm=savms;    pstamp(ficresvij);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
        if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficresvij,"# Age");
       fprintf(ficrest,"\n");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
       epj=vector(1,nlstate+1);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(age=bage; age <=fage ;age++){    fprintf(ficresvij,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    xp=vector(1,npar);
           for(i=1; i<=nlstate;i++)    dnewm=matrix(1,nlstate,1,npar);
             prlim[i][i]=probs[(int)age][i][k];    doldm=matrix(1,nlstate,1,nlstate);
         }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
            doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    gpp=vector(nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    gmp=vector(nlstate+1,nlstate+ndeath);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           }    
           epj[nlstate+1] +=epj[j];    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
         for(i=1, vepp=0.;i <=nlstate;i++)    else  hstepm=estepm;   
           for(j=1;j <=nlstate;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
             vepp += vareij[i][j][(int)age];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       nhstepm is the number of hstepm from age to agelim 
         for(j=1;j <=nlstate;j++){       nstepm is the number of stepm from age to agelin. 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       Look at function hpijx to understand why (it is linked to memory size questions) */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficrest,"\n");       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
 free_matrix(mint,1,maxwav,1,n);    */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(weight,1,n);    agelim = AGESUP;
   fclose(ficreseij);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficresvij);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficrest);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_vector(epj,1,nlstate+1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
   /*------- Variance limit prevalence------*/        gm=matrix(0,nhstepm,1,nlstate);
   
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);      for(theta=1; theta <=npar; theta++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     exit(0);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   k=0;        if (popbased==1) {
   for(cptcov=1;cptcov<=i1;cptcov++){          if(mobilav ==0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(i=1; i<=nlstate;i++)
       k=k+1;              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficresvpl,"\n#****** ");          }else{ /* mobilav */ 
       for(j=1;j<=cptcoveff;j++)            for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficresvpl,"******\n");          }
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;        for(j=1; j<= nlstate; j++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   fclose(ficresvpl);        }
         /* This for computing probability of death (h=1 means
   /*---------- End : free ----------------*/           computed over hstepm matrices product = hstepm*stepm months) 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);           as a weighted average of prlim.
          */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        /* end probability of death */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_matrix(matcov,1,npar,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_vector(delti,1,npar);   
   free_matrix(agev,1,maxwav,1,imx);        if (popbased==1) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n</body>");              prlim[i][i]=probs[(int)age][i][ij];
   fclose(fichtm);          }else{ /* mobilav */ 
   fclose(ficgp);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   if(erreur >0)        }
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
  end:           as a weighted average of prlim.
 #ifdef windows        */
   /* chdir(pathcd);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 #endif          for(i=1,gmp[j]=0.; i<= nlstate; i++)
  /*system("wgnuplot graph.plt");*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }    
  /*system("cd ../gp37mgw");*/        /* end probability of death */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);        for(j=1; j<= nlstate; j++) /* vareij */
  strcat(plotcmd," ");          for(h=0; h<=nhstepm; h++){
  strcat(plotcmd,optionfilegnuplot);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  system(plotcmd);          }
   
 #ifdef windows        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   while (z[0] != 'q') {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     /* chdir(path); */        }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);      } /* End theta */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);      for(h=0; h<=nhstepm; h++) /* veij */
   }        for(j=1; j<=nlstate;j++)
 #endif          for(theta=1; theta <=npar; theta++)
 }            trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n",title, datafile, lastobs, firstpass,lastpass);
     /*
   
   
   
      */
     printf("\nftol=%e \n", ftol);
     printf("stepm=%d \n", stepm);
     printf("ncovcol=%d nlstate=%d \n", ncovcol, nlstate);
     printf("ndeath=%d maxwav=%d mle=%d weight=%d\n", ndeath, maxwav, mle, weightopt);
     printf("model=%s\n",model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.48  
changed lines
  Added in v.1.186


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>