Diff for /imach/src/imach.c between versions 1.22 and 1.114

version 1.22, 2002/02/22 17:54:20 version 1.114, 2006/02/26 12:57:58
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.114  2006/02/26 12:57:58  brouard
      (Module): Some improvements in processing parameter
   This program computes Healthy Life Expectancies from    filename with strsep.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.113  2006/02/24 14:20:24  brouard
   interviewed on their health status or degree of disability (in the    (Module): Memory leaks checks with valgrind and:
   case of a health survey which is our main interest) -2- at least a    datafile was not closed, some imatrix were not freed and on matrix
   second wave of interviews ("longitudinal") which measure each change    allocation too.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.112  2006/01/30 09:55:26  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.111  2006/01/25 20:38:18  brouard
   probabibility to be observed in state j at the second wave    (Module): Lots of cleaning and bugs added (Gompertz)
   conditional to be observed in state i at the first wave. Therefore    (Module): Comments can be added in data file. Missing date values
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    can be a simple dot '.'.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.110  2006/01/25 00:51:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Lots of cleaning and bugs added (Gompertz)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.108  2006/01/19 18:05:42  lievre
   identical for each individual. Also, if a individual missed an    Gnuplot problem appeared...
   intermediate interview, the information is lost, but taken into    To be fixed
   account using an interpolation or extrapolation.    
     Revision 1.107  2006/01/19 16:20:37  brouard
   hPijx is the probability to be observed in state i at age x+h    Test existence of gnuplot in imach path
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.106  2006/01/19 13:24:36  brouard
   states. This elementary transition (by month or quarter trimester,    Some cleaning and links added in html output
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.105  2006/01/05 20:23:19  lievre
   and the contribution of each individual to the likelihood is simply    *** empty log message ***
   hPijx.  
     Revision 1.104  2005/09/30 16:11:43  lievre
   Also this programme outputs the covariance matrix of the parameters but also    (Module): sump fixed, loop imx fixed, and simplifications.
   of the life expectancies. It also computes the prevalence limits.    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (instead of missing=-1 in earlier versions) and his/her
            Institut national d'études démographiques, Paris.    contributions to the likelihood is 1 - Prob of dying from last
   This software have been partly granted by Euro-REVES, a concerted action    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   from the European Union.    the healthy state at last known wave). Version is 0.98
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.103  2005/09/30 15:54:49  lievre
   can be accessed at http://euroreves.ined.fr/imach .    (Module): sump fixed, loop imx fixed, and simplifications.
   **********************************************************************/  
      Revision 1.102  2004/09/15 17:31:30  brouard
 #include <math.h>    Add the possibility to read data file including tab characters.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.101  2004/09/15 10:38:38  brouard
 #include <unistd.h>    Fix on curr_time
   
 #define MAXLINE 256    Revision 1.100  2004/07/12 18:29:06  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    Add version for Mac OS X. Just define UNIX in Makefile
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.99  2004/06/05 08:57:40  brouard
 #define windows    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    directly from the data i.e. without the need of knowing the health
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 #define NINTERVMAX 8    other analysis, in order to test if the mortality estimated from the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    cross-longitudinal survey is different from the mortality estimated
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    from other sources like vital statistic data.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    The same imach parameter file can be used but the option for mle should be -3.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Agnès, who wrote this part of the code, tried to keep most of the
 #define AGEBASE 40    former routines in order to include the new code within the former code.
   
     The output is very simple: only an estimate of the intercept and of
 int erreur; /* Error number */    the slope with 95% confident intervals.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Current limitations:
 int npar=NPARMAX;    A) Even if you enter covariates, i.e. with the
 int nlstate=2; /* Number of live states */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int ndeath=1; /* Number of dead states */    B) There is no computation of Life Expectancy nor Life Table.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 int *wav; /* Number of waves for this individuual 0 is possible */    suppressed.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.96  2003/07/15 15:38:55  brouard
 int mle, weightopt;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    rewritten within the same printf. Workaround: many printfs.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.95  2003/07/08 07:54:34  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Repository):
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Repository): Using imachwizard code to output a more meaningful covariance
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    matrix (cov(a12,c31) instead of numbers.
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.94  2003/06/27 13:00:02  brouard
   char filerese[FILENAMELENGTH];    Just cleaning
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.93  2003/06/25 16:33:55  brouard
  FILE  *ficresvpl;    (Module): On windows (cygwin) function asctime_r doesn't
   char fileresvpl[FILENAMELENGTH];    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.92  2003/06/25 16:30:45  brouard
 #define FTOL 1.0e-10    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define NRANSI  
 #define ITMAX 200    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 #define TOL 2.0e-4    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define CGOLD 0.3819660    is stamped in powell.  We created a new html file for the graphs
 #define ZEPS 1.0e-10    concerning matrix of covariance. It has extension -cov.htm.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.90  2003/06/24 12:34:15  brouard
 #define GOLD 1.618034    (Module): Some bugs corrected for windows. Also, when
 #define GLIMIT 100.0    mle=-1 a template is output in file "or"mypar.txt with the design
 #define TINY 1.0e-20    of the covariance matrix to be input.
   
 static double maxarg1,maxarg2;    Revision 1.89  2003/06/24 12:30:52  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Some bugs corrected for windows. Also, when
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.87  2003/06/18 12:26:01  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Version 0.96
   
 int imx;    Revision 1.86  2003/06/17 20:04:08  brouard
 int stepm;    (Module): Change position of html and gnuplot routines and added
 /* Stepm, step in month: minimum step interpolation*/    routine fileappend.
   
 int m,nb;    Revision 1.85  2003/06/17 13:12:43  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Check when date of death was earlier that
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    current date of interview. It may happen when the death was just
 double **pmmij, ***probs, ***mobaverage;    prior to the death. In this case, dh was negative and likelihood
 double dateintmean=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 double *weight;    interview.
 int **s; /* Status */    (Repository): Because some people have very long ID (first column)
 double *agedc, **covar, idx;    we changed int to long in num[] and we added a new lvector for
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    memory allocation. But we also truncated to 8 characters (left
     truncation)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): No more line truncation errors.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /**************** split *************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
    char *s;                             /* pointer */    parcimony.
    int  l1, l2;                         /* length counters */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
    l1 = strlen( path );                 /* length of path */    Revision 1.83  2003/06/10 13:39:11  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    *** empty log message ***
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.82  2003/06/05 15:57:20  brouard
 #else    Add log in  imach.c and  fullversion number is now printed.
    s = strrchr( path, '/' );            /* find last / */  
 #endif  */
    if ( s == NULL ) {                   /* no directory, so use current */  /*
 #if     defined(__bsd__)                /* get current working directory */     Interpolated Markov Chain
       extern char       *getwd( );  
     Short summary of the programme:
       if ( getwd( dirc ) == NULL ) {    
 #else    This program computes Healthy Life Expectancies from
       extern char       *getcwd( );    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    interviewed on their health status or degree of disability (in the
 #endif    case of a health survey which is our main interest) -2- at least a
          return( GLOCK_ERROR_GETCWD );    second wave of interviews ("longitudinal") which measure each change
       }    (if any) in individual health status.  Health expectancies are
       strcpy( name, path );             /* we've got it */    computed from the time spent in each health state according to a
    } else {                             /* strip direcotry from path */    model. More health states you consider, more time is necessary to reach the
       s++;                              /* after this, the filename */    Maximum Likelihood of the parameters involved in the model.  The
       l2 = strlen( s );                 /* length of filename */    simplest model is the multinomial logistic model where pij is the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    probability to be observed in state j at the second wave
       strcpy( name, s );                /* save file name */    conditional to be observed in state i at the first wave. Therefore
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       dirc[l1-l2] = 0;                  /* add zero */    'age' is age and 'sex' is a covariate. If you want to have a more
    }    complex model than "constant and age", you should modify the program
    l1 = strlen( dirc );                 /* length of directory */    where the markup *Covariates have to be included here again* invites
 #ifdef windows    you to do it.  More covariates you add, slower the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    convergence.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    The advantage of this computer programme, compared to a simple
 #endif    multinomial logistic model, is clear when the delay between waves is not
    s = strrchr( name, '.' );            /* find last / */    identical for each individual. Also, if a individual missed an
    s++;    intermediate interview, the information is lost, but taken into
    strcpy(ext,s);                       /* save extension */    account using an interpolation or extrapolation.  
    l1= strlen( name);  
    l2= strlen( s)+1;    hPijx is the probability to be observed in state i at age x+h
    strncpy( finame, name, l1-l2);    conditional to the observed state i at age x. The delay 'h' can be
    finame[l1-l2]= 0;    split into an exact number (nh*stepm) of unobserved intermediate
    return( 0 );                         /* we're done */    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /******************************************/    hPijx.
   
 void replace(char *s, char*t)    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the stable prevalence. 
   int i;    
   int lg=20;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   i=0;             Institut national d'études démographiques, Paris.
   lg=strlen(t);    This software have been partly granted by Euro-REVES, a concerted action
   for(i=0; i<= lg; i++) {    from the European Union.
     (s[i] = t[i]);    It is copyrighted identically to a GNU software product, ie programme and
     if (t[i]== '\\') s[i]='/';    software can be distributed freely for non commercial use. Latest version
   }    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int nbocc(char *s, char occ)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   int i,j=0;    **********************************************************************/
   int lg=20;  /*
   i=0;    main
   lg=strlen(s);    read parameterfile
   for(i=0; i<= lg; i++) {    read datafile
   if  (s[i] == occ ) j++;    concatwav
   }    freqsummary
   return j;    if (mle >= 1)
 }      mlikeli
     print results files
 void cutv(char *u,char *v, char*t, char occ)    if mle==1 
 {       computes hessian
   int i,lg,j,p=0;    read end of parameter file: agemin, agemax, bage, fage, estepm
   i=0;        begin-prev-date,...
   for(j=0; j<=strlen(t)-1; j++) {    open gnuplot file
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    open html file
   }    stable prevalence
      for age prevalim()
   lg=strlen(t);    h Pij x
   for(j=0; j<p; j++) {    variance of p varprob
     (u[j] = t[j]);    forecasting if prevfcast==1 prevforecast call prevalence()
   }    health expectancies
      u[p]='\0';    Variance-covariance of DFLE
     prevalence()
    for(j=0; j<= lg; j++) {     movingaverage()
     if (j>=(p+1))(v[j-p-1] = t[j]);    varevsij() 
   }    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of stable prevalence
 /********************** nrerror ********************/   end
   */
 void nrerror(char error_text[])  
 {  
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);   
   exit(1);  #include <math.h>
 }  #include <stdio.h>
 /*********************** vector *******************/  #include <stdlib.h>
 double *vector(int nl, int nh)  #include <string.h>
 {  #include <unistd.h>
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <limits.h>
   if (!v) nrerror("allocation failure in vector");  #include <sys/types.h>
   return v-nl+NR_END;  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  /* #include <sys/time.h> */
 {  #include <time.h>
   free((FREE_ARG)(v+nl-NR_END));  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /************************ivector *******************************/  /* #define _(String) gettext (String) */
 int *ivector(long nl,long nh)  
 {  #define MAXLINE 256
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define GNUPLOTPROGRAM "gnuplot"
   if (!v) nrerror("allocation failure in ivector");  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   return v-nl+NR_END;  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /******************free ivector **************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 void free_ivector(int *v, long nl, long nh)  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   free((FREE_ARG)(v+nl-NR_END));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /******************* imatrix *******************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define YEARM 12. /* Number of months per year */
   int **m;  #define AGESUP 130
    #define AGEBASE 40
   /* allocate pointers to rows */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #ifdef UNIX
   if (!m) nrerror("allocation failure 1 in matrix()");  #define DIRSEPARATOR '/'
   m += NR_END;  #define CHARSEPARATOR "/"
   m -= nrl;  #define ODIRSEPARATOR '\\'
    #else
    #define DIRSEPARATOR '\\'
   /* allocate rows and set pointers to them */  #define CHARSEPARATOR "\\"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* $Id$ */
    /* $State$ */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   /* return pointer to array of pointers to rows */  char fullversion[]="$Revision$ $Date$"; 
   return m;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /****************** free_imatrix *************************/  int npar=NPARMAX;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int nlstate=2; /* Number of live states */
       int **m;  int ndeath=1; /* Number of dead states */
       long nch,ncl,nrh,nrl;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
      /* free an int matrix allocated by imatrix() */  int popbased=0;
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
   free((FREE_ARG) (m+nrl-NR_END));  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 /******************* matrix *******************************/  int gipmx, gsw; /* Global variables on the number of contributions 
 double **matrix(long nrl, long nrh, long ncl, long nch)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double **m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m) nrerror("allocation failure 1 in matrix()");  double jmean; /* Mean space between 2 waves */
   m += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m -= nrl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficlog, *ficrespow;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int globpr; /* Global variable for printing or not */
   m[nrl] += NR_END;  double fretone; /* Only one call to likelihood */
   m[nrl] -= ncl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerespow[FILENAMELENGTH];
   return m;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /*************************free matrix ************************/  FILE *ficresprobmorprev;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************* ma3x *******************************/  char fileresvpl[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double ***m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int  outcmd=0;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m -= nrl;  
   char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerest[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileregp[FILENAMELENGTH];
   m[nrl] += NR_END;  char popfile[FILENAMELENGTH];
   m[nrl] -= ncl;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  struct timezone tzp;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  extern int gettimeofday();
   m[nrl][ncl] += NR_END;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   m[nrl][ncl] -= nll;  long time_value;
   for (j=ncl+1; j<=nch; j++)  extern long time();
     m[nrl][j]=m[nrl][j-1]+nlay;  char strcurr[80], strfor[80];
    
   for (i=nrl+1; i<=nrh; i++) {  char *endptr;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  long lval;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #define NR_END 1
   }  #define FREE_ARG char*
   return m;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /*************************free ma3x ************************/  #define ITMAX 200 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define TOL 2.0e-4 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define CGOLD 0.3819660 
   free((FREE_ARG)(m+nrl-NR_END));  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /***************** f1dim *************************/  #define GOLD 1.618034 
 extern int ncom;  #define GLIMIT 100.0 
 extern double *pcom,*xicom;  #define TINY 1.0e-20 
 extern double (*nrfunc)(double []);  
    static double maxarg1,maxarg2;
 double f1dim(double x)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   int j;    
   double f;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double *xt;  #define rint(a) floor(a+0.5)
    
   xt=vector(1,ncom);  static double sqrarg;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   f=(*nrfunc)(xt);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free_vector(xt,1,ncom);  int agegomp= AGEGOMP;
   return f;  
 }  int imx; 
   int stepm=1;
 /*****************brent *************************/  /* Stepm, step in month: minimum step interpolation*/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  int estepm;
   int iter;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  int m,nb;
   double ftemp;  long *num;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double e=0.0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   a=(ax < cx ? ax : cx);  double *ageexmed,*agecens;
   b=(ax > cx ? ax : cx);  double dateintmean=0;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  double *weight;
   for (iter=1;iter<=ITMAX;iter++) {  int **s; /* Status */
     xm=0.5*(a+b);  double *agedc, **covar, idx;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double *lsurv, *lpop, *tpop;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double ftolhess; /* Tolerance for computing hessian */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /**************** split *************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       *xmin=x;  {
       return fx;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     ftemp=fu;    */ 
     if (fabs(e) > tol1) {    char  *ss;                            /* pointer */
       r=(x-w)*(fx-fv);    int   l1, l2;                         /* length counters */
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    l1 = strlen(path );                   /* length of path */
       q=2.0*(q-r);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (q > 0.0) p = -p;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       q=fabs(q);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       etemp=e;      strcpy( name, path );               /* we got the fullname name because no directory */
       e=d;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* get current working directory */
       else {      /*    extern  char* getcwd ( char *buf , int len);*/
         d=p/q;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         u=x+d;        return( GLOCK_ERROR_GETCWD );
         if (u-a < tol2 || b-u < tol2)      }
           d=SIGN(tol1,xm-x);      /* got dirc from getcwd*/
       }      printf(" DIRC = %s \n",dirc);
     } else {    } else {                              /* strip direcotry from path */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     fu=(*f)(u);      strcpy( name, ss );         /* save file name */
     if (fu <= fx) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       if (u >= x) a=x; else b=x;      dirc[l1-l2] = 0;                    /* add zero */
       SHFT(v,w,x,u)      printf(" DIRC2 = %s \n",dirc);
         SHFT(fv,fw,fx,fu)    }
         } else {    /* We add a separator at the end of dirc if not exists */
           if (u < x) a=u; else b=u;    l1 = strlen( dirc );                  /* length of directory */
           if (fu <= fw || w == x) {    if( dirc[l1-1] != DIRSEPARATOR ){
             v=w;      dirc[l1] =  DIRSEPARATOR;
             w=u;      dirc[l1+1] = 0; 
             fv=fw;      printf(" DIRC3 = %s \n",dirc);
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {    ss = strrchr( name, '.' );            /* find last / */
             v=u;    if (ss >0){
             fv=fu;      ss++;
           }      strcpy(ext,ss);                     /* save extension */
         }      l1= strlen( name);
   }      l2= strlen(ss)+1;
   nrerror("Too many iterations in brent");      strncpy( finame, name, l1-l2);
   *xmin=x;      finame[l1-l2]= 0;
   return fx;    }
 }  
     return( 0 );                          /* we're done */
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /******************************************/
 {  
   double ulim,u,r,q, dum;  void replace_back_to_slash(char *s, char*t)
   double fu;  {
      int i;
   *fa=(*func)(*ax);    int lg=0;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    lg=strlen(t);
     SHFT(dum,*ax,*bx,dum)    for(i=0; i<= lg; i++) {
       SHFT(dum,*fb,*fa,dum)      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
   *cx=(*bx)+GOLD*(*bx-*ax);    }
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int nbocc(char *s, char occ)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int i,j=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int lg=20;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    i=0;
     if ((*bx-u)*(u-*cx) > 0.0) {    lg=strlen(s);
       fu=(*func)(u);    for(i=0; i<= lg; i++) {
     } else if ((*cx-u)*(u-ulim) > 0.0) {    if  (s[i] == occ ) j++;
       fu=(*func)(u);    }
       if (fu < *fc) {    return j;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  void cutv(char *u,char *v, char*t, char occ)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       fu=(*func)(u);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     } else {       gives u="abcedf" and v="ghi2j" */
       u=(*cx)+GOLD*(*cx-*bx);    int i,lg,j,p=0;
       fu=(*func)(u);    i=0;
     }    for(j=0; j<=strlen(t)-1; j++) {
     SHFT(*ax,*bx,*cx,u)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       SHFT(*fa,*fb,*fc,fu)    }
       }  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /*************** linmin ************************/      (u[j] = t[j]);
     }
 int ncom;       u[p]='\0';
 double *pcom,*xicom;  
 double (*nrfunc)(double []);     for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /********************** nrerror ********************/
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  void nrerror(char error_text[])
               double *fc, double (*func)(double));  {
   int j;    fprintf(stderr,"ERREUR ...\n");
   double xx,xmin,bx,ax;    fprintf(stderr,"%s\n",error_text);
   double fx,fb,fa;    exit(EXIT_FAILURE);
    }
   ncom=n;  /*********************** vector *******************/
   pcom=vector(1,n);  double *vector(int nl, int nh)
   xicom=vector(1,n);  {
   nrfunc=func;    double *v;
   for (j=1;j<=n;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     pcom[j]=p[j];    if (!v) nrerror("allocation failure in vector");
     xicom[j]=xi[j];    return v-nl+NR_END;
   }  }
   ax=0.0;  
   xx=1.0;  /************************ free vector ******************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  void free_vector(double*v, int nl, int nh)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /************************ivector *******************************/
     xi[j] *= xmin;  int *ivector(long nl,long nh)
     p[j] += xi[j];  {
   }    int *v;
   free_vector(xicom,1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   free_vector(pcom,1,n);    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /******************free ivector **************************/
             double (*func)(double []))  void free_ivector(int *v, long nl, long nh)
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(v+nl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /************************lvector *******************************/
   double fp,fptt;  long *lvector(long nl,long nh)
   double *xits;  {
   pt=vector(1,n);    long *v;
   ptt=vector(1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   xit=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xits=vector(1,n);    return v-nl+NR_END;
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************free lvector **************************/
     fp=(*fret);  void free_lvector(long *v, long nl, long nh)
     ibig=0;  {
     del=0.0;    free((FREE_ARG)(v+nl-NR_END));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************* imatrix *******************************/
     printf("\n");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (i=1;i<=n;i++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  { 
       fptt=(*fret);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
       printf("fret=%lf \n",*fret);    
 #endif    /* allocate pointers to rows */ 
       printf("%d",i);fflush(stdout);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (fabs(fptt-(*fret)) > del) {    m += NR_END; 
         del=fabs(fptt-(*fret));    m -= nrl; 
         ibig=i;    
       }    
 #ifdef DEBUG    /* allocate rows and set pointers to them */ 
       printf("%d %.12e",i,(*fret));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] += NR_END; 
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl; 
       }    
       for(j=1;j<=n;j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         printf(" p=%.12e",p[j]);    
       printf("\n");    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
     }  } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       int k[2],l;  void free_imatrix(m,nrl,nrh,ncl,nch)
       k[0]=1;        int **m;
       k[1]=-1;        long nch,ncl,nrh,nrl; 
       printf("Max: %.12e",(*func)(p));       /* free an int matrix allocated by imatrix() */ 
       for (j=1;j<=n;j++)  { 
         printf(" %.12e",p[j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf("\n");    free((FREE_ARG) (m+nrl-NR_END)); 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* matrix *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
 #endif  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(xit,1,n);    m += NR_END;
       free_vector(xits,1,n);    m -= nrl;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl] -= ncl;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       xit[j]=p[j]-pt[j];    return m;
       pt[j]=p[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     }     */
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /*************************free matrix ************************/
       if (t < 0.0) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(m+nrl-NR_END));
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /******************* ma3x *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         printf("\n");    double ***m;
 #endif  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
 }    m -= nrl;
   
 /**** Prevalence limit ****************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   int i, ii,j,k;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **matprod2();    m[nrl][ncl] += NR_END;
   double **out, cov[NCOVMAX], **pmij();    m[nrl][ncl] -= nll;
   double **newm;    for (j=ncl+1; j<=nch; j++) 
   double agefin, delaymax=50 ; /* Max number of years to converge */      m[nrl][j]=m[nrl][j-1]+nlay;
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (i=nrl+1; i<=nrh; i++) {
     for (j=1;j<=nlstate+ndeath;j++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     }
    cov[1]=1.;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    */
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************** function subdirf ***********/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char *subdirf(char fileres[])
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************** function subdirf2 ***********/
     for(j=1;j<=nlstate;j++){  char *subdirf2(char fileres[], char *preop)
       min=1.;  {
       max=0.;    
       for(i=1; i<=nlstate; i++) {    /* Caution optionfilefiname is hidden */
         sumnew=0;    strcpy(tmpout,optionfilefiname);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,"/");
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,preop);
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,fileres);
         min=FMIN(min,prlim[i][j]);    return tmpout;
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     if(maxmax < ftolpl){  {
       return prlim;    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /*************** transition probabilities ***************/    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return tmpout;
 {  }
   double s1, s2;  
   /*double t34;*/  /***************** f1dim *************************/
   int i,j,j1, nc, ii, jj;  extern int ncom; 
   extern double *pcom,*xicom;
     for(i=1; i<= nlstate; i++){  extern double (*nrfunc)(double []); 
     for(j=1; j<i;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double f1dim(double x) 
         /*s2 += param[i][j][nc]*cov[nc];*/  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int j; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double f;
       }    double *xt; 
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=i+1; j<=nlstate+ndeath;j++){    f=(*nrfunc)(xt); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(xt,1,ncom); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return f; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
     /*ps[3][2]=1;*/    int iter; 
     double a,b,d,etemp;
   for(i=1; i<= nlstate; i++){    double fu,fv,fw,fx;
      s1=0;    double ftemp;
     for(j=1; j<i; j++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       s1+=exp(ps[i][j]);    double e=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);    a=(ax < cx ? ax : cx); 
     ps[i][i]=1./(s1+1.);    b=(ax > cx ? ax : cx); 
     for(j=1; j<i; j++)    x=w=v=bx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    fw=fv=fx=(*f)(x); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (iter=1;iter<=ITMAX;iter++) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      xm=0.5*(a+b); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   } /* end i */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      fprintf(ficlog,".");fflush(ficlog);
     for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
       ps[ii][jj]=0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[ii][ii]=1;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        return fx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } 
      printf("%lf ",ps[ii][jj]);      ftemp=fu;
    }      if (fabs(e) > tol1) { 
     printf("\n ");        r=(x-w)*(fx-fv); 
     }        q=(x-v)*(fx-fw); 
     printf("\n ");printf("%lf ",cov[2]);*/        p=(x-v)*q-(x-w)*r; 
 /*        q=2.0*(q-r); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        if (q > 0.0) p = -p; 
   goto end;*/        q=fabs(q); 
     return ps;        etemp=e; 
 }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /**************** Product of 2 matrices ******************/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          d=p/q; 
 {          u=x+d; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          if (u-a < tol2 || b-u < tol2) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            d=SIGN(tol1,xm-x); 
   /* in, b, out are matrice of pointers which should have been initialized        } 
      before: only the contents of out is modified. The function returns      } else { 
      a pointer to pointers identical to out */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   long i, j, k;      } 
   for(i=nrl; i<= nrh; i++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for(k=ncolol; k<=ncoloh; k++)      fu=(*f)(u); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if (fu <= fx) { 
         out[i][k] +=in[i][j]*b[j][k];        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   return out;          SHFT(fv,fw,fx,fu) 
 }          } else { 
             if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /************* Higher Matrix Product ***************/              v=w; 
               w=u; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              fv=fw; 
 {              fw=fu; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month            } else if (fu <= fv || v == x || v == w) { 
      duration (i.e. until              v=u; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.              fv=fu; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            } 
      (typically every 2 years instead of every month which is too big).          } 
      Model is determined by parameters x and covariates have to be    } 
      included manually here.    nrerror("Too many iterations in brent"); 
     *xmin=x; 
      */    return fx; 
   } 
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /****************** mnbrak ***********************/
   double **newm;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* Hstepm could be zero and should return the unit matrix */              double (*func)(double)) 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    double ulim,u,r,q, dum;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double fu; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }    *fa=(*func)(*ax); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *fb=(*func)(*bx); 
   for(h=1; h <=nhstepm; h++){    if (*fb > *fa) { 
     for(d=1; d <=hstepm; d++){      SHFT(dum,*ax,*bx,dum) 
       newm=savm;        SHFT(dum,*fb,*fa,dum) 
       /* Covariates have to be included here again */        } 
       cov[1]=1.;    *cx=(*bx)+GOLD*(*bx-*ax); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    *fc=(*func)(*cx); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    while (*fb > *fc) { 
       for (k=1; k<=cptcovage;k++)      r=(*bx-*ax)*(*fb-*fc); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      q=(*bx-*cx)*(*fb-*fa); 
       for (k=1; k<=cptcovprod;k++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fu=(*func)(u); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (fu < *fc) { 
       savm=oldm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       oldm=newm;            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     for(i=1; i<=nlstate+ndeath; i++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for(j=1;j<=nlstate+ndeath;j++) {        u=ulim; 
         po[i][j][h]=newm[i][j];        fu=(*func)(u); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      } else { 
          */        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
   } /* end h */      } 
   return po;      SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
   } 
 /*************** log-likelihood *************/  
 double func( double *x)  /*************** linmin ************************/
 {  
   int i, ii, j, k, mi, d, kk;  int ncom; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double *pcom,*xicom;
   double **out;  double (*nrfunc)(double []); 
   double sw; /* Sum of weights */   
   double lli; /* Individual log likelihood */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   long ipmx;  { 
   /*extern weight */    double brent(double ax, double bx, double cx, 
   /* We are differentiating ll according to initial status */                 double (*f)(double), double tol, double *xmin); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double f1dim(double x); 
   /*for(i=1;i<imx;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf(" %d\n",s[4][i]);                double *fc, double (*func)(double)); 
   */    int j; 
   cov[1]=1.;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ncom=n; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    pcom=vector(1,n); 
     for(mi=1; mi<= wav[i]-1; mi++){    xicom=vector(1,n); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    nrfunc=func; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       for(d=0; d<dh[mi][i]; d++){      pcom[j]=p[j]; 
         newm=savm;      xicom[j]=xi[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } 
         for (kk=1; kk<=cptcovage;kk++) {    ax=0.0; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    xx=1.0; 
         }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
            *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         savm=oldm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         oldm=newm;  #endif
            for (j=1;j<=n;j++) { 
              xi[j] *= xmin; 
       } /* end mult */      p[j] += xi[j]; 
          } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free_vector(xicom,1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free_vector(pcom,1,n); 
       ipmx +=1;  } 
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  char *asc_diff_time(long time_sec, char ascdiff[])
     } /* end of wave */  {
   } /* end of individual */    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    sec_left = (time_sec) % (60*60*24);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    hours = (sec_left) / (60*60) ;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    sec_left = (sec_left) %(60*60);
   return -l;    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i,j, iter;              double (*func)(double [])) 
   double **xi,*delti;  { 
   double fret;    void linmin(double p[], double xi[], int n, double *fret, 
   xi=matrix(1,npar,1,npar);                double (*func)(double [])); 
   for (i=1;i<=npar;i++)    int i,ibig,j; 
     for (j=1;j<=npar;j++)    double del,t,*pt,*ptt,*xit;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fp,fptt;
   printf("Powell\n");    double *xits;
   powell(p,xi,npar,ftol,&iter,&fret,func);    int niterf, itmp;
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    pt=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    ptt=vector(1,n); 
     xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /**** Computes Hessian and covariance matrix ***/    for (j=1;j<=n;j++) pt[j]=p[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   double  **a,**y,*x,pd;      ibig=0; 
   double **hess;      del=0.0; 
   int i, j,jk;      last_time=curr_time;
   int *indx;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double hessii(double p[], double delta, int theta, double delti[]);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double hessij(double p[], double delti[], int i, int j);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;      */
   void ludcmp(double **a, int npar, int *indx, double *d) ;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   hess=matrix(1,npar,1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   printf("\nCalculation of the hessian matrix. Wait...\n");      }
   for (i=1;i<=npar;i++){      printf("\n");
     printf("%d",i);fflush(stdout);      fprintf(ficlog,"\n");
     hess[i][i]=hessii(p,ftolhess,i,delti);      fprintf(ficrespow,"\n");fflush(ficrespow);
     /*printf(" %f ",p[i]);*/      if(*iter <=3){
     /*printf(" %lf ",hess[i][i]);*/        tm = *localtime(&curr_time.tv_sec);
   }        strcpy(strcurr,asctime(&tm));
    /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++) {        forecast_time=curr_time; 
     for (j=1;j<=npar;j++)  {        itmp = strlen(strcurr);
       if (j>i) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         printf(".%d%d",i,j);fflush(stdout);          strcurr[itmp-1]='\0';
         hess[i][j]=hessij(p,delti,i,j);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         hess[j][i]=hess[i][j];            fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /*printf(" %lf ",hess[i][j]);*/        for(niterf=10;niterf<=30;niterf+=10){
       }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
   printf("\n");          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   a=matrix(1,npar,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   y=matrix(1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   x=vector(1,npar);        }
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)      for (i=1;i<=n;i++) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   ludcmp(a,npar,indx,&pd);        fptt=(*fret); 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        printf("fret=%lf \n",*fret);
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"fret=%lf \n",*fret);
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);        printf("%d",i);fflush(stdout);
     for (i=1;i<=npar;i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
       matcov[i][j]=x[i];        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
           ibig=i; 
   printf("\n#Hessian matrix#\n");        } 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++) {        printf("%d %.12e",i,(*fret));
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
     printf("\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /* Recompute Inverse */        }
   for (i=1;i<=npar;i++)        for(j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf(" p=%.12e",p[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," p=%.12e",p[j]);
         }
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("\n");
         fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     lubksb(a,npar,indx,x);  #ifdef DEBUG
     for (i=1;i<=npar;i++){        int k[2],l;
       y[i][j]=x[i];        k[0]=1;
       printf("%.3e ",y[i][j]);        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     printf("\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
   */          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);        printf("\n");
   free_vector(x,1,npar);        fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);        for(l=0;l<=1;l++) {
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /*************** hessian matrix ****************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i;  #endif
   int l=1, lmax=20;  
   double k1,k2;  
   double p2[NPARMAX+1];        free_vector(xit,1,n); 
   double res;        free_vector(xits,1,n); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        free_vector(ptt,1,n); 
   double fx;        free_vector(pt,1,n); 
   int k=0,kmax=10;        return; 
   double l1;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   fx=func(x);      for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
   for(l=0 ; l <=lmax; l++){        xit[j]=p[j]-pt[j]; 
     l1=pow(10,l);        pt[j]=p[j]; 
     delts=delt;      } 
     for(k=1 ; k <kmax; k=k+1){      fptt=(*func)(ptt); 
       delt = delta*(l1*k);      if (fptt < fp) { 
       p2[theta]=x[theta] +delt;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       k1=func(p2)-fx;        if (t < 0.0) { 
       p2[theta]=x[theta]-delt;          linmin(p,xit,n,fret,func); 
       k2=func(p2)-fx;          for (j=1;j<=n;j++) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */            xi[j][ibig]=xi[j][n]; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            xi[j][n]=xit[j]; 
                }
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 #endif          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for(j=1;j<=n;j++){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            printf(" %.12e",xit[j]);
         k=kmax;            fprintf(ficlog," %.12e",xit[j]);
       }          }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("\n");
         k=kmax; l=lmax*10.;          fprintf(ficlog,"\n");
       }  #endif
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;      } 
       }    } 
     }  } 
   }  
   delti[theta]=delts;  /**** Prevalence limit (stable prevalence)  ****************/
   return res;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 double hessij( double x[], double delti[], int thetai,int thetaj)       matrix by transitions matrix until convergence is reached */
 {  
   int i;    int i, ii,j,k;
   int l=1, l1, lmax=20;    double min, max, maxmin, maxmax,sumnew=0.;
   double k1,k2,k3,k4,res,fx;    double **matprod2();
   double p2[NPARMAX+1];    double **out, cov[NCOVMAX], **pmij();
   int k;    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   fx=func(x);  
   for (k=1; k<=2; k++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      }
     k1=func(p2)-fx;  
       cov[1]=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     k2=func(p2)-fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
     p2[thetai]=x[thetai]-delti[thetai]/k;      /* Covariates have to be included here again */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       cov[2]=agefin;
     k3=func(p2)-fx;    
          for (k=1; k<=cptcovn;k++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #ifdef DEBUG        for (k=1; k<=cptcovprod;k++)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 #endif  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   return res;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)      savm=oldm;
 {      oldm=newm;
   int i,imax,j,k;      maxmax=0.;
   double big,dum,sum,temp;      for(j=1;j<=nlstate;j++){
   double *vv;        min=1.;
          max=0.;
   vv=vector(1,n);        for(i=1; i<=nlstate; i++) {
   *d=1.0;          sumnew=0;
   for (i=1;i<=n;i++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     big=0.0;          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (j=1;j<=n;j++)          max=FMAX(max,prlim[i][j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          min=FMIN(min,prlim[i][j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      if(maxmax < ftolpl){
       sum=a[i][j];        return prlim;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;    }
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /*************** transition probabilities ***************/ 
       sum=a[i][j];  
       for (k=1;k<j;k++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    double s1, s2;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /*double t34;*/
         big=dum;    int i,j,j1, nc, ii, jj;
         imax=i;  
       }      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     if (j != imax) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1;k<=n;k++) {            /*s2 += param[i][j][nc]*cov[nc];*/
         dum=a[imax][k];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         a[imax][k]=a[j][k];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         a[j][k]=dum;          }
       }          ps[i][j]=s2;
       *d = -(*d);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       vv[imax]=vv[j];        }
     }        for(j=i+1; j<=nlstate+ndeath;j++){
     indx[j]=imax;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (a[j][j] == 0.0) a[j][j]=TINY;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (j != n) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       dum=1.0/(a[j][j]);          }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ps[i][j]=s2;
     }        }
   }      }
   free_vector(vv,1,n);  /* Doesn't work */      /*ps[3][2]=1;*/
 ;      
 }      for(i=1; i<= nlstate; i++){
         s1=0;
 void lubksb(double **a, int n, int *indx, double b[])        for(j=1; j<i; j++)
 {          s1+=exp(ps[i][j]);
   int i,ii=0,ip,j;        for(j=i+1; j<=nlstate+ndeath; j++)
   double sum;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     ip=indx[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[ip]=b[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (ii)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      } /* end i */
     else if (sum) ii=i;      
     b[i]=sum;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=n;i>=1;i--) {          ps[ii][jj]=0;
     sum=b[i];          ps[ii][ii]=1;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];      }
   }      
 }  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /************ Frequencies ********************/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  /*         printf("ddd %lf ",ps[ii][jj]); */
 {  /* Some frequencies */  /*       } */
    /*       printf("\n "); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /*        } */
   double ***freq; /* Frequencies */  /*        printf("\n ");printf("%lf ",cov[2]); */
   double *pp;         /*
   double pos, k2, dateintsum=0,k2cpt=0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   FILE *ficresp;        goto end;*/
   char fileresp[FILENAMELENGTH];      return ps;
   }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /**************** Product of 2 matrices ******************/
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     exit(0);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       before: only the contents of out is modified. The function returns
   j1=0;       a pointer to pointers identical to out */
     long i, j, k;
   j=cptcoveff;    for(i=nrl; i<= nrh; i++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for(k1=1; k1<=j;k1++){          out[i][k] +=in[i][j]*b[j][k];
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    return out;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  }
          scanf("%d", i);*/  
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /************* Higher Matrix Product ***************/
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
         dateintsum=0;    /* Computes the transition matrix starting at age 'age' over 
         k2cpt=0;       'nhstepm*hstepm*stepm' months (i.e. until
        for (i=1; i<=imx; i++) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          bool=1;       nhstepm*hstepm matrices. 
          if  (cptcovn>0) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
            for (z1=1; z1<=cptcoveff; z1++)       (typically every 2 years instead of every month which is too big 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       for the memory).
                bool=0;       Model is determined by parameters x and covariates have to be 
          }       included manually here. 
          if (bool==1) {  
            for(m=firstpass; m<=lastpass; m++){       */
              k2=anint[m][i]+(mint[m][i]/12.);  
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i, j, d, h, k;
                if(agev[m][i]==0) agev[m][i]=agemax+1;    double **out, cov[NCOVMAX];
                if(agev[m][i]==1) agev[m][i]=agemax+2;    double **newm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* Hstepm could be zero and should return the unit matrix */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (i=1;i<=nlstate+ndeath;i++)
                  dateintsum=dateintsum+k2;      for (j=1;j<=nlstate+ndeath;j++){
                  k2cpt++;        oldm[i][j]=(i==j ? 1.0 : 0.0);
                }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
              }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            }    for(h=1; h <=nhstepm; h++){
          }      for(d=1; d <=hstepm; d++){
        }        newm=savm;
         if  (cptcovn>0) {        /* Covariates have to be included here again */
          fprintf(ficresp, "\n#********** Variable ");        cov[1]=1.;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
        fprintf(ficresp, "**********\n#");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
        for(i=1; i<=nlstate;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovprod;k++)
        fprintf(ficresp, "\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  
     if(i==(int)agemax+3)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       printf("Total");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     else        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       printf("Age %d", i);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        oldm=newm;
         pp[jk] += freq[jk][m][i];      }
     }      for(i=1; i<=nlstate+ndeath; i++)
     for(jk=1; jk <=nlstate ; jk++){        for(j=1;j<=nlstate+ndeath;j++) {
       for(m=-1, pos=0; m <=0 ; m++)          po[i][j][h]=newm[i][j];
         pos += freq[jk][m][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       if(pp[jk]>=1.e-10)           */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
       else    } /* end h */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return po;
     }  }
   
      for(jk=1; jk <=nlstate ; jk++){  
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*************** log-likelihood *************/
         pp[jk] += freq[jk][m][i];  double func( double *x)
      }  {
     int i, ii, j, k, mi, d, kk;
     for(jk=1,pos=0; jk <=nlstate ; jk++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       pos += pp[jk];    double **out;
     for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
       if(pos>=1.e-5)    double lli; /* Individual log likelihood */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int s1, s2;
       else    double bbh, survp;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    long ipmx;
       if( i <= (int) agemax){    /*extern weight */
         if(pos>=1.e-5){    /* We are differentiating ll according to initial status */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           probs[i][jk][j1]= pp[jk]/pos;    /*for(i=1;i<imx;i++) 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      printf(" %d\n",s[4][i]);
         }    */
       else    cov[1]=1.;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)    if(mle==1){
       for(m=-1; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(i <= (int) agemax)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresp,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
     printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
   dateintmean=dateintsum/k2cpt;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /* End of Freq */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Prevalence ********************/            oldm=newm;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          } /* end mult */
 {  /* Some frequencies */        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double ***freq; /* Frequencies */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double *pp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double pos, k2;           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   pp=vector(1,nlstate);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * -stepm/2 to stepm/2 .
   j1=0;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
  for(k1=1; k1<=j;k1++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i1=1; i1<=ncodemax[k1];i1++){          /* bias bh is positive if real duration
       j1++;           * is higher than the multiple of stepm and negative otherwise.
             */
       for (i=-1; i<=nlstate+ndeath; i++)            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if( s2 > nlstate){ 
           for(m=agemin; m <= agemax+3; m++)            /* i.e. if s2 is a death state and if the date of death is known 
             freq[i][jk][m]=0;               then the contribution to the likelihood is the probability to 
                     die between last step unit time and current  step unit time, 
       for (i=1; i<=imx; i++) {               which is also equal to probability to die before dh 
         bool=1;               minus probability to die before dh-stepm . 
         if  (cptcovn>0) {               In version up to 0.92 likelihood was computed
           for (z1=1; z1<=cptcoveff; z1++)          as if date of death was unknown. Death was treated as any other
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          health state: the date of the interview describes the actual state
               bool=0;          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
         if (bool==1) {          (healthy, disable or death) and IMaCh was corrected; but when we
           for(m=firstpass; m<=lastpass; m++){          introduced the exact date of death then we should have modified
             k2=anint[m][i]+(mint[m][i]/12.);          the contribution of an exact death to the likelihood. This new
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          contribution is smaller and very dependent of the step unit
               if(agev[m][i]==0) agev[m][i]=agemax+1;          stepm. It is no more the probability to die between last interview
               if(agev[m][i]==1) agev[m][i]=agemax+2;          and month of death but the probability to survive from last
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          interview up to one month before death multiplied by the
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
                  */
         for(i=(int)agemin; i <= (int)agemax+3; i++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];          } else if  (s2==-2) {
           }            for (j=1,survp=0. ; j<=nlstate; j++) 
           for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
             for(m=-1, pos=0; m <=0 ; m++)            lli= survp;
             pos += freq[jk][m][i];          }
         }          
                  else if  (s2==-4) {
          for(jk=1; jk <=nlstate ; jk++){            for (j=3,survp=0. ; j<=nlstate; j++) 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              survp += out[s1][j];
              pp[jk] += freq[jk][m][i];            lli= survp;
          }          }
                    
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          else if  (s2==-5) {
             for (j=1,survp=0. ; j<=2; j++) 
          for(jk=1; jk <=nlstate ; jk++){                        survp += out[s1][j];
            if( i <= (int) agemax){            lli= survp;
              if(pos>=1.e-5){          }
                probs[i][jk][j1]= pp[jk]/pos;  
              }  
            }          else{
          }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                      /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          sw += weight[i];
   free_vector(pp,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
 }  /* End of Freq */      } /* end of individual */
     }  else if(mle==2){
 /************* Waves Concatenation ***************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            }
      and mw[mi+1][i]. dh depends on stepm.          for(d=0; d<=dh[mi][i]; d++){
      */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;            for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;            savm=oldm;
   jmin=1e+5;            oldm=newm;
   jmax=-1;          } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     mi=0;          s2=s[mw[mi+1][i]][i];
     m=firstpass;          bbh=(double)bh[mi][i]/(double)stepm; 
     while(s[m][i] <= nlstate){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       if(s[m][i]>=1)          ipmx +=1;
         mw[++mi][i]=m;          sw += weight[i];
       if(m >=lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         break;        } /* end of wave */
       else      } /* end of individual */
         m++;    }  else if(mle==3){  /* exponential inter-extrapolation */
     }/* end while */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (s[m][i] > nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mi++;     /* Death is another wave */        for(mi=1; mi<= wav[i]-1; mi++){
       /* if(mi==0)  never been interviewed correctly before death */          for (ii=1;ii<=nlstate+ndeath;ii++)
          /* Only death is a correct wave */            for (j=1;j<=nlstate+ndeath;j++){
       mw[mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     wav[i]=mi;          for(d=0; d<dh[mi][i]; d++){
     if(mi==0)            newm=savm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     for(mi=1; mi<wav[i];mi++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (stepm <=0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dh[mi][i]=1;            savm=oldm;
       else{            oldm=newm;
         if (s[mw[mi+1][i]][i] > nlstate) {          } /* end mult */
           if (agedc[i] < 2*AGESUP) {        
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
           k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if (j <= jmin) jmin=j;          ipmx +=1;
           sum=sum+j;          sw += weight[i];
           /* if (j<10) printf("j=%d num=%d ",j,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }      } /* end of individual */
         else{    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           else if (j <= jmin)jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;            }
         jl= j -jk*stepm;          for(d=0; d<dh[mi][i]; d++){
         ju= j -(jk+1)*stepm;            newm=savm;
         if(jl <= -ju)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk;            for (kk=1; kk<=cptcovage;kk++) {
         else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)          
           dh[mi][i]=1; /* At least one step */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   jmean=sum/k;          } /* end mult */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        
  }          s1=s[mw[mi][i]][i];
 /*********** Tricode ****************************/          s2=s[mw[mi+1][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          if( s2 > nlstate){ 
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int Ndum[20],ij=1, k, j, i;          }else{
   int cptcode=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   cptcoveff=0;          }
            ipmx +=1;
   for (k=0; k<19; k++) Ndum[k]=0;          sw += weight[i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        } /* end of wave */
     for (i=1; i<=imx; i++) {      } /* end of individual */
       ij=(int)(covar[Tvar[j]][i]);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (ij > cptcode) cptcode=ij;        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for (i=0; i<=cptcode; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     ij=1;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=ncodemax[j]; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       for (k=0; k<=19; k++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (Ndum[k] != 0) {            }
           nbcode[Tvar[j]][ij]=k;          
           ij++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (ij > ncodemax[j]) break;            savm=oldm;
       }              oldm=newm;
     }          } /* end mult */
   }          
           s1=s[mw[mi][i]][i];
  for (k=0; k<19; k++) Ndum[k]=0;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  for (i=1; i<=ncovmodel-2; i++) {          ipmx +=1;
       ij=Tvar[i];          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
  ij=1;      } /* end of individual */
  for (i=1; i<=10; i++) {    } /* End of if */
    if((Ndum[i]!=0) && (i<=ncov)){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      Tvaraff[ij]=i;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      ij++;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    }    return -l;
  }  }
    
     cptcoveff=ij-1;  /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
 /*********** Health Expectancies ****************/    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 {    double **out;
   /* Health expectancies */    double lli; /* Individual log likelihood */
   int i, j, nhstepm, hstepm, h;    double llt;
   double age, agelim,hf;    int s1, s2;
   double ***p3mat;    double bbh, survp;
      /*extern weight */
   fprintf(ficreseij,"# Health expectancies\n");    /* We are differentiating ll according to initial status */
   fprintf(ficreseij,"# Age");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(i=1; i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
     for(j=1; j<=nlstate;j++)      printf(" %d\n",s[4][i]);
       fprintf(ficreseij," %1d-%1d",i,j);    */
   fprintf(ficreseij,"\n");    cov[1]=1.;
   
   hstepm=1*YEARM; /*  Every j years of age (in month) */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim=AGESUP;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(mi=1; mi<= wav[i]-1; mi++){
     /* nhstepm age range expressed in number of stepm */        for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          for (j=1;j<=nlstate+ndeath;j++){
     /* Typically if 20 years = 20*12/6=40 stepm */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(d=0; d<dh[mi][i]; d++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          newm=savm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
     for(i=1; i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          savm=oldm;
           eij[i][j][(int)age] +=p3mat[i][j][h];          oldm=newm;
         }        } /* end mult */
            
     hf=1;        s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;        s2=s[mw[mi+1][i]][i];
     fprintf(ficreseij,"%.0f",age );        bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1; i<=nlstate;i++)        /* bias is positive if real duration
       for(j=1; j<=nlstate;j++){         * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     fprintf(ficreseij,"\n");          lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /************ Variance ******************/        } else if(mle==3){  /* exponential inter-extrapolation */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* Variance of health expectancies */          lli=log(out[s1][s2]); /* Original formula */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **newm;          lli=log(out[s1][s2]); /* Original formula */
   double **dnewm,**doldm;        } /* End of if */
   int i, j, nhstepm, hstepm, h;        ipmx +=1;
   int k, cptcode;        sw += weight[i];
   double *xp;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gp, **gm;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double ***gradg, ***trgradg;        if(globpr){
   double ***p3mat;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double age,agelim;   %10.6f %10.6f %10.6f ", \
   int theta;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficresvij,"# Age");            llt +=ll[k]*gipmx/gsw;
   for(i=1; i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          fprintf(ficresilk," %10.6f\n", -llt);
   fprintf(ficresvij,"\n");        }
       } /* end of wave */
   xp=vector(1,npar);    } /* end of individual */
   dnewm=matrix(1,nlstate,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   doldm=matrix(1,nlstate,1,nlstate);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   hstepm=1*YEARM; /* Every year of age */    if(globpr==0){ /* First time we count the contributions and weights */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      gipmx=ipmx;
   agelim = AGESUP;      gsw=sw;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    return -l;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  /*************** function likelione ***********/
     gp=matrix(0,nhstepm,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     gm=matrix(0,nhstepm,1,nlstate);  {
     /* This routine should help understanding what is done with 
     for(theta=1; theta <=npar; theta++){       the selection of individuals/waves and
       for(i=1; i<=npar; i++){ /* Computes gradient */       to check the exact contribution to the likelihood.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Plotting could be done.
       }     */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     if(*globpri !=0){ /* Just counts and sums, no printings */
       if (popbased==1) {      strcpy(fileresilk,"ilk"); 
         for(i=1; i<=nlstate;i++)      strcat(fileresilk,fileres);
           prlim[i][i]=probs[(int)age][i][ij];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }        printf("Problem with resultfile: %s\n", fileresilk);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
          fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      *fretone=(*funcone)(p);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(*globpri !=0){
       fclose(ficresilk);
       if (popbased==1) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         for(i=1; i<=nlstate;i++)      fflush(fichtm); 
           prlim[i][i]=probs[(int)age][i][ij];    } 
       }    return;
   }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /*********** Maximum Likelihood Estimation ***************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       }  {
     int i,j, iter;
       for(j=1; j<= nlstate; j++)    double **xi;
         for(h=0; h<=nhstepm; h++){    double fret;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
     } /* End theta */    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     for(h=0; h<=nhstepm; h++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(j=1; j<=nlstate;j++)    strcpy(filerespow,"pow"); 
         for(theta=1; theta <=npar; theta++)    strcat(filerespow,fileres);
           trgradg[h][j][theta]=gradg[h][theta][j];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(h=0;h<=nhstepm;h++){    for (i=1;i<=nlstate;i++)
       for(k=0;k<=nhstepm;k++){      for(j=1;j<=nlstate+ndeath;j++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficrespow,"\n");
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
             vareij[i][j][(int)age] += doldm[i][j];  
       }    fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     h=1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     if (stepm >= YEARM) h=stepm/YEARM;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);  /**** Computes Hessian and covariance matrix ***/
       }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     fprintf(ficresvij,"\n");  {
     free_matrix(gp,0,nhstepm,1,nlstate);    double  **a,**y,*x,pd;
     free_matrix(gm,0,nhstepm,1,nlstate);    double **hess;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int i, j,jk;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int *indx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_vector(xp,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_matrix(doldm,1,nlstate,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
 }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 /************ Variance of prevlim ******************/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++){
 {      printf("%d",i);fflush(stdout);
   /* Variance of prevalence limit */      fprintf(ficlog,"%d",i);fflush(ficlog);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     
   double **newm;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **dnewm,**doldm;      
   int i, j, nhstepm, hstepm;      /*  printf(" %f ",p[i]);
   int k, cptcode;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double *xp;    }
   double *gp, *gm;    
   double **gradg, **trgradg;    for (i=1;i<=npar;i++) {
   double age,agelim;      for (j=1;j<=npar;j++)  {
   int theta;        if (j>i) { 
              printf(".%d%d",i,j);fflush(stdout);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(ficresvpl,"# Age");          hess[i][j]=hessij(p,delti,i,j,func,npar);
   for(i=1; i<=nlstate;i++)          
       fprintf(ficresvpl," %1d-%1d",i,i);          hess[j][i]=hess[i][j];    
   fprintf(ficresvpl,"\n");          /*printf(" %lf ",hess[i][j]);*/
         }
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n");
      fprintf(ficlog,"\n");
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   agelim = AGESUP;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    a=matrix(1,npar,1,npar);
     if (stepm >= YEARM) hstepm=1;    y=matrix(1,npar,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    x=vector(1,npar);
     gradg=matrix(1,npar,1,nlstate);    indx=ivector(1,npar);
     gp=vector(1,nlstate);    for (i=1;i<=npar;i++)
     gm=vector(1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (j=1;j<=npar;j++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      lubksb(a,npar,indx,x);
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
         gp[i] = prlim[i][i];        matcov[i][j]=x[i];
          }
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n#Hessian matrix#\n");
       for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         gm[i] = prlim[i][i];    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
       for(i=1;i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficlog,"%.3e ",hess[i][j]);
     } /* End theta */      }
       printf("\n");
     trgradg =matrix(1,nlstate,1,npar);      fprintf(ficlog,"\n");
     }
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    /* Recompute Inverse */
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(i=1;i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /*  printf("\n#Hessian matrix recomputed#\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     fprintf(ficresvpl,"%.0f ",age );      lubksb(a,npar,indx,x);
     for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        y[i][j]=x[i];
     fprintf(ficresvpl,"\n");        printf("%.3e ",y[i][j]);
     free_vector(gp,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
     free_vector(gm,1,nlstate);      }
     free_matrix(gradg,1,npar,1,nlstate);      printf("\n");
     free_matrix(trgradg,1,nlstate,1,npar);      fprintf(ficlog,"\n");
   } /* End age */    }
     */
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(a,1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {  }
   int i, j;  
   int k=0, cptcode;  /*************** hessian matrix ****************/
   double **dnewm,**doldm;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double *xp;  {
   double *gp, *gm;    int i;
   double **gradg, **trgradg;    int l=1, lmax=20;
   double age,agelim, cov[NCOVMAX];    double k1,k2;
   int theta;    double p2[NPARMAX+1];
   char fileresprob[FILENAMELENGTH];    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   strcpy(fileresprob,"prob");    double fx;
   strcat(fileresprob,fileres);    int k=0,kmax=10;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double l1;
     printf("Problem with resultfile: %s\n", fileresprob);  
   }    fx=func(x);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   xp=vector(1,npar);      delts=delt;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(k=1 ; k <kmax; k=k+1){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        delt = delta*(l1*k);
          p2[theta]=x[theta] +delt;
   cov[1]=1;        k1=func(p2)-fx;
   for (age=bage; age<=fage; age ++){        p2[theta]=x[theta]-delt;
     cov[2]=age;        k2=func(p2)-fx;
     gradg=matrix(1,npar,1,9);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     trgradg=matrix(1,9,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  #ifdef DEBUG
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++)  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
              if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          k=kmax;
            }
       k=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for(i=1; i<= (nlstate+ndeath); i++){          k=kmax; l=lmax*10.;
         for(j=1; j<=(nlstate+ndeath);j++){        }
            k=k+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           gp[k]=pmmij[i][j];          delts=delt;
         }        }
       }      }
     }
       for(i=1; i<=npar; i++)    delti[theta]=delts;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    return res; 
        
   }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(i=1; i<=(nlstate+ndeath); i++){  {
         for(j=1; j<=(nlstate+ndeath);j++){    int i;
           k=k+1;    int l=1, l1, lmax=20;
           gm[k]=pmmij[i][j];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
       }    int k;
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    fx=func(x);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for (k=1; k<=2; k++) {
     }      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k1=func(p2)-fx;
       trgradg[j][theta]=gradg[theta][j];    
        p2[thetai]=x[thetai]+delti[thetai]/k;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      k2=func(p2)-fx;
     
      pmij(pmmij,cov,ncovmodel,x,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      k=0;      k3=func(p2)-fx;
      for(i=1; i<=(nlstate+ndeath); i++){    
        for(j=1; j<=(nlstate+ndeath);j++){      p2[thetai]=x[thetai]-delti[thetai]/k;
          k=k+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          gm[k]=pmmij[i][j];      k4=func(p2)-fx;
         }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      }  #ifdef DEBUG
            printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      /*printf("\n%d ",(int)age);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  #endif
            }
     return res;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  }
      }*/  
   /************** Inverse of matrix **************/
   fprintf(ficresprob,"\n%d ",(int)age);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int i,imax,j,k; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double big,dum,sum,temp; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double *vv; 
   }   
     vv=vector(1,n); 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    *d=1.0; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=n;i++) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      big=0.0; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for (j=1;j<=n;j++) 
 }        if ((temp=fabs(a[i][j])) > big) big=temp; 
  free_vector(xp,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 fclose(ficresprob);      vv[i]=1.0/big; 
  exit(0);    } 
 }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 /***********************************************/        sum=a[i][j]; 
 /**************** Main Program *****************/        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 /***********************************************/        a[i][j]=sum; 
       } 
 int main(int argc, char *argv[])      big=0.0; 
 {      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for (k=1;k<j;k++) 
   double agedeb, agefin,hf;          sum -= a[i][k]*a[k][j]; 
   double agemin=1.e20, agemax=-1.e20;        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double fret;          big=dum; 
   double **xi,tmp,delta;          imax=i; 
         } 
   double dum; /* Dummy variable */      } 
   double ***p3mat;      if (j != imax) { 
   int *indx;        for (k=1;k<=n;k++) { 
   char line[MAXLINE], linepar[MAXLINE];          dum=a[imax][k]; 
   char title[MAXLINE];          a[imax][k]=a[j][k]; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          a[j][k]=dum; 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        } 
          *d = -(*d); 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];;        vv[imax]=vv[j]; 
       } 
   char filerest[FILENAMELENGTH];      indx[j]=imax; 
   char fileregp[FILENAMELENGTH];      if (a[j][j] == 0.0) a[j][j]=TINY; 
   char popfile[FILENAMELENGTH];      if (j != n) { 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        dum=1.0/(a[j][j]); 
   int firstobs=1, lastobs=10;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   int sdeb, sfin; /* Status at beginning and end */      } 
   int c,  h , cpt,l;    } 
   int ju,jl, mi;    free_vector(vv,1,n);  /* Doesn't work */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  ;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  } 
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  void lubksb(double **a, int n, int *indx, double b[]) 
   int *popage;/*boolprev=0 if date and zero if wave*/  { 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    int i,ii=0,ip,j; 
     double sum; 
   double bage, fage, age, agelim, agebase;   
   double ftolpl=FTOL;    for (i=1;i<=n;i++) { 
   double **prlim;      ip=indx[i]; 
   double *severity;      sum=b[ip]; 
   double ***param; /* Matrix of parameters */      b[ip]=b[i]; 
   double  *p;      if (ii) 
   double **matcov; /* Matrix of covariance */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double ***delti3; /* Scale */      else if (sum) ii=i; 
   double *delti; /* Scale */      b[i]=sum; 
   double ***eij, ***vareij;    } 
   double **varpl; /* Variances of prevalence limits by age */    for (i=n;i>=1;i--) { 
   double *epj, vepp;      sum=b[i]; 
   double kk1, kk2;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   double *popeffectif,*popcount;      b[i]=sum/a[i][i]; 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;    } 
   double yp,yp1,yp2;  } 
   
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";  /************ Frequencies ********************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
     
   char z[1]="c", occ;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 #include <sys/time.h>    int first;
 #include <time.h>    double ***freq; /* Frequencies */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   /* long total_usecs;    FILE *ficresp;
   struct timeval start_time, end_time;    char fileresp[FILENAMELENGTH];
      
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   printf("\n%s",version);    strcat(fileresp,fileres);
   if(argc <=1){    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("\nEnter the parameter file name: ");      printf("Problem with prevalence resultfile: %s\n", fileresp);
     scanf("%s",pathtot);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   }      exit(0);
   else{    }
     strcpy(pathtot,argv[1]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    
   /*cygwin_split_path(pathtot,path,optionfile);    j=cptcoveff;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* cutv(path,optionfile,pathtot,'\\');*/  
     first=1;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for(k1=1; k1<=j;k1++){
   chdir(path);      for(i1=1; i1<=ncodemax[k1];i1++){
   replace(pathc,path);        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /*-------- arguments in the command line --------*/          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
   strcpy(fileres,"r");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   strcat(fileres, optionfilefiname);            for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileres,".txt");    /* Other files have txt extension */              freq[i][jk][m]=0;
   
   /*---------arguments file --------*/      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          prop[i][m]=0;
     printf("Problem with optionfile %s\n",optionfile);        
     goto end;        dateintsum=0;
   }        k2cpt=0;
         for (i=1; i<=imx; i++) {
   strcpy(filereso,"o");          bool=1;
   strcat(filereso,fileres);          if  (cptcovn>0) {
   if((ficparo=fopen(filereso,"w"))==NULL) {            for (z1=1; z1<=cptcoveff; z1++) 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   }                bool=0;
           }
   /* Reads comments: lines beginning with '#' */          if (bool==1){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(m=firstpass; m<=lastpass; m++){
     ungetc(c,ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
     fgets(line, MAXLINE, ficpar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     puts(line);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fputs(line,ficparo);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   ungetc(c,ficpar);                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);                }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);                
 while((c=getc(ficpar))=='#' && c!= EOF){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     ungetc(c,ficpar);                  dateintsum=dateintsum+k2;
     fgets(line, MAXLINE, ficpar);                  k2cpt++;
     puts(line);                }
     fputs(line,ficparo);                /*}*/
   }            }
   ungetc(c,ficpar);          }
          }
             
   covar=matrix(0,NCOVMAX,1,n);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   cptcovn=0;  fprintf(ficresp, "#Local time at start: %s", strstart);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   ncovmodel=2+cptcovn;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficresp, "**********\n#");
          }
   /* Read guess parameters */        for(i=1; i<=nlstate;i++) 
   /* Reads comments: lines beginning with '#' */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresp, "\n");
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        for(i=iagemin; i <= iagemax+3; i++){
     puts(line);          if(i==iagemax+3){
     fputs(line,ficparo);            fprintf(ficlog,"Total");
   }          }else{
   ungetc(c,ficpar);            if(first==1){
                first=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              printf("See log file for details...\n");
     for(i=1; i <=nlstate; i++)            }
     for(j=1; j <=nlstate+ndeath-1; j++){            fprintf(ficlog,"Age %d", i);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       fprintf(ficparo,"%1d%1d",i1,j1);          for(jk=1; jk <=nlstate ; jk++){
       printf("%1d%1d",i,j);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(k=1; k<=ncovmodel;k++){              pp[jk] += freq[jk][m][i]; 
         fscanf(ficpar," %lf",&param[i][j][k]);          }
         printf(" %lf",param[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficparo," %lf",param[i][j][k]);            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
       fscanf(ficpar,"\n");            if(pp[jk]>=1.e-10){
       printf("\n");              if(first==1){
       fprintf(ficparo,"\n");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }else{
               if(first==1)
   p=param[1][1];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for(jk=1; jk <=nlstate ; jk++){
     puts(line);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fputs(line,ficparo);              pp[jk] += freq[jk][m][i];
   }          }       
   ungetc(c,ficpar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            posprop += prop[jk][i];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          }
   for(i=1; i <=nlstate; i++){          for(jk=1; jk <=nlstate ; jk++){
     for(j=1; j <=nlstate+ndeath-1; j++){            if(pos>=1.e-5){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              if(first==1)
       printf("%1d%1d",i,j);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficparo,"%1d%1d",i1,j1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(k=1; k<=ncovmodel;k++){            }else{
         fscanf(ficpar,"%le",&delti3[i][j][k]);              if(first==1)
         printf(" %le",delti3[i][j][k]);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficparo," %le",delti3[i][j][k]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       fscanf(ficpar,"\n");            if( i <= iagemax){
       printf("\n");              if(pos>=1.e-5){
       fprintf(ficparo,"\n");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   delti=delti3[1][1];              }
                else
   /* Reads comments: lines beginning with '#' */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          
     puts(line);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     fputs(line,ficparo);            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   ungetc(c,ficpar);              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   matcov=matrix(1,npar,1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   for(i=1; i <=npar; i++){              }
     fscanf(ficpar,"%s",&str);          if(i <= iagemax)
     printf("%s",str);            fprintf(ficresp,"\n");
     fprintf(ficparo,"%s",str);          if(first==1)
     for(j=1; j <=i; j++){            printf("Others in log...\n");
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficlog,"\n");
       printf(" %.5le",matcov[i][j]);        }
       fprintf(ficparo," %.5le",matcov[i][j]);      }
     }    }
     fscanf(ficpar,"\n");    dateintmean=dateintsum/k2cpt; 
     printf("\n");   
     fprintf(ficparo,"\n");    fclose(ficresp);
   }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   for(i=1; i <=npar; i++)    free_vector(pp,1,nlstate);
     for(j=i+1;j<=npar;j++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       matcov[i][j]=matcov[j][i];    /* End of Freq */
      }
   printf("\n");  
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     /*-------- data file ----------*/  {  
     if((ficres =fopen(fileres,"w"))==NULL) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       printf("Problem with resultfile: %s\n", fileres);goto end;       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
     fprintf(ficres,"#%s\n",version);    */
       
     if((fic=fopen(datafile,"r"))==NULL)    {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       printf("Problem with datafile: %s\n", datafile);goto end;    double ***freq; /* Frequencies */
     }    double *pp, **prop;
     double pos,posprop; 
     n= lastobs;    double  y2; /* in fractional years */
     severity = vector(1,maxwav);    int iagemin, iagemax;
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    iagemin= (int) agemin;
     moisnais=vector(1,n);    iagemax= (int) agemax;
     annais=vector(1,n);    /*pp=vector(1,nlstate);*/
     moisdc=vector(1,n);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     andc=vector(1,n);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     agedc=vector(1,n);    j1=0;
     cod=ivector(1,n);    
     weight=vector(1,n);    j=cptcoveff;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     mint=matrix(1,maxwav,1,n);    
     anint=matrix(1,maxwav,1,n);    for(k1=1; k1<=j;k1++){
     s=imatrix(1,maxwav+1,1,n);      for(i1=1; i1<=ncodemax[k1];i1++){
     adl=imatrix(1,maxwav+1,1,n);            j1++;
     tab=ivector(1,NCOVMAX);        
     ncodemax=ivector(1,8);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     i=1;            prop[i][m]=0.0;
     while (fgets(line, MAXLINE, fic) != NULL)    {       
       if ((i >= firstobs) && (i <=lastobs)) {        for (i=1; i<=imx; i++) { /* Each individual */
                  bool=1;
         for (j=maxwav;j>=1;j--){          if  (cptcovn>0) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for (z1=1; z1<=cptcoveff; z1++) 
           strcpy(line,stra);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                bool=0;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } 
         }          if (bool==1) { 
                    for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for (j=ncov;j>=1;j--){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                  prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
         num[i]=atol(stra);              }
                    } /* end selection of waves */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
         for(i=iagemin; i <= iagemax+3; i++){  
         i=i+1;          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     }            posprop += prop[jk][i]; 
     /* printf("ii=%d", ij);          } 
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   /* for (i=1; i<=imx; i++){              if(posprop>=1.e-5){ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                probs[i][jk][j1]= prop[jk][i]/posprop;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              } 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            } 
     }          }/* end jk */ 
         }/* end i */ 
     for (i=1; i<=imx; i++)      } /* end i1 */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    } /* end k1 */
     
   /* Calculation of the number of parameter from char model*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   Tvar=ivector(1,15);    /*free_vector(pp,1,nlstate);*/
   Tprod=ivector(1,15);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   Tvaraff=ivector(1,15);  }  /* End of prevalence */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);        /************* Waves Concatenation ***************/
      
   if (strlen(model) >1){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     j=0, j1=0, k1=1, k2=1;  {
     j=nbocc(model,'+');    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     j1=nbocc(model,'*');       Death is a valid wave (if date is known).
     cptcovn=j+1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     cptcovprod=j1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.
           */
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int i, mi, m;
       printf("Error. Non available option model=%s ",model);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       goto end;       double sum=0., jmean=0.;*/
     }    int first;
        int j, k=0,jk, ju, jl;
     for(i=(j+1); i>=1;i--){    double sum=0.;
       cutv(stra,strb,modelsav,'+');    first=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    jmin=1e+5;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    jmax=-1;
       /*scanf("%d",i);*/    jmean=0.;
       if (strchr(strb,'*')) {    for(i=1; i<=imx; i++){
         cutv(strd,strc,strb,'*');      mi=0;
         if (strcmp(strc,"age")==0) {      m=firstpass;
           cptcovprod--;      while(s[m][i] <= nlstate){
           cutv(strb,stre,strd,'V');        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           Tvar[i]=atoi(stre);          mw[++mi][i]=m;
           cptcovage++;        if(m >=lastpass)
             Tage[cptcovage]=i;          break;
             /*printf("stre=%s ", stre);*/        else
         }          m++;
         else if (strcmp(strd,"age")==0) {      }/* end while */
           cptcovprod--;      if (s[m][i] > nlstate){
           cutv(strb,stre,strc,'V');        mi++;     /* Death is another wave */
           Tvar[i]=atoi(stre);        /* if(mi==0)  never been interviewed correctly before death */
           cptcovage++;           /* Only death is a correct wave */
           Tage[cptcovage]=i;        mw[mi][i]=m;
         }      }
         else {  
           cutv(strb,stre,strc,'V');      wav[i]=mi;
           Tvar[i]=ncov+k1;      if(mi==0){
           cutv(strb,strc,strd,'V');        nbwarn++;
           Tprod[k1]=i;        if(first==0){
           Tvard[k1][1]=atoi(strc);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           Tvard[k1][2]=atoi(stre);          first=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        if(first==1){
           for (k=1; k<=lastobs;k++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        }
           k1++;      } /* end mi==0 */
           k2=k2+2;    } /* End individuals */
         }  
       }    for(i=1; i<=imx; i++){
       else {      for(mi=1; mi<wav[i];mi++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        if (stepm <=0)
        /*  scanf("%d",i);*/          dh[mi][i]=1;
       cutv(strd,strc,strb,'V');        else{
       Tvar[i]=atoi(strc);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
       strcpy(modelsav,stra);                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              if(j==0) j=1;  /* Survives at least one month after exam */
         scanf("%d",i);*/              else if(j<0){
     }                nberr++;
 }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  j=1; /* Temporary Dangerous patch */
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   printf("cptcovprod=%d ", cptcovprod);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   scanf("%d ",i);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fclose(fic);              }
               k=k+1;
     /*  if(mle==1){*/              if (j >= jmax){
     if (weightopt != 1) { /* Maximisation without weights*/                jmax=j;
       for(i=1;i<=n;i++) weight[i]=1.0;                ijmax=i;
     }              }
     /*-calculation of age at interview from date of interview and age at death -*/              if (j <= jmin){
     agev=matrix(1,maxwav,1,imx);                jmin=j;
                 ijmin=i;
    for (i=1; i<=imx; i++)              }
      for(m=2; (m<= maxwav); m++)              sum=sum+j;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
          anint[m][i]=9999;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
          s[m][i]=-1;            }
        }          }
              else{
     for (i=1; i<=imx; i++)  {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){            k=k+1;
           if (s[m][i] == nlstate+1) {            if (j >= jmax) {
             if(agedc[i]>0)              jmax=j;
               if(moisdc[i]!=99 && andc[i]!=9999)              ijmax=i;
               agev[m][i]=agedc[i];            }
             else {            else if (j <= jmin){
               if (andc[i]!=9999){              jmin=j;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              ijmin=i;
               agev[m][i]=-1;            }
               }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
           else if(s[m][i] !=9){ /* Should no more exist */              nberr++;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             if(mint[m][i]==99 || anint[m][i]==9999)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               agev[m][i]=1;            }
             else if(agev[m][i] <agemin){            sum=sum+j;
               agemin=agev[m][i];          }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          jk= j/stepm;
             }          jl= j -jk*stepm;
             else if(agev[m][i] >agemax){          ju= j -(jk+1)*stepm;
               agemax=agev[m][i];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            if(jl==0){
             }              dh[mi][i]=jk;
             /*agev[m][i]=anint[m][i]-annais[i];*/              bh[mi][i]=0;
             /*   agev[m][i] = age[i]+2*m;*/            }else{ /* We want a negative bias in order to only have interpolation ie
           }                    * at the price of an extra matrix product in likelihood */
           else { /* =9 */              dh[mi][i]=jk+1;
             agev[m][i]=1;              bh[mi][i]=ju;
             s[m][i]=-1;            }
           }          }else{
         }            if(jl <= -ju){
         else /*= 0 Unknown */              dh[mi][i]=jk;
           agev[m][i]=1;              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
     }            }
     for (i=1; i<=imx; i++)  {            else{
       for(m=1; (m<= maxwav); m++){              dh[mi][i]=jk+1;
         if (s[m][i] > (nlstate+ndeath)) {              bh[mi][i]=ju;
           printf("Error: Wrong value in nlstate or ndeath\n");              }
           goto end;            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          } /* end if mle */
         }
     free_vector(severity,1,maxwav);      } /* end wave */
     free_imatrix(outcome,1,maxwav+1,1,n);    }
     free_vector(moisnais,1,n);    jmean=sum/k;
     free_vector(annais,1,n);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
        free_matrix(anint,1,maxwav,1,n);*/   }
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
      {
     wav=ivector(1,imx);    
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int cptcode=0;
        cptcoveff=0; 
     /* Concatenates waves */   
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   
       Tcode=ivector(1,100);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       ncodemax[1]=1;                                 modality*/ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
              Ndum[ij]++; /*store the modality */
    codtab=imatrix(1,100,1,10);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    h=0;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
    m=pow(2,cptcoveff);                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
    for(k=1;k<=cptcoveff; k++){      }
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){      for (i=0; i<=cptcode; i++) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
            h++;      }
            if (h>m) h=1;codtab[h][k]=j;  
          }      ij=1; 
        }      for (i=1; i<=ncodemax[j]; i++) {
      }        for (k=0; k<= maxncov; k++) {
    }          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    /*for(i=1; i <=m ;i++){            
      for(k=1; k <=cptcovn; k++){            ij++;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          }
      }          if (ij > ncodemax[j]) break; 
      printf("\n");        }  
    }      } 
    scanf("%d",i);*/    }  
      
    /* Calculates basic frequencies. Computes observed prevalence at single age   for (k=0; k< maxncov; k++) Ndum[k]=0;
        and prints on file fileres'p'. */  
    for (i=1; i<=ncovmodel-2; i++) { 
         /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         ij=Tvar[i];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     Ndum[ij]++;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   ij=1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for (i=1; i<= maxncov; i++) {
           if((Ndum[i]!=0) && (i<=ncovcol)){
     /* For Powell, parameters are in a vector p[] starting at p[1]       Tvaraff[ij]=i; /*For printing */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       ij++;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */     }
    }
     if(mle==1){   
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   cptcoveff=ij-1; /*Number of simple covariates*/
     }  }
      
     /*--------- results files --------------*/  /*********** Health Expectancies ****************/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
    jk=1;  {
    fprintf(ficres,"# Parameters\n");    /* Health expectancies */
    printf("# Parameters\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    for(i=1,jk=1; i <=nlstate; i++){    double age, agelim, hf;
      for(k=1; k <=(nlstate+ndeath); k++){    double ***p3mat,***varhe;
        if (k != i)    double **dnewm,**doldm;
          {    double *xp;
            printf("%d%d ",i,k);    double **gp, **gm;
            fprintf(ficres,"%1d%1d ",i,k);    double ***gradg, ***trgradg;
            for(j=1; j <=ncovmodel; j++){    int theta;
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
              jk++;    xp=vector(1,npar);
            }    dnewm=matrix(1,nlstate*nlstate,1,npar);
            printf("\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            fprintf(ficres,"\n");    
          }    fprintf(ficreseij,"# Local time at start: %s", strstart);
      }    fprintf(ficreseij,"# Health expectancies\n");
    }    fprintf(ficreseij,"# Age");
  if(mle==1){    for(i=1; i<=nlstate;i++)
     /* Computing hessian and covariance matrix */      for(j=1; j<=nlstate;j++)
     ftolhess=ftol; /* Usually correct */        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficreseij,"\n");
  }  
     fprintf(ficres,"# Scales\n");    if(estepm < stepm){
     printf("# Scales\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
      for(i=1,jk=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    else  hstepm=estepm;   
         if (j!=i) {    /* We compute the life expectancy from trapezoids spaced every estepm months
           fprintf(ficres,"%1d%1d",i,j);     * This is mainly to measure the difference between two models: for example
           printf("%1d%1d",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(k=1; k<=ncovmodel;k++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             printf(" %.5e",delti[jk]);     * progression in between and thus overestimating or underestimating according
             fprintf(ficres," %.5e",delti[jk]);     * to the curvature of the survival function. If, for the same date, we 
             jk++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           }     * to compare the new estimate of Life expectancy with the same linear 
           printf("\n");     * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficres,"\n");     * curvature will be obtained if estepm is as small as stepm. */
         }  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
      }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     k=1;       nstepm is the number of stepm from age to agelin. 
     fprintf(ficres,"# Covariance\n");       Look at hpijx to understand the reason of that which relies in memory size
     printf("# Covariance\n");       and note for a fixed period like estepm months */
     for(i=1;i<=npar;i++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       /*  if (k>nlstate) k=1;       survival function given by stepm (the optimization length). Unfortunately it
       i1=(i-1)/(ncovmodel*nlstate)+1;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("%s%d%d",alph[k],i1,tab[i]);*/       results. So we changed our mind and took the option of the best precision.
       fprintf(ficres,"%3d",i);    */
       printf("%3d",i);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    agelim=AGESUP;
         printf(" %.5e",matcov[i][j]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      /* nhstepm age range expressed in number of stepm */
       fprintf(ficres,"\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       printf("\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       k++;      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     while((c=getc(ficpar))=='#' && c!= EOF){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fgets(line, MAXLINE, ficpar);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       puts(line);  
       fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     if (fage <= 2) {  
       bage = agemin;      /* Computing  Variances of health expectancies */
       fage = agemax;  
     }       for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      
     while((c=getc(ficpar))=='#' && c!= EOF){        cptj=0;
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate; i++){
     puts(line);            cptj=cptj+1;
     fputs(line,ficparo);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   ungetc(c,ficpar);            }
            }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       
              for(i=1; i<=npar; i++) 
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fgets(line, MAXLINE, ficpar);        
     puts(line);        cptj=0;
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(i=1;i<=nlstate;i++){
   ungetc(c,ficpar);            cptj=cptj+1;
              for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            }
           }
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
    fprintf(ficparo,"pop_based=%d\n",popbased);          for(j=1; j<= nlstate*nlstate; j++)
    fprintf(ficres,"pop_based=%d\n",popbased);            for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);       } 
     fgets(line, MAXLINE, ficpar);     
     puts(line);  /* End theta */
     fputs(line,ficparo);  
   }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);       for(h=0; h<=nhstepm-1; h++)
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);        for(j=1; j<=nlstate*nlstate;j++)
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);       
   
           for(i=1;i<=nlstate*nlstate;i++)
     /*------------ gnuplot -------------*/        for(j=1;j<=nlstate*nlstate;j++)
     /*chdir(pathcd);*/          varhe[i][j][(int)age] =0.;
     strcpy(optionfilegnuplot,optionfilefiname);  
     strcat(optionfilegnuplot,".plt");       printf("%d|",(int)age);fflush(stdout);
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       printf("Problem with file %s",optionfilegnuplot);goto end;       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
 #ifdef windows          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fprintf(ficgp,"cd \"%s\" \n",pathc);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 #endif          for(i=1;i<=nlstate*nlstate;i++)
 m=pow(2,cptcoveff);            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {      }
    for (k1=1; k1<= m ; k1 ++) {      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
 #ifdef windows        for(j=1; j<=nlstate;j++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 #endif            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 #ifdef unix            
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 #endif  
           }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficreseij,"%3.0f",age );
   else fprintf(ficgp," \%%*lf (\%%*lf)");      cptj=0;
 }      for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++){
     for (i=1; i<= nlstate ; i ++) {          cptj++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      fprintf(ficreseij,"\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     
      for (i=1; i<= nlstate ; i ++) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 }        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef unix    }
 fprintf(ficgp,"\nset ter gif small size 400,300");    printf("\n");
 #endif    fprintf(ficlog,"\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /*2 eme*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
      /************ Variance ******************/
     for (i=1; i<= nlstate+1 ; i ++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       k=2*i;  {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Variance of health expectancies */
       for (j=1; j<= nlstate+1 ; j ++) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* double **newm;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }      double **dnewmp,**doldmp;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int i, j, nhstepm, hstepm, h, nstepm ;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    int k, cptcode;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *xp;
       for (j=1; j<= nlstate+1 ; j ++) {    double **gp, **gm;  /* for var eij */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***gradg, ***trgradg; /*for var eij */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gradgp, **trgradgp; /* for var p point j */
 }      double *gpp, *gmp; /* for var p point j */
       fprintf(ficgp,"\" t\"\" w l 0,");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double ***p3mat;
       for (j=1; j<= nlstate+1 ; j ++) {    double age,agelim, hf;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***mobaverage;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }      char digit[4];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    char digitp[25];
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    char fileresprobmorprev[FILENAMELENGTH];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }    if(popbased==1){
        if(mobilav!=0)
   /*3eme*/        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<= nlstate ; cpt ++) {    else 
       k=2+nlstate*(cpt-1);      strcpy(digitp,"-stablbased-");
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {    if (mobilav!=0) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
      }
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {    strcpy(fileresprobmorprev,"prmorprev"); 
     for (cpt=1; cpt<nlstate ; cpt ++) {    sprintf(digit,"%-d",ij);
       k=3;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for (i=1; i< nlstate ; i ++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         fprintf(ficgp,"+$%d",k+i+1);    strcat(fileresprobmorprev,fileres);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresprobmorprev);
       l=3+(nlstate+ndeath)*cpt;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         l=3+(nlstate+ndeath)*cpt;   
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   /* proba elementaires */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    for(i=1,jk=1; i <=nlstate; i++){    }  
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficresprobmorprev,"\n");
       if (k != i) {    fprintf(ficgp,"\n# Routine varevsij");
         for(j=1; j <=ncovmodel; j++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           /*fprintf(ficgp,"%s",alph[1]);*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /*   } */
           jk++;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"\n");   fprintf(ficresvij, "#Local time at start: %s", strstart);
         }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       }    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   for(jk=1; jk <=m; jk++) {    fprintf(ficresvij,"\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  
    i=1;    xp=vector(1,npar);
    for(k2=1; k2<=nlstate; k2++) {    dnewm=matrix(1,nlstate,1,npar);
      k3=i;    doldm=matrix(1,nlstate,1,nlstate);
      for(k=1; k<=(nlstate+ndeath); k++) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        if (k != k2){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for(j=3; j <=ncovmodel; j++) {    gpp=vector(nlstate+1,nlstate+ndeath);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    gmp=vector(nlstate+1,nlstate+ndeath);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             ij++;    
           }    if(estepm < stepm){
           else      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
         }    else  hstepm=estepm;   
           fprintf(ficgp,")/(1");    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(k1=1; k1 <=nlstate; k1++){         nhstepm is the number of hstepm from age to agelim 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       nstepm is the number of stepm from age to agelin. 
 ij=1;       Look at hpijx to understand the reason of that which relies in memory size
           for(j=3; j <=ncovmodel; j++){       and note for a fixed period like k years */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       survival function given by stepm (the optimization length). Unfortunately it
             ij++;       means that if the survival funtion is printed every two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           else       results. So we changed our mind and took the option of the best precision.
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficgp,")");    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         i=i+ncovmodel;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      }      gp=matrix(0,nhstepm,1,nlstate);
    }      gm=matrix(0,nhstepm,1,nlstate);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
   }  
          for(theta=1; theta <=npar; theta++){
   fclose(ficgp);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   /* end gnuplot */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
 chdir(path);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if (popbased==1) {
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            if(mobilav ==0){
     free_ivector(num,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(agedc,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     /*free_matrix(covar,1,NCOVMAX,1,n);*/          }else{ /* mobilav */ 
     fclose(ficparo);            for(i=1; i<=nlstate;i++)
     fclose(ficres);              prlim[i][i]=mobaverage[(int)age][i][ij];
     /*  }*/          }
            }
    /*________fin mle=1_________*/    
            for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /* No more information from the sample is required now */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        /* This for computing probability of death (h=1 means
     fgets(line, MAXLINE, ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
     puts(line);           as a weighted average of prlim.
     fputs(line,ficparo);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   ungetc(c,ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        }    
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        /* end probability of death */
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   strcpy(optionfilehtm,optionfile);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcat(optionfilehtm,".htm");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {   
     printf("Problem with %s \n",optionfilehtm);goto end;        if (popbased==1) {
   }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">              prlim[i][i]=probs[(int)age][i][ij];
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>          }else{ /* mobilav */ 
 Total number of observations=%d <br>            for(i=1; i<=nlstate;i++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>              prlim[i][i]=mobaverage[(int)age][i][ij];
 <hr  size=\"2\" color=\"#EC5E5E\">          }
 <li>Outputs files<br><br>\n        }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        for(j=1; j<= nlstate; j++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          for(h=0; h<=nhstepm; h++){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        /* This for computing probability of death (h=1 means
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>           computed over hstepm matrices product = hstepm*stepm months) 
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>           as a weighted average of prlim.
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
  fprintf(fichtm," <li>Graphs</li><p>");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
  m=cptcoveff;        }    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /* end probability of death */
   
  j1=0;        for(j=1; j<= nlstate; j++) /* vareij */
  for(k1=1; k1<=m;k1++){          for(h=0; h<=nhstepm; h++){
    for(i1=1; i1<=ncodemax[k1];i1++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        j1++;          }
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
          for (cpt=1; cpt<=cptcoveff;cpt++)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }      } /* End theta */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for(h=0; h<=nhstepm; h++) /* veij */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(j=1; j<=nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
     for(cpt=1; cpt<=nlstate;cpt++) {            trgradg[h][j][theta]=gradg[h][theta][j];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(theta=1; theta <=npar; theta++)
      }          trgradgp[j][theta]=gradgp[theta][j];
      for(cpt=1; cpt<=nlstate;cpt++) {    
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      }      for(i=1;i<=nlstate;i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(j=1;j<=nlstate;j++)
 health expectancies in states (1) and (2): e%s%d.gif<br>          vareij[i][j][(int)age] =0.;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");      for(h=0;h<=nhstepm;h++){
    }        for(k=0;k<=nhstepm;k++){
  }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 fclose(fichtm);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   /*--------------- Prevalence limit --------------*/            for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);      }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(ficrespl,"#Prevalence limit\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficrespl,"#Age ");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          varppt[j][i]=doldmp[j][i];
   fprintf(ficrespl,"\n");      /* end ppptj */
        /*  x centered again */
   prlim=matrix(1,nlstate,1,nlstate);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (popbased==1) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(mobilav ==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(i=1; i<=nlstate;i++)
   k=0;            prlim[i][i]=probs[(int)age][i][ij];
   agebase=agemin;        }else{ /* mobilav */ 
   agelim=agemax;          for(i=1; i<=nlstate;i++)
   ftolpl=1.e-10;            prlim[i][i]=mobaverage[(int)age][i][ij];
   i1=cptcoveff;        }
   if (cptcovn < 1){i1=1;}      }
                
   for(cptcov=1;cptcov<=i1;cptcov++){      /* This for computing probability of death (h=1 means
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         k=k+1;         as a weighted average of prlim.
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      */
         fprintf(ficrespl,"\n#******");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(j=1;j<=cptcoveff;j++)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficrespl,"******\n");      }    
              /* end probability of death */
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           fprintf(ficrespl,"%.0f",age );      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(i=1; i<=nlstate;i++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(i=1; i<=nlstate;i++){
           fprintf(ficrespl,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
       }      } 
     }      fprintf(ficresprobmorprev,"\n");
   fclose(ficrespl);  
       fprintf(ficresvij,"%.0f ",age );
   /*------------- h Pij x at various ages ------------*/      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      fprintf(ficresvij,"\n");
   }      free_matrix(gp,0,nhstepm,1,nlstate);
   printf("Computing pij: result on file '%s' \n", filerespij);      free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   /*if (stepm<=24) stepsize=2;*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   agelim=AGESUP;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   hstepm=stepsize*YEARM; /* Every year of age */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   k=0;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   for(cptcov=1;cptcov<=i1;cptcov++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       k=k+1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrespij,"\n#****** ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for(j=1;j<=cptcoveff;j++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficrespij,"******\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
            fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  */
           oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    free_vector(xp,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)    free_matrix(doldm,1,nlstate,1,nlstate);
               fprintf(ficrespij," %1d-%1d",i,j);    free_matrix(dnewm,1,nlstate,1,npar);
           fprintf(ficrespij,"\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(i=1; i<=nlstate;i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(j=1; j<=nlstate+ndeath;j++)    fclose(ficresprobmorprev);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fflush(ficgp);
             fprintf(ficrespij,"\n");    fflush(fichtm); 
           }  }  /* end varevsij */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     }  {
   }    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    double **newm;
     double **dnewm,**doldm;
   fclose(ficrespij);    int i, j, nhstepm, hstepm;
     int k, cptcode;
   if(stepm == 1) {    double *xp;
   /*---------- Forecasting ------------------*/    double *gp, *gm;
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    double **gradg, **trgradg;
     double age,agelim;
   /*printf("calage= %f", calagedate);*/    int theta;
      fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(fileresf,"f");        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(fileresf,fileres);    fprintf(ficresvpl,"\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    doldm=matrix(1,nlstate,1,nlstate);
     
   free_matrix(mint,1,maxwav,1,n);    hstepm=1*YEARM; /* Every year of age */
   free_matrix(anint,1,maxwav,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   free_matrix(agev,1,maxwav,1,imx);    agelim = AGESUP;
   /* Mobile average */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if (mobilav==1) {      gradg=matrix(1,npar,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=vector(1,nlstate);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)      gm=vector(1,nlstate);
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      for(theta=1; theta <=npar; theta++){
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(i=1; i<=npar; i++){ /* Computes gradient */
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1;i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){          gp[i] = prlim[i][i];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      
           }        for(i=1; i<=npar; i++) /* Computes gradient */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }            gm[i] = prlim[i][i];
   }  
         for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   if (stepm<=12) stepsize=1;      } /* End theta */
   
   agelim=AGESUP;      trgradg =matrix(1,nlstate,1,npar);
   /*hstepm=stepsize*YEARM; *//* Every year of age */  
   hstepm=1;      for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */        for(theta=1; theta <=npar; theta++)
   yp1=modf(dateintmean,&yp);          trgradg[j][theta]=gradg[theta][j];
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);      for(i=1;i<=nlstate;i++)
   mprojmean=yp;        varpl[i][(int)age] =0.;
   yp1=modf((yp2*30.5),&yp);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   jprojmean=yp;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if(jprojmean==0) jprojmean=1;      for(i=1;i<=nlstate;i++)
   if(mprojmean==0) jprojmean=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if (popforecast==1) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     if((ficpop=fopen(popfile,"r"))==NULL)    {      fprintf(ficresvpl,"\n");
       printf("Problem with population file : %s\n",popfile);goto end;      free_vector(gp,1,nlstate);
     }      free_vector(gm,1,nlstate);
     popage=ivector(0,AGESUP);      free_matrix(gradg,1,npar,1,nlstate);
     popeffectif=vector(0,AGESUP);      free_matrix(trgradg,1,nlstate,1,npar);
     popcount=vector(0,AGESUP);    } /* End age */
   
     i=1;      free_vector(xp,1,npar);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)    free_matrix(doldm,1,nlstate,1,npar);
       {    free_matrix(dnewm,1,nlstate,1,nlstate);
         i=i+1;  
       }  }
     imx=i;  
      /************ Variance of one-step probabilities  ******************/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   for(cptcov=1;cptcov<=i1;cptcov++){    int k2, l2, j1,  z1;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int k=0,l, cptcode;
       k=k+1;    int first=1, first1;
       fprintf(ficresf,"\n#******");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       for(j=1;j<=cptcoveff;j++) {    double **dnewm,**doldm;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *xp;
       }    double *gp, *gm;
       fprintf(ficresf,"******\n");    double **gradg, **trgradg;
       fprintf(ficresf,"# StartingAge FinalAge");    double **mu;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double age,agelim, cov[NCOVMAX];
       if (popforecast==1)  fprintf(ficresf," [Population]");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
       for (cpt=0; cpt<4;cpt++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficresf,"\n");    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      char fileresprobcor[FILENAMELENGTH];
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */    double ***varpij;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
         nhstepm = nhstepm/hstepm;    strcpy(fileresprob,"prob"); 
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprob);
         oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            strcpy(fileresprobcov,"probcov"); 
         for (h=0; h<=nhstepm; h++){    strcat(fileresprobcov,fileres);
           if (h==(int) (calagedate+YEARM*cpt)) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           for(j=1; j<=nlstate+ndeath;j++) {    }
             kk1=0.;kk2=0;    strcpy(fileresprobcor,"probcor"); 
             for(i=1; i<=nlstate;i++) {            strcat(fileresprobcor,fileres);
               if (mobilav==1)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      printf("Problem with resultfile: %s\n", fileresprobcor);
               else {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprob, "#Local time at start: %s", strstart);
               fprintf(ficresf," %.3f", kk1);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                  fprintf(ficresprob,"# Age");
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
             }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           }    fprintf(ficresprobcov,"# Age");
         }    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       }  
     }  
   }    for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=(nlstate+ndeath);j++){
   if (popforecast==1) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     free_ivector(popage,0,AGESUP);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     free_vector(popeffectif,0,AGESUP);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     free_vector(popcount,0,AGESUP);      }  
   }   /* fprintf(ficresprob,"\n");
   free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficresprobcov,"\n");
   free_vector(weight,1,n);    fprintf(ficresprobcor,"\n");
   fclose(ficresf);   */
   }/* End forecasting */   xp=vector(1,npar);
   else{    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     erreur=108;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   /*---------- Health expectancies and variances ------------*/    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   strcpy(filerest,"t");    fprintf(fichtm,"\n");
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   strcpy(filerese,"e");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   strcat(filerese,fileres);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   if((ficreseij=fopen(filerese,"w"))==NULL) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    cov[1]=1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    tj=cptcoveff;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   }    j1=0;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
   k=0;        j1++;
   for(cptcov=1;cptcov<=i1;cptcov++){        if  (cptcovn>0) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresprob, "\n#********** Variable "); 
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficrest,"\n#****** ");          fprintf(ficresprob, "**********\n#\n");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficrest,"******\n");          fprintf(ficresprobcov, "**********\n#\n");
           
       fprintf(ficreseij,"\n#****** ");          fprintf(ficgp, "\n#********** Variable "); 
       for(j=1;j<=cptcoveff;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          fprintf(ficgp, "**********\n#\n");
       fprintf(ficreseij,"******\n");          
           
       fprintf(ficresvij,"\n#****** ");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(j=1;j<=cptcoveff;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficresvij,"******\n");          
           fprintf(ficresprobcor, "\n#********** Variable ");    
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       oldm=oldms;savm=savms;          fprintf(ficresprobcor, "**********\n#");    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        
       oldm=oldms;savm=savms;        for (age=bage; age<=fage; age ++){ 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          cov[2]=age;
                for (k=1; k<=cptcovn;k++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          }
       fprintf(ficrest,"\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                  for (k=1; k<=cptcovprod;k++)
       hf=1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if (stepm >= YEARM) hf=stepm/YEARM;          
       epj=vector(1,nlstate+1);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       for(age=bage; age <=fage ;age++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          gp=vector(1,(nlstate)*(nlstate+ndeath));
         if (popbased==1) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=nlstate;i++)      
             prlim[i][i]=probs[(int)age][i][k];          for(theta=1; theta <=npar; theta++){
         }            for(i=1; i<=npar; i++)
                      xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fprintf(ficrest," %.0f",age);            
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];            k=0;
           }            for(i=1; i<= (nlstate); i++){
           epj[nlstate+1] +=epj[j];              for(j=1; j<=(nlstate+ndeath);j++){
         }                k=k+1;
         for(i=1, vepp=0.;i <=nlstate;i++)                gp[k]=pmmij[i][j];
           for(j=1;j <=nlstate;j++)              }
             vepp += vareij[i][j][(int)age];            }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            
         for(j=1;j <=nlstate;j++){            for(i=1; i<=npar; i++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         }      
         fprintf(ficrest,"\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       }            k=0;
     }            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
                        gm[k]=pmmij[i][j];
               }
             }
  fclose(ficreseij);       
  fclose(ficresvij);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fclose(ficrest);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fclose(ficpar);          }
   free_vector(epj,1,nlstate+1);  
   /*  scanf("%d ",i); */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   /*------- Variance limit prevalence------*/                trgradg[j][theta]=gradg[theta][j];
           
 strcpy(fileresvpl,"vpl");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   strcat(fileresvpl,fileres);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     exit(0);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
  k=0;          
  for(cptcov=1;cptcov<=i1;cptcov++){          k=0;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1; i<=(nlstate); i++){
      k=k+1;            for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(ficresvpl,"\n#****** ");              k=k+1;
      for(j=1;j<=cptcoveff;j++)              mu[k][(int) age]=pmmij[i][j];
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
      fprintf(ficresvpl,"******\n");          }
                for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      oldm=oldms;savm=savms;              varpij[i][j][(int)age] = doldm[i][j];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }          /*printf("\n%d ",(int)age);
  }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fclose(ficresvpl);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresprobcor,"\n%d ",(int)age);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
            i=0;
   free_matrix(matcov,1,npar,1,npar);          for (k=1; k<=(nlstate);k++){
   free_vector(delti,1,npar);            for (l=1; l<=(nlstate+ndeath);l++){ 
                i=i++;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   if(erreur >0)              for (j=1; j<=i;j++){
     printf("End of Imach with error %d\n",erreur);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   else   printf("End of Imach\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              }
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }/* end of loop for state */
   /*printf("Total time was %d uSec.\n", total_usecs);*/        } /* end of loop for age */
   /*------ End -----------*/  
         /* Confidence intervalle of pij  */
         /*
  end:          fprintf(ficgp,"\nset noparametric;unset label");
 #ifdef windows          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   /* chdir(pathcd);*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 #endif          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  /*system("wgnuplot graph.plt");*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  /*system("../gp37mgw/wgnuplot graph.plt");*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  /*system("cd ../gp37mgw");*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        */
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  strcat(plotcmd,optionfilegnuplot);        first1=1;
  system(plotcmd);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 #ifdef windows            if(l2==k2) continue;
   while (z[0] != 'q') {            j=(k2-1)*(nlstate+ndeath)+l2;
     chdir(path);            for (k1=1; k1<=(nlstate);k1++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     scanf("%s",z);                if(l1==k1) continue;
     if (z[0] == 'c') system("./imach");                i=(k1-1)*(nlstate+ndeath)+l1;
     else if (z[0] == 'e') {                if(i<=j) continue;
       chdir(path);                for (age=bage; age<=fage; age ++){ 
       system(optionfilehtm);                  if ((int)age %5==0){
     }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     else if (z[0] == 'q') exit(0);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 #endif                    mu1=mu[i][(int) age]/stepm*YEARM ;
 }                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.22  
changed lines
  Added in v.1.114


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>