Diff for /imach/src/imach.c between versions 1.52 and 1.186

version 1.52, 2002/07/19 18:49:30 version 1.186, 2015/04/23 12:01:52
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.186  2015/04/23 12:01:52  brouard
      Summary: V1*age is working now, version 0.98q1
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Some codes had been disabled in order to simplify and Vn*age was
   first survey ("cross") where individuals from different ages are    working in the optimization phase, ie, giving correct MLE parameters,
   interviewed on their health status or degree of disability (in the    but, as usual, outputs were not correct and program core dumped.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.185  2015/03/11 13:26:42  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Inclusion of compile and links command line for Intel Compiler
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.184  2015/03/11 11:52:39  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Back from Windows 8. Intel Compiler
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.183  2015/03/10 20:34:32  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: 0.98q0, trying with directest, mnbrak fixed
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    We use directest instead of original Powell test; probably no
   complex model than "constant and age", you should modify the program    incidence on the results, but better justifications;
   where the markup *Covariates have to be included here again* invites    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   you to do it.  More covariates you add, slower the    wrong results.
   convergence.  
     Revision 1.182  2015/02/12 08:19:57  brouard
   The advantage of this computer programme, compared to a simple    Summary: Trying to keep directest which seems simpler and more general
   multinomial logistic model, is clear when the delay between waves is not    Author: Nicolas Brouard
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.181  2015/02/11 23:22:24  brouard
   account using an interpolation or extrapolation.      Summary: Comments on Powell added
   
   hPijx is the probability to be observed in state i at age x+h    Author:
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.180  2015/02/11 17:33:45  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.179  2015/01/04 09:57:06  brouard
   and the contribution of each individual to the likelihood is simply    Summary: back to OS/X
   hPijx.  
     Revision 1.178  2015/01/04 09:35:48  brouard
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.177  2015/01/03 18:40:56  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Still testing ilc32 on OSX
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.176  2015/01/03 16:45:04  brouard
   from the European Union.    *** empty log message ***
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.175  2015/01/03 16:33:42  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.174  2015/01/03 16:15:49  brouard
 #include <math.h>    Summary: Still in cross-compilation
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.173  2015/01/03 12:06:26  brouard
 #include <unistd.h>    Summary: trying to detect cross-compilation
   
 #define MAXLINE 256    Revision 1.172  2014/12/27 12:07:47  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.171  2014/12/23 13:26:59  brouard
 /*#define DEBUG*/    Summary: Back from Visual C
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Still problem with utsname.h on Windows
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.170  2014/12/23 11:17:12  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: Cleaning some \%% back to %%
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.169  2014/12/22 23:08:31  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: 0.98p
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.168  2014/12/22 15:17:42  brouard
 #define AGEBASE 40    Summary: update
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.167  2014/12/22 13:50:56  brouard
 #define ODIRSEPARATOR '/'    Summary: Testing uname and compiler version and if compiled 32 or 64
 #else  
 #define DIRSEPARATOR '/'    Testing on Linux 64
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.165  2014/12/16 11:20:36  brouard
 int nvar;    Summary: After compiling on Visual C
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    * imach.c (Module): Merging 1.61 to 1.162
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.164  2014/12/16 10:52:11  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 int popbased=0;  
     * imach.c (Module): Merging 1.61 to 1.162
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.163  2014/12/16 10:30:11  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Module): Merging 1.61 to 1.162
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.162  2014/09/25 11:43:39  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: temporary backup 0.99!
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.1  2014/09/16 11:06:58  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: With some code (wrong) for nlopt
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Author:
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.161  2014/09/15 20:41:41  brouard
 FILE *fichtm; /* Html File */    Summary: Problem with macro SQR on Intel compiler
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.160  2014/09/02 09:24:05  brouard
 FILE  *ficresvij;    *** empty log message ***
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.159  2014/09/01 10:34:10  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: WIN32
 char title[MAXLINE];    Author: Brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.157  2014/08/27 16:26:55  brouard
 char filerest[FILENAMELENGTH];    Summary: Preparing windows Visual studio version
 char fileregp[FILENAMELENGTH];    Author: Brouard
 char popfile[FILENAMELENGTH];  
     In order to compile on Visual studio, time.h is now correct and time_t
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 #define NR_END 1    Trying to suppress #ifdef LINUX
 #define FREE_ARG char*    Add xdg-open for __linux in order to open default browser.
 #define FTOL 1.0e-10  
     Revision 1.156  2014/08/25 20:10:10  brouard
 #define NRANSI    *** empty log message ***
 #define ITMAX 200  
     Revision 1.155  2014/08/25 18:32:34  brouard
 #define TOL 2.0e-4    Summary: New compile, minor changes
     Author: Brouard
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.154  2014/06/20 17:32:08  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: Outputs now all graphs of convergence to period prevalence
   
 #define GOLD 1.618034    Revision 1.153  2014/06/20 16:45:46  brouard
 #define GLIMIT 100.0    Summary: If 3 live state, convergence to period prevalence on same graph
 #define TINY 1.0e-20    Author: Brouard
   
 static double maxarg1,maxarg2;    Revision 1.152  2014/06/18 17:54:09  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.151  2014/06/18 16:43:30  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    *** empty log message ***
 #define rint(a) floor(a+0.5)  
     Revision 1.150  2014/06/18 16:42:35  brouard
 static double sqrarg;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Author: brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.149  2014/06/18 15:51:14  brouard
 int imx;    Summary: Some fixes in parameter files errors
 int stepm;    Author: Nicolas Brouard
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.148  2014/06/17 17:38:48  brouard
 int estepm;    Summary: Nothing new
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Author: Brouard
   
 int m,nb;    Just a new packaging for OS/X version 0.98nS
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.147  2014/06/16 10:33:11  brouard
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.146  2014/06/16 10:20:28  brouard
 double *weight;    Summary: Merge
 int **s; /* Status */    Author: Brouard
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Merge, before building revised version.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.145  2014/06/10 21:23:15  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Lot of changes in order to output the results with some covariates
 {    After the Edimburgh REVES conference 2014, it seems mandatory to
    char *s;                             /* pointer */    improve the code.
    int  l1, l2;                         /* length counters */    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
    l1 = strlen( path );                 /* length of path */    Also, decodemodel has been improved. Tricode is still not
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    optimal. nbcode should be improved. Documentation has been added in
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    the source code.
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.143  2014/01/26 09:45:38  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.142  2014/01/26 03:57:36  brouard
       extern char       *getcwd( );    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.141  2014/01/26 02:42:01  brouard
       }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.140  2011/09/02 10:37:54  brouard
       s++;                              /* after this, the filename */    Summary: times.h is ok with mingw32 now.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.139  2010/06/14 07:50:17  brouard
       strcpy( name, s );                /* save file name */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.138  2010/04/30 18:19:40  brouard
    l1 = strlen( dirc );                 /* length of directory */    *** empty log message ***
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.137  2010/04/29 18:11:38  brouard
 #else    (Module): Checking covariates for more complex models
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    than V1+V2. A lot of change to be done. Unstable.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.136  2010/04/26 20:30:53  brouard
    s++;    (Module): merging some libgsl code. Fixing computation
    strcpy(ext,s);                       /* save extension */    of likelione (using inter/intrapolation if mle = 0) in order to
    l1= strlen( name);    get same likelihood as if mle=1.
    l2= strlen( s)+1;    Some cleaning of code and comments added.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.135  2009/10/29 15:33:14  brouard
    return( 0 );                         /* we're done */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 }  
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 /******************************************/  
     Revision 1.133  2009/07/06 10:21:25  brouard
 void replace(char *s, char*t)    just nforces
 {  
   int i;    Revision 1.132  2009/07/06 08:22:05  brouard
   int lg=20;    Many tings
   i=0;  
   lg=strlen(t);    Revision 1.131  2009/06/20 16:22:47  brouard
   for(i=0; i<= lg; i++) {    Some dimensions resccaled
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.130  2009/05/26 06:44:34  brouard
   }    (Module): Max Covariate is now set to 20 instead of 8. A
 }    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 int nbocc(char *s, char occ)  
 {    Revision 1.129  2007/08/31 13:49:27  lievre
   int i,j=0;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   int lg=20;  
   i=0;    Revision 1.128  2006/06/30 13:02:05  brouard
   lg=strlen(s);    (Module): Clarifications on computing e.j
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.127  2006/04/28 18:11:50  brouard
   }    (Module): Yes the sum of survivors was wrong since
   return j;    imach-114 because nhstepm was no more computed in the age
 }    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 void cutv(char *u,char *v, char*t, char occ)    compute health expectancies (without variances) in a first step
 {    and then all the health expectancies with variances or standard
   /* cuts string t into u and v where u is ended by char occ excluding it    deviation (needs data from the Hessian matrices) which slows the
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    computation.
      gives u="abcedf" and v="ghi2j" */    In the future we should be able to stop the program is only health
   int i,lg,j,p=0;    expectancies and graph are needed without standard deviations.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.126  2006/04/28 17:23:28  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Yes the sum of survivors was wrong since
   }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   lg=strlen(t);    Version 0.98h
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.125  2006/04/04 15:20:31  lievre
   }    Errors in calculation of health expectancies. Age was not initialized.
      u[p]='\0';    Forecasting file added.
   
    for(j=0; j<= lg; j++) {    Revision 1.124  2006/03/22 17:13:53  lievre
     if (j>=(p+1))(v[j-p-1] = t[j]);    Parameters are printed with %lf instead of %f (more numbers after the comma).
   }    The log-likelihood is printed in the log file
 }  
     Revision 1.123  2006/03/20 10:52:43  brouard
 /********************** nrerror ********************/    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 void nrerror(char error_text[])  
 {    * imach.c (Module): Weights can have a decimal point as for
   fprintf(stderr,"ERREUR ...\n");    English (a comma might work with a correct LC_NUMERIC environment,
   fprintf(stderr,"%s\n",error_text);    otherwise the weight is truncated).
   exit(1);    Modification of warning when the covariates values are not 0 or
 }    1.
 /*********************** vector *******************/    Version 0.98g
 double *vector(int nl, int nh)  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   double *v;    (Module): Weights can have a decimal point as for
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    English (a comma might work with a correct LC_NUMERIC environment,
   if (!v) nrerror("allocation failure in vector");    otherwise the weight is truncated).
   return v-nl+NR_END;    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.121  2006/03/16 17:45:01  lievre
 {    * imach.c (Module): Comments concerning covariates added
   free((FREE_ARG)(v+nl-NR_END));  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 /************************ivector *******************************/    not 1 month. Version 0.98f
 int *ivector(long nl,long nh)  
 {    Revision 1.120  2006/03/16 15:10:38  lievre
   int *v;    (Module): refinements in the computation of lli if
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    status=-2 in order to have more reliable computation if stepm is
   if (!v) nrerror("allocation failure in ivector");    not 1 month. Version 0.98f
   return v-nl+NR_END;  
 }    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 /******************free ivector **************************/    computed as likelihood omitting the logarithm. Version O.98e
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.118  2006/03/14 18:20:07  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /******************* imatrix *******************************/    (Module): Function pstamp added
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Version 0.98d
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): varevsij Comments added explaining the second
   int **m;    table of variances if popbased=1 .
      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   /* allocate pointers to rows */    (Module): Function pstamp added
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Version 0.98d
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.116  2006/03/06 10:29:27  brouard
   m -= nrl;    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
    
   /* allocate rows and set pointers to them */    Revision 1.115  2006/02/27 12:17:45  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): One freematrix added in mlikeli! 0.98c
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.114  2006/02/26 12:57:58  brouard
   m[nrl] -= ncl;    (Module): Some improvements in processing parameter
      filename with strsep.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.113  2006/02/24 14:20:24  brouard
   /* return pointer to array of pointers to rows */    (Module): Memory leaks checks with valgrind and:
   return m;    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
   
 /****************** free_imatrix *************************/    Revision 1.112  2006/01/30 09:55:26  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.111  2006/01/25 20:38:18  brouard
      /* free an int matrix allocated by imatrix() */    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    can be a simple dot '.'.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.109  2006/01/24 19:37:15  brouard
 {    (Module): Comments (lines starting with a #) are allowed in data.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    To be fixed
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.107  2006/01/19 16:20:37  brouard
   m -= nrl;    Test existence of gnuplot in imach path
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.106  2006/01/19 13:24:36  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Some cleaning and links added in html output
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.104  2005/09/30 16:11:43  lievre
 }    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 /*************************free matrix ************************/    that the person is alive, then we can code his/her status as -2
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   free((FREE_ARG)(m+nrl-NR_END));    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 /******************* ma3x *******************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.102  2004/09/15 17:31:30  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Add the possibility to read data file including tab characters.
   double ***m;  
     Revision 1.101  2004/09/15 10:38:38  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Fix on curr_time
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.100  2004/07/12 18:29:06  brouard
   m -= nrl;    Add version for Mac OS X. Just define UNIX in Makefile
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.99  2004/06/05 08:57:40  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    This is the basic analysis of mortality and should be done before any
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    other analysis, in order to test if the mortality estimated from the
   m[nrl][ncl] += NR_END;    cross-longitudinal survey is different from the mortality estimated
   m[nrl][ncl] -= nll;    from other sources like vital statistic data.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    The same imach parameter file can be used but the option for mle should be -3.
    
   for (i=nrl+1; i<=nrh; i++) {    Agnès, who wrote this part of the code, tried to keep most of the
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    former routines in order to include the new code within the former code.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    The output is very simple: only an estimate of the intercept and of
   }    the slope with 95% confident intervals.
   return m;  
 }    Current limitations:
     A) Even if you enter covariates, i.e. with the
 /*************************free ma3x ************************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.97  2004/02/20 13:25:42  lievre
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Version 0.96d. Population forecasting command line is (temporarily)
   free((FREE_ARG)(m+nrl-NR_END));    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /***************** f1dim *************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 extern int ncom;    rewritten within the same printf. Workaround: many printfs.
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.95  2003/07/08 07:54:34  brouard
      * imach.c (Repository):
 double f1dim(double x)    (Repository): Using imachwizard code to output a more meaningful covariance
 {    matrix (cov(a12,c31) instead of numbers.
   int j;  
   double f;    Revision 1.94  2003/06/27 13:00:02  brouard
   double *xt;    Just cleaning
    
   xt=vector(1,ncom);    Revision 1.93  2003/06/25 16:33:55  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    (Module): On windows (cygwin) function asctime_r doesn't
   f=(*nrfunc)(xt);    exist so I changed back to asctime which exists.
   free_vector(xt,1,ncom);    (Module): Version 0.96b
   return f;  
 }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /*****************brent *************************/    exist so I changed back to asctime which exists.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int iter;    * imach.c (Repository): Duplicated warning errors corrected.
   double a,b,d,etemp;    (Repository): Elapsed time after each iteration is now output. It
   double fu,fv,fw,fx;    helps to forecast when convergence will be reached. Elapsed time
   double ftemp;    is stamped in powell.  We created a new html file for the graphs
   double p,q,r,tol1,tol2,u,v,w,x,xm;    concerning matrix of covariance. It has extension -cov.htm.
   double e=0.0;  
      Revision 1.90  2003/06/24 12:34:15  brouard
   a=(ax < cx ? ax : cx);    (Module): Some bugs corrected for windows. Also, when
   b=(ax > cx ? ax : cx);    mle=-1 a template is output in file "or"mypar.txt with the design
   x=w=v=bx;    of the covariance matrix to be input.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     xm=0.5*(a+b);    (Module): Some bugs corrected for windows. Also, when
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    mle=-1 a template is output in file "or"mypar.txt with the design
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    of the covariance matrix to be input.
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);    Revision 1.88  2003/06/23 17:54:56  brouard
 #ifdef DEBUG    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.87  2003/06/18 12:26:01  brouard
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Version 0.96
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.86  2003/06/17 20:04:08  brouard
       *xmin=x;    (Module): Change position of html and gnuplot routines and added
       return fx;    routine fileappend.
     }  
     ftemp=fu;    Revision 1.85  2003/06/17 13:12:43  brouard
     if (fabs(e) > tol1) {    * imach.c (Repository): Check when date of death was earlier that
       r=(x-w)*(fx-fv);    current date of interview. It may happen when the death was just
       q=(x-v)*(fx-fw);    prior to the death. In this case, dh was negative and likelihood
       p=(x-v)*q-(x-w)*r;    was wrong (infinity). We still send an "Error" but patch by
       q=2.0*(q-r);    assuming that the date of death was just one stepm after the
       if (q > 0.0) p = -p;    interview.
       q=fabs(q);    (Repository): Because some people have very long ID (first column)
       etemp=e;    we changed int to long in num[] and we added a new lvector for
       e=d;    memory allocation. But we also truncated to 8 characters (left
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    truncation)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Repository): No more line truncation errors.
       else {  
         d=p/q;    Revision 1.84  2003/06/13 21:44:43  brouard
         u=x+d;    * imach.c (Repository): Replace "freqsummary" at a correct
         if (u-a < tol2 || b-u < tol2)    place. It differs from routine "prevalence" which may be called
           d=SIGN(tol1,xm-x);    many times. Probs is memory consuming and must be used with
       }    parcimony.
     } else {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.83  2003/06/10 13:39:11  lievre
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    *** empty log message ***
     fu=(*f)(u);  
     if (fu <= fx) {    Revision 1.82  2003/06/05 15:57:20  brouard
       if (u >= x) a=x; else b=x;    Add log in  imach.c and  fullversion number is now printed.
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  */
         } else {  /*
           if (u < x) a=u; else b=u;     Interpolated Markov Chain
           if (fu <= fw || w == x) {  
             v=w;    Short summary of the programme:
             w=u;    
             fv=fw;    This program computes Healthy Life Expectancies from
             fw=fu;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
           } else if (fu <= fv || v == x || v == w) {    first survey ("cross") where individuals from different ages are
             v=u;    interviewed on their health status or degree of disability (in the
             fv=fu;    case of a health survey which is our main interest) -2- at least a
           }    second wave of interviews ("longitudinal") which measure each change
         }    (if any) in individual health status.  Health expectancies are
   }    computed from the time spent in each health state according to a
   nrerror("Too many iterations in brent");    model. More health states you consider, more time is necessary to reach the
   *xmin=x;    Maximum Likelihood of the parameters involved in the model.  The
   return fx;    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /****************** mnbrak ***********************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    complex model than "constant and age", you should modify the program
             double (*func)(double))    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   double ulim,u,r,q, dum;    convergence.
   double fu;  
      The advantage of this computer programme, compared to a simple
   *fa=(*func)(*ax);    multinomial logistic model, is clear when the delay between waves is not
   *fb=(*func)(*bx);    identical for each individual. Also, if a individual missed an
   if (*fb > *fa) {    intermediate interview, the information is lost, but taken into
     SHFT(dum,*ax,*bx,dum)    account using an interpolation or extrapolation.  
       SHFT(dum,*fb,*fa,dum)  
       }    hPijx is the probability to be observed in state i at age x+h
   *cx=(*bx)+GOLD*(*bx-*ax);    conditional to the observed state i at age x. The delay 'h' can be
   *fc=(*func)(*cx);    split into an exact number (nh*stepm) of unobserved intermediate
   while (*fb > *fc) {    states. This elementary transition (by month, quarter,
     r=(*bx-*ax)*(*fb-*fc);    semester or year) is modelled as a multinomial logistic.  The hPx
     q=(*bx-*cx)*(*fb-*fa);    matrix is simply the matrix product of nh*stepm elementary matrices
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    and the contribution of each individual to the likelihood is simply
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    hPijx.
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Also this programme outputs the covariance matrix of the parameters but also
       fu=(*func)(u);    of the life expectancies. It also computes the period (stable) prevalence. 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    
       fu=(*func)(u);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       if (fu < *fc) {             Institut national d'études démographiques, Paris.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    This software have been partly granted by Euro-REVES, a concerted action
           SHFT(*fb,*fc,fu,(*func)(u))    from the European Union.
           }    It is copyrighted identically to a GNU software product, ie programme and
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    software can be distributed freely for non commercial use. Latest version
       u=ulim;    can be accessed at http://euroreves.ined.fr/imach .
       fu=(*func)(u);  
     } else {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       u=(*cx)+GOLD*(*cx-*bx);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       fu=(*func)(u);    
     }    **********************************************************************/
     SHFT(*ax,*bx,*cx,u)  /*
       SHFT(*fa,*fb,*fc,fu)    main
       }    read parameterfile
 }    read datafile
     concatwav
 /*************** linmin ************************/    freqsummary
     if (mle >= 1)
 int ncom;      mlikeli
 double *pcom,*xicom;    print results files
 double (*nrfunc)(double []);    if mle==1 
         computes hessian
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   double brent(double ax, double bx, double cx,    open gnuplot file
                double (*f)(double), double tol, double *xmin);    open html file
   double f1dim(double x);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
               double *fc, double (*func)(double));                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   int j;      freexexit2 possible for memory heap.
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    h Pij x                         | pij_nom  ficrestpij
       # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   ncom=n;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   pcom=vector(1,n);         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   xicom=vector(1,n);  
   nrfunc=func;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   for (j=1;j<=n;j++) {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     pcom[j]=p[j];    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     xicom[j]=xi[j];     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   ax=0.0;  
   xx=1.0;    forecasting if prevfcast==1 prevforecast call prevalence()
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    health expectancies
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    Variance-covariance of DFLE
 #ifdef DEBUG    prevalence()
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     movingaverage()
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
   for (j=1;j<=n;j++) {    total life expectancies
     xi[j] *= xmin;    Variance of period (stable) prevalence
     p[j] += xi[j];   end
   }  */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define POWELL /* Instead of NLOPT */
 }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <math.h>
             double (*func)(double []))  #include <stdio.h>
 {  #include <stdlib.h>
   void linmin(double p[], double xi[], int n, double *fret,  #include <string.h>
               double (*func)(double []));  
   int i,ibig,j;  #ifdef _WIN32
   double del,t,*pt,*ptt,*xit;  #include <io.h>
   double fp,fptt;  #include <windows.h>
   double *xits;  #include <tchar.h>
   pt=vector(1,n);  #else
   ptt=vector(1,n);  #include <unistd.h>
   xit=vector(1,n);  #endif
   xits=vector(1,n);  
   *fret=(*func)(p);  #include <limits.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #include <sys/types.h>
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  #if defined(__GNUC__)
     ibig=0;  #include <sys/utsname.h> /* Doesn't work on Windows */
     del=0.0;  #endif
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #include <sys/stat.h>
     for (i=1;i<=n;i++)  #include <errno.h>
       printf(" %d %.12f",i, p[i]);  /* extern int errno; */
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  /* #ifdef LINUX */
     fprintf(ficlog,"\n");  /* #include <time.h> */
     for (i=1;i<=n;i++) {  /* #include "timeval.h" */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* #else */
       fptt=(*fret);  /* #include <sys/time.h> */
 #ifdef DEBUG  /* #endif */
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  #include <time.h>
 #endif  
       printf("%d",i);fflush(stdout);  #ifdef GSL
       fprintf(ficlog,"%d",i);fflush(ficlog);  #include <gsl/gsl_errno.h>
       linmin(p,xit,n,fret,func);  #include <gsl/gsl_multimin.h>
       if (fabs(fptt-(*fret)) > del) {  #endif
         del=fabs(fptt-(*fret));  
         ibig=i;  
       }  #ifdef NLOPT
 #ifdef DEBUG  #include <nlopt.h>
       printf("%d %.12e",i,(*fret));  typedef struct {
       fprintf(ficlog,"%d %.12e",i,(*fret));    double (* function)(double [] );
       for (j=1;j<=n;j++) {  } myfunc_data ;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #endif
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  /* #include <libintl.h> */
       }  /* #define _(String) gettext (String) */
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         fprintf(ficlog," p=%.12e",p[j]);  
       }  #define GNUPLOTPROGRAM "gnuplot"
       printf("\n");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       fprintf(ficlog,"\n");  #define FILENAMELENGTH 132
 #endif  
     }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #ifdef DEBUG  
       int k[2],l;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       k[0]=1;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  #define NINTERVMAX 8
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       for (j=1;j<=n;j++) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         printf(" %.12e",p[j]);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         fprintf(ficlog," %.12e",p[j]);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       }  #define MAXN 20000
       printf("\n");  #define YEARM 12. /**< Number of months per year */
       fprintf(ficlog,"\n");  #define AGESUP 130
       for(l=0;l<=1;l++) {  #define AGEBASE 40
         for (j=1;j<=n;j++) {  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #ifdef _WIN32
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define DIRSEPARATOR '\\'
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define CHARSEPARATOR "\\"
         }  #define ODIRSEPARATOR '/'
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #else
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define DIRSEPARATOR '/'
       }  #define CHARSEPARATOR "/"
 #endif  #define ODIRSEPARATOR '\\'
   #endif
   
       free_vector(xit,1,n);  /* $Id$ */
       free_vector(xits,1,n);  /* $State$ */
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  char version[]="Imach version 0.98q1, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       return;  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for (j=1;j<=n;j++) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       ptt[j]=2.0*p[j]-pt[j];  int nvar=0, nforce=0; /* Number of variables, number of forces */
       xit[j]=p[j]-pt[j];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       pt[j]=p[j];  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     fptt=(*func)(ptt);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     if (fptt < fp) {  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       if (t < 0.0) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         linmin(p,xit,n,fret,func);  int cptcov=0; /* Working variable */
         for (j=1;j<=n;j++) {  int npar=NPARMAX;
           xi[j][ibig]=xi[j][n];  int nlstate=2; /* Number of live states */
           xi[j][n]=xit[j];  int ndeath=1; /* Number of dead states */
         }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #ifdef DEBUG  int popbased=0;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int *wav; /* Number of waves for this individuual 0 is possible */
         for(j=1;j<=n;j++){  int maxwav=0; /* Maxim number of waves */
           printf(" %.12e",xit[j]);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           fprintf(ficlog," %.12e",xit[j]);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         printf("\n");                     to the likelihood and the sum of weights (done by funcone)*/
         fprintf(ficlog,"\n");  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  int countcallfunc=0;  /* Count the number of calls to func */
   double jmean=1; /* Mean space between 2 waves */
 /**** Prevalence limit ****************/  double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  /*FILE *fic ; */ /* Used in readdata only */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
      matrix by transitions matrix until convergence is reached */  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
   int i, ii,j,k;  double fretone; /* Only one call to likelihood */
   double min, max, maxmin, maxmax,sumnew=0.;  long ipmx=0; /* Number of contributions */
   double **matprod2();  double sw; /* Sum of weights */
   double **out, cov[NCOVMAX], **pmij();  char filerespow[FILENAMELENGTH];
   double **newm;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double agefin, delaymax=50 ; /* Max number of years to converge */  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (ii=1;ii<=nlstate+ndeath;ii++)  FILE *ficresprobmorprev;
     for (j=1;j<=nlstate+ndeath;j++){  FILE *fichtm, *fichtmcov; /* Html File */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  FILE *ficreseij;
     }  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
    cov[1]=1.;  char fileresstde[FILENAMELENGTH];
    FILE *ficrescveij;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char filerescve[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  FILE  *ficresvij;
     newm=savm;  char fileresv[FILENAMELENGTH];
     /* Covariates have to be included here again */  FILE  *ficresvpl;
      cov[2]=agefin;  char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
       for (k=1; k<=cptcovn;k++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       }  char command[FILENAMELENGTH];
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int  outcmd=0;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char filelog[FILENAMELENGTH]; /* Log file */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char filerest[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  char fileregp[FILENAMELENGTH];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char popfile[FILENAMELENGTH];
   
     savm=oldm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     oldm=newm;  
     maxmax=0.;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     for(j=1;j<=nlstate;j++){  /* struct timezone tzp; */
       min=1.;  /* extern int gettimeofday(); */
       max=0.;  struct tm tml, *gmtime(), *localtime();
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  extern time_t time();
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         max=FMAX(max,prlim[i][j]);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         min=FMIN(min,prlim[i][j]);  struct tm tm;
       }  
       maxmin=max-min;  char strcurr[80], strfor[80];
       maxmax=FMAX(maxmax,maxmin);  
     }  char *endptr;
     if(maxmax < ftolpl){  long lval;
       return prlim;  double dval;
     }  
   }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /*************** transition probabilities ***************/  
   #define NRANSI 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define ITMAX 200 
 {  
   double s1, s2;  #define TOL 2.0e-4 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
     for(i=1; i<= nlstate; i++){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define GOLD 1.618034 
         /*s2 += param[i][j][nc]*cov[nc];*/  #define GLIMIT 100.0 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define TINY 1.0e-20 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  static double maxarg1,maxarg2;
       ps[i][j]=s2;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define rint(a) floor(a+0.5)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define mytinydouble 1.0e-16
       }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
       ps[i][j]=s2;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     }  /* static double dsqrarg; */
   }  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     /*ps[3][2]=1;*/  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(i=1; i<= nlstate; i++){  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      s1=0;  int agegomp= AGEGOMP;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  int imx; 
     for(j=i+1; j<=nlstate+ndeath; j++)  int stepm=1;
       s1+=exp(ps[i][j]);  /* Stepm, step in month: minimum step interpolation*/
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  int estepm;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int m,nb;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  long *num;
   } /* end i */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double **pmmij, ***probs;
     for(jj=1; jj<= nlstate+ndeath; jj++){  double *ageexmed,*agecens;
       ps[ii][jj]=0;  double dateintmean=0;
       ps[ii][ii]=1;  
     }  double *weight;
   }  int **s; /* Status */
   double *agedc;
   double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){                    * covar=matrix(0,NCOVMAX,1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      printf("%lf ",ps[ii][jj]);  double  idx; 
    }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     printf("\n ");  int *Ndum; /** Freq of modality (tricode */
     }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     printf("\n ");printf("%lf ",cov[2]);*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /*  double *lsurv, *lpop, *tpop;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     return ps;  double ftolhess; /**< Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /**************** Product of 2 matrices ******************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    */ 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    char  *ss;                            /* pointer */
   /* in, b, out are matrice of pointers which should have been initialized    int   l1=0, l2=0;                             /* length counters */
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    l1 = strlen(path );                   /* length of path */
   long i, j, k;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=nrl; i<= nrh; i++)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for(k=ncolol; k<=ncoloh; k++)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      strcpy( name, path );               /* we got the fullname name because no directory */
         out[i][k] +=in[i][j]*b[j][k];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return out;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
       if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /************* Higher Matrix Product ***************/  #else
           if (getcwd(dirc, FILENAME_MAX) == NULL) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #endif
 {        return( GLOCK_ERROR_GETCWD );
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      }
      duration (i.e. until      /* got dirc from getcwd*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      printf(" DIRC = %s \n",dirc);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    } else {                              /* strip direcotry from path */
      (typically every 2 years instead of every month which is too big).      ss++;                               /* after this, the filename */
      Model is determined by parameters x and covariates have to be      l2 = strlen( ss );                  /* length of filename */
      included manually here.      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
      */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = '\0';                 /* add zero */
   int i, j, d, h, k;      printf(" DIRC2 = %s \n",dirc);
   double **out, cov[NCOVMAX];    }
   double **newm;    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   /* Hstepm could be zero and should return the unit matrix */    if( dirc[l1-1] != DIRSEPARATOR ){
   for (i=1;i<=nlstate+ndeath;i++)      dirc[l1] =  DIRSEPARATOR;
     for (j=1;j<=nlstate+ndeath;j++){      dirc[l1+1] = 0; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      printf(" DIRC3 = %s \n",dirc);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    }
     }    ss = strrchr( name, '.' );            /* find last / */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (ss >0){
   for(h=1; h <=nhstepm; h++){      ss++;
     for(d=1; d <=hstepm; d++){      strcpy(ext,ss);                     /* save extension */
       newm=savm;      l1= strlen( name);
       /* Covariates have to be included here again */      l2= strlen(ss)+1;
       cov[1]=1.;      strncpy( finame, name, l1-l2);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      finame[l1-l2]= 0;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return( 0 );                          /* we're done */
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   
   /******************************************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void replace_back_to_slash(char *s, char*t)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    int i;
       savm=oldm;    int lg=0;
       oldm=newm;    i=0;
     }    lg=strlen(t);
     for(i=1; i<=nlstate+ndeath; i++)    for(i=0; i<= lg; i++) {
       for(j=1;j<=nlstate+ndeath;j++) {      (s[i] = t[i]);
         po[i][j][h]=newm[i][j];      if (t[i]== '\\') s[i]='/';
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    }
          */  }
       }  
   } /* end h */  char *trimbb(char *out, char *in)
   return po;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 }    char *s;
     s=out;
     while (*in != '\0'){
 /*************** log-likelihood *************/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 double func( double *x)        in++;
 {      }
   int i, ii, j, k, mi, d, kk;      *out++ = *in++;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;    *out='\0';
   double sw; /* Sum of weights */    return s;
   double lli; /* Individual log likelihood */  }
   long ipmx;  
   /*extern weight */  char *cutl(char *blocc, char *alocc, char *in, char occ)
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /*for(i=1;i<imx;i++)       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     printf(" %d\n",s[4][i]);       gives blocc="abcdef2ghi" and alocc="j".
   */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   cov[1]=1.;    */
     char *s, *t;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    t=in;s=in;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    while ((*in != occ) && (*in != '\0')){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      *alocc++ = *in++;
     for(mi=1; mi<= wav[i]-1; mi++){    }
       for (ii=1;ii<=nlstate+ndeath;ii++)    if( *in == occ){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      *(alocc)='\0';
       for(d=0; d<dh[mi][i]; d++){      s=++in;
         newm=savm;    }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
         for (kk=1; kk<=cptcovage;kk++) {    if (s == t) {/* occ not found */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      *(alocc-(in-s))='\0';
         }      in=s;
            }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    while ( *in != '\0'){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      *blocc++ = *in++;
         savm=oldm;    }
         oldm=newm;  
            *blocc='\0';
            return t;
       } /* end mult */  }
        char *cutv(char *blocc, char *alocc, char *in, char occ)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       ipmx +=1;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       sw += weight[i];       gives blocc="abcdef2ghi" and alocc="j".
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     } /* end of wave */    */
   } /* end of individual */    char *s, *t;
     t=in;s=in;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    while (*in != '\0'){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      while( *in == occ){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        *blocc++ = *in++;
   return -l;        s=in;
 }      }
       *blocc++ = *in++;
     }
 /*********** Maximum Likelihood Estimation ***************/    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    else
 {      *(blocc-(in-s)-1)='\0';
   int i,j, iter;    in=s;
   double **xi,*delti;    while ( *in != '\0'){
   double fret;      *alocc++ = *in++;
   xi=matrix(1,npar,1,npar);    }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    *alocc='\0';
       xi[i][j]=(i==j ? 1.0 : 0.0);    return s;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   int nbocc(char *s, char occ)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  {
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int i,j=0;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int lg=20;
     i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /**** Computes Hessian and covariance matrix ***/    if  (s[i] == occ ) j++;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    return j;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /* void cutv(char *u,char *v, char*t, char occ) */
   int *indx;  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   double hessii(double p[], double delta, int theta, double delti[]);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   double hessij(double p[], double delti[], int i, int j);  /*      gives u="abcdef2ghi" and v="j" *\/ */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   int i,lg,j,p=0; */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   i=0; */
   /*   lg=strlen(t); */
   hess=matrix(1,npar,1,npar);  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*   } */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /*   for(j=0; j<p; j++) { */
     printf("%d",i);fflush(stdout);  /*     (u[j] = t[j]); */
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*   } */
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*      u[p]='\0'; */
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /*    for(j=0; j<= lg; j++) { */
   }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
    /*   } */
   for (i=1;i<=npar;i++) {  /* } */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  #ifdef _WIN32
         printf(".%d%d",i,j);fflush(stdout);  char * strsep(char **pp, const char *delim)
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  {
         hess[i][j]=hessij(p,delti,i,j);    char *p, *q;
         hess[j][i]=hess[i][j];               
         /*printf(" %lf ",hess[i][j]);*/    if ((p = *pp) == NULL)
       }      return 0;
     }    if ((q = strpbrk (p, delim)) != NULL)
   }    {
   printf("\n");      *pp = q + 1;
   fprintf(ficlog,"\n");      *q = '\0';
     }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    else
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      *pp = 0;
      return p;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);  
   indx=ivector(1,npar);  /********************** nrerror ********************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void nrerror(char error_text[])
   ludcmp(a,npar,indx,&pd);  {
     fprintf(stderr,"ERREUR ...\n");
   for (j=1;j<=npar;j++) {    fprintf(stderr,"%s\n",error_text);
     for (i=1;i<=npar;i++) x[i]=0;    exit(EXIT_FAILURE);
     x[j]=1;  }
     lubksb(a,npar,indx,x);  /*********************** vector *******************/
     for (i=1;i<=npar;i++){  double *vector(int nl, int nh)
       matcov[i][j]=x[i];  {
     }    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   printf("\n#Hessian matrix#\n");    return v-nl+NR_END;
   fprintf(ficlog,"\n#Hessian matrix#\n");  }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /************************ free vector ******************/
       printf("%.3e ",hess[i][j]);  void free_vector(double*v, int nl, int nh)
       fprintf(ficlog,"%.3e ",hess[i][j]);  {
     }    free((FREE_ARG)(v+nl-NR_END));
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    int *v;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ludcmp(a,npar,indx,&pd);    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /******************free ivector **************************/
     for (i=1;i<=npar;i++) x[i]=0;  void free_ivector(int *v, long nl, long nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /************************lvector *******************************/
       fprintf(ficlog,"%.3e ",y[i][j]);  long *lvector(long nl,long nh)
     }  {
     printf("\n");    long *v;
     fprintf(ficlog,"\n");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   */    return v-nl+NR_END;
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /******************free lvector **************************/
   free_vector(x,1,npar);  void free_lvector(long *v, long nl, long nh)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    free((FREE_ARG)(v+nl-NR_END));
   }
   
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*************** hessian matrix ****************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double hessii( double x[], double delta, int theta, double delti[])  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int i;    int **m; 
   int l=1, lmax=20;    
   double k1,k2;    /* allocate pointers to rows */ 
   double p2[NPARMAX+1];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double res;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m += NR_END; 
   double fx;    m -= nrl; 
   int k=0,kmax=10;    
   double l1;    
     /* allocate rows and set pointers to them */ 
   fx=func(x);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for(l=0 ; l <=lmax; l++){    m[nrl] += NR_END; 
     l1=pow(10,l);    m[nrl] -= ncl; 
     delts=delt;    
     for(k=1 ; k <kmax; k=k+1){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       delt = delta*(l1*k);    
       p2[theta]=x[theta] +delt;    /* return pointer to array of pointers to rows */ 
       k1=func(p2)-fx;    return m; 
       p2[theta]=x[theta]-delt;  } 
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /****************** free_imatrix *************************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  void free_imatrix(m,nrl,nrh,ncl,nch)
              int **m;
 #ifdef DEBUG        long nch,ncl,nrh,nrl; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);       /* free an int matrix allocated by imatrix() */ 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  { 
 #endif    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    free((FREE_ARG) (m+nrl-NR_END)); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  } 
         k=kmax;  
       }  /******************* matrix *******************************/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double **matrix(long nrl, long nrh, long ncl, long nch)
         k=kmax; l=lmax*10.;  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double **m;
         delts=delt;  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   delti[theta]=delts;    m -= nrl;
   return res;  
      m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double hessij( double x[], double delti[], int thetai,int thetaj)    m[nrl] -= ncl;
 {  
   int i;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int l=1, l1, lmax=20;    return m;
   double k1,k2,k3,k4,res,fx;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   double p2[NPARMAX+1];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   int k;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*************************free matrix ************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k1=func(p2)-fx;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     k3=func(p2)-fx;    double ***m;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     k4=func(p2)-fx;    m += NR_END;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m -= nrl;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   return res;  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /************** Inverse of matrix **************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 void ludcmp(double **a, int n, int *indx, double *d)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   int i,imax,j,k;    m[nrl][ncl] -= nll;
   double big,dum,sum,temp;    for (j=ncl+1; j<=nch; j++) 
   double *vv;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   vv=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   *d=1.0;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (i=1;i<=n;i++) {      for (j=ncl+1; j<=nch; j++) 
     big=0.0;        m[i][j]=m[i][j-1]+nlay;
     for (j=1;j<=n;j++)    }
       if ((temp=fabs(a[i][j])) > big) big=temp;    return m; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     vv[i]=1.0/big;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   for (j=1;j<=n;j++) {  }
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /*************************free ma3x ************************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       a[i][j]=sum;  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     big=0.0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (i=j;i<=n;i++) {    free((FREE_ARG)(m+nrl-NR_END));
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /*************** function subdirf ***********/
       a[i][j]=sum;  char *subdirf(char fileres[])
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    /* Caution optionfilefiname is hidden */
         imax=i;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     if (j != imax) {    return tmpout;
       for (k=1;k<=n;k++) {  }
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  /*************** function subdirf2 ***********/
         a[j][k]=dum;  char *subdirf2(char fileres[], char *preop)
       }  {
       *d = -(*d);    
       vv[imax]=vv[j];    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     indx[j]=imax;    strcat(tmpout,"/");
     if (a[j][j] == 0.0) a[j][j]=TINY;    strcat(tmpout,preop);
     if (j != n) {    strcat(tmpout,fileres);
       dum=1.0/(a[j][j]);    return tmpout;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  }
     }  
   }  /*************** function subdirf3 ***********/
   free_vector(vv,1,n);  /* Doesn't work */  char *subdirf3(char fileres[], char *preop, char *preop2)
 ;  {
 }    
     /* Caution optionfilefiname is hidden */
 void lubksb(double **a, int n, int *indx, double b[])    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   int i,ii=0,ip,j;    strcat(tmpout,preop);
   double sum;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
   for (i=1;i<=n;i++) {    return tmpout;
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  char *asc_diff_time(long time_sec, char ascdiff[])
     if (ii)  {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    long sec_left, days, hours, minutes;
     else if (sum) ii=i;    days = (time_sec) / (60*60*24);
     b[i]=sum;    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
   for (i=n;i>=1;i--) {    sec_left = (sec_left) %(60*60);
     sum=b[i];    minutes = (sec_left) /60;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    sec_left = (sec_left) % (60);
     b[i]=sum/a[i][i];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
 }  }
   
 /************ Frequencies ********************/  /***************** f1dim *************************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  extern int ncom; 
 {  /* Some frequencies */  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;   
   int first;  double f1dim(double x) 
   double ***freq; /* Frequencies */  { 
   double *pp;    int j; 
   double pos, k2, dateintsum=0,k2cpt=0;    double f;
   FILE *ficresp;    double *xt; 
   char fileresp[FILENAMELENGTH];   
      xt=vector(1,ncom); 
   pp=vector(1,nlstate);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    f=(*nrfunc)(xt); 
   strcpy(fileresp,"p");    free_vector(xt,1,ncom); 
   strcat(fileresp,fileres);    return f; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  /*****************brent *************************/
     exit(0);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int iter; 
   j1=0;    double a,b,d,etemp;
      double fu=0,fv,fw,fx;
   j=cptcoveff;    double ftemp=0.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   first=1;   
     a=(ax < cx ? ax : cx); 
   for(k1=1; k1<=j;k1++){    b=(ax > cx ? ax : cx); 
     for(i1=1; i1<=ncodemax[k1];i1++){    x=w=v=bx; 
       j1++;    fw=fv=fx=(*f)(x); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    for (iter=1;iter<=ITMAX;iter++) { 
         scanf("%d", i);*/      xm=0.5*(a+b); 
       for (i=-1; i<=nlstate+ndeath; i++)        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           for(m=agemin; m <= agemax+3; m++)      printf(".");fflush(stdout);
             freq[i][jk][m]=0;      fprintf(ficlog,".");fflush(ficlog);
        #ifdef DEBUGBRENT
       dateintsum=0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       k2cpt=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (i=1; i<=imx; i++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         bool=1;  #endif
         if  (cptcovn>0) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
           for (z1=1; z1<=cptcoveff; z1++)        *xmin=x; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        return fx; 
               bool=0;      } 
         }      ftemp=fu;
         if (bool==1) {      if (fabs(e) > tol1) { 
           for(m=firstpass; m<=lastpass; m++){        r=(x-w)*(fx-fv); 
             k2=anint[m][i]+(mint[m][i]/12.);        q=(x-v)*(fx-fw); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        p=(x-v)*q-(x-w)*r; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        q=2.0*(q-r); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if (q > 0.0) p = -p; 
               if (m<lastpass) {        q=fabs(q); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        etemp=e; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        e=d; 
               }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        else { 
                 dateintsum=dateintsum+k2;          d=p/q; 
                 k2cpt++;          u=x+d; 
               }          if (u-a < tol2 || b-u < tol2) 
             }            d=SIGN(tol1,xm-x); 
           }        } 
         }      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
       if  (cptcovn>0) {      if (fu <= fx) { 
         fprintf(ficresp, "\n#********** Variable ");        if (u >= x) a=x; else b=x; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        SHFT(v,w,x,u) 
         fprintf(ficresp, "**********\n#");        SHFT(fv,fw,fx,fu) 
       }      } else { 
       for(i=1; i<=nlstate;i++)        if (u < x) a=u; else b=u; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        if (fu <= fw || w == x) { 
       fprintf(ficresp, "\n");          v=w; 
                w=u; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          fv=fw; 
         if(i==(int)agemax+3){          fw=fu; 
           fprintf(ficlog,"Total");        } else if (fu <= fv || v == x || v == w) { 
         }else{          v=u; 
           if(first==1){          fv=fu; 
             first=0;        } 
             printf("See log file for details...\n");      } 
           }    } 
           fprintf(ficlog,"Age %d", i);    nrerror("Too many iterations in brent"); 
         }    *xmin=x; 
         for(jk=1; jk <=nlstate ; jk++){    return fx; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /****************** mnbrak ***********************/
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             pos += freq[jk][m][i];              double (*func)(double)) 
           if(pp[jk]>=1.e-10){  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
             if(first==1){  the downhill direction (defined by the function as evaluated at the initial points) and returns
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
             }  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);     */
           }else{    double ulim,u,r,q, dum;
             if(first==1)    double fu; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);   
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    *fa=(*func)(*ax); 
           }    *fb=(*func)(*bx); 
         }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
         for(jk=1; jk <=nlstate ; jk++){      SHFT(dum,*fb,*fa,dum) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    } 
             pp[jk] += freq[jk][m][i];    *cx=(*bx)+GOLD*(*bx-*ax); 
         }    *fc=(*func)(*cx); 
   #ifdef DEBUG
         for(jk=1,pos=0; jk <=nlstate ; jk++)    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
           pos += pp[jk];    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         for(jk=1; jk <=nlstate ; jk++){  #endif
           if(pos>=1.e-5){    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
             if(first==1)      r=(*bx-*ax)*(*fb-*fc); 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      q=(*bx-*cx)*(*fb-*fa); 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           }else{        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
             if(first==1)      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fu=(*func)(u); 
           }  #ifdef DEBUG
           if( i <= (int) agemax){        /* f(x)=A(x-u)**2+f(u) */
             if(pos>=1.e-5){        double A, fparabu; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
               probs[i][jk][j1]= pp[jk]/pos;        fparabu= *fa - A*(*ax-u)*(*ax-u);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             else        /* And thus,it can be that fu > *fc even if fparabu < *fc */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
           }          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         }        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
          #endif 
         for(jk=-1; jk <=nlstate+ndeath; jk++)  #ifdef MNBRAKORIGINAL
           for(m=-1; m <=nlstate+ndeath; m++)  #else
             if(freq[jk][m][i] !=0 ) {        if (fu > *fc) {
             if(first==1)  #ifdef DEBUG
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("mnbrak4  fu > fc \n");
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog, "mnbrak4 fu > fc\n");
             }  #endif
         if(i <= (int) agemax)          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
           fprintf(ficresp,"\n");          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
         if(first==1)          dum=u; /* Shifting c and u */
           printf("Others in log...\n");          u = *cx;
         fprintf(ficlog,"\n");          *cx = dum;
       }          dum = fu;
     }          fu = *fc;
   }          *fc =dum;
   dateintmean=dateintsum/k2cpt;        } else { /* end */
    #ifdef DEBUG
   fclose(ficresp);        printf("mnbrak3  fu < fc \n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fprintf(ficlog, "mnbrak3 fu < fc\n");
   free_vector(pp,1,nlstate);  #endif
            dum=u; /* Shifting c and u */
   /* End of Freq */          u = *cx;
 }          *cx = dum;
           dum = fu;
 /************ Prevalence ********************/          fu = *fc;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          *fc =dum;
 {  /* Some frequencies */        }
    #endif
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   double ***freq; /* Frequencies */  #ifdef DEBUG
   double *pp;        printf("mnbrak2  u after c but before ulim\n");
   double pos, k2;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
   pp=vector(1,nlstate);        fu=(*func)(u); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (fu < *fc) { 
    #ifdef DEBUG
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   j1=0;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
    #endif
   j=cptcoveff;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          SHFT(*fb,*fc,fu,(*func)(u)) 
          } 
   for(k1=1; k1<=j;k1++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
     for(i1=1; i1<=ncodemax[k1];i1++){  #ifdef DEBUG
       j1++;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
              fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)          u=ulim; 
           for(m=agemin; m <= agemax+3; m++)        fu=(*func)(u); 
             freq[i][jk][m]=0;      } else { /* u could be left to b (if r > q parabola has a maximum) */
        #ifdef DEBUG
       for (i=1; i<=imx; i++) {        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         bool=1;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         if  (cptcovn>0) {  #endif
           for (z1=1; z1<=cptcoveff; z1++)        u=(*cx)+GOLD*(*cx-*bx); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fu=(*func)(u); 
               bool=0;      } /* end tests */
         }      SHFT(*ax,*bx,*cx,u) 
         if (bool==1) {      SHFT(*fa,*fb,*fc,fu) 
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #endif
               if(agev[m][i]==1) agev[m][i]=agemax+2;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
               if (m<lastpass) {  } 
                 if (calagedate>0)  
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*************** linmin ************************/
                 else  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
               }  the value of func at the returned location p . This is actually all accomplished by calling the
             }  routines mnbrak and brent .*/
           }  int ncom; 
         }  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){   
         for(jk=1; jk <=nlstate ; jk++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  { 
             pp[jk] += freq[jk][m][i];    double brent(double ax, double bx, double cx, 
         }                 double (*f)(double), double tol, double *xmin); 
         for(jk=1; jk <=nlstate ; jk++){    double f1dim(double x); 
           for(m=-1, pos=0; m <=0 ; m++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
             pos += freq[jk][m][i];                double *fc, double (*func)(double)); 
         }    int j; 
            double xx,xmin,bx,ax; 
         for(jk=1; jk <=nlstate ; jk++){    double fx,fb,fa;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];    ncom=n; 
         }    pcom=vector(1,n); 
            xicom=vector(1,n); 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    nrfunc=func; 
            for (j=1;j<=n;j++) { 
         for(jk=1; jk <=nlstate ; jk++){          pcom[j]=p[j]; 
           if( i <= (int) agemax){      xicom[j]=xi[j]; 
             if(pos>=1.e-5){    } 
               probs[i][jk][j1]= pp[jk]/pos;    ax=0.0; 
             }    xx=1.0; 
           }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         }/* end jk */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
       }/* end i */  #ifdef DEBUG
     } /* end i1 */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end k1 */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
      for (j=1;j<=n;j++) { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      xi[j] *= xmin; 
   free_vector(pp,1,nlstate);      p[j] += xi[j]; 
      } 
 }  /* End of Freq */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 /************* Waves Concatenation ***************/  } 
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /*************** powell ************************/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*
      Death is a valid wave (if date is known).  Minimization of a function func of n variables. Input consists of an initial starting point
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
      and mw[mi+1][i]. dh depends on stepm.  such that failure to decrease by more than this amount on one iteration signals doneness. On
      */  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   function value at p , and iter is the number of iterations taken. The routine linmin is used.
   int i, mi, m;   */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      double sum=0., jmean=0.;*/              double (*func)(double [])) 
   int first;  { 
   int j, k=0,jk, ju, jl;    void linmin(double p[], double xi[], int n, double *fret, 
   double sum=0.;                double (*func)(double [])); 
   first=0;    int i,ibig,j; 
   jmin=1e+5;    double del,t,*pt,*ptt,*xit;
   jmax=-1;    double directest;
   jmean=0.;    double fp,fptt;
   for(i=1; i<=imx; i++){    double *xits;
     mi=0;    int niterf, itmp;
     m=firstpass;  
     while(s[m][i] <= nlstate){    pt=vector(1,n); 
       if(s[m][i]>=1)    ptt=vector(1,n); 
         mw[++mi][i]=m;    xit=vector(1,n); 
       if(m >=lastpass)    xits=vector(1,n); 
         break;    *fret=(*func)(p); 
       else    for (j=1;j<=n;j++) pt[j]=p[j]; 
         m++;      rcurr_time = time(NULL);  
     }/* end while */    for (*iter=1;;++(*iter)) { 
     if (s[m][i] > nlstate){      fp=(*fret); 
       mi++;     /* Death is another wave */      ibig=0; 
       /* if(mi==0)  never been interviewed correctly before death */      del=0.0; 
          /* Only death is a correct wave */      rlast_time=rcurr_time;
       mw[mi][i]=m;      /* (void) gettimeofday(&curr_time,&tzp); */
     }      rcurr_time = time(NULL);  
       curr_time = *localtime(&rcurr_time);
     wav[i]=mi;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     if(mi==0){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       if(first==0){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);     for (i=1;i<=n;i++) {
         first=1;        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
       if(first==1){        fprintf(ficrespow," %.12lf", p[i]);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      }
       }      printf("\n");
     } /* end mi==0 */      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   for(i=1; i<=imx; i++){        tml = *localtime(&rcurr_time);
     for(mi=1; mi<wav[i];mi++){        strcpy(strcurr,asctime(&tml));
       if (stepm <=0)        rforecast_time=rcurr_time; 
         dh[mi][i]=1;        itmp = strlen(strcurr);
       else{        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         if (s[mw[mi+1][i]][i] > nlstate) {          strcurr[itmp-1]='\0';
           if (agedc[i] < 2*AGESUP) {        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           if(j==0) j=1;  /* Survives at least one month after exam */        for(niterf=10;niterf<=30;niterf+=10){
           k=k+1;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           if (j >= jmax) jmax=j;          forecast_time = *localtime(&rforecast_time);
           if (j <= jmin) jmin=j;          strcpy(strfor,asctime(&forecast_time));
           sum=sum+j;          itmp = strlen(strfor);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          if(strfor[itmp-1]=='\n')
           }          strfor[itmp-1]='\0';
         }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         else{          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        }
           k=k+1;      }
           if (j >= jmax) jmax=j;      for (i=1;i<=n;i++) { 
           else if (j <= jmin)jmin=j;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        fptt=(*fret); 
           sum=sum+j;  #ifdef DEBUG
         }            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         jk= j/stepm;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         jl= j -jk*stepm;  #endif
         ju= j -(jk+1)*stepm;        printf("%d",i);fflush(stdout);
         if(jl <= -ju)        fprintf(ficlog,"%d",i);fflush(ficlog);
           dh[mi][i]=jk;        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
         else        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
           dh[mi][i]=jk+1;                                         because that direction will be replaced unless the gain del is small
         if(dh[mi][i]==0)                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
           dh[mi][i]=1; /* At least one step */                                        Unless the n directions are conjugate some gain in the determinant may be obtained
       }                                        with the new direction.
     }                                        */
   }          del=fabs(fptt-(*fret)); 
   jmean=sum/k;          ibig=i; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #ifdef DEBUG
  }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 /*********** Tricode ****************************/        for (j=1;j<=n;j++) {
 void tricode(int *Tvar, int **nbcode, int imx)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 {          printf(" x(%d)=%.12e",j,xit[j]);
   int Ndum[20],ij=1, k, j, i;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int cptcode=0;        }
   cptcoveff=0;        for(j=1;j<=n;j++) {
            printf(" p(%d)=%.12e",j,p[j]);
   for (k=0; k<19; k++) Ndum[k]=0;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   for (k=1; k<=7; k++) ncodemax[k]=0;        }
         printf("\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++) {  #endif
       ij=(int)(covar[Tvar[j]][i]);      } /* end i */
       Ndum[ij]++;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  #ifdef DEBUG
       if (ij > cptcode) cptcode=ij;        int k[2],l;
     }        k[0]=1;
         k[1]=-1;
     for (i=0; i<=cptcode; i++) {        printf("Max: %.12e",(*func)(p));
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     ij=1;          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
         }
     for (i=1; i<=ncodemax[j]; i++) {        printf("\n");
       for (k=0; k<=19; k++) {        fprintf(ficlog,"\n");
         if (Ndum[k] != 0) {        for(l=0;l<=1;l++) {
           nbcode[Tvar[j]][ij]=k;          for (j=1;j<=n;j++) {
                      ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           ij++;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if (ij > ncodemax[j]) break;          }
       }            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          }
   #endif
  for (k=0; k<19; k++) Ndum[k]=0;  
   
  for (i=1; i<=ncovmodel-2; i++) {        free_vector(xit,1,n); 
    ij=Tvar[i];        free_vector(xits,1,n); 
    Ndum[ij]++;        free_vector(ptt,1,n); 
  }        free_vector(pt,1,n); 
         return; 
  ij=1;      } 
  for (i=1; i<=10; i++) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
    if((Ndum[i]!=0) && (i<=ncovcol)){      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
      Tvaraff[ij]=i;        ptt[j]=2.0*p[j]-pt[j]; 
      ij++;        xit[j]=p[j]-pt[j]; 
    }        pt[j]=p[j]; 
  }      } 
        fptt=(*func)(ptt); /* f_3 */
  cptcoveff=ij-1;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 }        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         /* From x1 (P0) distance of x2 is at h and x3 is 2h */
 /*********** Health Expectancies ****************/        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
 {        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   /* Health expectancies */  #ifdef NRCORIGINAL
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   double age, agelim, hf;  #else
   double ***p3mat,***varhe;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   double **dnewm,**doldm;        t= t- del*SQR(fp-fptt);
   double *xp;  #endif
   double **gp, **gm;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   double ***gradg, ***trgradg;  #ifdef DEBUG
   int theta;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   xp=vector(1,npar);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   dnewm=matrix(1,nlstate*2,1,npar);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   doldm=matrix(1,nlstate*2,1,nlstate*2);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
          printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   fprintf(ficreseij,"# Age");  #endif
   for(i=1; i<=nlstate;i++)  #ifdef POWELLORIGINAL
     for(j=1; j<=nlstate;j++)        if (t < 0.0) { /* Then we use it for new direction */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  #else
   fprintf(ficreseij,"\n");        if (directest*t < 0.0) { /* Contradiction between both tests */
         printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   if(estepm < stepm){        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   }        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   else  hstepm=estepm;        } 
   /* We compute the life expectancy from trapezoids spaced every estepm months        if (directest < 0.0) { /* Then we use it for new direction */
    * This is mainly to measure the difference between two models: for example  #endif
    * if stepm=24 months pijx are given only every 2 years and by summing them          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
    * we are calculating an estimate of the Life Expectancy assuming a linear          for (j=1;j<=n;j++) { 
    * progression inbetween and thus overestimating or underestimating according            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
    * to the curvature of the survival function. If, for the same date, we            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    * hypothesis. A more precise result, taking into account a more precise          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    * curvature will be obtained if estepm is as small as stepm. */  
   #ifdef DEBUG
   /* For example we decided to compute the life expectancy with the smallest unit */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      nhstepm is the number of hstepm from age to agelim          for(j=1;j<=n;j++){
      nstepm is the number of stepm from age to agelin.            printf(" %.12e",xit[j]);
      Look at hpijx to understand the reason of that which relies in memory size            fprintf(ficlog," %.12e",xit[j]);
      and note for a fixed period like estepm months */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          printf("\n");
      survival function given by stepm (the optimization length). Unfortunately it          fprintf(ficlog,"\n");
      means that if the survival funtion is printed only each two years of age and if  #endif
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        } /* end of t negative */
      results. So we changed our mind and took the option of the best precision.      } /* end if (fptt < fp)  */
   */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  } 
   
   agelim=AGESUP;  /**** Prevalence limit (stable or period prevalence)  ****************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     /* if (stepm >= YEARM) hstepm=1;*/       matrix by transitions matrix until convergence is reached */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, ii,j,k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double min, max, maxmin, maxmax,sumnew=0.;
     gp=matrix(0,nhstepm,1,nlstate*2);    /* double **matprod2(); */ /* test */
     gm=matrix(0,nhstepm,1,nlstate*2);    double **out, cov[NCOVMAX+1], **pmij();
     double **newm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double agefin, delaymax=50 ; /* Max number of years to converge */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     
     /* Computing Variances of health expectancies */    cov[1]=1.;
     
      for(theta=1; theta <=npar; theta++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(i=1; i<=npar; i++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      newm=savm;
       }      /* Covariates have to be included here again */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        cov[2]=agefin;
        
       cptj=0;      for (k=1; k<=cptcovn;k++) {
       for(j=1; j<= nlstate; j++){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for(i=1; i<=nlstate; i++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           cptj=cptj+1;      }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
           }      for (k=1; k<=cptcovprod;k++) /* Useless */
         }        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }      
            /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
            /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for(i=1; i<=npar; i++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
            out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       cptj=0;      
       for(j=1; j<= nlstate; j++){      savm=oldm;
         for(i=1;i<=nlstate;i++){      oldm=newm;
           cptj=cptj+1;      maxmax=0.;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for(j=1;j<=nlstate;j++){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        min=1.;
           }        max=0.;
         }        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
       for(j=1; j<= nlstate*2; j++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(h=0; h<=nhstepm-1; h++){          prlim[i][j]= newm[i][j]/(1-sumnew);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         }          max=FMAX(max,prlim[i][j]);
      }          min=FMIN(min,prlim[i][j]);
            }
 /* End theta */        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      } /* j loop */
       if(maxmax < ftolpl){
      for(h=0; h<=nhstepm-1; h++)        return prlim;
       for(j=1; j<=nlstate*2;j++)      }
         for(theta=1; theta <=npar; theta++)    } /* age loop */
           trgradg[h][j][theta]=gradg[h][theta][j];    return prlim; /* should not reach here */
        }
   
      for(i=1;i<=nlstate*2;i++)  /*************** transition probabilities ***************/ 
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
      printf("%d|",(int)age);fflush(stdout);    /* According to parameters values stored in x and the covariate's values stored in cov,
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       computes the probability to be observed in state j being in state i by appying the
      for(h=0;h<=nhstepm-1;h++){       model to the ncovmodel covariates (including constant and age).
       for(k=0;k<=nhstepm-1;k++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       ncth covariate in the global vector x is given by the formula:
         for(i=1;i<=nlstate*2;i++)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           for(j=1;j<=nlstate*2;j++)       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     }       Outputs ps[i][j] the probability to be observed in j being in j according to
     /* Computing expectancies */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++)    double s1, lnpijopii;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /*double t34;*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    int i,j, nc, ii, jj;
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += param[i][j][nc]*cov[nc];*/
     fprintf(ficreseij,"%3.0f",age );            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     cptj=0;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         cptj++;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }        for(j=i+1; j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"\n");          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     free_matrix(gp,0,nhstepm,1,nlstate*2);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }      }
   printf("\n");      
   fprintf(ficlog,"\n");      for(i=1; i<= nlstate; i++){
         s1=0;
   free_vector(xp,1,npar);        for(j=1; j<i; j++){
   free_matrix(dnewm,1,nlstate*2,1,npar);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        }
 }        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 /************ Variance ******************/          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        }
 {        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   /* Variance of health expectancies */        ps[i][i]=1./(s1+1.);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /* Computing other pijs */
   /* double **newm;*/        for(j=1; j<i; j++)
   double **dnewm,**doldm;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double **dnewmp,**doldmp;        for(j=i+1; j<=nlstate+ndeath; j++)
   int i, j, nhstepm, hstepm, h, nstepm ;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int k, cptcode;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double *xp;      } /* end i */
   double **gp, **gm;  /* for var eij */      
   double ***gradg, ***trgradg; /*for var eij */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double **gradgp, **trgradgp; /* for var p point j */        for(jj=1; jj<= nlstate+ndeath; jj++){
   double *gpp, *gmp; /* for var p point j */          ps[ii][jj]=0;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          ps[ii][ii]=1;
   double ***p3mat;        }
   double age,agelim, hf;      }
   int theta;      
   char digit[4];      
   char digitp[16];      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   char fileresprobmorprev[FILENAMELENGTH];      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /*   } */
   if(popbased==1)      /*   printf("\n "); */
     strcpy(digitp,"-populbased-");      /* } */
   else      /* printf("\n ");printf("%lf ",cov[2]);*/
     strcpy(digitp,"-stablbased-");      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   strcpy(fileresprobmorprev,"prmorprev");        goto end;*/
   sprintf(digit,"%-d",ij);      return ps;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  /**************** Product of 2 matrices ******************/
   strcat(fileresprobmorprev,fileres);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* in, b, out are matrice of pointers which should have been initialized 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       before: only the contents of out is modified. The function returns
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");       a pointer to pointers identical to out */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    int i, j, k;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for(i=nrl; i<= nrh; i++)
     fprintf(ficresprobmorprev," p.%-d SE",j);      for(k=ncolol; k<=ncoloh; k++){
     for(i=1; i<=nlstate;i++)        out[i][k]=0.;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        for(j=ncl; j<=nch; j++)
   }            out[i][k] +=in[i][j]*b[j][k];
   fprintf(ficresprobmorprev,"\n");      }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    return out;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);  
   }  /************* Higher Matrix Product ***************/
   else{  
     fprintf(ficgp,"\n# Routine varevsij");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    /* Computes the transition matrix starting at age 'age' over 
     printf("Problem with html file: %s\n", optionfilehtm);       'nhstepm*hstepm*stepm' months (i.e. until
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     exit(0);       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   else{       (typically every 2 years instead of every month which is too big 
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       included manually here. 
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");       */
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    int i, j, d, h, k;
     for(j=1; j<=nlstate;j++)    double **out, cov[NCOVMAX+1];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double **newm;
   fprintf(ficresvij,"\n");  
     /* Hstepm could be zero and should return the unit matrix */
   xp=vector(1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   dnewm=matrix(1,nlstate,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    for(h=1; h <=nhstepm; h++){
   gpp=vector(nlstate+1,nlstate+ndeath);      for(d=1; d <=hstepm; d++){
   gmp=vector(nlstate+1,nlstate+ndeath);        newm=savm;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        /* Covariates have to be included here again */
          cov[1]=1.;
   if(estepm < stepm){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (k=1; k<=cptcovn;k++) 
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   else  hstepm=estepm;          for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   /* For example we decided to compute the life expectancy with the smallest unit */          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
      nhstepm is the number of hstepm from age to agelim        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
      nstepm is the number of stepm from age to agelin.          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
      survival function given by stepm (the optimization length). Unfortunately it        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      means that if the survival funtion is printed only each two years of age and if        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                     pmij(pmmij,cov,ncovmodel,x,nlstate));
      results. So we changed our mind and took the option of the best precision.        savm=oldm;
   */        oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      }
   agelim = AGESUP;      for(i=1; i<=nlstate+ndeath; i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(j=1;j<=nlstate+ndeath;j++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          po[i][j][h]=newm[i][j];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      /*printf("h=%d ",h);*/
     gp=matrix(0,nhstepm,1,nlstate);    } /* end h */
     gm=matrix(0,nhstepm,1,nlstate);  /*     printf("\n H=%d \n",h); */
     return po;
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  #ifdef NLOPT
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       }    double fret;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double *xt;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int j;
     myfunc_data *d2 = (myfunc_data *) pd;
       if (popbased==1) {  /* xt = (p1-1); */
         for(i=1; i<=nlstate;i++)    xt=vector(1,n); 
           prlim[i][i]=probs[(int)age][i][ij];    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       }  
      fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       for(j=1; j<= nlstate; j++){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         for(h=0; h<=nhstepm; h++){    printf("Function = %.12lf ",fret);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n");
         }   free_vector(xt,1,n);
       }    return fret;
       /* This for computing forces of mortality (h=1)as a weighted average */  }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  #endif
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  /*************** log-likelihood *************/
       }      double func( double *x)
       /* end force of mortality */  {
     int i, ii, j, k, mi, d, kk;
       for(i=1; i<=npar; i++) /* Computes gradient */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double **out;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double sw; /* Sum of weights */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double lli; /* Individual log likelihood */
      int s1, s2;
       if (popbased==1) {    double bbh, survp;
         for(i=1; i<=nlstate;i++)    long ipmx;
           prlim[i][i]=probs[(int)age][i][ij];    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(j=1; j<= nlstate; j++){    /*for(i=1;i<imx;i++) 
         for(h=0; h<=nhstepm; h++){      printf(" %d\n",s[4][i]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    ++countcallfunc;
       }  
       /* This for computing force of mortality (h=1)as a weighted average */    cov[1]=1.;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  
         for(i=1; i<= nlstate; i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }        if(mle==1){
       /* end force of mortality */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
       for(j=1; j<= nlstate; j++) /* vareij */           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         for(h=0; h<=nhstepm; h++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           to be observed in j being in i according to the model.
         }         */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          cov[2+k]=covar[Tvar[k]][i];
       }        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     } /* End theta */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(h=0; h<=nhstepm; h++) /* veij */            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(theta=1; theta <=npar; theta++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];            }
           for(d=0; d<dh[mi][i]; d++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            newm=savm;
       for(theta=1; theta <=npar; theta++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         trgradgp[j][theta]=gradgp[theta][j];            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1;j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         vareij[i][j][(int)age] =0.;            savm=oldm;
             oldm=newm;
     for(h=0;h<=nhstepm;h++){          } /* end mult */
       for(k=0;k<=nhstepm;k++){        
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(i=1;i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(j=1;j<=nlstate;j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
     /* pptj */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);           * -stepm/2 to stepm/2 .
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);           * For stepm=1 the results are the same as for previous versions of Imach.
     for(j=nlstate+1;j<=nlstate+ndeath;j++)           * For stepm > 1 the results are less biased than in previous versions. 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)           */
         varppt[j][i]=doldmp[j][i];          s1=s[mw[mi][i]][i];
     /* end ppptj */          s2=s[mw[mi+1][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            bbh=(double)bh[mi][i]/(double)stepm; 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
     if (popbased==1) {           */
       for(i=1; i<=nlstate;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         prlim[i][i]=probs[(int)age][i][ij];          if( s2 > nlstate){ 
     }            /* i.e. if s2 is a death state and if the date of death is known 
                   then the contribution to the likelihood is the probability to 
     /* This for computing force of mortality (h=1)as a weighted average */               die between last step unit time and current  step unit time, 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){               which is also equal to probability to die before dh 
       for(i=1; i<= nlstate; i++)               minus probability to die before dh-stepm . 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];               In version up to 0.92 likelihood was computed
     }              as if date of death was unknown. Death was treated as any other
     /* end force of mortality */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          to consider that at each interview the state was recorded
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          (healthy, disable or death) and IMaCh was corrected; but when we
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          introduced the exact date of death then we should have modified
       for(i=1; i<=nlstate;i++){          the contribution of an exact death to the likelihood. This new
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
     fprintf(ficresprobmorprev,"\n");          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
     fprintf(ficresvij,"%.0f ",age );          Jackson for correcting this bug.  Former versions increased
     for(i=1; i<=nlstate;i++)          mortality artificially. The bad side is that we add another loop
       for(j=1; j<=nlstate;j++){          which slows down the processing. The difference can be up to 10%
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          lower mortality.
       }            */
     fprintf(ficresvij,"\n");          /* If, at the beginning of the maximization mostly, the
     free_matrix(gp,0,nhstepm,1,nlstate);             cumulative probability or probability to be dead is
     free_matrix(gm,0,nhstepm,1,nlstate);             constant (ie = 1) over time d, the difference is equal to
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);             0.  out[s1][3] = savm[s1][3]: probability, being at state
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);             s1 at precedent wave, to be dead a month before current
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             wave is equal to probability, being at state s1 at
   } /* End age */             precedent wave, to be dead at mont of the current
   free_vector(gpp,nlstate+1,nlstate+ndeath);             wave. Then the observed probability (that this person died)
   free_vector(gmp,nlstate+1,nlstate+ndeath);             is null according to current estimated parameter. In fact,
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);             it should be very low but not zero otherwise the log go to
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/             infinity.
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  /* #ifdef INFINITYORIGINAL */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  /* #else */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  /*          lli=log(mytinydouble); */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  /*        else */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  /* #endif */
 */              lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  
           } else if  (s2==-2) {
   free_vector(xp,1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
   free_matrix(doldm,1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(dnewm,1,nlstate,1,npar);            /*survp += out[s1][j]; */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            lli= log(survp);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          
   fclose(ficresprobmorprev);          else if  (s2==-4) { 
   fclose(ficgp);            for (j=3,survp=0. ; j<=nlstate; j++)  
   fclose(fichtm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
 }          } 
   
 /************ Variance of prevlim ******************/          else if  (s2==-5) { 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for (j=1,survp=0. ; j<=2; j++)  
 {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* Variance of prevalence limit */            lli= log(survp); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          } 
   double **newm;          
   double **dnewm,**doldm;          else{
   int i, j, nhstepm, hstepm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int k, cptcode;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double *xp;          } 
   double *gp, *gm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double **gradg, **trgradg;          /*if(lli ==000.0)*/
   double age,agelim;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int theta;          ipmx +=1;
              sw += weight[i];
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"# Age");          /* if (lli < log(mytinydouble)){ */
   for(i=1; i<=nlstate;i++)          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
       fprintf(ficresvpl," %1d-%1d",i,i);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   fprintf(ficresvpl,"\n");          /* } */
         } /* end of wave */
   xp=vector(1,npar);      } /* end of individual */
   dnewm=matrix(1,nlstate,1,npar);    }  else if(mle==2){
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=1*YEARM; /* Every year of age */        for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for (ii=1;ii<=nlstate+ndeath;ii++)
   agelim = AGESUP;            for (j=1;j<=nlstate+ndeath;j++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(d=0; d<=dh[mi][i]; d++){
     gradg=matrix(1,npar,1,nlstate);            newm=savm;
     gp=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gm=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
       for(i=1;i<=nlstate;i++)          } /* end mult */
         gp[i] = prlim[i][i];        
              s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++) /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(i=1;i<=nlstate;i++)          ipmx +=1;
         gm[i] = prlim[i][i];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1;i<=nlstate;i++)        } /* end of wave */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      } /* end of individual */
     } /* End theta */    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     trgradg =matrix(1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(theta=1; theta <=npar; theta++)            for (j=1;j<=nlstate+ndeath;j++){
         trgradg[j][theta]=gradg[theta][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] =0.;          for(d=0; d<dh[mi][i]; d++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            newm=savm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1;i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     fprintf(ficresvpl,"%.0f ",age );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            savm=oldm;
     fprintf(ficresvpl,"\n");            oldm=newm;
     free_vector(gp,1,nlstate);          } /* end mult */
     free_vector(gm,1,nlstate);        
     free_matrix(gradg,1,npar,1,nlstate);          s1=s[mw[mi][i]][i];
     free_matrix(trgradg,1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   } /* End age */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(xp,1,npar);          ipmx +=1;
   free_matrix(doldm,1,nlstate,1,npar);          sw += weight[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /************ Variance of one-step probabilities  ******************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j=0,  i1, k1, l1, t, tj;          for (ii=1;ii<=nlstate+ndeath;ii++)
   int k2, l2, j1,  z1;            for (j=1;j<=nlstate+ndeath;j++){
   int k=0,l, cptcode;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int first=1, first1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   double *xp;            newm=savm;
   double *gp, *gm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gradg, **trgradg;            for (kk=1; kk<=cptcovage;kk++) {
   double **mu;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age,agelim, cov[NCOVMAX];            }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          
   int theta;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char fileresprob[FILENAMELENGTH];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresprobcov[FILENAMELENGTH];            savm=oldm;
   char fileresprobcor[FILENAMELENGTH];            oldm=newm;
           } /* end mult */
   double ***varpij;        
           s1=s[mw[mi][i]][i];
   strcpy(fileresprob,"prob");          s2=s[mw[mi+1][i]][i];
   strcat(fileresprob,fileres);          if( s2 > nlstate){ 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            lli=log(out[s1][s2] - savm[s1][s2]);
     printf("Problem with resultfile: %s\n", fileresprob);          }else{
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
   strcpy(fileresprobcov,"probcov");          ipmx +=1;
   strcat(fileresprobcov,fileres);          sw += weight[i];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with resultfile: %s\n", fileresprobcov);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        } /* end of wave */
   }      } /* end of individual */
   strcpy(fileresprobcor,"probcor");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   strcat(fileresprobcor,fileres);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf("Problem with resultfile: %s\n", fileresprobcor);        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for(d=0; d<dh[mi][i]; d++){
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            newm=savm;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresprob,"# Age");            }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          
   fprintf(ficresprobcov,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresprobcov,"# Age");            savm=oldm;
             oldm=newm;
           } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=(nlstate+ndeath);j++){          s1=s[mw[mi][i]][i];
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          s2=s[mw[mi+1][i]][i];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          ipmx +=1;
     }            sw += weight[i];
   fprintf(ficresprob,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresprobcov,"\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   fprintf(ficresprobcor,"\n");        } /* end of wave */
   xp=vector(1,npar);      } /* end of individual */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    } /* End of if */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   first=1;    return -l;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  /*************** log-likelihood *************/
     exit(0);  double funcone( double *x)
   }  {
   else{    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficgp,"\n# Routine varprob");    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double **out;
     printf("Problem with html file: %s\n", optionfilehtm);    double lli; /* Individual log likelihood */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double llt;
     exit(0);    int s1, s2;
   }    double bbh, survp;
   else{    /*extern weight */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    /* We are differentiating ll according to initial status */
     fprintf(fichtm,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      printf(" %d\n",s[4][i]);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    cov[1]=1.;
   
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cov[1]=1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   tj=cptcoveff;      for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        for (ii=1;ii<=nlstate+ndeath;ii++)
   j1=0;          for (j=1;j<=nlstate+ndeath;j++){
   for(t=1; t<=tj;t++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[t];i1++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;          }
              for(d=0; d<dh[mi][i]; d++){
       if  (cptcovn>0) {          newm=savm;
         fprintf(ficresprob, "\n#********** Variable ");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresprob, "**********\n#");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficresprobcov, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         fprintf(ficresprobcov, "**********\n#");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficgp, "\n#********** Variable ");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         fprintf(ficgp, "**********\n#");          savm=oldm;
                  oldm=newm;
                } /* end mult */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        s1=s[mw[mi][i]][i];
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficresprobcor, "\n#********** Variable ");            /* bias is positive if real duration
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficgp, "**********\n#");             */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                lli=log(out[s1][s2] - savm[s1][s2]);
       for (age=bage; age<=fage; age ++){        } else if  (s2==-2) {
         cov[2]=age;          for (j=1,survp=0. ; j<=nlstate; j++) 
         for (k=1; k<=cptcovn;k++) {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          lli= log(survp);
         }        }else if (mle==1){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for (k=1; k<=cptcovprod;k++)        } else if(mle==2){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                } else if(mle==3){  /* exponential inter-extrapolation */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         gp=vector(1,(nlstate)*(nlstate+ndeath));          lli=log(out[s1][s2]); /* Original formula */
         gm=vector(1,(nlstate)*(nlstate+ndeath));        } else{  /* mle=0 back to 1 */
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(theta=1; theta <=npar; theta++){          /*lli=log(out[s1][s2]); */ /* Original formula */
           for(i=1; i<=npar; i++)        } /* End of if */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        ipmx +=1;
                  sw += weight[i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           k=0;        if(globpr){
           for(i=1; i<= (nlstate); i++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
             for(j=1; j<=(nlstate+ndeath);j++){   %11.6f %11.6f %11.6f ", \
               k=k+1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               gp[k]=pmmij[i][j];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           }            llt +=ll[k]*gipmx/gsw;
                      fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresilk," %10.6f\n", -llt);
            }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      } /* end of wave */
           k=0;    } /* end of individual */
           for(i=1; i<=(nlstate); i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             for(j=1; j<=(nlstate+ndeath);j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               k=k+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               gm[k]=pmmij[i][j];    if(globpr==0){ /* First time we count the contributions and weights */
             }      gipmx=ipmx;
           }      gsw=sw;
          }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    return -l;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    }
         }  
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  /*************** function likelione ***********/
           for(theta=1; theta <=npar; theta++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
             trgradg[j][theta]=gradg[theta][j];  {
            /* This routine should help understanding what is done with 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       the selection of individuals/waves and
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       to check the exact contribution to the likelihood.
               Plotting could be done.
         pmij(pmmij,cov,ncovmodel,x,nlstate);     */
            int k;
         k=0;  
         for(i=1; i<=(nlstate); i++){    if(*globpri !=0){ /* Just counts and sums, no printings */
           for(j=1; j<=(nlstate+ndeath);j++){      strcpy(fileresilk,"ilk"); 
             k=k+1;      strcat(fileresilk,fileres);
             mu[k][(int) age]=pmmij[i][j];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           }        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             varpij[i][j][(int)age] = doldm[i][j];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         /*printf("\n%d ",(int)age);      for(k=1; k<=nlstate; k++) 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/  
     *fretone=(*funcone)(p);
         fprintf(ficresprob,"\n%d ",(int)age);    if(*globpri !=0){
         fprintf(ficresprobcov,"\n%d ",(int)age);      fclose(ficresilk);
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    } 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    return;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }  /*********** Maximum Likelihood Estimation ***************/
         i=0;  
         for (k=1; k<=(nlstate);k++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           for (l=1; l<=(nlstate+ndeath);l++){  {
             i=i++;    int i,j, iter=0;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    double **xi;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    double fret;
             for (j=1; j<=i;j++){    double fretone; /* Only one call to likelihood */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    /*  char filerespow[FILENAMELENGTH];*/
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }  #ifdef NLOPT
           }    int creturn;
         }/* end of loop for state */    nlopt_opt opt;
       } /* end of loop for age */    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     double *lb;
       /* Confidence intervalle of pij  */    double minf; /* the minimum objective value, upon return */
       /*    double * p1; /* Shifted parameters from 0 instead of 1 */
       fprintf(ficgp,"\nset noparametric;unset label");    myfunc_data dinst, *d = &dinst;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  #endif
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    xi=matrix(1,npar,1,npar);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    for (i=1;i<=npar;i++)
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      for (j=1;j<=npar;j++)
       */        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    strcpy(filerespow,"pow"); 
       first1=1;    strcat(filerespow,fileres);
       for (k2=1; k2<=(nlstate);k2++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for (l2=1; l2<=(nlstate+ndeath);l2++){      printf("Problem with resultfile: %s\n", filerespow);
           if(l2==k2) continue;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           j=(k2-1)*(nlstate+ndeath)+l2;    }
           for (k1=1; k1<=(nlstate);k1++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             for (l1=1; l1<=(nlstate+ndeath);l1++){    for (i=1;i<=nlstate;i++)
               if(l1==k1) continue;      for(j=1;j<=nlstate+ndeath;j++)
               i=(k1-1)*(nlstate+ndeath)+l1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
               if(i<=j) continue;    fprintf(ficrespow,"\n");
               for (age=bage; age<=fage; age ++){  #ifdef POWELL
                 if ((int)age %5==0){    powell(p,xi,npar,ftol,&iter,&fret,func);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  #endif
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  #ifdef NLOPT
                   mu1=mu[i][(int) age]/stepm*YEARM ;  #ifdef NEWUOA
                   mu2=mu[j][(int) age]/stepm*YEARM;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   c12=cv12/sqrt(v1*v2);  #else
                   /* Computing eigen value of matrix of covariance */    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  #endif
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    lb=vector(0,npar-1);
                   /* Eigen vectors */    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    nlopt_set_lower_bounds(opt, lb);
                   /*v21=sqrt(1.-v11*v11); *//* error */    nlopt_set_initial_step1(opt, 0.1);
                   v21=(lc1-v1)/cv12*v11;    
                   v12=-v21;    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   v22=v11;    d->function = func;
                   tnalp=v21/v11;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   if(first1==1){    nlopt_set_min_objective(opt, myfunc, d);
                     first1=0;    nlopt_set_xtol_rel(opt, ftol);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   }      printf("nlopt failed! %d\n",creturn); 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    }
                   /*printf(fignu*/    else {
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   if(first==1){      iter=1; /* not equal */
                     first=0;    }
                     fprintf(ficgp,"\nset parametric;unset label");    nlopt_destroy(opt);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  #endif
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_matrix(xi,1,npar,1,npar);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    fclose(ficrespow);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  /**** Computes Hessian and covariance matrix ***/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   }else{  {
                     first=0;    double  **a,**y,*x,pd;
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    double **hess;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    int i, j;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    int *indx;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                   }/* if first */    void lubksb(double **a, int npar, int *indx, double b[]) ;
                 } /* age mod 5 */    void ludcmp(double **a, int npar, int *indx, double *d) ;
               } /* end loop age */    double gompertz(double p[]);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    hess=matrix(1,npar,1,npar);
               first=1;  
             } /*l12 */    printf("\nCalculation of the hessian matrix. Wait...\n");
           } /* k12 */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         } /*l1 */    for (i=1;i<=npar;i++){
       }/* k1 */      printf("%d",i);fflush(stdout);
     } /* loop covariates */      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      /*  printf(" %f ",p[i]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
   }    
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++) {
   fclose(ficresprob);      for (j=1;j<=npar;j++)  {
   fclose(ficresprobcov);        if (j>i) { 
   fclose(ficresprobcor);          printf(".%d%d",i,j);fflush(stdout);
   fclose(ficgp);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fclose(fichtm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
 }          
           hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 /******************* Printing html file ***********/        }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      }
                   int lastpass, int stepm, int weightopt, char model[],\    }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    printf("\n");
                   int popforecast, int estepm ,\    fprintf(ficlog,"\n");
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int jj1, k1, i1, cpt;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /*char optionfilehtm[FILENAMELENGTH];*/    
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    a=matrix(1,npar,1,npar);
     printf("Problem with %s \n",optionfilehtm), exit(0);    y=matrix(1,npar,1,npar);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    x=vector(1,npar);
   }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    ludcmp(a,npar,indx,&pd);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    for (j=1;j<=npar;j++) {
  - Life expectancies by age and initial health status (estepm=%2d months):      for (i=1;i<=npar;i++) x[i]=0;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      x[j]=1;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        matcov[i][j]=x[i];
       }
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     printf("\n#Hessian matrix#\n");
  jj1=0;    fprintf(ficlog,"\n#Hessian matrix#\n");
  for(k1=1; k1<=m;k1++){    for (i=1;i<=npar;i++) { 
    for(i1=1; i1<=ncodemax[k1];i1++){      for (j=1;j<=npar;j++) { 
      jj1++;        printf("%.3e ",hess[i][j]);
      if (cptcovn > 0) {        fprintf(ficlog,"%.3e ",hess[i][j]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      }
        for (cpt=1; cpt<=cptcoveff;cpt++)      printf("\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      fprintf(ficlog,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
      }  
      /* Pij */    /* Recompute Inverse */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    for (i=1;i<=npar;i++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      /* Quasi-incidences */    ludcmp(a,npar,indx,&pd);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*  printf("\n#Hessian matrix recomputed#\n");
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    for (j=1;j<=npar;j++) {
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      for (i=1;i<=npar;i++) x[i]=0;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      x[j]=1;
        }      lubksb(a,npar,indx,x);
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1;i<=npar;i++){ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        y[i][j]=x[i];
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        printf("%.3e ",y[i][j]);
      }        fprintf(ficlog,"%.3e ",y[i][j]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      }
 health expectancies in states (1) and (2): e%s%d.png<br>      printf("\n");
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      fprintf(ficlog,"\n");
    } /* end i1 */    }
  }/* End k1 */    */
  fprintf(fichtm,"</ul>");  
     free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    free_vector(x,1,npar);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    free_ivector(indx,1,npar);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    free_matrix(hess,1,npar,1,npar);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  if(popforecast==1) fprintf(fichtm,"\n  {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    int i;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int l=1, lmax=20;
         <br>",fileres,fileres,fileres,fileres);    double k1,k2;
  else    double p2[MAXPARM+1]; /* identical to x */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double res;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
  m=cptcoveff;    int k=0,kmax=10;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double l1;
   
  jj1=0;    fx=func(x);
  for(k1=1; k1<=m;k1++){    for (i=1;i<=npar;i++) p2[i]=x[i];
    for(i1=1; i1<=ncodemax[k1];i1++){    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
      jj1++;      l1=pow(10,l);
      if (cptcovn > 0) {      delts=delt;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(k=1 ; k <kmax; k=k+1){
        for (cpt=1; cpt<=cptcoveff;cpt++)        delt = delta*(l1*k);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        p2[theta]=x[theta] +delt;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
      }        p2[theta]=x[theta]-delt;
      for(cpt=1; cpt<=nlstate;cpt++) {        k2=func(p2)-fx;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        /*res= (k1-2.0*fx+k2)/delt/delt; */
 interval) in state (%d): v%s%d%d.png <br>        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          
      }  #ifdef DEBUGHESS
    } /* end i1 */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  }/* End k1 */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  fprintf(fichtm,"</ul>");  #endif
 fclose(fichtm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
 /******************* Gnuplot file **************/        }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
   int ng;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          delts=delt;
     printf("Problem with file %s",optionfilegnuplot);        }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      }
   }    }
     delti[theta]=delts;
 #ifdef windows    return res; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif  }
 m=pow(2,cptcoveff);  
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
  /* 1eme*/  {
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int i;
    for (k1=1; k1<= m ; k1 ++) {    int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 #ifdef windows    double p2[MAXPARM+1];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int k;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    fx=func(x);
 #ifdef unix    for (k=1; k<=2; k++) {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (i=1;i<=npar;i++) p2[i]=x[i];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      p2[thetai]=x[thetai]+delti[thetai]/k;
 #endif      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetai]=x[thetai]+delti[thetai]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    
     for (i=1; i<= nlstate ; i ++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      k3=func(p2)-fx;
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      p2[thetai]=x[thetai]-delti[thetai]/k;
      for (i=1; i<= nlstate ; i ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      k4=func(p2)-fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }    #ifdef DEBUG
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #ifdef unix      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  #endif
 #endif    }
    }    return res;
   }  }
   /*2 eme*/  
   /************** Inverse of matrix **************/
   for (k1=1; k1<= m ; k1 ++) {  void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    int i,imax,j,k; 
        double big,dum,sum,temp; 
     for (i=1; i<= nlstate+1 ; i ++) {    double *vv; 
       k=2*i;   
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    vv=vector(1,n); 
       for (j=1; j<= nlstate+1 ; j ++) {    *d=1.0; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=n;i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      big=0.0; 
 }        for (j=1;j<=n;j++) 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      vv[i]=1.0/big; 
       for (j=1; j<= nlstate+1 ; j ++) {    } 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=n;j++) { 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<j;i++) { 
 }          sum=a[i][j]; 
       fprintf(ficgp,"\" t\"\" w l 0,");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        a[i][j]=sum; 
       for (j=1; j<= nlstate+1 ; j ++) {      } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      big=0.0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=j;i<=n;i++) { 
 }          sum=a[i][j]; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for (k=1;k<j;k++) 
       else fprintf(ficgp,"\" t\"\" w l 0,");          sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
   }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   /*3eme*/          imax=i; 
         } 
   for (k1=1; k1<= m ; k1 ++) {      } 
     for (cpt=1; cpt<= nlstate ; cpt ++) {      if (j != imax) { 
       k=2+nlstate*(2*cpt-2);        for (k=1;k<=n;k++) { 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          dum=a[imax][k]; 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          a[imax][k]=a[j][k]; 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          a[j][k]=dum; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        } 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        *d = -(*d); 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        vv[imax]=vv[j]; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      } 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 */      if (j != n) { 
       for (i=1; i< nlstate ; i ++) {        dum=1.0/(a[j][j]); 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
       }    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
    } 
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {  void lubksb(double **a, int n, int *indx, double b[]) 
     for (cpt=1; cpt<nlstate ; cpt ++) {  { 
       k=3;    int i,ii=0,ip,j; 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double sum; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);   
     for (i=1;i<=n;i++) { 
       for (i=1; i< nlstate ; i ++)      ip=indx[i]; 
         fprintf(ficgp,"+$%d",k+i+1);      sum=b[ip]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      b[ip]=b[i]; 
            if (ii) 
       l=3+(nlstate+ndeath)*cpt;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      else if (sum) ii=i; 
       for (i=1; i< nlstate ; i ++) {      b[i]=sum; 
         l=3+(nlstate+ndeath)*cpt;    } 
         fprintf(ficgp,"+$%d",l+i+1);    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
   }      } 
    } 
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){  void pstamp(FILE *fichier)
     for(k=1; k <=(nlstate+ndeath); k++){  {
       if (k != i) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         for(j=1; j <=ncovmodel; j++){  }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;  /************ Frequencies ********************/
           fprintf(ficgp,"\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
       }    
     }    int i, m, jk, j1, bool, z1,j;
    }    int first;
     double ***freq; /* Frequencies */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double *pp, **prop;
      for(jk=1; jk <=m; jk++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    char fileresp[FILENAMELENGTH];
        if (ng==2)    
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    pp=vector(1,nlstate);
        else    prop=matrix(1,nlstate,iagemin,iagemax+3);
          fprintf(ficgp,"\nset title \"Probability\"\n");    strcpy(fileresp,"p");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    strcat(fileresp,fileres);
        i=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
        for(k2=1; k2<=nlstate; k2++) {      printf("Problem with prevalence resultfile: %s\n", fileresp);
          k3=i;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          for(k=1; k<=(nlstate+ndeath); k++) {      exit(0);
            if (k != k2){    }
              if(ng==2)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    j1=0;
              else    
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    j=cptcoveff;
              ij=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
              for(j=3; j <=ncovmodel; j++) {  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    first=1;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
                }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
                else    /*    j1++; */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
              }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
              fprintf(ficgp,")/(1");          scanf("%d", i);*/
                      for (i=-5; i<=nlstate+ndeath; i++)  
              for(k1=1; k1 <=nlstate; k1++){            for (jk=-5; jk<=nlstate+ndeath; jk++)  
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(m=iagemin; m <= iagemax+3; m++)
                ij=1;              freq[i][jk][m]=0;
                for(j=3; j <=ncovmodel; j++){        
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for (i=1; i<=nlstate; i++)  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(m=iagemin; m <= iagemax+3; m++)
                    ij++;            prop[i][m]=0;
                  }        
                  else        dateintsum=0;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        k2cpt=0;
                }        for (i=1; i<=imx; i++) {
                fprintf(ficgp,")");          bool=1;
              }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            for (z1=1; z1<=cptcoveff; z1++)       
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
              i=i+ncovmodel;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
            }                bool=0;
          } /* end k */                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
        } /* end k2 */                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
      } /* end jk */                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
    } /* end ng */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    fclose(ficgp);              } 
 }  /* end gnuplot */          }
    
           if (bool==1){
 /*************** Moving average **************/            for(m=firstpass; m<=lastpass; m++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   int i, cpt, cptcod;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for (i=1; i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                if (m<lastpass) {
           mobaverage[(int)agedeb][i][cptcod]=0.;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                }
       for (i=1; i<=nlstate;i++){                
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for (cpt=0;cpt<=4;cpt++){                  dateintsum=dateintsum+k2;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                  k2cpt++;
           }                }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                /*}*/
         }            }
       }          }
     }        } /* end i */
             
 }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
         if  (cptcovn>0) {
 /************** Forecasting ******************/          fprintf(ficresp, "\n#********** Variable "); 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficlog, "\n#********** Variable "); 
   int *popage;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficlog, "**********\n#");
   double *popeffectif,*popcount;        }
   double ***p3mat;        for(i=1; i<=nlstate;i++) 
   char fileresf[FILENAMELENGTH];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
  agelim=AGESUP;        
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficlog,"Total");
            }else{
              if(first==1){
   strcpy(fileresf,"f");              first=0;
   strcat(fileresf,fileres);              printf("See log file for details...\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);            fprintf(ficlog,"Age %d", i);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);              pp[jk] += freq[jk][m][i]; 
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   if (mobilav==1) {              pos += freq[jk][m][i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(pp[jk]>=1.e-10){
     movingaverage(agedeb, fage, ageminpar, mobaverage);              if(first==1){
   }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   stepsize=(int) (stepm+YEARM-1)/YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   if (stepm<=12) stepsize=1;            }else{
                if(first==1)
   agelim=AGESUP;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   hstepm=1;            }
   hstepm=hstepm/stepm;          }
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;          for(jk=1; jk <=nlstate ; jk++){
   yp2=modf((yp1*12),&yp);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   mprojmean=yp;              pp[jk] += freq[jk][m][i];
   yp1=modf((yp2*30.5),&yp);          }       
   jprojmean=yp;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if(jprojmean==0) jprojmean=1;            pos += pp[jk];
   if(mprojmean==0) jprojmean=1;            posprop += prop[jk][i];
            }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          for(jk=1; jk <=nlstate ; jk++){
              if(pos>=1.e-5){
   for(cptcov=1;cptcov<=i2;cptcov++){              if(first==1)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresf,"\n#******");            }else{
       for(j=1;j<=cptcoveff;j++) {              if(first==1)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresf,"******\n");            }
       fprintf(ficresf,"# StartingAge FinalAge");            if( i <= iagemax){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              if(pos>=1.e-5){
                      fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                      /*probs[i][jk][j1]= pp[jk]/pos;*/
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         fprintf(ficresf,"\n");              }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;          
                    for(jk=-1; jk <=nlstate+ndeath; jk++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1; m <=nlstate+ndeath; m++)
           oldm=oldms;savm=savms;              if(freq[jk][m][i] !=0 ) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if(first==1)
                        printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           for (h=0; h<=nhstepm; h++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             if (h==(int) (calagedate+YEARM*cpt)) {              }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          if(i <= iagemax)
             }            fprintf(ficresp,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {          if(first==1)
               kk1=0.;kk2=0;            printf("Others in log...\n");
               for(i=1; i<=nlstate;i++) {                        fprintf(ficlog,"\n");
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        /*}*/
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    dateintmean=dateintsum/k2cpt; 
                 }   
                    fclose(ficresp);
               }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
               if (h==(int)(calagedate+12*cpt)){    free_vector(pp,1,nlstate);
                 fprintf(ficresf," %.3f", kk1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                            /* End of Freq */
               }  }
             }  
           }  /************ Prevalence ********************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
   }       We still use firstpass and lastpass as another selection.
            */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     int i, m, jk, j1, bool, z1,j;
   fclose(ficresf);  
 }    double **prop;
 /************** Forecasting ******************/    double posprop; 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double  y2; /* in fractional years */
      int iagemin, iagemax;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    int first; /** to stop verbosity which is redirected to log file */
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    iagemin= (int) agemin;
   double *popeffectif,*popcount;    iagemax= (int) agemax;
   double ***p3mat,***tabpop,***tabpopprev;    /*pp=vector(1,nlstate);*/
   char filerespop[FILENAMELENGTH];    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    j1=0;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;    /*j=cptcoveff;*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    first=1;
      for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
        /*for(i1=1; i1<=ncodemax[k1];i1++){
   strcpy(filerespop,"pop");        j1++;*/
   strcat(filerespop,fileres);        
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for (i=1; i<=nlstate; i++)  
     printf("Problem with forecast resultfile: %s\n", filerespop);          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            prop[i][m]=0.0;
   }       
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          bool=1;
           if  (cptcovn>0) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if (mobilav==1) {                bool=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if (stepm<=12) stepsize=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   agelim=AGESUP;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
   hstepm=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   hstepm=hstepm/stepm;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   if (popforecast==1) {                } 
     if((ficpop=fopen(popfile,"r"))==NULL) {              }
       printf("Problem with population file : %s\n",popfile);exit(0);            } /* end selection of waves */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          }
     }        }
     popage=ivector(0,AGESUP);        for(i=iagemin; i <= iagemax+3; i++){  
     popeffectif=vector(0,AGESUP);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     popcount=vector(0,AGESUP);            posprop += prop[jk][i]; 
              } 
     i=1;            
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     imx=i;              if(posprop>=1.e-5){ 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                probs[i][jk][j1]= prop[jk][i]/posprop;
   }              } else{
                 if(first==1){
   for(cptcov=1;cptcov<=i2;cptcov++){                  first=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       k=k+1;                }
       fprintf(ficrespop,"\n#******");              }
       for(j=1;j<=cptcoveff;j++) {            } 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }/* end jk */ 
       }        }/* end i */ 
       fprintf(ficrespop,"******\n");      /*} *//* end i1 */
       fprintf(ficrespop,"# Age");    } /* end j1 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          /*free_vector(pp,1,nlstate);*/
       for (cpt=0; cpt<=0;cpt++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }  /* End of prevalence */
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /************* Waves Concatenation ***************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           oldm=oldms;savm=savms;       Death is a valid wave (if date is known).
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           for (h=0; h<=nhstepm; h++){       and mw[mi+1][i]. dh depends on stepm.
             if (h==(int) (calagedate+YEARM*cpt)) {       */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    int i, mi, m;
             for(j=1; j<=nlstate+ndeath;j++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               kk1=0.;kk2=0;       double sum=0., jmean=0.;*/
               for(i=1; i<=nlstate;i++) {                  int first;
                 if (mobilav==1)    int j, k=0,jk, ju, jl;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double sum=0.;
                 else {    first=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    jmin=100000;
                 }    jmax=-1;
               }    jmean=0.;
               if (h==(int)(calagedate+12*cpt)){    for(i=1; i<=imx; i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      mi=0;
                   /*fprintf(ficrespop," %.3f", kk1);      m=firstpass;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      while(s[m][i] <= nlstate){
               }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             }          mw[++mi][i]=m;
             for(i=1; i<=nlstate;i++){        if(m >=lastpass)
               kk1=0.;          break;
                 for(j=1; j<=nlstate;j++){        else
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          m++;
                 }      }/* end while */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      if (s[m][i] > nlstate){
             }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)           /* Only death is a correct wave */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        mw[mi][i]=m;
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      wav[i]=mi;
       }      if(mi==0){
          nbwarn++;
   /******/        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          first=1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if(first==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           nhstepm = nhstepm/hstepm;        }
                } /* end mi==0 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End individuals */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(i=1; i<=imx; i++){
           for (h=0; h<=nhstepm; h++){      for(mi=1; mi<wav[i];mi++){
             if (h==(int) (calagedate+YEARM*cpt)) {        if (stepm <=0)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          dh[mi][i]=1;
             }        else{
             for(j=1; j<=nlstate+ndeath;j++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               kk1=0.;kk2=0;            if (agedc[i] < 2*AGESUP) {
               for(i=1; i<=nlstate;i++) {                            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  if(j==0) j=1;  /* Survives at least one month after exam */
               }              else if(j<0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    }              }
   }              k=k+1;
                if (j >= jmax){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmax=j;
                 ijmax=i;
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);              if (j <= jmin){
     free_vector(popeffectif,0,AGESUP);                jmin=j;
     free_vector(popcount,0,AGESUP);                ijmin=i;
   }              }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              sum=sum+j;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fclose(ficrespop);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            }
           }
 /***********************************************/          else{
 /**************** Main Program *****************/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /***********************************************/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 int main(int argc, char *argv[])            k=k+1;
 {            if (j >= jmax) {
               jmax=j;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              ijmax=i;
   double agedeb, agefin,hf;            }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            else if (j <= jmin){
               jmin=j;
   double fret;              ijmin=i;
   double **xi,tmp,delta;            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double dum; /* Dummy variable */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***p3mat;            if(j<0){
   int *indx;              nberr++;
   char line[MAXLINE], linepar[MAXLINE];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int firstobs=1, lastobs=10;            }
   int sdeb, sfin; /* Status at beginning and end */            sum=sum+j;
   int c,  h , cpt,l;          }
   int ju,jl, mi;          jk= j/stepm;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          jl= j -jk*stepm;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          ju= j -(jk+1)*stepm;
   int mobilav=0,popforecast=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int hstepm, nhstepm;            if(jl==0){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              dh[mi][i]=jk;
               bh[mi][i]=0;
   double bage, fage, age, agelim, agebase;            }else{ /* We want a negative bias in order to only have interpolation ie
   double ftolpl=FTOL;                    * to avoid the price of an extra matrix product in likelihood */
   double **prlim;              dh[mi][i]=jk+1;
   double *severity;              bh[mi][i]=ju;
   double ***param; /* Matrix of parameters */            }
   double  *p;          }else{
   double **matcov; /* Matrix of covariance */            if(jl <= -ju){
   double ***delti3; /* Scale */              dh[mi][i]=jk;
   double *delti; /* Scale */              bh[mi][i]=jl;       /* bias is positive if real duration
   double ***eij, ***vareij;                                   * is higher than the multiple of stepm and negative otherwise.
   double **varpl; /* Variances of prevalence limits by age */                                   */
   double *epj, vepp;            }
   double kk1, kk2;            else{
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
             }
   char *alph[]={"a","a","b","c","d","e"}, str[4];            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   char z[1]="c", occ;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 #include <sys/time.h>            }
 #include <time.h>          } /* end if mle */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
        } /* end wave */
   /* long total_usecs;    }
   struct timeval start_time, end_time;    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   getcwd(pathcd, size);   }
   
   printf("\n%s",version);  /*********** Tricode ****************************/
   if(argc <=1){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     printf("\nEnter the parameter file name: ");  {
     scanf("%s",pathtot);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   else{     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     strcpy(pathtot,argv[1]);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   }     * nbcode[Tvar[j]][1]= 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   /* cutv(path,optionfile,pathtot,'\\');*/    int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int modmincovj=0; /* Modality min of covariates j */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);  
   replace(pathc,path);    cptcoveff=0; 
    
 /*-------- arguments in the command line --------*/    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   /* Log file */  
   strcat(filelog, optionfilefiname);    /* Loop on covariates without age and products */
   strcat(filelog,".log");    /* */    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
   if((ficlog=fopen(filelog,"w"))==NULL)    {      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
     printf("Problem with logfile %s\n",filelog);                                 modality of this covariate Vj*/ 
     goto end;        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   }                                      * If product of Vn*Vm, still boolean *:
   fprintf(ficlog,"Log filename:%s\n",filelog);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   fprintf(ficlog,"\n%s",version);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   fprintf(ficlog,"\nEnter the parameter file name: ");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                                        modality of the nth covariate of individual i. */
   fflush(ficlog);        if (ij > modmaxcovj)
           modmaxcovj=ij; 
   /* */        else if (ij < modmincovj) 
   strcpy(fileres,"r");          modmincovj=ij; 
   strcat(fileres, optionfilefiname);        if ((ij < -1) && (ij > NCOVMAX)){
   strcat(fileres,".txt");    /* Other files have txt extension */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
   /*---------arguments file --------*/        }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     printf("Problem with optionfile %s\n",optionfile);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        /* getting the maximum value of the modality of the covariate
     goto end;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   }           female is 1, then modmaxcovj=1.*/
       }
   strcpy(filereso,"o");      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   strcat(filereso,fileres);      cptcode=modmaxcovj;
   if((ficparo=fopen(filereso,"w"))==NULL) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     printf("Problem with Output resultfile: %s\n", filereso);     /*for (i=0; i<=cptcode; i++) {*/
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     goto end;        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     ungetc(c,ficpar);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     fgets(line, MAXLINE, ficpar);      } /* Ndum[-1] number of undefined modalities */
     puts(line);  
     fputs(line,ficparo);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
   ungetc(c,ficpar);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);         defining two dummy variables: variables V1_1 and V1_2.
 while((c=getc(ficpar))=='#' && c!= EOF){         nbcode[Tvar[j]][ij]=k;
     ungetc(c,ficpar);         nbcode[Tvar[j]][1]=0;
     fgets(line, MAXLINE, ficpar);         nbcode[Tvar[j]][2]=1;
     puts(line);         nbcode[Tvar[j]][3]=2;
     fputs(line,ficparo);      */
   }      ij=1; /* ij is similar to i but can jumps over null modalities */
   ungetc(c,ficpar);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
          for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
              /*recode from 0 */
   covar=matrix(0,NCOVMAX,1,n);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   cptcovn=0;            nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   ncovmodel=2+cptcovn;            ij++;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          }
            if (ij > ncodemax[j]) break; 
   /* Read guess parameters */        }  /* end of loop on */
   /* Reads comments: lines beginning with '#' */      } /* end of loop on modality */ 
   while((c=getc(ficpar))=='#' && c!= EOF){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     puts(line);    
     fputs(line,ficparo);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   ungetc(c,ficpar);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   } 
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){   ij=1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       fprintf(ficparo,"%1d%1d",i1,j1);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       if(mle==1)     if((Ndum[i]!=0) && (i<=ncovcol)){
         printf("%1d%1d",i,j);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       fprintf(ficlog,"%1d%1d",i,j);       Tvaraff[ij]=i; /*For printing (unclear) */
       for(k=1; k<=ncovmodel;k++){       ij++;
         fscanf(ficpar," %lf",&param[i][j][k]);     }else
         if(mle==1){         Tvaraff[ij]=0;
           printf(" %lf",param[i][j][k]);   }
           fprintf(ficlog," %lf",param[i][j][k]);   ij--;
         }   cptcoveff=ij; /*Number of total covariates*/
         else  
           fprintf(ficlog," %lf",param[i][j][k]);  }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  
       fscanf(ficpar,"\n");  /*********** Health Expectancies ****************/
       if(mle==1)  
         printf("\n");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  {
     }    /* Health expectancies, no variances */
      int i, j, nhstepm, hstepm, h, nstepm;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   p=param[1][1];    double ***p3mat;
      double eip;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficreseij);
     ungetc(c,ficpar);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficreseij,"# Age");
     puts(line);    for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
   ungetc(c,ficpar);      }
       fprintf(ficreseij," e%1d. ",i);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficreseij,"\n");
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if(estepm < stepm){
       printf("%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       for(k=1; k<=ncovmodel;k++){    else  hstepm=estepm;   
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /* We compute the life expectancy from trapezoids spaced every estepm months
         printf(" %le",delti3[i][j][k]);     * This is mainly to measure the difference between two models: for example
         fprintf(ficparo," %le",delti3[i][j][k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
       }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fscanf(ficpar,"\n");     * progression in between and thus overestimating or underestimating according
       printf("\n");     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficparo,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   delti=delti3[1][1];     * curvature will be obtained if estepm is as small as stepm. */
    
   /* Reads comments: lines beginning with '#' */    /* For example we decided to compute the life expectancy with the smallest unit */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
     fgets(line, MAXLINE, ficpar);       nstepm is the number of stepm from age to agelin. 
     puts(line);       Look at hpijx to understand the reason of that which relies in memory size
     fputs(line,ficparo);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   matcov=matrix(1,npar,1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   for(i=1; i <=npar; i++){       results. So we changed our mind and took the option of the best precision.
     fscanf(ficpar,"%s",&str);    */
     if(mle==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       printf("%s",str);  
     fprintf(ficlog,"%s",str);    agelim=AGESUP;
     fprintf(ficparo,"%s",str);    /* If stepm=6 months */
     for(j=1; j <=i; j++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fscanf(ficpar," %le",&matcov[i][j]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       if(mle==1){      
         printf(" %.5le",matcov[i][j]);  /* nhstepm age range expressed in number of stepm */
         fprintf(ficlog," %.5le",matcov[i][j]);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       else    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficlog," %.5le",matcov[i][j]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficparo," %.5le",matcov[i][j]);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }  
     fscanf(ficpar,"\n");    for (age=bage; age<=fage; age ++){ 
     if(mle==1)      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       printf("\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficlog,"\n");      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficparo,"\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
   for(i=1; i <=npar; i++)      /* If stepm=6 months */
     for(j=i+1;j<=npar;j++)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       matcov[i][j]=matcov[j][i];         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
          
   if(mle==1)      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     printf("\n");      
   fprintf(ficlog,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
     /*-------- Rewriting paramater file ----------*/      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      strcpy(rfileres,"r");    /* "Rparameterfile */      
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /* Computing expectancies */
      strcat(rfileres,".");    /* */      for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<=nlstate;j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficres,"#%s\n",version);  
              }
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficreseij,"%3.0f",age );
       printf("Problem with datafile: %s\n", datafile);goto end;      for(i=1; i<=nlstate;i++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        eip=0;
     }        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
     n= lastobs;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);        fprintf(ficreseij,"%9.4f", eip );
     num=ivector(1,n);      }
     moisnais=vector(1,n);      fprintf(ficreseij,"\n");
     annais=vector(1,n);      
     moisdc=vector(1,n);    }
     andc=vector(1,n);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     agedc=vector(1,n);    printf("\n");
     cod=ivector(1,n);    fprintf(ficlog,"\n");
     weight=vector(1,n);    
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      {
     tab=ivector(1,NCOVMAX);    /* Covariances of health expectancies eij and of total life expectancies according
     ncodemax=ivector(1,8);     to initial status i, ei. .
     */
     i=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     while (fgets(line, MAXLINE, fic) != NULL)    {    int nhstepma, nstepma; /* Decreasing with age */
       if ((i >= firstobs) && (i <=lastobs)) {    double age, agelim, hf;
            double ***p3matp, ***p3matm, ***varhe;
         for (j=maxwav;j>=1;j--){    double **dnewm,**doldm;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double *xp, *xm;
           strcpy(line,stra);    double **gp, **gm;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double ***gradg, ***trgradg;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int theta;
         }  
            double eip, vip;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    xm=vector(1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for (j=ncovcol;j>=1;j--){    pstamp(ficresstdeij);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         }    fprintf(ficresstdeij,"# Age");
         num[i]=atol(stra);    for(i=1; i<=nlstate;i++){
              for(j=1; j<=nlstate;j++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      fprintf(ficresstdeij," e%1d. ",i);
     }
         i=i+1;    fprintf(ficresstdeij,"\n");
       }  
     }    pstamp(ficrescveij);
     /* printf("ii=%d", ij);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        scanf("%d",i);*/    fprintf(ficrescveij,"# Age");
   imx=i-1; /* Number of individuals */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   /* for (i=1; i<=imx; i++){        cptj= (j-1)*nlstate+i;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i2=1; i2<=nlstate;i2++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for(j2=1; j2<=nlstate;j2++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            cptj2= (j2-1)*nlstate+i2;
     }*/            if(cptj2 <= cptj)
    /*  for (i=1; i<=imx; i++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      if (s[4][i]==9)  s[4][i]=-1;          }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
      fprintf(ficrescveij,"\n");
      
   /* Calculation of the number of parameter from char model*/    if(estepm < stepm){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      printf ("Problem %d lower than %d\n",estepm, stepm);
   Tprod=ivector(1,15);    }
   Tvaraff=ivector(1,15);    else  hstepm=estepm;   
   Tvard=imatrix(1,15,1,2);    /* We compute the life expectancy from trapezoids spaced every estepm months
   Tage=ivector(1,15);           * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
   if (strlen(model) >1){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     j=0, j1=0, k1=1, k2=1;     * progression in between and thus overestimating or underestimating according
     j=nbocc(model,'+');     * to the curvature of the survival function. If, for the same date, we 
     j1=nbocc(model,'*');     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     cptcovn=j+1;     * to compare the new estimate of Life expectancy with the same linear 
     cptcovprod=j1;     * hypothesis. A more precise result, taking into account a more precise
         * curvature will be obtained if estepm is as small as stepm. */
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("Error. Non available option model=%s ",model);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficlog,"Error. Non available option model=%s ",model);       nhstepm is the number of hstepm from age to agelim 
       goto end;       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like estepm months */
     for(i=(j+1); i>=1;i--){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */       survival function given by stepm (the optimization length). Unfortunately it
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */       means that if the survival funtion is printed only each two years of age and if
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       /*scanf("%d",i);*/       results. So we changed our mind and took the option of the best precision.
       if (strchr(strb,'*')) {  /* Model includes a product */    */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;    /* If stepm=6 months */
           cutv(strb,stre,strd,'V');    /* nhstepm age range expressed in number of stepm */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    agelim=AGESUP;
           cptcovage++;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             Tage[cptcovage]=i;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             /*printf("stre=%s ", stre);*/    /* if (stepm >= YEARM) hstepm=1;*/
         }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    
           cptcovprod--;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strc,'V');    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=atoi(stre);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           cptcovage++;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           Tage[cptcovage]=i;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    for (age=bage; age<=fage; age ++){ 
           Tvar[i]=ncovcol+k1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           Tprod[k1]=i;      /* if (stepm >= YEARM) hstepm=1;*/
           Tvard[k1][1]=atoi(strc); /* m*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];      /* If stepm=6 months */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           for (k=1; k<=lastobs;k++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      
           k1++;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           k2=k2+2;  
         }      /* Computing  Variances of health expectancies */
       }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       else { /* no more sum */         decrease memory allocation */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      for(theta=1; theta <=npar; theta++){
        /*  scanf("%d",i);*/        for(i=1; i<=npar; i++){ 
       cutv(strd,strc,strb,'V');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       Tvar[i]=atoi(strc);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       }        }
       strcpy(modelsav,stra);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         scanf("%d",i);*/    
     } /* end of loop + */        for(j=1; j<= nlstate; j++){
   } /* end model */          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   printf("cptcovprod=%d ", cptcovprod);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            }
   scanf("%d ",i);*/          }
     fclose(fic);        }
        
     /*  if(mle==1){*/        for(ij=1; ij<= nlstate*nlstate; ij++)
     if (weightopt != 1) { /* Maximisation without weights*/          for(h=0; h<=nhstepm-1; h++){
       for(i=1;i<=n;i++) weight[i]=1.0;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/      }/* End theta */
     agev=matrix(1,maxwav,1,imx);      
       
     for (i=1; i<=imx; i++) {      for(h=0; h<=nhstepm-1; h++)
       for(m=2; (m<= maxwav); m++) {        for(j=1; j<=nlstate*nlstate;j++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          for(theta=1; theta <=npar; theta++)
          anint[m][i]=9999;            trgradg[h][j][theta]=gradg[h][theta][j];
          s[m][i]=-1;      
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
     }          varhe[ij][ji][(int)age] =0.;
   
     for (i=1; i<=imx; i++)  {       printf("%d|",(int)age);fflush(stdout);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(m=1; (m<= maxwav); m++){       for(h=0;h<=nhstepm-1;h++){
         if(s[m][i] >0){        for(k=0;k<=nhstepm-1;k++){
           if (s[m][i] >= nlstate+1) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             if(agedc[i]>0)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               if(moisdc[i]!=99 && andc[i]!=9999)          for(ij=1;ij<=nlstate*nlstate;ij++)
                 agev[m][i]=agedc[i];            for(ji=1;ji<=nlstate*nlstate;ji++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
            else {        }
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      /* Computing expectancies */
               agev[m][i]=-1;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               }      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           else if(s[m][i] !=9){ /* Should no more exist */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            
             if(mint[m][i]==99 || anint[m][i]==9999)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){          }
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficresstdeij,"%3.0f",age );
             }      for(i=1; i<=nlstate;i++){
             else if(agev[m][i] >agemax){        eip=0.;
               agemax=agev[m][i];        vip=0.;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for(j=1; j<=nlstate;j++){
             }          eip += eij[i][j][(int)age];
             /*agev[m][i]=anint[m][i]-annais[i];*/          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             /*   agev[m][i] = age[i]+2*m;*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           else { /* =9 */        }
             agev[m][i]=1;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             s[m][i]=-1;      }
           }      fprintf(ficresstdeij,"\n");
         }  
         else /*= 0 Unknown */      fprintf(ficrescveij,"%3.0f",age );
           agev[m][i]=1;      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
              cptj= (j-1)*nlstate+i;
     }          for(i2=1; i2<=nlstate;i2++)
     for (i=1; i<=imx; i++)  {            for(j2=1; j2<=nlstate;j2++){
       for(m=1; (m<= maxwav); m++){              cptj2= (j2-1)*nlstate+i2;
         if (s[m][i] > (nlstate+ndeath)) {              if(cptj2 <= cptj)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              }
           goto end;        }
         }      fprintf(ficrescveij,"\n");
       }     
     }    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_vector(severity,1,maxwav);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisnais,1,n);    printf("\n");
     free_vector(annais,1,n);    fprintf(ficlog,"\n");
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    free_vector(xm,1,npar);
     free_vector(moisdc,1,n);    free_vector(xp,1,npar);
     free_vector(andc,1,n);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     wav=ivector(1,imx);  }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /************ Variance ******************/
      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     /* Concatenates waves */  {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
       Tcode=ivector(1,100);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    
       ncodemax[1]=1;    int movingaverage();
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double **dnewm,**doldm;
          double **dnewmp,**doldmp;
    codtab=imatrix(1,100,1,10);    int i, j, nhstepm, hstepm, h, nstepm ;
    h=0;    int k;
    m=pow(2,cptcoveff);    double *xp;
      double **gp, **gm;  /* for var eij */
    for(k=1;k<=cptcoveff; k++){    double ***gradg, ***trgradg; /*for var eij */
      for(i=1; i <=(m/pow(2,k));i++){    double **gradgp, **trgradgp; /* for var p point j */
        for(j=1; j <= ncodemax[k]; j++){    double *gpp, *gmp; /* for var p point j */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
            h++;    double ***p3mat;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double age,agelim, hf;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    double ***mobaverage;
          }    int theta;
        }    char digit[4];
      }    char digitp[25];
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    char fileresprobmorprev[FILENAMELENGTH];
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){    if(popbased==1){
       for(k=1; k <=cptcovn; k++){      if(mobilav!=0)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
       printf("\n");    }
       }    else 
       scanf("%d",i);*/      strcpy(digitp,"-stablbased-");
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    if (mobilav!=0) {
        and prints on file fileres'p'. */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprobmorprev,"prmorprev"); 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    sprintf(digit,"%-d",ij);
          /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     /* For Powell, parameters are in a vector p[] starting at p[1]    strcat(fileresprobmorprev,digit); /* Tvar to be done */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     if(mle==1){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
        printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     /*--------- results files --------------*/   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    jk=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(i=1; i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      for(k=1; k <=(nlstate+ndeath); k++){    }  
        if (k != i)    fprintf(ficresprobmorprev,"\n");
          {    fprintf(ficgp,"\n# Routine varevsij");
            printf("%d%d ",i,k);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
            fprintf(ficlog,"%d%d ",i,k);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
            for(j=1; j <=ncovmodel; j++){  /*   } */
              printf("%f ",p[jk]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              fprintf(ficlog,"%f ",p[jk]);    pstamp(ficresvij);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
              jk++;    if(popbased==1)
            }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
            printf("\n");    else
            fprintf(ficlog,"\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
            fprintf(ficres,"\n");    fprintf(ficresvij,"# Age");
          }    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
    }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
    if(mle==1){    fprintf(ficresvij,"\n");
      /* Computing hessian and covariance matrix */  
      ftolhess=ftol; /* Usually correct */    xp=vector(1,npar);
      hesscov(matcov, p, npar, delti, ftolhess, func);    dnewm=matrix(1,nlstate,1,npar);
    }    doldm=matrix(1,nlstate,1,nlstate);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
    printf("# Scales (for hessian or gradient estimation)\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
    for(i=1,jk=1; i <=nlstate; i++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      for(j=1; j <=nlstate+ndeath; j++){    gpp=vector(nlstate+1,nlstate+ndeath);
        if (j!=i) {    gmp=vector(nlstate+1,nlstate+ndeath);
          fprintf(ficres,"%1d%1d",i,j);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          printf("%1d%1d",i,j);    
          fprintf(ficlog,"%1d%1d",i,j);    if(estepm < stepm){
          for(k=1; k<=ncovmodel;k++){      printf ("Problem %d lower than %d\n",estepm, stepm);
            printf(" %.5e",delti[jk]);    }
            fprintf(ficlog," %.5e",delti[jk]);    else  hstepm=estepm;   
            fprintf(ficres," %.5e",delti[jk]);    /* For example we decided to compute the life expectancy with the smallest unit */
            jk++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          }       nhstepm is the number of hstepm from age to agelim 
          printf("\n");       nstepm is the number of stepm from age to agelin. 
          fprintf(ficlog,"\n");       Look at function hpijx to understand why (it is linked to memory size questions) */
          fprintf(ficres,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed every two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
    k=1;    */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    if(mle==1)    agelim = AGESUP;
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    for(i=1;i<=npar;i++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      /*  if (k>nlstate) k=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          i1=(i-1)/(ncovmodel*nlstate)+1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      gp=matrix(0,nhstepm,1,nlstate);
          printf("%s%d%d",alph[k],i1,tab[i]);*/      gm=matrix(0,nhstepm,1,nlstate);
      fprintf(ficres,"%3d",i);  
      if(mle==1)  
        printf("%3d",i);      for(theta=1; theta <=npar; theta++){
      fprintf(ficlog,"%3d",i);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      for(j=1; j<=i;j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(ficres," %.5e",matcov[i][j]);        }
        if(mle==1)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          printf(" %.5e",matcov[i][j]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }        if (popbased==1) {
      fprintf(ficres,"\n");          if(mobilav ==0){
      if(mle==1)            for(i=1; i<=nlstate;i++)
        printf("\n");              prlim[i][i]=probs[(int)age][i][ij];
      fprintf(ficlog,"\n");          }else{ /* mobilav */ 
      k++;            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
    while((c=getc(ficpar))=='#' && c!= EOF){        }
      ungetc(c,ficpar);    
      fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++){
      puts(line);          for(h=0; h<=nhstepm; h++){
      fputs(line,ficparo);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
    ungetc(c,ficpar);          }
    estepm=0;        }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        /* This for computing probability of death (h=1 means
    if (estepm==0 || estepm < stepm) estepm=stepm;           computed over hstepm matrices product = hstepm*stepm months) 
    if (fage <= 2) {           as a weighted average of prlim.
      bage = ageminpar;        */
      fage = agemaxpar;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                gpp[j] += prlim[i][i]*p3mat[i][j][1];
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }    
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        /* end probability of death */
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      puts(line);   
      fputs(line,ficparo);        if (popbased==1) {
    }          if(mobilav ==0){
    ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          }else{ /* mobilav */ 
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<=nlstate;i++)
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
    while((c=getc(ficpar))=='#' && c!= EOF){        }
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
      puts(line);          for(h=0; h<=nhstepm; h++){
      fputs(line,ficparo);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
    ungetc(c,ficpar);          }
          }
         /* This for computing probability of death (h=1 means
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           computed over hstepm matrices product = hstepm*stepm months) 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;           as a weighted average of prlim.
         */
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficparo,"pop_based=%d\n",popbased);            for(i=1,gmp[j]=0.; i<= nlstate; i++)
   fprintf(ficres,"pop_based=%d\n",popbased);             gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   while((c=getc(ficpar))=='#' && c!= EOF){        /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++) /* vareij */
     puts(line);          for(h=0; h<=nhstepm; h++){
     fputs(line,ficparo);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   ungetc(c,ficpar);  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
       } /* End theta */
   
 while((c=getc(ficpar))=='#' && c!= EOF){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
     puts(line);        for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   ungetc(c,ficpar);  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        for(theta=1; theta <=npar; theta++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
 /*------------ gnuplot -------------*/        for(j=1;j<=nlstate;j++)
   strcpy(optionfilegnuplot,optionfilefiname);          vareij[i][j][(int)age] =0.;
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for(h=0;h<=nhstepm;h++){
     printf("Problem with file %s",optionfilegnuplot);        for(k=0;k<=nhstepm;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fclose(ficgp);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          for(i=1;i<=nlstate;i++)
 /*--------- index.htm --------*/            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");      }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    
     printf("Problem with %s \n",optionfilehtm), exit(0);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 \n          varppt[j][i]=doldmp[j][i];
 Total number of observations=%d <br>\n      /* end ppptj */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      /*  x centered again */
 <hr  size=\"2\" color=\"#EC5E5E\">      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  <ul><li><h4>Parameter files</h4>\n      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n   
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      if (popbased==1) {
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        if(mobilav ==0){
   fclose(fichtm);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
 /*------------ free_vector  -------------*/            prlim[i][i]=mobaverage[(int)age][i][ij];
  chdir(path);        }
        }
  free_ivector(wav,1,imx);               
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /* This for computing probability of death (h=1 means
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  free_ivector(num,1,n);         as a weighted average of prlim.
  free_vector(agedc,1,n);      */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fclose(ficparo);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  fclose(ficres);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   /*--------------- Prevalence limit --------------*/  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   strcpy(filerespl,"pl");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(filerespl,fileres);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(i=1; i<=nlstate;i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }
   }      } 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fprintf(ficresprobmorprev,"\n");
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");      fprintf(ficresvij,"%.0f ",age );
   fprintf(ficrespl,"#Age ");      for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(j=1; j<=nlstate;j++){
   fprintf(ficrespl,"\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   prlim=matrix(1,nlstate,1,nlstate);      fprintf(ficresvij,"\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_matrix(gp,0,nhstepm,1,nlstate);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_matrix(gm,0,nhstepm,1,nlstate);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   k=0;    } /* End age */
   agebase=ageminpar;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   agelim=agemaxpar;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   ftolpl=1.e-10;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   i1=cptcoveff;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (cptcovn < 1){i1=1;}    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         k=k+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrespl,"\n#******");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
         printf("\n#******");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
         fprintf(ficlog,"\n#******");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         for(j=1;j<=cptcoveff;j++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  */
         }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficrespl,"******\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         printf("******\n");  
         fprintf(ficlog,"******\n");    free_vector(xp,1,npar);
            free_matrix(doldm,1,nlstate,1,nlstate);
         for (age=agebase; age<=agelim; age++){    free_matrix(dnewm,1,nlstate,1,npar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl,"%.0f",age );    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl," %.5f", prlim[i][i]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl,"\n");    fclose(ficresprobmorprev);
         }    fflush(ficgp);
       }    fflush(fichtm); 
     }  }  /* end varevsij */
   fclose(ficrespl);  
   /************ Variance of prevlim ******************/
   /*------------- h Pij x at various ages ------------*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* Variance of prevalence limit */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   printf("Computing pij: result on file '%s' \n", filerespij);    double *xp;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    double *gp, *gm;
      double **gradg, **trgradg;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double age,agelim;
   /*if (stepm<=24) stepsize=2;*/    int theta;
     
   agelim=AGESUP;    pstamp(ficresvpl);
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   /* hstepm=1;   aff par mois*/        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    xp=vector(1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    dnewm=matrix(1,nlstate,1,npar);
       k=k+1;    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    hstepm=1*YEARM; /* Every year of age */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         fprintf(ficrespij,"******\n");    agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (stepm >= YEARM) hstepm=1;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(theta=1; theta <=npar; theta++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1; i<=npar; i++){ /* Computes gradient */
           fprintf(ficrespij,"# Age");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               fprintf(ficrespij," %1d-%1d",i,j);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"\n");          gp[i] = prlim[i][i];
            for (h=0; h<=nhstepm; h++){      
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(i=1; i<=npar; i++) /* Computes gradient */
             for(i=1; i<=nlstate;i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               for(j=1; j<=nlstate+ndeath;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(i=1;i<=nlstate;i++)
             fprintf(ficrespij,"\n");          gm[i] = prlim[i][i];
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespij,"\n");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
     }  
   }      trgradg =matrix(1,nlstate,1,npar);
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   fclose(ficrespij);          trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
   /*---------- Forecasting ------------------*/        varpl[i][(int)age] =0.;
   if((stepm == 1) && (strcmp(model,".")==0)){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   else{  
     erreur=108;      fprintf(ficresvpl,"%.0f ",age );
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   /*---------- Health expectancies and variances ------------*/      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   strcpy(filerest,"t");    } /* End age */
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(doldm,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   strcpy(filerese,"e");  {
   strcat(filerese,fileres);    int i, j=0,  k1, l1, tj;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int k2, l2, j1,  z1;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int k=0, l;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int first=1, first1, first2;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double **dnewm,**doldm;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    double *xp;
     double *gp, *gm;
   strcpy(fileresv,"v");    double **gradg, **trgradg;
   strcat(fileresv,fileres);    double **mu;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double age, cov[NCOVMAX+1];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    int theta;
   }    char fileresprob[FILENAMELENGTH];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    char fileresprobcov[FILENAMELENGTH];
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    char fileresprobcor[FILENAMELENGTH];
   calagedate=-1;    double ***varpij;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
     strcpy(fileresprob,"prob"); 
   k=0;    strcat(fileresprob,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with resultfile: %s\n", fileresprob);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    strcpy(fileresprobcov,"probcov"); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobcov,fileres);
       fprintf(ficrest,"******\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficreseij,"\n#****** ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficreseij,"******\n");    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fprintf(ficresvij,"\n#****** ");      printf("Problem with resultfile: %s\n", fileresprobcor);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       oldm=oldms;savm=savms;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    pstamp(ficresprob);
       oldm=oldms;savm=savms;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    fprintf(ficresprob,"# Age");
       if(popbased==1){    pstamp(ficresprobcov);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        }    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresprobcor,"# Age");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  
     for(i=1; i<=nlstate;i++)
       epj=vector(1,nlstate+1);      for(j=1; j<=(nlstate+ndeath);j++){
       for(age=bage; age <=fage ;age++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         if (popbased==1) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           for(i=1; i<=nlstate;i++)      }  
             prlim[i][i]=probs[(int)age][i][k];   /* fprintf(ficresprob,"\n");
         }    fprintf(ficresprobcov,"\n");
            fprintf(ficresprobcor,"\n");
         fprintf(ficrest," %4.0f",age);   */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    xp=vector(1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           epj[nlstate+1] +=epj[j];    first=1;
         }    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(fichtm,"\n");
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         for(j=1;j <=nlstate;j++){    file %s<br>\n",optionfilehtmcov);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         }  and drawn. It helps understanding how is the covariance between two incidences.\
         fprintf(ficrest,"\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 free_matrix(mint,1,maxwav,1,n);  standard deviations wide on each axis. <br>\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     free_vector(weight,1,n);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   fclose(ficreseij);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fclose(ficresvij);  
   fclose(ficrest);    cov[1]=1;
   fclose(ficpar);    /* tj=cptcoveff; */
   free_vector(epj,1,nlstate+1);    tj = (int) pow(2,cptcoveff);
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   /*------- Variance limit prevalence------*/      j1=0;
     for(j1=1; j1<=tj;j1++){
   strcpy(fileresvpl,"vpl");      /*for(i1=1; i1<=ncodemax[t];i1++){ */
   strcat(fileresvpl,fileres);      /*j1++;*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        if  (cptcovn>0) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficresprob, "\n#********** Variable "); 
     exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   k=0;          fprintf(ficresprobcov, "**********\n#\n");
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp, "\n#********** Variable "); 
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvpl,"\n#****** ");          fprintf(ficgp, "**********\n#\n");
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvpl,"******\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  }          fprintf(ficresprobcor, "**********\n#");    
         }
   fclose(ficresvpl);        
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   /*---------- End : free ----------------*/        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        gp=vector(1,(nlstate)*(nlstate+ndeath));
          gm=vector(1,(nlstate)*(nlstate+ndeath));
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for (age=bage; age<=fage; age ++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                                                           * 1  1 1 1 1
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                                                           * 2  2 1 1 1
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                                                           * 3  1 2 1 1
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                                                           */
              /* nbcode[1][1]=0 nbcode[1][2]=1;*/
   free_matrix(matcov,1,npar,1,npar);          }
   free_vector(delti,1,npar);          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   free_matrix(agev,1,maxwav,1,imx);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(fichtm,"\n</body>");          
   fclose(fichtm);      
   fclose(ficgp);          for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   if(erreur >0){            
     printf("End of Imach with error or warning %d\n",erreur);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);            
   }else{            k=0;
    printf("End of Imach\n");            for(i=1; i<= (nlstate); i++){
    fprintf(ficlog,"End of Imach\n");              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
   printf("See log file on %s\n",filelog);                gp[k]=pmmij[i][j];
   fclose(ficlog);              }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            }
              
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            for(i=1; i<=npar; i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /*------ End -----------*/      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
  end:            for(i=1; i<=(nlstate); i++){
 #ifdef windows              for(j=1; j<=(nlstate+ndeath);j++){
   /* chdir(pathcd);*/                k=k+1;
 #endif                gm[k]=pmmij[i][j];
  /*system("wgnuplot graph.plt");*/              }
  /*system("../gp37mgw/wgnuplot graph.plt");*/            }
  /*system("cd ../gp37mgw");*/       
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  strcpy(plotcmd,GNUPLOTPROGRAM);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  strcat(plotcmd," ");          }
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
 #ifdef windows              trgradg[j][theta]=gradg[theta][j];
   while (z[0] != 'q') {          
     /* chdir(path); */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");          pmij(pmmij,cov,ncovmodel,x,nlstate);
     else if (z[0] == 'e') system(optionfilehtm);          
     else if (z[0] == 'g') system(plotcmd);          k=0;
     else if (z[0] == 'q') exit(0);          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
 #endif              k=k+1;
 }              mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n",title, datafile, lastobs, firstpass,lastpass);
     /*
   
   
   
      */
     printf("\nftol=%e \n", ftol);
     printf("stepm=%d \n", stepm);
     printf("ncovcol=%d nlstate=%d \n", ncovcol, nlstate);
     printf("ndeath=%d maxwav=%d mle=%d weight=%d\n", ndeath, maxwav, mle, weightopt);
     printf("model=%s\n",model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.52  
changed lines
  Added in v.1.186


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>