Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.187

version 1.41.2.2, 2003/06/13 07:45:28 version 1.187, 2015/04/29 09:11:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.187  2015/04/29 09:11:15  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.186  2015/04/23 12:01:52  brouard
   first survey ("cross") where individuals from different ages are    Summary: V1*age is working now, version 0.98q1
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Some codes had been disabled in order to simplify and Vn*age was
   second wave of interviews ("longitudinal") which measure each change    working in the optimization phase, ie, giving correct MLE parameters,
   (if any) in individual health status.  Health expectancies are    but, as usual, outputs were not correct and program core dumped.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.185  2015/03/11 13:26:42  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: Inclusion of compile and links command line for Intel Compiler
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.184  2015/03/11 11:52:39  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Back from Windows 8. Intel Compiler
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.183  2015/03/10 20:34:32  brouard
   complex model than "constant and age", you should modify the program    Summary: 0.98q0, trying with directest, mnbrak fixed
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    We use directest instead of original Powell test; probably no
   convergence.    incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
   The advantage of this computer programme, compared to a simple    wrong results.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.182  2015/02/12 08:19:57  brouard
   intermediate interview, the information is lost, but taken into    Summary: Trying to keep directest which seems simpler and more general
   account using an interpolation or extrapolation.      Author: Nicolas Brouard
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.181  2015/02/11 23:22:24  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: Comments on Powell added
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Author:
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.180  2015/02/11 17:33:45  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   hPijx.  
     Revision 1.179  2015/01/04 09:57:06  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: back to OS/X
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.178  2015/01/04 09:35:48  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    *** empty log message ***
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.177  2015/01/03 18:40:56  brouard
   from the European Union.    Summary: Still testing ilc32 on OSX
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.176  2015/01/03 16:45:04  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.175  2015/01/03 16:33:42  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.174  2015/01/03 16:15:49  brouard
 #include <unistd.h>    Summary: Still in cross-compilation
   
 #define MAXLINE 256    Revision 1.173  2015/01/03 12:06:26  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    Summary: trying to detect cross-compilation
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.172  2014/12/27 12:07:47  brouard
 /*#define DEBUG*/    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
 /*#define windows*/    Revision 1.171  2014/12/23 13:26:59  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: Back from Visual C
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Still problem with utsname.h on Windows
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.169  2014/12/22 23:08:31  brouard
 #define MAXN 20000    Summary: 0.98p
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define AGEBASE 40  
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
 int erreur; /* Error number */  
 int nvar;    Revision 1.167  2014/12/22 13:50:56  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: Testing uname and compiler version and if compiled 32 or 64
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Testing on Linux 64
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.166  2014/12/22 11:40:47  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.165  2014/12/16 11:20:36  brouard
 int maxwav; /* Maxim number of waves */    Summary: After compiling on Visual C
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    * imach.c (Module): Merging 1.61 to 1.162
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.164  2014/12/16 10:52:11  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): Merging 1.61 to 1.162
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.163  2014/12/16 10:30:11  brouard
 FILE *ficreseij;    * imach.c (Module): Merging 1.61 to 1.162
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.162  2014/09/25 11:43:39  brouard
   char fileresv[FILENAMELENGTH];    Summary: temporary backup 0.99!
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
 #define NR_END 1  
 #define FREE_ARG char*    Author:
 #define FTOL 1.0e-10  
     Revision 1.161  2014/09/15 20:41:41  brouard
 #define NRANSI    Summary: Problem with macro SQR on Intel compiler
 #define ITMAX 200  
     Revision 1.160  2014/09/02 09:24:05  brouard
 #define TOL 2.0e-4    *** empty log message ***
   
 #define CGOLD 0.3819660    Revision 1.159  2014/09/01 10:34:10  brouard
 #define ZEPS 1.0e-10    Summary: WIN32
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Author: Brouard
   
 #define GOLD 1.618034    Revision 1.158  2014/08/27 17:11:51  brouard
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.157  2014/08/27 16:26:55  brouard
 static double maxarg1,maxarg2;    Summary: Preparing windows Visual studio version
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Author: Brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      In order to compile on Visual studio, time.h is now correct and time_t
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    and tm struct should be used. difftime should be used but sometimes I
 #define rint(a) floor(a+0.5)    just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
 static double sqrarg;    Add xdg-open for __linux in order to open default browser.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.155  2014/08/25 18:32:34  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: New compile, minor changes
     Author: Brouard
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.153  2014/06/20 16:45:46  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: If 3 live state, convergence to period prevalence on same graph
 double **pmmij, ***probs, ***mobaverage;    Author: Brouard
 double dateintmean=0;  
     Revision 1.152  2014/06/18 17:54:09  brouard
 double *weight;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.151  2014/06/18 16:43:30  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    *** empty log message ***
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.150  2014/06/18 16:42:35  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.149  2014/06/18 15:51:14  brouard
 {    Summary: Some fixes in parameter files errors
    char *s;                             /* pointer */    Author: Nicolas Brouard
    int  l1, l2;                         /* length counters */  
     Revision 1.148  2014/06/17 17:38:48  brouard
    l1 = strlen( path );                 /* length of path */    Summary: Nothing new
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Author: Brouard
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Just a new packaging for OS/X version 0.98nS
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.147  2014/06/16 10:33:11  brouard
 #endif    *** empty log message ***
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.146  2014/06/16 10:20:28  brouard
       extern char       *getwd( );    Summary: Merge
     Author: Brouard
       if ( getwd( dirc ) == NULL ) {  
 #else    Merge, before building revised version.
       extern char       *getcwd( );  
     Revision 1.145  2014/06/10 21:23:15  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Summary: Debugging with valgrind
 #endif    Author: Nicolas Brouard
          return( GLOCK_ERROR_GETCWD );  
       }    Lot of changes in order to output the results with some covariates
       strcpy( name, path );             /* we've got it */    After the Edimburgh REVES conference 2014, it seems mandatory to
    } else {                             /* strip direcotry from path */    improve the code.
       s++;                              /* after this, the filename */    No more memory valgrind error but a lot has to be done in order to
       l2 = strlen( s );                 /* length of filename */    continue the work of splitting the code into subroutines.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Also, decodemodel has been improved. Tricode is still not
       strcpy( name, s );                /* save file name */    optimal. nbcode should be improved. Documentation has been added in
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    the source code.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.143  2014/01/26 09:45:38  brouard
    l1 = strlen( dirc );                 /* length of directory */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.142  2014/01/26 03:57:36  brouard
    s = strrchr( name, '.' );            /* find last / */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    s++;  
    strcpy(ext,s);                       /* save extension */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.141  2014/01/26 02:42:01  brouard
    strncpy( finame, name, l1-l2);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.140  2011/09/02 10:37:54  brouard
 }    Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
 /******************************************/    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 void replace(char *s, char*t)  
 {    Revision 1.138  2010/04/30 18:19:40  brouard
   int i;    *** empty log message ***
   int lg=20;  
   i=0;    Revision 1.137  2010/04/29 18:11:38  brouard
   lg=strlen(t);    (Module): Checking covariates for more complex models
   for(i=0; i<= lg; i++) {    than V1+V2. A lot of change to be done. Unstable.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.136  2010/04/26 20:30:53  brouard
   }    (Module): merging some libgsl code. Fixing computation
 }    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 int nbocc(char *s, char occ)    Some cleaning of code and comments added.
 {  
   int i,j=0;    Revision 1.135  2009/10/29 15:33:14  brouard
   int lg=20;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   i=0;  
   lg=strlen(s);    Revision 1.134  2009/10/29 13:18:53  brouard
   for(i=0; i<= lg; i++) {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   if  (s[i] == occ ) j++;  
   }    Revision 1.133  2009/07/06 10:21:25  brouard
   return j;    just nforces
 }  
     Revision 1.132  2009/07/06 08:22:05  brouard
 void cutv(char *u,char *v, char*t, char occ)    Many tings
 {  
   int i,lg,j,p=0;    Revision 1.131  2009/06/20 16:22:47  brouard
   i=0;    Some dimensions resccaled
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.130  2009/05/26 06:44:34  brouard
   }    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
   lg=strlen(t);    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.129  2007/08/31 13:49:27  lievre
   }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
      u[p]='\0';  
     Revision 1.128  2006/06/30 13:02:05  brouard
    for(j=0; j<= lg; j++) {    (Module): Clarifications on computing e.j
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.127  2006/04/28 18:11:50  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /********************** nrerror ********************/    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 void nrerror(char error_text[])    compute health expectancies (without variances) in a first step
 {    and then all the health expectancies with variances or standard
   fprintf(stderr,"ERREUR ...\n");    deviation (needs data from the Hessian matrices) which slows the
   fprintf(stderr,"%s\n",error_text);    computation.
   exit(1);    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.126  2006/04/28 17:23:28  brouard
 {    (Module): Yes the sum of survivors was wrong since
   double *v;    imach-114 because nhstepm was no more computed in the age
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    loop. Now we define nhstepma in the age loop.
   if (!v) nrerror("allocation failure in vector");    Version 0.98h
   return v-nl+NR_END;  
 }    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 /************************ free vector ******************/    Forecasting file added.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.124  2006/03/22 17:13:53  lievre
   free((FREE_ARG)(v+nl-NR_END));    Parameters are printed with %lf instead of %f (more numbers after the comma).
 }    The log-likelihood is printed in the log file
   
 /************************ivector *******************************/    Revision 1.123  2006/03/20 10:52:43  brouard
 int *ivector(long nl,long nh)    * imach.c (Module): <title> changed, corresponds to .htm file
 {    name. <head> headers where missing.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    * imach.c (Module): Weights can have a decimal point as for
   if (!v) nrerror("allocation failure in ivector");    English (a comma might work with a correct LC_NUMERIC environment,
   return v-nl+NR_END;    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /******************free ivector **************************/    Version 0.98g
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /******************* imatrix *******************************/    Modification of warning when the covariates values are not 0 or
 int **imatrix(long nrl, long nrh, long ncl, long nch)    1.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Version 0.98g
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.121  2006/03/16 17:45:01  lievre
   int **m;    * imach.c (Module): Comments concerning covariates added
    
   /* allocate pointers to rows */    * imach.c (Module): refinements in the computation of lli if
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    status=-2 in order to have more reliable computation if stepm is
   if (!m) nrerror("allocation failure 1 in matrix()");    not 1 month. Version 0.98f
   m += NR_END;  
   m -= nrl;    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
      status=-2 in order to have more reliable computation if stepm is
   /* allocate rows and set pointers to them */    not 1 month. Version 0.98f
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.119  2006/03/15 17:42:26  brouard
   m[nrl] += NR_END;    (Module): Bug if status = -2, the loglikelihood was
   m[nrl] -= ncl;    computed as likelihood omitting the logarithm. Version O.98e
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   /* return pointer to array of pointers to rows */    table of variances if popbased=1 .
   return m;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
     (Module): Version 0.98d
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.117  2006/03/14 17:16:22  brouard
       int **m;    (Module): varevsij Comments added explaining the second
       long nch,ncl,nrh,nrl;    table of variances if popbased=1 .
      /* free an int matrix allocated by imatrix() */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): Version 0.98d
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 /******************* matrix *******************************/    varian-covariance of ej. is needed (Saito).
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.115  2006/02/27 12:17:45  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): One freematrix added in mlikeli! 0.98c
   double **m;  
     Revision 1.114  2006/02/26 12:57:58  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Some improvements in processing parameter
   if (!m) nrerror("allocation failure 1 in matrix()");    filename with strsep.
   m += NR_END;  
   m -= nrl;    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    datafile was not closed, some imatrix were not freed and on matrix
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    allocation too.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.111  2006/01/25 20:38:18  brouard
 }    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 /*************************free matrix ************************/    can be a simple dot '.'.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Lots of cleaning and bugs added (Gompertz)
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.108  2006/01/19 18:05:42  lievre
 {    Gnuplot problem appeared...
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    To be fixed
   double ***m;  
     Revision 1.107  2006/01/19 16:20:37  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Test existence of gnuplot in imach path
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.106  2006/01/19 13:24:36  brouard
   m -= nrl;    Some cleaning and links added in html output
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.105  2006/01/05 20:23:19  lievre
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (instead of missing=-1 in earlier versions) and his/her
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    contributions to the likelihood is 1 - Prob of dying from last
   m[nrl][ncl] += NR_END;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m[nrl][ncl] -= nll;    the healthy state at last known wave). Version is 0.98
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.102  2004/09/15 17:31:30  brouard
     for (j=ncl+1; j<=nch; j++)    Add the possibility to read data file including tab characters.
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.101  2004/09/15 10:38:38  brouard
   return m;    Fix on curr_time
 }  
     Revision 1.100  2004/07/12 18:29:06  brouard
 /*************************free ma3x ************************/    Add version for Mac OS X. Just define UNIX in Makefile
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    *** empty log message ***
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.98  2004/05/16 15:05:56  brouard
 }    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /***************** f1dim *************************/    state at each age, but using a Gompertz model: log u =a + b*age .
 extern int ncom;    This is the basic analysis of mortality and should be done before any
 extern double *pcom,*xicom;    other analysis, in order to test if the mortality estimated from the
 extern double (*nrfunc)(double []);    cross-longitudinal survey is different from the mortality estimated
      from other sources like vital statistic data.
 double f1dim(double x)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   int j;  
   double f;    Agnès, who wrote this part of the code, tried to keep most of the
   double *xt;    former routines in order to include the new code within the former code.
    
   xt=vector(1,ncom);    The output is very simple: only an estimate of the intercept and of
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    the slope with 95% confident intervals.
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Current limitations:
   return f;    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   int iter;    suppressed.
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    Revision 1.96  2003/07/15 15:38:55  brouard
   double ftemp;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   double p,q,r,tol1,tol2,u,v,w,x,xm;    rewritten within the same printf. Workaround: many printfs.
   double e=0.0;  
      Revision 1.95  2003/07/08 07:54:34  brouard
   a=(ax < cx ? ax : cx);    * imach.c (Repository):
   b=(ax > cx ? ax : cx);    (Repository): Using imachwizard code to output a more meaningful covariance
   x=w=v=bx;    matrix (cov(a12,c31) instead of numbers.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.94  2003/06/27 13:00:02  brouard
     xm=0.5*(a+b);    Just cleaning
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Revision 1.93  2003/06/25 16:33:55  brouard
     printf(".");fflush(stdout);    (Module): On windows (cygwin) function asctime_r doesn't
 #ifdef DEBUG    exist so I changed back to asctime which exists.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    (Module): Version 0.96b
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.92  2003/06/25 16:30:45  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): On windows (cygwin) function asctime_r doesn't
       *xmin=x;    exist so I changed back to asctime which exists.
       return fx;  
     }    Revision 1.91  2003/06/25 15:30:29  brouard
     ftemp=fu;    * imach.c (Repository): Duplicated warning errors corrected.
     if (fabs(e) > tol1) {    (Repository): Elapsed time after each iteration is now output. It
       r=(x-w)*(fx-fv);    helps to forecast when convergence will be reached. Elapsed time
       q=(x-v)*(fx-fw);    is stamped in powell.  We created a new html file for the graphs
       p=(x-v)*q-(x-w)*r;    concerning matrix of covariance. It has extension -cov.htm.
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Revision 1.90  2003/06/24 12:34:15  brouard
       q=fabs(q);    (Module): Some bugs corrected for windows. Also, when
       etemp=e;    mle=-1 a template is output in file "or"mypar.txt with the design
       e=d;    of the covariance matrix to be input.
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.89  2003/06/24 12:30:52  brouard
       else {    (Module): Some bugs corrected for windows. Also, when
         d=p/q;    mle=-1 a template is output in file "or"mypar.txt with the design
         u=x+d;    of the covariance matrix to be input.
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.88  2003/06/23 17:54:56  brouard
       }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.87  2003/06/18 12:26:01  brouard
     }    Version 0.96
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.86  2003/06/17 20:04:08  brouard
     if (fu <= fx) {    (Module): Change position of html and gnuplot routines and added
       if (u >= x) a=x; else b=x;    routine fileappend.
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    Revision 1.85  2003/06/17 13:12:43  brouard
         } else {    * imach.c (Repository): Check when date of death was earlier that
           if (u < x) a=u; else b=u;    current date of interview. It may happen when the death was just
           if (fu <= fw || w == x) {    prior to the death. In this case, dh was negative and likelihood
             v=w;    was wrong (infinity). We still send an "Error" but patch by
             w=u;    assuming that the date of death was just one stepm after the
             fv=fw;    interview.
             fw=fu;    (Repository): Because some people have very long ID (first column)
           } else if (fu <= fv || v == x || v == w) {    we changed int to long in num[] and we added a new lvector for
             v=u;    memory allocation. But we also truncated to 8 characters (left
             fv=fu;    truncation)
           }    (Repository): No more line truncation errors.
         }  
   }    Revision 1.84  2003/06/13 21:44:43  brouard
   nrerror("Too many iterations in brent");    * imach.c (Repository): Replace "freqsummary" at a correct
   *xmin=x;    place. It differs from routine "prevalence" which may be called
   return fx;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /****************** mnbrak ***********************/  
     Revision 1.83  2003/06/10 13:39:11  lievre
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    *** empty log message ***
             double (*func)(double))  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
   double ulim,u,r,q, dum;    Add log in  imach.c and  fullversion number is now printed.
   double fu;  
    */
   *fa=(*func)(*ax);  /*
   *fb=(*func)(*bx);     Interpolated Markov Chain
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    Short summary of the programme:
       SHFT(dum,*fb,*fa,dum)    
       }    This program computes Healthy Life Expectancies from
   *cx=(*bx)+GOLD*(*bx-*ax);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   *fc=(*func)(*cx);    first survey ("cross") where individuals from different ages are
   while (*fb > *fc) {    interviewed on their health status or degree of disability (in the
     r=(*bx-*ax)*(*fb-*fc);    case of a health survey which is our main interest) -2- at least a
     q=(*bx-*cx)*(*fb-*fa);    second wave of interviews ("longitudinal") which measure each change
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    (if any) in individual health status.  Health expectancies are
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    computed from the time spent in each health state according to a
     ulim=(*bx)+GLIMIT*(*cx-*bx);    model. More health states you consider, more time is necessary to reach the
     if ((*bx-u)*(u-*cx) > 0.0) {    Maximum Likelihood of the parameters involved in the model.  The
       fu=(*func)(u);    simplest model is the multinomial logistic model where pij is the
     } else if ((*cx-u)*(u-ulim) > 0.0) {    probability to be observed in state j at the second wave
       fu=(*func)(u);    conditional to be observed in state i at the first wave. Therefore
       if (fu < *fc) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    'age' is age and 'sex' is a covariate. If you want to have a more
           SHFT(*fb,*fc,fu,(*func)(u))    complex model than "constant and age", you should modify the program
           }    where the markup *Covariates have to be included here again* invites
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    you to do it.  More covariates you add, slower the
       u=ulim;    convergence.
       fu=(*func)(u);  
     } else {    The advantage of this computer programme, compared to a simple
       u=(*cx)+GOLD*(*cx-*bx);    multinomial logistic model, is clear when the delay between waves is not
       fu=(*func)(u);    identical for each individual. Also, if a individual missed an
     }    intermediate interview, the information is lost, but taken into
     SHFT(*ax,*bx,*cx,u)    account using an interpolation or extrapolation.  
       SHFT(*fa,*fb,*fc,fu)  
       }    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /*************** linmin ************************/    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 int ncom;    matrix is simply the matrix product of nh*stepm elementary matrices
 double *pcom,*xicom;    and the contribution of each individual to the likelihood is simply
 double (*nrfunc)(double []);    hPijx.
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double f1dim(double x);             Institut national d'études démographiques, Paris.
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    This software have been partly granted by Euro-REVES, a concerted action
               double *fc, double (*func)(double));    from the European Union.
   int j;    It is copyrighted identically to a GNU software product, ie programme and
   double xx,xmin,bx,ax;    software can be distributed freely for non commercial use. Latest version
   double fx,fb,fa;    can be accessed at http://euroreves.ined.fr/imach .
    
   ncom=n;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   pcom=vector(1,n);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   xicom=vector(1,n);    
   nrfunc=func;    **********************************************************************/
   for (j=1;j<=n;j++) {  /*
     pcom[j]=p[j];    main
     xicom[j]=xi[j];    read parameterfile
   }    read datafile
   ax=0.0;    concatwav
   xx=1.0;    freqsummary
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (mle >= 1)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      mlikeli
 #ifdef DEBUG    print results files
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if mle==1 
 #endif       computes hessian
   for (j=1;j<=n;j++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     xi[j] *= xmin;        begin-prev-date,...
     p[j] += xi[j];    open gnuplot file
   }    open html file
   free_vector(xicom,1,n);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   free_vector(pcom,1,n);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 }                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       freexexit2 possible for memory heap.
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    h Pij x                         | pij_nom  ficrestpij
             double (*func)(double []))     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   void linmin(double p[], double xi[], int n, double *fret,         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
               double (*func)(double []));  
   int i,ibig,j;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double del,t,*pt,*ptt,*xit;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   double fp,fptt;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   double *xits;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   pt=vector(1,n);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   ptt=vector(1,n);  
   xit=vector(1,n);    forecasting if prevfcast==1 prevforecast call prevalence()
   xits=vector(1,n);    health expectancies
   *fret=(*func)(p);    Variance-covariance of DFLE
   for (j=1;j<=n;j++) pt[j]=p[j];    prevalence()
   for (*iter=1;;++(*iter)) {     movingaverage()
     fp=(*fret);    varevsij() 
     ibig=0;    if popbased==1 varevsij(,popbased)
     del=0.0;    total life expectancies
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    Variance of period (stable) prevalence
     for (i=1;i<=n;i++)   end
       printf(" %d %.12f",i, p[i]);  */
     printf("\n");  
     for (i=1;i<=n;i++) {  /* #define DEBUG */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* #define DEBUGBRENT */
       fptt=(*fret);  #define POWELL /* Instead of NLOPT */
 #ifdef DEBUG  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       printf("fret=%lf \n",*fret);  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 #endif  
       printf("%d",i);fflush(stdout);  #include <math.h>
       linmin(p,xit,n,fret,func);  #include <stdio.h>
       if (fabs(fptt-(*fret)) > del) {  #include <stdlib.h>
         del=fabs(fptt-(*fret));  #include <string.h>
         ibig=i;  
       }  #ifdef _WIN32
 #ifdef DEBUG  #include <io.h>
       printf("%d %.12e",i,(*fret));  #include <windows.h>
       for (j=1;j<=n;j++) {  #include <tchar.h>
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #else
         printf(" x(%d)=%.12e",j,xit[j]);  #include <unistd.h>
       }  #endif
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  #include <limits.h>
       printf("\n");  #include <sys/types.h>
 #endif  
     }  #if defined(__GNUC__)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <sys/utsname.h> /* Doesn't work on Windows */
 #ifdef DEBUG  #endif
       int k[2],l;  
       k[0]=1;  #include <sys/stat.h>
       k[1]=-1;  #include <errno.h>
       printf("Max: %.12e",(*func)(p));  /* extern int errno; */
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /* #ifdef LINUX */
       printf("\n");  /* #include <time.h> */
       for(l=0;l<=1;l++) {  /* #include "timeval.h" */
         for (j=1;j<=n;j++) {  /* #else */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* #include <sys/time.h> */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /* #endif */
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <time.h>
       }  
 #endif  #ifdef GSL
   #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
       free_vector(xit,1,n);  #endif
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  #ifdef NLOPT
       return;  #include <nlopt.h>
     }  typedef struct {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double (* function)(double [] );
     for (j=1;j<=n;j++) {  } myfunc_data ;
       ptt[j]=2.0*p[j]-pt[j];  #endif
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /* #include <libintl.h> */
     }  /* #define _(String) gettext (String) */
     fptt=(*func)(ptt);  
     if (fptt < fp) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  #define GNUPLOTPROGRAM "gnuplot"
         linmin(p,xit,n,fret,func);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         for (j=1;j<=n;j++) {  #define FILENAMELENGTH 132
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         for(j=1;j<=n;j++)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
           printf(" %.12e",xit[j]);  
         printf("\n");  #define NINTERVMAX 8
 #endif  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 }  #define MAXN 20000
   #define YEARM 12. /**< Number of months per year */
 /**** Prevalence limit ****************/  #define AGESUP 130
   #define AGEBASE 40
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 {  #ifdef _WIN32
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #define DIRSEPARATOR '\\'
      matrix by transitions matrix until convergence is reached */  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   int i, ii,j,k;  #else
   double min, max, maxmin, maxmax,sumnew=0.;  #define DIRSEPARATOR '/'
   double **matprod2();  #define CHARSEPARATOR "/"
   double **out, cov[NCOVMAX], **pmij();  #define ODIRSEPARATOR '\\'
   double **newm;  #endif
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /* $Id$ */
   for (ii=1;ii<=nlstate+ndeath;ii++)  /* $State$ */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char version[]="Imach version 0.98q1, April 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     }  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
    cov[1]=1.;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
    int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     newm=savm;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     /* Covariates have to be included here again */  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
      cov[2]=agefin;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
    int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       for (k=1; k<=cptcovn;k++) {  int cptcovprodnoage=0; /**< Number of covariate products without age */   
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int cptcov=0; /* Working variable */
       }  int npar=NPARMAX;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int nlstate=2; /* Number of live states */
       for (k=1; k<=cptcovprod;k++)  int ndeath=1; /* Number of dead states */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int *wav; /* Number of waves for this individuual 0 is possible */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  int maxwav=0; /* Maxim number of waves */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     savm=oldm;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     oldm=newm;                     to the likelihood and the sum of weights (done by funcone)*/
     maxmax=0.;  int mle=1, weightopt=0;
     for(j=1;j<=nlstate;j++){  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       min=1.;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       max=0.;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       for(i=1; i<=nlstate; i++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         sumnew=0;  int countcallfunc=0;  /* Count the number of calls to func */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double jmean=1; /* Mean space between 2 waves */
         prlim[i][j]= newm[i][j]/(1-sumnew);  double **matprod2(); /* test */
         max=FMAX(max,prlim[i][j]);  double **oldm, **newm, **savm; /* Working pointers to matrices */
         min=FMIN(min,prlim[i][j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       }  /*FILE *fic ; */ /* Used in readdata only */
       maxmin=max-min;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       maxmax=FMAX(maxmax,maxmin);  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
     if(maxmax < ftolpl){  double fretone; /* Only one call to likelihood */
       return prlim;  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /*************** transition probabilities ***************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   double s1, s2;  char filerese[FILENAMELENGTH];
   /*double t34;*/  FILE *ficresstdeij;
   int i,j,j1, nc, ii, jj;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
     for(i=1; i<= nlstate; i++){  char filerescve[FILENAMELENGTH];
     for(j=1; j<i;j++){  FILE  *ficresvij;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char fileresv[FILENAMELENGTH];
         /*s2 += param[i][j][nc]*cov[nc];*/  FILE  *ficresvpl;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fileresvpl[FILENAMELENGTH];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char title[MAXLINE];
       }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       ps[i][j]=s2;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     }  char command[FILENAMELENGTH];
     for(j=i+1; j<=nlstate+ndeath;j++){  int  outcmd=0;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  char filelog[FILENAMELENGTH]; /* Log file */
       ps[i][j]=s2;  char filerest[FILENAMELENGTH];
     }  char fileregp[FILENAMELENGTH];
   }  char popfile[FILENAMELENGTH];
     /*ps[3][2]=1;*/  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for(i=1; i<= nlstate; i++){  
      s1=0;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     for(j=1; j<i; j++)  /* struct timezone tzp; */
       s1+=exp(ps[i][j]);  /* extern int gettimeofday(); */
     for(j=i+1; j<=nlstate+ndeath; j++)  struct tm tml, *gmtime(), *localtime();
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  extern time_t time();
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for(j=i+1; j<=nlstate+ndeath; j++)  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  struct tm tm;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  char strcurr[80], strfor[80];
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char *endptr;
     for(jj=1; jj<= nlstate+ndeath; jj++){  long lval;
       ps[ii][jj]=0;  double dval;
       ps[ii][ii]=1;  
     }  #define NR_END 1
   }  #define FREE_ARG char*
   #define FTOL 1.0e-10
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define NRANSI 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define ITMAX 200 
      printf("%lf ",ps[ii][jj]);  
    }  #define TOL 2.0e-4 
     printf("\n ");  
     }  #define CGOLD 0.3819660 
     printf("\n ");printf("%lf ",cov[2]);*/  #define ZEPS 1.0e-10 
 /*  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  #define GOLD 1.618034 
     return ps;  #define GLIMIT 100.0 
 }  #define TINY 1.0e-20 
   
 /**************** Product of 2 matrices ******************/  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #define rint(a) floor(a+0.5)
   /* in, b, out are matrice of pointers which should have been initialized  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
      before: only the contents of out is modified. The function returns  #define mytinydouble 1.0e-16
      a pointer to pointers identical to out */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   long i, j, k;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   for(i=nrl; i<= nrh; i++)  /* static double dsqrarg; */
     for(k=ncolol; k<=ncoloh; k++)  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  static double sqrarg;
         out[i][k] +=in[i][j]*b[j][k];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   return out;  int agegomp= AGEGOMP;
 }  
   int imx; 
   int stepm=1;
 /************* Higher Matrix Product ***************/  /* Stepm, step in month: minimum step interpolation*/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int estepm;
 {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  int m,nb;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  long *num;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
      (typically every 2 years instead of every month which is too big).  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
      Model is determined by parameters x and covariates have to be  double **pmmij, ***probs;
      included manually here.  double *ageexmed,*agecens;
   double dateintmean=0;
      */  
   double *weight;
   int i, j, d, h, k;  int **s; /* Status */
   double **out, cov[NCOVMAX];  double *agedc;
   double **newm;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                     * covar=matrix(0,NCOVMAX,1,n); 
   /* Hstepm could be zero and should return the unit matrix */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   for (i=1;i<=nlstate+ndeath;i++)  double  idx; 
     for (j=1;j<=nlstate+ndeath;j++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  int *Ndum; /** Freq of modality (tricode */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double *lsurv, *lpop, *tpop;
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       newm=savm;  double ftolhess; /**< Tolerance for computing hessian */
       /* Covariates have to be included here again */  
       cov[1]=1.;  /**************** split *************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       for (k=1; k<=cptcovprod;k++)    */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    char  *ss;                            /* pointer */
     int   l1=0, l2=0;                             /* length counters */
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    l1 = strlen(path );                   /* length of path */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       savm=oldm;      strcpy( name, path );               /* we got the fullname name because no directory */
       oldm=newm;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for(i=1; i<=nlstate+ndeath; i++)      /* get current working directory */
       for(j=1;j<=nlstate+ndeath;j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
         po[i][j][h]=newm[i][j];  #ifdef WIN32
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
          */  #else
       }          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   } /* end h */  #endif
   return po;        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /*************** log-likelihood *************/    } else {                              /* strip direcotry from path */
 double func( double *x)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int i, ii, j, k, mi, d, kk;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      strcpy( name, ss );         /* save file name */
   double **out;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double sw; /* Sum of weights */      dirc[l1-l2] = '\0';                 /* add zero */
   double lli; /* Individual log likelihood */      printf(" DIRC2 = %s \n",dirc);
   int s1, s2;    }
   long ipmx;    /* We add a separator at the end of dirc if not exists */
   /*extern weight */    l1 = strlen( dirc );                  /* length of directory */
   /* We are differentiating ll according to initial status */    if( dirc[l1-1] != DIRSEPARATOR ){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      dirc[l1] =  DIRSEPARATOR;
   /*for(i=1;i<imx;i++)      dirc[l1+1] = 0; 
     printf(" %d\n",s[4][i]);      printf(" DIRC3 = %s \n",dirc);
   */    }
   cov[1]=1.;    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      ss++;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      strcpy(ext,ss);                     /* save extension */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      l1= strlen( name);
     for(mi=1; mi<= wav[i]-1; mi++){      l2= strlen(ss)+1;
       for (ii=1;ii<=nlstate+ndeath;ii++)      strncpy( finame, name, l1-l2);
         for (j=1;j<=nlstate+ndeath;j++){      finame[l1-l2]= 0;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  
         }    return( 0 );                          /* we're done */
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /******************************************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  void replace_back_to_slash(char *s, char*t)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int i;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int lg=0;
         savm=oldm;    i=0;
         oldm=newm;    lg=strlen(t);
            for(i=0; i<= lg; i++) {
              (s[i] = t[i]);
       } /* end mult */      if (t[i]== '\\') s[i]='/';
          }
       s1=s[mw[mi][i]][i];  }
       s2=s[mw[mi+1][i]][i];  
       if( s2 > nlstate){  char *trimbb(char *out, char *in)
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
            to the likelihood is the probability to die between last step unit time and current    char *s;
            step unit time, which is also the differences between probability to die before dh    s=out;
            and probability to die before dh-stepm .    while (*in != '\0'){
            In version up to 0.92 likelihood was computed      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
            as if date of death was unknown. Death was treated as any other        in++;
            health state: the date of the interview describes the actual state      }
            and not the date of a change in health state. The former idea was      *out++ = *in++;
            to consider that at each interview the state was recorded    }
            (healthy, disable or death) and IMaCh was corrected; but when we    *out='\0';
            introduced the exact date of death then we should have modified    return s;
            the contribution of an exact death to the likelihood. This new  }
            contribution is smaller and very dependent of the step unit  
            stepm. It is no more the probability to die between last interview  /* char *substrchaine(char *out, char *in, char *chain) */
            and month of death but the probability to survive from last  /* { */
            interview up to one month before death multiplied by the  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
            probability to die within a month. Thanks to Chris  /*   char *s, *t; */
            Jackson for correcting this bug.  Former versions increased  /*   t=in;s=out; */
            mortality artificially. The bad side is that we add another loop  /*   while ((*in != *chain) && (*in != '\0')){ */
            which slows down the processing. The difference can be up to 10%  /*     *out++ = *in++; */
            lower mortality.  /*   } */
         */  
         lli=log(out[s1][s2] - savm[s1][s2]);  /*   /\* *in matches *chain *\/ */
       }else{  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*   } */
       }  /*   in--; chain--; */
       ipmx +=1;  /*   while ( (*in != '\0')){ */
       sw += weight[i];  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*     *out++ = *in++; */
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     } /* end of wave */  /*   } */
   } /* end of individual */  /*   *out='\0'; */
   /*   out=s; */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*   return out; */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /* } */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  char *substrchaine(char *out, char *in, char *chain)
   /*exit(0);*/  {
   return -l;    /* Substract chain 'chain' from 'in', return and output 'out' */
 }    /* in="V1+V1*age+age*age+V2", chain="age*age" */
   
     char *strloc;
 /*********** Maximum Likelihood Estimation ***************/  
     strcpy (out, in); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
 {    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   int i,j, iter;    if(strloc != NULL){ 
   double **xi,*delti;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   double fret;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   xi=matrix(1,npar,1,npar);      /* strcpy (strloc, strloc +strlen(chain));*/
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++)    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
       xi[i][j]=(i==j ? 1.0 : 0.0);    return out;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  char *cutl(char *blocc, char *alocc, char *in, char occ)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
     /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
 }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef" and alocc="ghi2j".
 /**** Computes Hessian and covariance matrix ***/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    */
 {    char *s, *t;
   double  **a,**y,*x,pd;    t=in;s=in;
   double **hess;    while ((*in != occ) && (*in != '\0')){
   int i, j,jk;      *alocc++ = *in++;
   int *indx;    }
     if( *in == occ){
   double hessii(double p[], double delta, int theta, double delti[]);      *(alocc)='\0';
   double hessij(double p[], double delti[], int i, int j);      s=++in;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }
   void ludcmp(double **a, int npar, int *indx, double *d) ;   
     if (s == t) {/* occ not found */
   hess=matrix(1,npar,1,npar);      *(alocc-(in-s))='\0';
       in=s;
   printf("\nCalculation of the hessian matrix. Wait...\n");    }
   for (i=1;i<=npar;i++){    while ( *in != '\0'){
     printf("%d",i);fflush(stdout);      *blocc++ = *in++;
     hess[i][i]=hessii(p,ftolhess,i,delti);    }
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    *blocc='\0';
   }    return t;
    }
   for (i=1;i<=npar;i++) {  char *cutv(char *blocc, char *alocc, char *in, char occ)
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
         printf(".%d%d",i,j);fflush(stdout);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         hess[i][j]=hessij(p,delti,i,j);       gives blocc="abcdef2ghi" and alocc="j".
         hess[j][i]=hess[i][j];           If occ is not found blocc is null and alocc is equal to in. Returns alocc
         /*printf(" %lf ",hess[i][j]);*/    */
       }    char *s, *t;
     }    t=in;s=in;
   }    while (*in != '\0'){
   printf("\n");      while( *in == occ){
         *blocc++ = *in++;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        s=in;
        }
   a=matrix(1,npar,1,npar);      *blocc++ = *in++;
   y=matrix(1,npar,1,npar);    }
   x=vector(1,npar);    if (s == t) /* occ not found */
   indx=ivector(1,npar);      *(blocc-(in-s))='\0';
   for (i=1;i<=npar;i++)    else
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      *(blocc-(in-s)-1)='\0';
   ludcmp(a,npar,indx,&pd);    in=s;
     while ( *in != '\0'){
   for (j=1;j<=npar;j++) {      *alocc++ = *in++;
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;  
     lubksb(a,npar,indx,x);    *alocc='\0';
     for (i=1;i<=npar;i++){    return s;
       matcov[i][j]=x[i];  }
     }  
   }  int nbocc(char *s, char occ)
   {
   printf("\n#Hessian matrix#\n");    int i,j=0;
   for (i=1;i<=npar;i++) {    int lg=20;
     for (j=1;j<=npar;j++) {    i=0;
       printf("%.3e ",hess[i][j]);    lg=strlen(s);
     }    for(i=0; i<= lg; i++) {
     printf("\n");    if  (s[i] == occ ) j++;
   }    }
     return j;
   /* Recompute Inverse */  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /* void cutv(char *u,char *v, char*t, char occ) */
   ludcmp(a,npar,indx,&pd);  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*  printf("\n#Hessian matrix recomputed#\n");  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   for (j=1;j<=npar;j++) {  /*   int i,lg,j,p=0; */
     for (i=1;i<=npar;i++) x[i]=0;  /*   i=0; */
     x[j]=1;  /*   lg=strlen(t); */
     lubksb(a,npar,indx,x);  /*   for(j=0; j<=lg-1; j++) { */
     for (i=1;i<=npar;i++){  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       y[i][j]=x[i];  /*   } */
       printf("%.3e ",y[i][j]);  
     }  /*   for(j=0; j<p; j++) { */
     printf("\n");  /*     (u[j] = t[j]); */
   }  /*   } */
   */  /*      u[p]='\0'; */
   
   free_matrix(a,1,npar,1,npar);  /*    for(j=0; j<= lg; j++) { */
   free_matrix(y,1,npar,1,npar);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   free_vector(x,1,npar);  /*   } */
   free_ivector(indx,1,npar);  /* } */
   free_matrix(hess,1,npar,1,npar);  
   #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
 }  {
     char *p, *q;
 /*************** hessian matrix ****************/           
 double hessii( double x[], double delta, int theta, double delti[])    if ((p = *pp) == NULL)
 {      return 0;
   int i;    if ((q = strpbrk (p, delim)) != NULL)
   int l=1, lmax=20;    {
   double k1,k2;      *pp = q + 1;
   double p2[NPARMAX+1];      *q = '\0';
   double res;    }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    else
   double fx;      *pp = 0;
   int k=0,kmax=10;    return p;
   double l1;  }
   #endif
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /********************** nrerror ********************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  void nrerror(char error_text[])
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    fprintf(stderr,"ERREUR ...\n");
       delt = delta*(l1*k);    fprintf(stderr,"%s\n",error_text);
       p2[theta]=x[theta] +delt;    exit(EXIT_FAILURE);
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  /*********************** vector *******************/
       k2=func(p2)-fx;  double *vector(int nl, int nh)
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double *v;
          v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in vector");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return v-nl+NR_END;
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /************************ free vector ******************/
         k=kmax;  void free_vector(double*v, int nl, int nh)
       }  {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    free((FREE_ARG)(v+nl-NR_END));
         k=kmax; l=lmax*10.;  }
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /************************ivector *******************************/
         delts=delt;  int *ivector(long nl,long nh)
       }  {
     }    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   delti[theta]=delts;    if (!v) nrerror("allocation failure in ivector");
   return res;    return v-nl+NR_END;
    }
 }  
   /******************free ivector **************************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  void free_ivector(int *v, long nl, long nh)
 {  {
   int i;    free((FREE_ARG)(v+nl-NR_END));
   int l=1, l1, lmax=20;  }
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  /************************lvector *******************************/
   int k;  long *lvector(long nl,long nh)
   {
   fx=func(x);    long *v;
   for (k=1; k<=2; k++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (i=1;i<=npar;i++) p2[i]=x[i];    if (!v) nrerror("allocation failure in ivector");
     p2[thetai]=x[thetai]+delti[thetai]/k;    return v-nl+NR_END;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k1=func(p2)-fx;  
    /******************free lvector **************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  void free_lvector(long *v, long nl, long nh)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  {
     k2=func(p2)-fx;    free((FREE_ARG)(v+nl-NR_END));
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /******************* imatrix *******************************/
     k3=func(p2)-fx;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     p2[thetai]=x[thetai]-delti[thetai]/k;  { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     k4=func(p2)-fx;    int **m; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    
 #ifdef DEBUG    /* allocate pointers to rows */ 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   return res;    m -= nrl; 
 }    
     
 /************** Inverse of matrix **************/    /* allocate rows and set pointers to them */ 
 void ludcmp(double **a, int n, int *indx, double *d)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int i,imax,j,k;    m[nrl] += NR_END; 
   double big,dum,sum,temp;    m[nrl] -= ncl; 
   double *vv;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   vv=vector(1,n);    
   *d=1.0;    /* return pointer to array of pointers to rows */ 
   for (i=1;i<=n;i++) {    return m; 
     big=0.0;  } 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /****************** free_imatrix *************************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  void free_imatrix(m,nrl,nrh,ncl,nch)
     vv[i]=1.0/big;        int **m;
   }        long nch,ncl,nrh,nrl; 
   for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<j;i++) {  { 
       sum=a[i][j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    free((FREE_ARG) (m+nrl-NR_END)); 
       a[i][j]=sum;  } 
     }  
     big=0.0;  /******************* matrix *******************************/
     for (i=j;i<=n;i++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
       sum=a[i][j];  {
       for (k=1;k<j;k++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         sum -= a[i][k]*a[k][j];    double **m;
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         big=dum;    if (!m) nrerror("allocation failure 1 in matrix()");
         imax=i;    m += NR_END;
       }    m -= nrl;
     }  
     if (j != imax) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1;k<=n;k++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         dum=a[imax][k];    m[nrl] += NR_END;
         a[imax][k]=a[j][k];    m[nrl] -= ncl;
         a[j][k]=dum;  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       *d = -(*d);    return m;
       vv[imax]=vv[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     indx[j]=imax;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     if (a[j][j] == 0.0) a[j][j]=TINY;     */
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   }  {
   free_vector(vv,1,n);  /* Doesn't work */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 ;    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,ii=0,ip,j;  {
   double sum;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
   for (i=1;i<=n;i++) {  
     ip=indx[i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     sum=b[ip];    if (!m) nrerror("allocation failure 1 in matrix()");
     b[ip]=b[i];    m += NR_END;
     if (ii)    m -= nrl;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     b[i]=sum;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
   for (i=n;i>=1;i--) {    m[nrl] -= ncl;
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     b[i]=sum/a[i][i];  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 /************ Frequencies ********************/    m[nrl][ncl] -= nll;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    for (j=ncl+1; j<=nch; j++) 
 {  /* Some frequencies */      m[nrl][j]=m[nrl][j-1]+nlay;
      
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for (i=nrl+1; i<=nrh; i++) {
   double ***freq; /* Frequencies */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double *pp;      for (j=ncl+1; j<=nch; j++) 
   double pos, k2, dateintsum=0,k2cpt=0;        m[i][j]=m[i][j-1]+nlay;
   FILE *ficresp;    }
   char fileresp[FILENAMELENGTH];    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   pp=vector(1,nlstate);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*************************free ma3x ************************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     exit(0);  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   j1=0;    free((FREE_ARG)(m+nrl-NR_END));
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    /* Caution optionfilefiname is hidden */
       j1++;    strcpy(tmpout,optionfilefiname);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    strcat(tmpout,"/"); /* Add to the right */
         scanf("%d", i);*/    strcat(tmpout,fileres);
       for (i=-1; i<=nlstate+ndeath; i++)      return tmpout;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /*************** function subdirf2 ***********/
        char *subdirf2(char fileres[], char *preop)
       dateintsum=0;  {
       k2cpt=0;    
       for (i=1; i<=imx; i++) {    /* Caution optionfilefiname is hidden */
         bool=1;    strcpy(tmpout,optionfilefiname);
         if  (cptcovn>0) {    strcat(tmpout,"/");
           for (z1=1; z1<=cptcoveff; z1++)    strcat(tmpout,preop);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    strcat(tmpout,fileres);
               bool=0;    return tmpout;
         }  }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /*************** function subdirf3 ***********/
             k2=anint[m][i]+(mint[m][i]/12.);  char *subdirf3(char fileres[], char *preop, char *preop2)
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  {
               if(agev[m][i]==0) agev[m][i]=agemax+1;    
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Caution optionfilefiname is hidden */
               if (m<lastpass) {    strcpy(tmpout,optionfilefiname);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    strcat(tmpout,"/");
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    strcat(tmpout,preop);
               }    strcat(tmpout,preop2);
                  strcat(tmpout,fileres);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    return tmpout;
                 dateintsum=dateintsum+k2;  }
                 k2cpt++;  
               }  char *asc_diff_time(long time_sec, char ascdiff[])
             }  {
           }    long sec_left, days, hours, minutes;
         }    days = (time_sec) / (60*60*24);
       }    sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
       if  (cptcovn>0) {    sec_left = (sec_left) % (60);
         fprintf(ficresp, "\n#********** Variable ");    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return ascdiff;
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  /***************** f1dim *************************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  extern int ncom; 
       fprintf(ficresp, "\n");  extern double *pcom,*xicom;
        extern double (*nrfunc)(double []); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){   
         if(i==(int)agemax+3)  double f1dim(double x) 
           printf("Total");  { 
         else    int j; 
           printf("Age %d", i);    double f;
         for(jk=1; jk <=nlstate ; jk++){    double *xt; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   
             pp[jk] += freq[jk][m][i];    xt=vector(1,ncom); 
         }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         for(jk=1; jk <=nlstate ; jk++){    f=(*nrfunc)(xt); 
           for(m=-1, pos=0; m <=0 ; m++)    free_vector(xt,1,ncom); 
             pos += freq[jk][m][i];    return f; 
           if(pp[jk]>=1.e-10)  } 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else  /*****************brent *************************/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         }  {
     /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         for(jk=1; jk <=nlstate ; jk++){     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
             pp[jk] += freq[jk][m][i];     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
         }     * returned function value. 
     */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    int iter; 
           pos += pp[jk];    double a,b,d,etemp;
         for(jk=1; jk <=nlstate ; jk++){    double fu=0,fv,fw,fx;
           if(pos>=1.e-5)    double ftemp=0.;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
           else    double e=0.0; 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   
           if( i <= (int) agemax){    a=(ax < cx ? ax : cx); 
             if(pos>=1.e-5){    b=(ax > cx ? ax : cx); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    x=w=v=bx; 
               probs[i][jk][j1]= pp[jk]/pos;    fw=fv=fx=(*f)(x); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    for (iter=1;iter<=ITMAX;iter++) { 
             }      xm=0.5*(a+b); 
             else      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           }      printf(".");fflush(stdout);
         }      fprintf(ficlog,".");fflush(ficlog);
          #ifdef DEBUGBRENT
         for(jk=-1; jk <=nlstate+ndeath; jk++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           for(m=-1; m <=nlstate+ndeath; m++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         if(i <= (int) agemax)  #endif
           fprintf(ficresp,"\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         printf("\n");        *xmin=x; 
       }        return fx; 
     }      } 
   }      ftemp=fu;
   dateintmean=dateintsum/k2cpt;      if (fabs(e) > tol1) { 
          r=(x-w)*(fx-fv); 
   fclose(ficresp);        q=(x-v)*(fx-fw); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        p=(x-v)*q-(x-w)*r; 
   free_vector(pp,1,nlstate);        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
   /* End of Freq */        q=fabs(q); 
 }        etemp=e; 
         e=d; 
 /************ Prevalence ********************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {  /* Some frequencies */        else { 
            d=p/q; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          u=x+d; 
   double ***freq; /* Frequencies */          if (u-a < tol2 || b-u < tol2) 
   double *pp;            d=SIGN(tol1,xm-x); 
   double pos, k2;        } 
       } else { 
   pp=vector(1,nlstate);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fu=(*f)(u); 
   j1=0;      if (fu <= fx) { 
          if (u >= x) a=x; else b=x; 
   j=cptcoveff;        SHFT(v,w,x,u) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        SHFT(fv,fw,fx,fu) 
        } else { 
  for(k1=1; k1<=j;k1++){        if (u < x) a=u; else b=u; 
     for(i1=1; i1<=ncodemax[k1];i1++){        if (fu <= fw || w == x) { 
       j1++;          v=w; 
            w=u; 
       for (i=-1; i<=nlstate+ndeath; i++)            fv=fw; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            fw=fu; 
           for(m=agemin; m <= agemax+3; m++)        } else if (fu <= fv || v == x || v == w) { 
             freq[i][jk][m]=0;          v=u; 
                fv=fu; 
       for (i=1; i<=imx; i++) {        } 
         bool=1;      } 
         if  (cptcovn>0) {    } 
           for (z1=1; z1<=cptcoveff; z1++)    nrerror("Too many iterations in brent"); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    *xmin=x; 
               bool=0;    return fx; 
         }  } 
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /****************** mnbrak ***********************/
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               if(agev[m][i]==0) agev[m][i]=agemax+1;              double (*func)(double)) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
               if (m<lastpass)  the downhill direction (defined by the function as evaluated at the initial points) and returns
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
               else  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];     */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double ulim,u,r,q, dum;
             }    double fu; 
           }  
         }    double scale=10.;
       }    int iterscale=0;
         for(i=(int)agemin; i <= (int)agemax+3; i++){  
           for(jk=1; jk <=nlstate ; jk++){    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
               pp[jk] += freq[jk][m][i];  
           }  
           for(jk=1; jk <=nlstate ; jk++){    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
             for(m=-1, pos=0; m <=0 ; m++)    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
             pos += freq[jk][m][i];    /*   *bx = *ax - (*ax - *bx)/scale; */
         }    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
            /* } */
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    if (*fb > *fa) { 
              pp[jk] += freq[jk][m][i];      SHFT(dum,*ax,*bx,dum) 
          }      SHFT(dum,*fb,*fa,dum) 
              } 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
          for(jk=1; jk <=nlstate ; jk++){            #ifdef DEBUG
            if( i <= (int) agemax){    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
              if(pos>=1.e-5){    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
                probs[i][jk][j1]= pp[jk]/pos;  #endif
              }    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
            }      r=(*bx-*ax)*(*fb-*fc); 
          }      q=(*bx-*cx)*(*fb-*fa); 
                u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
   }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
    #ifdef DEBUG
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /* f(x)=A(x-u)**2+f(u) */
   free_vector(pp,1,nlstate);        double A, fparabu; 
          A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
 }  /* End of Freq */        fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
 /************* Waves Concatenation ***************/        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         /* And thus,it can be that fu > *fc even if fparabu < *fc */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
 {          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
      Death is a valid wave (if date is known).  #endif 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  #ifdef MNBRAKORIGINAL
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  #else
      and mw[mi+1][i]. dh depends on stepm.        if (fu > *fc) {
      */  #ifdef DEBUG
         printf("mnbrak4  fu > fc \n");
   int i, mi, m;        fprintf(ficlog, "mnbrak4 fu > fc\n");
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #endif
      double sum=0., jmean=0.;*/          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
           /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
   int j, k=0,jk, ju, jl;          dum=u; /* Shifting c and u */
   double sum=0.;          u = *cx;
   jmin=1e+5;          *cx = dum;
   jmax=-1;          dum = fu;
   jmean=0.;          fu = *fc;
   for(i=1; i<=imx; i++){          *fc =dum;
     mi=0;        } else { /* end */
     m=firstpass;  #ifdef DEBUG
     while(s[m][i] <= nlstate){        printf("mnbrak3  fu < fc \n");
       if(s[m][i]>=1)        fprintf(ficlog, "mnbrak3 fu < fc\n");
         mw[++mi][i]=m;  #endif
       if(m >=lastpass)          dum=u; /* Shifting c and u */
         break;          u = *cx;
       else          *cx = dum;
         m++;          dum = fu;
     }/* end while */          fu = *fc;
     if (s[m][i] > nlstate){          *fc =dum;
       mi++;     /* Death is another wave */        }
       /* if(mi==0)  never been interviewed correctly before death */  #endif
          /* Only death is a correct wave */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       mw[mi][i]=m;  #ifdef DEBUG
     }        printf("mnbrak2  u after c but before ulim\n");
         fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
     wav[i]=mi;  #endif
     if(mi==0)        fu=(*func)(u); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        if (fu < *fc) { 
   }  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   for(i=1; i<=imx; i++){        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
     for(mi=1; mi<wav[i];mi++){  #endif
       if (stepm <=0)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         dh[mi][i]=1;          SHFT(*fb,*fc,fu,(*func)(u)) 
       else{        } 
         if (s[mw[mi+1][i]][i] > nlstate) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
           if (agedc[i] < 2*AGESUP) {  #ifdef DEBUG
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
           if(j==0) j=1;  /* Survives at least one month after exam */        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
           k=k+1;  #endif
           if (j >= jmax) jmax=j;        u=ulim; 
           if (j <= jmin) jmin=j;        fu=(*func)(u); 
           sum=sum+j;      } else { /* u could be left to b (if r > q parabola has a maximum) */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  #ifdef DEBUG
           }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         }        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         else{  #endif
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        u=(*cx)+GOLD*(*cx-*bx); 
           k=k+1;        fu=(*func)(u); 
           if (j >= jmax) jmax=j;      } /* end tests */
           else if (j <= jmin)jmin=j;      SHFT(*ax,*bx,*cx,u) 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      SHFT(*fa,*fb,*fc,fu) 
           sum=sum+j;  #ifdef DEBUG
         }        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         jk= j/stepm;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         jl= j -jk*stepm;  #endif
         ju= j -(jk+1)*stepm;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         if(jl <= -ju)  } 
           dh[mi][i]=jk;  
         else  /*************** linmin ************************/
           dh[mi][i]=jk+1;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         if(dh[mi][i]==0)  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
           dh[mi][i]=1; /* At least one step */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       }  the value of func at the returned location p . This is actually all accomplished by calling the
     }  routines mnbrak and brent .*/
   }  int ncom; 
   jmean=sum/k;  double *pcom,*xicom;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  double (*nrfunc)(double []); 
  }   
 /*********** Tricode ****************************/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 void tricode(int *Tvar, int **nbcode, int imx)  { 
 {    double brent(double ax, double bx, double cx, 
   int Ndum[20],ij=1, k, j, i;                 double (*f)(double), double tol, double *xmin); 
   int cptcode=0;    double f1dim(double x); 
   cptcoveff=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   for (k=0; k<19; k++) Ndum[k]=0;    int j; 
   for (k=1; k<=7; k++) ncodemax[k]=0;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
       ij=(int)(covar[Tvar[j]][i]);   
       Ndum[ij]++;    ncom=n; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    pcom=vector(1,n); 
       if (ij > cptcode) cptcode=ij;    xicom=vector(1,n); 
     }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
     for (i=0; i<=cptcode; i++) {      pcom[j]=p[j]; 
       if(Ndum[i]!=0) ncodemax[j]++;      xicom[j]=xi[j]; 
     }    } 
     ij=1;  
     axs=0.0;
     xxss=1; /* 1 and using scale */
     for (i=1; i<=ncodemax[j]; i++) {    xxs=1;
       for (k=0; k<=19; k++) {    do{
         if (Ndum[k] != 0) {      ax=0.;
           nbcode[Tvar[j]][ij]=k;      xx= xxs;
                mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           ij++;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
         }      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
         if (ij > ncodemax[j]) break;      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
       }        /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
     }      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   }        /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
       if (fx != fx){
  for (k=0; k<19; k++) Ndum[k]=0;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
  for (i=1; i<=ncovmodel-2; i++) {      }
       ij=Tvar[i];    }while(fx != fx);
       Ndum[ij]++;  
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
  ij=1;    /* fmin = f(p[j] + xmin * xi[j]) */
  for (i=1; i<=10; i++) {    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
    if((Ndum[i]!=0) && (i<=ncovcol)){    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
      Tvaraff[ij]=i;  #ifdef DEBUG
      ij++;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
  }  #endif
      printf("linmin end ");
     cptcoveff=ij-1;    for (j=1;j<=n;j++) { 
 }      printf(" before xi[%d]=%12.8f", j,xi[j]);
       xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
 /*********** Health Expectancies ****************/      if(xxs <1.0)
         printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      p[j] += xi[j]; /* Parameters values are updated accordingly */
     } 
 {    printf("\n");
   /* Health expectancies */    free_vector(xicom,1,n); 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    free_vector(pcom,1,n); 
   double age, agelim, hf;  } 
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;  
   double *xp;  /*************** powell ************************/
   double **gp, **gm;  /*
   double ***gradg, ***trgradg;  Minimization of a function func of n variables. Input consists of an initial starting point
   int theta;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  such that failure to decrease by more than this amount on one iteration signals doneness. On
   xp=vector(1,npar);  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   dnewm=matrix(1,nlstate*2,1,npar);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   doldm=matrix(1,nlstate*2,1,nlstate*2);   */
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   fprintf(ficreseij,"# Health expectancies\n");              double (*func)(double [])) 
   fprintf(ficreseij,"# Age");  { 
   for(i=1; i<=nlstate;i++)    void linmin(double p[], double xi[], int n, double *fret, 
     for(j=1; j<=nlstate;j++)                double (*func)(double [])); 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int i,ibig,j; 
   fprintf(ficreseij,"\n");    double del,t,*pt,*ptt,*xit;
     double directest;
   if(estepm < stepm){    double fp,fptt;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double *xits;
   }    int niterf, itmp;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    pt=vector(1,n); 
    * This is mainly to measure the difference between two models: for example    ptt=vector(1,n); 
    * if stepm=24 months pijx are given only every 2 years and by summing them    xit=vector(1,n); 
    * we are calculating an estimate of the Life Expectancy assuming a linear    xits=vector(1,n); 
    * progression inbetween and thus overestimating or underestimating according    *fret=(*func)(p); 
    * to the curvature of the survival function. If, for the same date, we    for (j=1;j<=n;j++) pt[j]=p[j]; 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      rcurr_time = time(NULL);  
    * to compare the new estimate of Life expectancy with the same linear    for (*iter=1;;++(*iter)) { 
    * hypothesis. A more precise result, taking into account a more precise      fp=(*fret); /* From former iteration or initial value */
    * curvature will be obtained if estepm is as small as stepm. */      ibig=0; 
       del=0.0; 
   /* For example we decided to compute the life expectancy with the smallest unit */      rlast_time=rcurr_time;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /* (void) gettimeofday(&curr_time,&tzp); */
      nhstepm is the number of hstepm from age to agelim      rcurr_time = time(NULL);  
      nstepm is the number of stepm from age to agelin.      curr_time = *localtime(&rcurr_time);
      Look at hpijx to understand the reason of that which relies in memory size      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
      and note for a fixed period like estepm months */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
      survival function given by stepm (the optimization length). Unfortunately it     for (i=1;i<=n;i++) {
      means that if the survival funtion is printed only each two years of age and if        printf(" %d %.12f",i, p[i]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficlog," %d %.12lf",i, p[i]);
      results. So we changed our mind and took the option of the best precision.        fprintf(ficrespow," %.12lf", p[i]);
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      printf("\n");
       fprintf(ficlog,"\n");
   agelim=AGESUP;      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if(*iter <=3){
     /* nhstepm age range expressed in number of stepm */        tml = *localtime(&rcurr_time);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        strcpy(strcurr,asctime(&tml));
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        rforecast_time=rcurr_time; 
     /* if (stepm >= YEARM) hstepm=1;*/        itmp = strlen(strcurr);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          strcurr[itmp-1]='\0';
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     gp=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     gm=matrix(0,nhstepm,1,nlstate*2);        for(niterf=10;niterf<=30;niterf+=10){
           rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          forecast_time = *localtime(&rforecast_time);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          strcpy(strfor,asctime(&forecast_time));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
     /* Computing Variances of health expectancies */        }
       }
      for(theta=1; theta <=npar; theta++){      for (i=1;i<=n;i++) { /* For each direction i */
       for(i=1; i<=npar; i++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fptt=(*fret); 
       }  #ifdef DEBUG
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
              fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       cptj=0;  #endif
       for(j=1; j<= nlstate; j++){            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         for(i=1; i<=nlstate; i++){        fprintf(ficlog,"%d",i);fflush(ficlog);
           cptj=cptj+1;        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input. Outputs are fret(new point p) p is updated and xit rescaled */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                                         because that direction will be replaced unless the gain del is small
           }                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
         }                                        Unless the n directions are conjugate some gain in the determinant may be obtained
       }                                        with the new direction.
                                              */
                del=fabs(fptt-(*fret)); 
       for(i=1; i<=npar; i++)          ibig=i; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #ifdef DEBUG
              printf("%d %.12e",i,(*fret));
       cptj=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
       for(j=1; j<= nlstate; j++){        for (j=1;j<=n;j++) {
         for(i=1;i<=nlstate;i++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           cptj=cptj+1;          printf(" x(%d)=%.12e",j,xit[j]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }        for(j=1;j<=n;j++) {
         }          printf(" p(%d)=%.12e",j,p[j]);
       }          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
              }
            printf("\n");
         fprintf(ficlog,"\n");
       for(j=1; j<= nlstate*2; j++)  #endif
         for(h=0; h<=nhstepm-1; h++){      } /* end loop on each direction i */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
         }      /* But p and xit have been updated at the end of linmin and do not produce *fret any more! */
       /* New value of last point Pn is not computed, P(n-1) */
      }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
      #ifdef DEBUG
 /* End theta */        int k[2],l;
         k[0]=1;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
      for(h=0; h<=nhstepm-1; h++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for(j=1; j<=nlstate*2;j++)        for (j=1;j<=n;j++) {
         for(theta=1; theta <=npar; theta++)          printf(" %.12e",p[j]);
         trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
      for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"\n");
       for(j=1;j<=nlstate*2;j++)        for(l=0;l<=1;l++) {
         varhe[i][j][(int)age] =0.;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(h=0;h<=nhstepm-1;h++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(k=0;k<=nhstepm-1;k++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for(i=1;i<=nlstate*2;i++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           for(j=1;j<=nlstate*2;j++)        }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #endif
       }  
     }  
         free_vector(xit,1,n); 
              free_vector(xits,1,n); 
     /* Computing expectancies */        free_vector(ptt,1,n); 
     for(i=1; i<=nlstate;i++)        free_vector(pt,1,n); 
       for(j=1; j<=nlstate;j++)        return; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      } 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
         }        pt[j]=p[j]; 
       } 
     fprintf(ficreseij,"%3.0f",age );      fptt=(*func)(ptt); /* f_3 */
     cptj=0;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
     for(i=1; i<=nlstate;i++)        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       for(j=1; j<=nlstate;j++){        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         cptj++;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     fprintf(ficreseij,"\n");        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
            /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     free_matrix(gm,0,nhstepm,1,nlstate*2);  #ifdef NRCORIGINAL
     free_matrix(gp,0,nhstepm,1,nlstate*2);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  #else
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        t= t- del*SQR(fp-fptt);
   }  #endif
   free_vector(xp,1,npar);        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   free_matrix(dnewm,1,nlstate*2,1,npar);  #ifdef DEBUG
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
 }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 /************ Variance ******************/        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
 {        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   /* Variance of health expectancies */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  #endif
   double **newm;  #ifdef POWELLORIGINAL
   double **dnewm,**doldm;        if (t < 0.0) { /* Then we use it for new direction */
   int i, j, nhstepm, hstepm, h, nstepm ;  #else
   int k, cptcode;        if (directest*t < 0.0) { /* Contradiction between both tests */
   double *xp;        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   double **gp, **gm;        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   double ***gradg, ***trgradg;        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   double ***p3mat;        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   double age,agelim, hf;      } 
   int theta;        if (directest < 0.0) { /* Then we use it for new direction */
   #endif
    fprintf(ficresvij,"# Covariances of life expectancies\n");          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   fprintf(ficresvij,"# Age");          for (j=1;j<=n;j++) { 
   for(i=1; i<=nlstate;i++)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     for(j=1; j<=nlstate;j++)            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          }
   fprintf(ficresvij,"\n");          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  #ifdef DEBUG
   doldm=matrix(1,nlstate,1,nlstate);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   if(estepm < stepm){          for(j=1;j<=n;j++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
   else  hstepm=estepm;            }
   /* For example we decided to compute the life expectancy with the smallest unit */          printf("\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim  #endif
      nstepm is the number of stepm from age to agelin.        } /* end of t negative */
      Look at hpijx to understand the reason of that which relies in memory size      } /* end if (fptt < fp)  */
      and note for a fixed period like k years */    } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  } 
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /**** Prevalence limit (stable or period prevalence)  ****************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   */  {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   agelim = AGESUP;       matrix by transitions matrix until convergence is reached */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i, ii,j,k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double min, max, maxmin, maxmax,sumnew=0.;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* double **matprod2(); */ /* test */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double **out, cov[NCOVMAX+1], **pmij();
     gp=matrix(0,nhstepm,1,nlstate);    double **newm;
     gm=matrix(0,nhstepm,1,nlstate);    double agefin, delaymax=50 ; /* Max number of years to converge */
     
     for(theta=1; theta <=npar; theta++){    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    cov[1]=1.;
     
       if (popbased==1) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(i=1; i<=nlstate;i++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           prlim[i][i]=probs[(int)age][i][ij];      newm=savm;
       }      /* Covariates have to be included here again */
        cov[2]=agefin;
       for(j=1; j<= nlstate; j++){      if(nagesqr==1)
         for(h=0; h<=nhstepm; h++){        cov[3]= agefin*agefin;;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       }      }
          /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(i=1; i<=npar; i++) /* Computes gradient */      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (k=1; k<=cptcovprod;k++) /* Useless */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      
        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       if (popbased==1) {      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for(i=1; i<=nlstate;i++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           prlim[i][i]=probs[(int)age][i][ij];      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       for(j=1; j<= nlstate; j++){      
         for(h=0; h<=nhstepm; h++){      savm=oldm;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      oldm=newm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      maxmax=0.;
         }      for(j=1;j<=nlstate;j++){
       }        min=1.;
         max=0.;
       for(j=1; j<= nlstate; j++)        for(i=1; i<=nlstate; i++) {
         for(h=0; h<=nhstepm; h++){          sumnew=0;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         }          prlim[i][j]= newm[i][j]/(1-sumnew);
     } /* End theta */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           max=FMAX(max,prlim[i][j]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          min=FMIN(min,prlim[i][j]);
         }
     for(h=0; h<=nhstepm; h++)        maxmin=max-min;
       for(j=1; j<=nlstate;j++)        maxmax=FMAX(maxmax,maxmin);
         for(theta=1; theta <=npar; theta++)      } /* j loop */
           trgradg[h][j][theta]=gradg[h][theta][j];      if(maxmax < ftolpl){
         return prlim;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     for(i=1;i<=nlstate;i++)    } /* age loop */
       for(j=1;j<=nlstate;j++)    return prlim; /* should not reach here */
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  /*************** transition probabilities ***************/ 
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    /* According to parameters values stored in x and the covariate's values stored in cov,
           for(j=1;j<=nlstate;j++)       computes the probability to be observed in state j being in state i by appying the
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       model to the ncovmodel covariates (including constant and age).
       }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
     fprintf(ficresvij,"%.0f ",age );       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     for(i=1; i<=nlstate;i++)       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       for(j=1; j<=nlstate;j++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       }       Outputs ps[i][j] the probability to be observed in j being in j according to
     fprintf(ficresvij,"\n");       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     free_matrix(gp,0,nhstepm,1,nlstate);    */
     free_matrix(gm,0,nhstepm,1,nlstate);    double s1, lnpijopii;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /*double t34;*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int i,j, nc, ii, jj;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   free_vector(xp,1,npar);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   free_matrix(doldm,1,nlstate,1,npar);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   free_matrix(dnewm,1,nlstate,1,nlstate);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 }          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /************ Variance of prevlim ******************/  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }
 {        for(j=i+1; j<=nlstate+ndeath;j++){
   /* Variance of prevalence limit */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   double **newm;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   double **dnewm,**doldm;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double *xp;        }
   double *gp, *gm;      }
   double **gradg, **trgradg;      
   double age,agelim;      for(i=1; i<= nlstate; i++){
   int theta;        s1=0;
            for(j=1; j<i; j++){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficresvpl,"# Age");          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);        for(j=i+1; j<=nlstate+ndeath; j++){
   fprintf(ficresvpl,"\n");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   doldm=matrix(1,nlstate,1,nlstate);        ps[i][i]=1./(s1+1.);
          /* Computing other pijs */
   hstepm=1*YEARM; /* Every year of age */        for(j=1; j<i; j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   agelim = AGESUP;        for(j=i+1; j<=nlstate+ndeath; j++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ps[i][j]= exp(ps[i][j])*ps[i][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     if (stepm >= YEARM) hstepm=1;      } /* end i */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      
     gradg=matrix(1,npar,1,nlstate);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     gp=vector(1,nlstate);        for(jj=1; jj<= nlstate+ndeath; jj++){
     gm=vector(1,nlstate);          ps[ii][jj]=0;
           ps[ii][ii]=1;
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      
       }      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(i=1;i<=nlstate;i++)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         gp[i] = prlim[i][i];      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
          /*   } */
       for(i=1; i<=npar; i++) /* Computes gradient */      /*   printf("\n "); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* } */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* printf("\n ");printf("%lf ",cov[2]);*/
       for(i=1;i<=nlstate;i++)      /*
         gm[i] = prlim[i][i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
       for(i=1;i<=nlstate;i++)      return ps;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  }
     } /* End theta */  
   /**************** Product of 2 matrices ******************/
     trgradg =matrix(1,nlstate,1,npar);  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     for(j=1; j<=nlstate;j++)  {
       for(theta=1; theta <=npar; theta++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         trgradg[j][theta]=gradg[theta][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
     for(i=1;i<=nlstate;i++)       before: only the contents of out is modified. The function returns
       varpl[i][(int)age] =0.;       a pointer to pointers identical to out */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int i, j, k;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for(i=nrl; i<= nrh; i++)
     for(i=1;i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
     fprintf(ficresvpl,"%.0f ",age );          out[i][k] +=in[i][j]*b[j][k];
     for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    return out;
     fprintf(ficresvpl,"\n");  }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  /************* Higher Matrix Product ***************/
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   free_vector(xp,1,npar);    /* Computes the transition matrix starting at age 'age' over 
   free_matrix(doldm,1,nlstate,1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
   free_matrix(dnewm,1,nlstate,1,nlstate);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
 }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /************ Variance of one-step probabilities  ******************/       for the memory).
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;       */
   double **dnewm,**doldm;  
   double *xp;    int i, j, d, h, k;
   double *gp, *gm;    double **out, cov[NCOVMAX+1];
   double **gradg, **trgradg;    double **newm;
   double age,agelim, cov[NCOVMAX];    double agexact;
   int theta;  
   char fileresprob[FILENAMELENGTH];    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   strcpy(fileresprob,"prob");      for (j=1;j<=nlstate+ndeath;j++){
   strcat(fileresprob,fileres);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", fileresprob);      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        newm=savm;
   fprintf(ficresprob,"# Age");        /* Covariates have to be included here again */
   for(i=1; i<=nlstate;i++)        cov[1]=1.;
     for(j=1; j<=(nlstate+ndeath);j++)        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        cov[2]=agexact;
         if(nagesqr==1)
           cov[3]= agexact*agexact;
   fprintf(ficresprob,"\n");        for (k=1; k<=cptcovn;k++) 
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   xp=vector(1,npar);          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   cov[1]=1;  
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   j1=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for(k1=1; k1<=1;k1++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(i1=1; i1<=ncodemax[k1];i1++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     j1++;        savm=oldm;
         oldm=newm;
     if  (cptcovn>0) {      }
       fprintf(ficresprob, "\n#********** Variable ");      for(i=1; i<=nlstate+ndeath; i++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1;j<=nlstate+ndeath;j++) {
       fprintf(ficresprob, "**********\n#");          po[i][j][h]=newm[i][j];
     }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
            }
       for (age=bage; age<=fage; age ++){      /*printf("h=%d ",h);*/
         cov[2]=age;    } /* end h */
         for (k=1; k<=cptcovn;k++) {  /*     printf("\n H=%d \n",h); */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    return po;
            }
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef NLOPT
         for (k=1; k<=cptcovprod;k++)    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double fret;
            double *xt;
         gradg=matrix(1,npar,1,9);    int j;
         trgradg=matrix(1,9,1,npar);    myfunc_data *d2 = (myfunc_data *) pd;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /* xt = (p1-1); */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    xt=vector(1,n); 
        for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
              printf("Function = %.12lf ",fret);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
              printf("\n");
           k=0;   free_vector(xt,1,n);
           for(i=1; i<= (nlstate+ndeath); i++){    return fret;
             for(j=1; j<=(nlstate+ndeath);j++){  }
               k=k+1;  #endif
               gp[k]=pmmij[i][j];  
             }  /*************** log-likelihood *************/
           }  double func( double *x)
            {
           for(i=1; i<=npar; i++)    int i, ii, j, k, mi, d, kk;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
        double **out;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double sw; /* Sum of weights */
           k=0;    double lli; /* Individual log likelihood */
           for(i=1; i<=(nlstate+ndeath); i++){    int s1, s2;
             for(j=1; j<=(nlstate+ndeath);j++){    double bbh, survp;
               k=k+1;    long ipmx;
               gm[k]=pmmij[i][j];    double agexact;
             }    /*extern weight */
           }    /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    /*for(i=1;i<imx;i++) 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        printf(" %d\n",s[4][i]);
         }    */
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    ++countcallfunc;
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];    cov[1]=1.;
          
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
            if(mle==1){
         pmij(pmmij,cov,ncovmodel,x,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                /* Computes the values of the ncovmodel covariates of the model
         k=0;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         for(i=1; i<=(nlstate+ndeath); i++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           for(j=1; j<=(nlstate+ndeath);j++){           to be observed in j being in i according to the model.
             k=k+1;         */
             gm[k]=pmmij[i][j];        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           }            cov[2+nagesqr+k]=covar[Tvar[k]][i];
         }        }
              /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      /*printf("\n%d ",(int)age);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){           has been calculated etc */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(mi=1; mi<= wav[i]-1; mi++){
      }*/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresprob,"\n%d ",(int)age);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            cov[2]=agexact;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            if(nagesqr==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              cov[3]= agexact*agexact;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
   }            }
   free_vector(xp,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fclose(ficresprob);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /******************* Printing html file ***********/        
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
  int lastpass, int stepm, int weightopt, char model[],\          /* But now since version 0.9 we anticipate for bias at large stepm.
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \           * If stepm is larger than one month (smallest stepm) and if the exact delay 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\           * (in months) between two waves is not a multiple of stepm, we rounded to 
  char version[], int popforecast, int estepm ){           * the nearest (and in case of equal distance, to the lowest) interval but now
   int jj1, k1, i1, cpt;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   FILE *fichtm;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   /*char optionfilehtm[FILENAMELENGTH];*/           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   strcpy(optionfilehtm,optionfile);           * -stepm/2 to stepm/2 .
   strcat(optionfilehtm,".htm");           * For stepm=1 the results are the same as for previous versions of Imach.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {           * For stepm > 1 the results are less biased than in previous versions. 
     printf("Problem with %s \n",optionfilehtm), exit(0);           */
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          bbh=(double)bh[mi][i]/(double)stepm; 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          /* bias bh is positive if real duration
 \n           * is higher than the multiple of stepm and negative otherwise.
 Total number of observations=%d <br>\n           */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 <hr  size=\"2\" color=\"#EC5E5E\">          if( s2 > nlstate){ 
  <ul><li>Outputs files<br>\n            /* i.e. if s2 is a death state and if the date of death is known 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n               then the contribution to the likelihood is the probability to 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n               die between last step unit time and current  step unit time, 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n               which is also equal to probability to die before dh 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n               minus probability to die before dh-stepm . 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n               In version up to 0.92 likelihood was computed
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
  fprintf(fichtm,"\n          and not the date of a change in health state. The former idea was
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          to consider that at each interview the state was recorded
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          (healthy, disable or death) and IMaCh was corrected; but when we
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          introduced the exact date of death then we should have modified
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          the contribution of an exact death to the likelihood. This new
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
  if(popforecast==1) fprintf(fichtm,"\n          and month of death but the probability to survive from last
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          interview up to one month before death multiplied by the
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          probability to die within a month. Thanks to Chris
         <br>",fileres,fileres,fileres,fileres);          Jackson for correcting this bug.  Former versions increased
  else          mortality artificially. The bad side is that we add another loop
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          which slows down the processing. The difference can be up to 10%
 fprintf(fichtm," <li>Graphs</li><p>");          lower mortality.
             */
  m=cptcoveff;          /* If, at the beginning of the maximization mostly, the
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}             cumulative probability or probability to be dead is
              constant (ie = 1) over time d, the difference is equal to
  jj1=0;             0.  out[s1][3] = savm[s1][3]: probability, being at state
  for(k1=1; k1<=m;k1++){             s1 at precedent wave, to be dead a month before current
    for(i1=1; i1<=ncodemax[k1];i1++){             wave is equal to probability, being at state s1 at
        jj1++;             precedent wave, to be dead at mont of the current
        if (cptcovn > 0) {             wave. Then the observed probability (that this person died)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");             is null according to current estimated parameter. In fact,
          for (cpt=1; cpt<=cptcoveff;cpt++)             it should be very low but not zero otherwise the log go to
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);             infinity.
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          */
        }  /* #ifdef INFINITYORIGINAL */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /* #else */
        for(cpt=1; cpt<nlstate;cpt++){  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  /*          lli=log(mytinydouble); */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /*        else */
        }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     for(cpt=1; cpt<=nlstate;cpt++) {  /* #endif */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              lli=log(out[s1][s2] - savm[s1][s2]);
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            } else if  (s2==-2) {
      }            for (j=1,survp=0. ; j<=nlstate; j++) 
      for(cpt=1; cpt<=nlstate;cpt++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            /*survp += out[s1][j]; */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            lli= log(survp);
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          
 health expectancies in states (1) and (2): e%s%d.gif<br>          else if  (s2==-4) { 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for (j=3,survp=0. ; j<=nlstate; j++)  
 fprintf(fichtm,"\n</body>");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    }            lli= log(survp); 
    }          } 
 fclose(fichtm);  
 }          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
 /******************* Gnuplot file **************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            lli= log(survp); 
           } 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          
           else{
   strcpy(optionfilegnuplot,optionfilefiname);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcat(optionfilegnuplot,".gp.txt");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          } 
     printf("Problem with file %s",optionfilegnuplot);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 #ifdef windows          ipmx +=1;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          sw += weight[i];
 #endif          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 m=pow(2,cptcoveff);          /* if (lli < log(mytinydouble)){ */
            /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
  /* 1eme*/          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   for (cpt=1; cpt<= nlstate ; cpt ++) {          /* } */
    for (k1=1; k1<= m ; k1 ++) {        } /* end of wave */
       } /* end of individual */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 for (i=1; i<= nlstate ; i ++) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(mi=1; mi<= wav[i]-1; mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<= nlstate ; i ++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      for (i=1; i<= nlstate ; i ++) {            cov[2]=agexact;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(nagesqr==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              cov[3]= agexact*agexact;
 }              for (kk=1; kk<=cptcovage;kk++) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   /*2 eme*/            oldm=newm;
           } /* end mult */
   for (k1=1; k1<= m ; k1 ++) {        
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
     for (i=1; i<= nlstate+1 ; i ++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       k=2*i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          ipmx +=1;
       for (j=1; j<= nlstate+1 ; j ++) {          sw += weight[i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end of wave */
 }        } /* end of individual */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    }  else if(mle==3){  /* exponential inter-extrapolation */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for (j=1; j<= nlstate+1 ; j ++) {        for(mi=1; mi<= wav[i]-1; mi++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (ii=1;ii<=nlstate+ndeath;ii++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for (j=1;j<=nlstate+ndeath;j++){
 }                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficgp,"\" t\"\" w l 0,");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          for(d=0; d<dh[mi][i]; d++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            newm=savm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }              cov[2]=agexact;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(nagesqr==1)
       else fprintf(ficgp,"\" t\"\" w l 0,");              cov[3]= agexact*agexact;
     }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   }            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*3eme*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for (k1=1; k1<= m ; k1 ++) {            oldm=newm;
     for (cpt=1; cpt<= nlstate ; cpt ++) {          } /* end mult */
       k=2+nlstate*(2*cpt-2);        
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          s1=s[mw[mi][i]][i];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          s2=s[mw[mi+1][i]][i];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          bbh=(double)bh[mi][i]/(double)stepm; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          ipmx +=1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          sw += weight[i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 */      } /* end of individual */
       for (i=1; i< nlstate ; i ++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {          for(d=0; d<dh[mi][i]; d++){
     for (cpt=1; cpt<nlstate ; cpt ++) {            newm=savm;
       k=3;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            cov[2]=agexact;
             if(nagesqr==1)
       for (i=1; i< nlstate ; i ++)              cov[3]= agexact*agexact;
         fprintf(ficgp,"+$%d",k+i+1);            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                  }
       l=3+(nlstate+ndeath)*cpt;          
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=1; i< nlstate ; i ++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         l=3+(nlstate+ndeath)*cpt;            savm=oldm;
         fprintf(ficgp,"+$%d",l+i+1);            oldm=newm;
       }          } /* end mult */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }            if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   /* proba elementaires */          }else{
    for(i=1,jk=1; i <=nlstate; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          ipmx +=1;
         for(j=1; j <=ncovmodel; j++){          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           jk++;        } /* end of wave */
           fprintf(ficgp,"\n");      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(jk=1; jk <=m; jk++) {            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    i=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(k2=1; k2<=nlstate; k2++) {            }
      k3=i;          for(d=0; d<dh[mi][i]; d++){
      for(k=1; k<=(nlstate+ndeath); k++) {            newm=savm;
        if (k != k2){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            cov[2]=agexact;
 ij=1;            if(nagesqr==1)
         for(j=3; j <=ncovmodel; j++) {              cov[3]= agexact*agexact;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for (kk=1; kk<=cptcovage;kk++) {
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             ij++;            }
           }          
           else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
           fprintf(ficgp,")/(1");            oldm=newm;
                  } /* end mult */
         for(k1=1; k1 <=nlstate; k1++){          
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          s1=s[mw[mi][i]][i];
 ij=1;          s2=s[mw[mi+1][i]][i];
           for(j=3; j <=ncovmodel; j++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          ipmx +=1;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          sw += weight[i];
             ij++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           else        } /* end of wave */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } /* end of individual */
           }    } /* End of if */
           fprintf(ficgp,")");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    return -l;
         i=i+ncovmodel;  }
        }  
      }  /*************** log-likelihood *************/
    }  double funcone( double *x)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  {
    }    /* Same as likeli but slower because of a lot of printf and if */
        int i, ii, j, k, mi, d, kk;
   fclose(ficgp);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 }  /* end gnuplot */    double **out;
     double lli; /* Individual log likelihood */
     double llt;
 /*************** Moving average **************/    int s1, s2;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    double bbh, survp;
     double agexact;
   int i, cpt, cptcod;    /*extern weight */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* We are differentiating ll according to initial status */
       for (i=1; i<=nlstate;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /*for(i=1;i<imx;i++) 
           mobaverage[(int)agedeb][i][cptcod]=0.;      printf(" %d\n",s[4][i]);
        */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    cov[1]=1.;
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 /************** Forecasting ******************/          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          cov[2]=agexact;
            if(nagesqr==1)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            cov[3]= agexact*agexact;
   int *popage;          for (kk=1; kk<=cptcovage;kk++) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   double *popeffectif,*popcount;          }
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  agelim=AGESUP;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          savm=oldm;
            oldm=newm;
          } /* end mult */
   strcpy(fileresf,"f");        
   strcat(fileresf,fileres);        s1=s[mw[mi][i]][i];
   if((ficresf=fopen(fileresf,"w"))==NULL) {        s2=s[mw[mi+1][i]][i];
     printf("Problem with forecast resultfile: %s\n", fileresf);        bbh=(double)bh[mi][i]/(double)stepm; 
   }        /* bias is positive if real duration
   printf("Computing forecasting: result on file '%s' \n", fileresf);         * is higher than the multiple of stepm and negative otherwise.
          */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   if (mobilav==1) {        } else if  (s2==-2) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (j=1,survp=0. ; j<=nlstate; j++) 
     movingaverage(agedeb, fage, ageminpar, mobaverage);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }          lli= log(survp);
         }else if (mle==1){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if (stepm<=12) stepsize=1;        } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   agelim=AGESUP;        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   hstepm=hstepm/stepm;          lli=log(out[s1][s2]); /* Original formula */
   yp1=modf(dateintmean,&yp);        } else{  /* mle=0 back to 1 */
   anprojmean=yp;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   yp2=modf((yp1*12),&yp);          /*lli=log(out[s1][s2]); */ /* Original formula */
   mprojmean=yp;        } /* End of if */
   yp1=modf((yp2*30.5),&yp);        ipmx +=1;
   jprojmean=yp;        sw += weight[i];
   if(jprojmean==0) jprojmean=1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(mprojmean==0) jprojmean=1;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
   for(cptcov=1;cptcov<=i2;cptcov++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       k=k+1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       fprintf(ficresf,"\n#******");            llt +=ll[k]*gipmx/gsw;
       for(j=1;j<=cptcoveff;j++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge");      } /* end of wave */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    } /* end of individual */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         fprintf(ficresf,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        gipmx=ipmx;
       gsw=sw;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    return -l;
           nhstepm = nhstepm/hstepm;  }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /*************** function likelione ***********/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
          {
           for (h=0; h<=nhstepm; h++){    /* This routine should help understanding what is done with 
             if (h==(int) (calagedate+YEARM*cpt)) {       the selection of individuals/waves and
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       to check the exact contribution to the likelihood.
             }       Plotting could be done.
             for(j=1; j<=nlstate+ndeath;j++) {     */
               kk1=0.;kk2=0;    int k;
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    if(*globpri !=0){ /* Just counts and sums, no printings */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      strcpy(fileresilk,"ilk"); 
                 else {      strcat(fileresilk,fileres);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                 }        printf("Problem with resultfile: %s\n", fileresilk);
                        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
               }      }
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                 fprintf(ficresf," %.3f", kk1);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                              /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
               }      for(k=1; k<=nlstate; k++) 
             }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }  
       }    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
   }      fclose(ficresilk);
              fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fflush(fichtm); 
     } 
   fclose(ficresf);    return;
 }  }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    /*********** Maximum Likelihood Estimation ***************/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {
   double *popeffectif,*popcount;    int i,j, iter=0;
   double ***p3mat,***tabpop,***tabpopprev;    double **xi;
   char filerespop[FILENAMELENGTH];    double fret;
     double fretone; /* Only one call to likelihood */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  char filerespow[FILENAMELENGTH];*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  #ifdef NLOPT
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    int creturn;
      nlopt_opt opt;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
      double *lb;
      double minf; /* the minimum objective value, upon return */
   strcpy(filerespop,"pop");    double * p1; /* Shifted parameters from 0 instead of 1 */
   strcat(filerespop,fileres);    myfunc_data dinst, *d = &dinst;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  #endif
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   if (mobilav==1) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(filerespow,"pow"); 
     movingaverage(agedeb, fage, ageminpar, mobaverage);    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   if (stepm<=12) stepsize=1;    }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   agelim=AGESUP;    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   hstepm=1;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   hstepm=hstepm/stepm;    fprintf(ficrespow,"\n");
    #ifdef POWELL
   if (popforecast==1) {    powell(p,xi,npar,ftol,&iter,&fret,func);
     if((ficpop=fopen(popfile,"r"))==NULL) {  #endif
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }  #ifdef NLOPT
     popage=ivector(0,AGESUP);  #ifdef NEWUOA
     popeffectif=vector(0,AGESUP);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     popcount=vector(0,AGESUP);  #else
        opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     i=1;    #endif
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    lb=vector(0,npar-1);
        for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     imx=i;    nlopt_set_lower_bounds(opt, lb);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    nlopt_set_initial_step1(opt, 0.1);
   }    
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   for(cptcov=1;cptcov<=i2;cptcov++){    d->function = func;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
       k=k+1;    nlopt_set_min_objective(opt, myfunc, d);
       fprintf(ficrespop,"\n#******");    nlopt_set_xtol_rel(opt, ftol);
       for(j=1;j<=cptcoveff;j++) {    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("nlopt failed! %d\n",creturn); 
       }    }
       fprintf(ficrespop,"******\n");    else {
       fprintf(ficrespop,"# Age");      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      iter=1; /* not equal */
          }
       for (cpt=0; cpt<=0;cpt++) {    nlopt_destroy(opt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    #endif
            free_matrix(xi,1,npar,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fclose(ficrespow);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
              fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          /**** Computes Hessian and covariance matrix ***/
           for (h=0; h<=nhstepm; h++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             if (h==(int) (calagedate+YEARM*cpt)) {  {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double  **a,**y,*x,pd;
             }    double **hess;
             for(j=1; j<=nlstate+ndeath;j++) {    int i, j;
               kk1=0.;kk2=0;    int *indx;
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                 else {    void lubksb(double **a, int npar, int *indx, double b[]) ;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    void ludcmp(double **a, int npar, int *indx, double *d) ;
                 }    double gompertz(double p[]);
               }    hess=matrix(1,npar,1,npar);
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    printf("\nCalculation of the hessian matrix. Wait...\n");
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    for (i=1;i<=npar;i++){
               }      printf("%d",i);fflush(stdout);
             }      fprintf(ficlog,"%d",i);fflush(ficlog);
             for(i=1; i<=nlstate;i++){     
               kk1=0.;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                 for(j=1; j<=nlstate;j++){      
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /*  printf(" %f ",p[i]);
                 }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    
     for (i=1;i<=npar;i++) {
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)  {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        if (j>i) { 
           }          printf(".%d%d",i,j);fflush(stdout);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       }          
            hess[j][i]=hess[i][j];    
   /******/          /*printf(" %lf ",hess[i][j]);*/
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    printf("\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficlog,"\n");
           nhstepm = nhstepm/hstepm;  
              printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      a=matrix(1,npar,1,npar);
           for (h=0; h<=nhstepm; h++){    y=matrix(1,npar,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    x=vector(1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    indx=ivector(1,npar);
             }    for (i=1;i<=npar;i++)
             for(j=1; j<=nlstate+ndeath;j++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
               kk1=0.;kk2=0;    ludcmp(a,npar,indx,&pd);
               for(i=1; i<=nlstate;i++) {                
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for (j=1;j<=npar;j++) {
               }      for (i=1;i<=npar;i++) x[i]=0;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      x[j]=1;
             }      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        matcov[i][j]=x[i];
         }      }
       }    }
    }  
   }    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   if (popforecast==1) {        printf("%.3e ",hess[i][j]);
     free_ivector(popage,0,AGESUP);        fprintf(ficlog,"%.3e ",hess[i][j]);
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);      printf("\n");
   }      fprintf(ficlog,"\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);    /* Recompute Inverse */
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 /***********************************************/    ludcmp(a,npar,indx,&pd);
 /**************** Main Program *****************/  
 /***********************************************/    /*  printf("\n#Hessian matrix recomputed#\n");
   
 int main(int argc, char *argv[])    for (j=1;j<=npar;j++) {
 {      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      lubksb(a,npar,indx,x);
   double agedeb, agefin,hf;      for (i=1;i<=npar;i++){ 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   double fret;        fprintf(ficlog,"%.3e ",y[i][j]);
   double **xi,tmp,delta;      }
       printf("\n");
   double dum; /* Dummy variable */      fprintf(ficlog,"\n");
   double ***p3mat;    }
   int *indx;    */
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];    free_matrix(a,1,npar,1,npar);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    free_matrix(y,1,npar,1,npar);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    free_matrix(hess,1,npar,1,npar);
   
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  }
   char popfile[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  /*************** hessian matrix ****************/
   int firstobs=1, lastobs=10;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int sdeb, sfin; /* Status at beginning and end */  {
   int c,  h , cpt,l;    int i;
   int ju,jl, mi;    int l=1, lmax=20;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double k1,k2;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double p2[MAXPARM+1]; /* identical to x */
   int mobilav=0,popforecast=0;    double res;
   int hstepm, nhstepm;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    double fx;
     int k=0,kmax=10;
   double bage, fage, age, agelim, agebase;    double l1;
   double ftolpl=FTOL;  
   double **prlim;    fx=func(x);
   double *severity;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***param; /* Matrix of parameters */    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   double  *p;      l1=pow(10,l);
   double **matcov; /* Matrix of covariance */      delts=delt;
   double ***delti3; /* Scale */      for(k=1 ; k <kmax; k=k+1){
   double *delti; /* Scale */        delt = delta*(l1*k);
   double ***eij, ***vareij;        p2[theta]=x[theta] +delt;
   double **varpl; /* Variances of prevalence limits by age */        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   double *epj, vepp;        p2[theta]=x[theta]-delt;
   double kk1, kk2;        k2=func(p2)-fx;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  #ifdef DEBUGHESS
   char *alph[]={"a","a","b","c","d","e"}, str[4];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   char z[1]="c", occ;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 #include <sys/time.h>        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 #include <time.h>          k=kmax;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* long total_usecs;          k=kmax; l=lmax*10;
   struct timeval start_time, end_time;        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          delts=delt;
   getcwd(pathcd, size);        }
       }
   printf("\n%s",version);    }
   if(argc <=1){    delti[theta]=delts;
     printf("\nEnter the parameter file name: ");    return res; 
     scanf("%s",pathtot);    
   }  }
   else{  
     strcpy(pathtot,argv[1]);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }  {
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int i;
   /*cygwin_split_path(pathtot,path,optionfile);    int l=1, lmax=20;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double k1,k2,k3,k4,res,fx;
   /* cutv(path,optionfile,pathtot,'\\');*/    double p2[MAXPARM+1];
     int k;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fx=func(x);
   chdir(path);    for (k=1; k<=2; k++) {
   replace(pathc,path);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
 /*-------- arguments in the command line --------*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileres,".txt");    /* Other files have txt extension */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   /*---------arguments file --------*/    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with optionfile %s\n",optionfile);      k3=func(p2)-fx;
     goto end;    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(filereso,"o");      k4=func(p2)-fx;
   strcat(filereso,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficparo=fopen(filereso,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    return res;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************** Inverse of matrix **************/
     fputs(line,ficparo);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   ungetc(c,ficpar);    int i,imax,j,k; 
     double big,dum,sum,temp; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double *vv; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    vv=vector(1,n); 
 while((c=getc(ficpar))=='#' && c!= EOF){    *d=1.0; 
     ungetc(c,ficpar);    for (i=1;i<=n;i++) { 
     fgets(line, MAXLINE, ficpar);      big=0.0; 
     puts(line);      for (j=1;j<=n;j++) 
     fputs(line,ficparo);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   ungetc(c,ficpar);      vv[i]=1.0/big; 
      } 
        for (j=1;j<=n;j++) { 
   covar=matrix(0,NCOVMAX,1,n);      for (i=1;i<j;i++) { 
   cptcovn=0;        sum=a[i][j]; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   ncovmodel=2+cptcovn;      } 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      big=0.0; 
        for (i=j;i<=n;i++) { 
   /* Read guess parameters */        sum=a[i][j]; 
   /* Reads comments: lines beginning with '#' */        for (k=1;k<j;k++) 
   while((c=getc(ficpar))=='#' && c!= EOF){          sum -= a[i][k]*a[k][j]; 
     ungetc(c,ficpar);        a[i][j]=sum; 
     fgets(line, MAXLINE, ficpar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     puts(line);          big=dum; 
     fputs(line,ficparo);          imax=i; 
   }        } 
   ungetc(c,ficpar);      } 
        if (j != imax) { 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (k=1;k<=n;k++) { 
     for(i=1; i <=nlstate; i++)          dum=a[imax][k]; 
     for(j=1; j <=nlstate+ndeath-1; j++){          a[imax][k]=a[j][k]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          a[j][k]=dum; 
       fprintf(ficparo,"%1d%1d",i1,j1);        } 
       printf("%1d%1d",i,j);        *d = -(*d); 
       for(k=1; k<=ncovmodel;k++){        vv[imax]=vv[j]; 
         fscanf(ficpar," %lf",&param[i][j][k]);      } 
         printf(" %lf",param[i][j][k]);      indx[j]=imax; 
         fprintf(ficparo," %lf",param[i][j][k]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       }      if (j != n) { 
       fscanf(ficpar,"\n");        dum=1.0/(a[j][j]); 
       printf("\n");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       fprintf(ficparo,"\n");      } 
     }    } 
      free_vector(vv,1,n);  /* Doesn't work */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  ;
   } 
   p=param[1][1];  
    void lubksb(double **a, int n, int *indx, double b[]) 
   /* Reads comments: lines beginning with '#' */  { 
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,ii=0,ip,j; 
     ungetc(c,ficpar);    double sum; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    for (i=1;i<=n;i++) { 
     fputs(line,ficparo);      ip=indx[i]; 
   }      sum=b[ip]; 
   ungetc(c,ficpar);      b[ip]=b[i]; 
       if (ii) 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      else if (sum) ii=i; 
   for(i=1; i <=nlstate; i++){      b[i]=sum; 
     for(j=1; j <=nlstate+ndeath-1; j++){    } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for (i=n;i>=1;i--) { 
       printf("%1d%1d",i,j);      sum=b[i]; 
       fprintf(ficparo,"%1d%1d",i1,j1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(k=1; k<=ncovmodel;k++){      b[i]=sum/a[i][i]; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);    } 
         printf(" %le",delti3[i][j][k]);  } 
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }  void pstamp(FILE *fichier)
       fscanf(ficpar,"\n");  {
       printf("\n");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fprintf(ficparo,"\n");  }
     }  
   }  /************ Frequencies ********************/
   delti=delti3[1][1];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    {  /* Some frequencies */
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, m, jk, j1, bool, z1,j;
     ungetc(c,ficpar);    int first;
     fgets(line, MAXLINE, ficpar);    double ***freq; /* Frequencies */
     puts(line);    double *pp, **prop;
     fputs(line,ficparo);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    char fileresp[FILENAMELENGTH];
   ungetc(c,ficpar);    
      pp=vector(1,nlstate);
   matcov=matrix(1,npar,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for(i=1; i <=npar; i++){    strcpy(fileresp,"p");
     fscanf(ficpar,"%s",&str);    strcat(fileresp,fileres);
     printf("%s",str);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficparo,"%s",str);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j <=i; j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar," %le",&matcov[i][j]);      exit(0);
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     }    j1=0;
     fscanf(ficpar,"\n");    
     printf("\n");    j=cptcoveff;
     fprintf(ficparo,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
   for(i=1; i <=npar; i++)    first=1;
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
        /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   printf("\n");    /*    j1++; */
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     /*-------- Rewriting paramater file ----------*/          scanf("%d", i);*/
      strcpy(rfileres,"r");    /* "Rparameterfile */        for (i=-5; i<=nlstate+ndeath; i++)  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      strcat(rfileres,".");    /* */            for(m=iagemin; m <= iagemax+3; m++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              freq[i][jk][m]=0;
     if((ficres =fopen(rfileres,"w"))==NULL) {        
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficres,"#%s\n",version);            prop[i][m]=0;
            
     /*-------- data file ----------*/        dateintsum=0;
     if((fic=fopen(datafile,"r"))==NULL)    {        k2cpt=0;
       printf("Problem with datafile: %s\n", datafile);goto end;        for (i=1; i<=imx; i++) {
     }          bool=1;
           if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     n= lastobs;            for (z1=1; z1<=cptcoveff; z1++)       
     severity = vector(1,maxwav);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     outcome=imatrix(1,maxwav+1,1,n);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
     num=ivector(1,n);                bool=0;
     moisnais=vector(1,n);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
     annais=vector(1,n);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
     moisdc=vector(1,n);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     andc=vector(1,n);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     agedc=vector(1,n);              } 
     cod=ivector(1,n);          }
     weight=vector(1,n);   
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          if (bool==1){
     mint=matrix(1,maxwav,1,n);            for(m=firstpass; m<=lastpass; m++){
     anint=matrix(1,maxwav,1,n);              k2=anint[m][i]+(mint[m][i]/12.);
     s=imatrix(1,maxwav+1,1,n);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     adl=imatrix(1,maxwav+1,1,n);                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
     tab=ivector(1,NCOVMAX);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     ncodemax=ivector(1,8);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
     i=1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     while (fgets(line, MAXLINE, fic) != NULL)    {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       if ((i >= firstobs) && (i <=lastobs)) {                }
                        
         for (j=maxwav;j>=1;j--){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                  dateintsum=dateintsum+k2;
           strcpy(line,stra);                  k2cpt++;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                /*}*/
         }            }
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end i */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        pstamp(ficresp);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (j=ncovcol;j>=1;j--){          fprintf(ficresp, "**********\n#");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         num[i]=atol(stra);          fprintf(ficlog, "**********\n#");
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(i=1; i<=nlstate;i++) 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
         i=i+1;        
       }        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
     /* printf("ii=%d", ij);            fprintf(ficlog,"Total");
        scanf("%d",i);*/          }else{
   imx=i-1; /* Number of individuals */            if(first==1){
               first=0;
   /* for (i=1; i<=imx; i++){              printf("See log file for details...\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fprintf(ficlog,"Age %d", i);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/          for(jk=1; jk <=nlstate ; jk++){
    /*  for (i=1; i<=imx; i++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      if (s[4][i]==9)  s[4][i]=-1;              pp[jk] += freq[jk][m][i]; 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          }
            for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pos=0; m <=0 ; m++)
   /* Calculation of the number of parameter from char model*/              pos += freq[jk][m][i];
   Tvar=ivector(1,15);            if(pp[jk]>=1.e-10){
   Tprod=ivector(1,15);              if(first==1){
   Tvaraff=ivector(1,15);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   Tvard=imatrix(1,15,1,2);              }
   Tage=ivector(1,15);                    fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
   if (strlen(model) >1){              if(first==1)
     j=0, j1=0, k1=1, k2=1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     j=nbocc(model,'+');              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     j1=nbocc(model,'*');            }
     cptcovn=j+1;          }
     cptcovprod=j1;  
              for(jk=1; jk <=nlstate ; jk++){
     strcpy(modelsav,model);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              pp[jk] += freq[jk][m][i];
       printf("Error. Non available option model=%s ",model);          }       
       goto end;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
                posprop += prop[jk][i];
     for(i=(j+1); i>=1;i--){          }
       cutv(stra,strb,modelsav,'+');          for(jk=1; jk <=nlstate ; jk++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            if(pos>=1.e-5){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              if(first==1)
       /*scanf("%d",i);*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if (strchr(strb,'*')) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         cutv(strd,strc,strb,'*');            }else{
         if (strcmp(strc,"age")==0) {              if(first==1)
           cptcovprod--;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(strb,stre,strd,'V');              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           Tvar[i]=atoi(stre);            }
           cptcovage++;            if( i <= iagemax){
             Tage[cptcovage]=i;              if(pos>=1.e-5){
             /*printf("stre=%s ", stre);*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
         else if (strcmp(strd,"age")==0) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           cptcovprod--;              }
           cutv(strb,stre,strc,'V');              else
           Tvar[i]=atoi(stre);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cptcovage++;            }
           Tage[cptcovage]=i;          }
         }          
         else {          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cutv(strb,stre,strc,'V');            for(m=-1; m <=nlstate+ndeath; m++)
           Tvar[i]=ncovcol+k1;              if(freq[jk][m][i] !=0 ) {
           cutv(strb,strc,strd,'V');              if(first==1)
           Tprod[k1]=i;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           Tvard[k1][1]=atoi(strc);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           Tvard[k1][2]=atoi(stre);              }
           Tvar[cptcovn+k2]=Tvard[k1][1];          if(i <= iagemax)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            fprintf(ficresp,"\n");
           for (k=1; k<=lastobs;k++)          if(first==1)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            printf("Others in log...\n");
           k1++;          fprintf(ficlog,"\n");
           k2=k2+2;        }
         }        /*}*/
       }    }
       else {    dateintmean=dateintsum/k2cpt; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   
        /*  scanf("%d",i);*/    fclose(ficresp);
       cutv(strd,strc,strb,'V');    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       Tvar[i]=atoi(strc);    free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       strcpy(modelsav,stra);      /* End of Freq */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  }
         scanf("%d",i);*/  
     }  /************ Prevalence ********************/
 }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   printf("cptcovprod=%d ", cptcovprod);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   scanf("%d ",i);*/       We still use firstpass and lastpass as another selection.
     fclose(fic);    */
    
     /*  if(mle==1){*/    int i, m, jk, j1, bool, z1,j;
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    double **prop;
     }    double posprop; 
     /*-calculation of age at interview from date of interview and age at death -*/    double  y2; /* in fractional years */
     agev=matrix(1,maxwav,1,imx);    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    iagemin= (int) agemin;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    iagemax= (int) agemax;
          anint[m][i]=9999;    /*pp=vector(1,nlstate);*/
          s[m][i]=-1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    j1=0;
       }    
     }    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    first=1;
       for(m=1; (m<= maxwav); m++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         if(s[m][i] >0){      /*for(i1=1; i1<=ncodemax[k1];i1++){
           if (s[m][i] >= nlstate+1) {        j1++;*/
             if(agedc[i]>0)        
               if(moisdc[i]!=99 && andc[i]!=9999)        for (i=1; i<=nlstate; i++)  
                 agev[m][i]=agedc[i];          for(m=iagemin; m <= iagemax+3; m++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            prop[i][m]=0.0;
            else {       
               if (andc[i]!=9999){        for (i=1; i<=imx; i++) { /* Each individual */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          bool=1;
               agev[m][i]=-1;          if  (cptcovn>0) {
               }            for (z1=1; z1<=cptcoveff; z1++) 
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
           else if(s[m][i] !=9){ /* Should no more exist */          } 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if (bool==1) { 
             if(mint[m][i]==99 || anint[m][i]==9999)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               agev[m][i]=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             else if(agev[m][i] <agemin){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               agemin=agev[m][i];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             else if(agev[m][i] >agemax){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               agemax=agev[m][i];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                  prop[s[m][i]][iagemax+3] += weight[i]; 
             /*agev[m][i]=anint[m][i]-annais[i];*/                } 
             /*   agev[m][i] = age[i]+2*m;*/              }
           }            } /* end selection of waves */
           else { /* =9 */          }
             agev[m][i]=1;        }
             s[m][i]=-1;        for(i=iagemin; i <= iagemax+3; i++){  
           }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
         else /*= 0 Unknown */          } 
           agev[m][i]=1;          
       }          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     for (i=1; i<=imx; i++)  {                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(m=1; (m<= maxwav); m++){              } else{
         if (s[m][i] > (nlstate+ndeath)) {                if(first==1){
           printf("Error: Wrong value in nlstate or ndeath\n");                    first=0;
           goto end;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
         }                }
       }              }
     }            } 
           }/* end jk */ 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }/* end i */ 
       /*} *//* end i1 */
     free_vector(severity,1,maxwav);    } /* end j1 */
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     free_vector(annais,1,n);    /*free_vector(pp,1,nlstate);*/
     /* free_matrix(mint,1,maxwav,1,n);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
        free_matrix(anint,1,maxwav,1,n);*/  }  /* End of prevalence */
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  /************* Waves Concatenation ***************/
   
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     wav=ivector(1,imx);  {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       Death is a valid wave (if date is known).
           mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     /* Concatenates waves */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       and mw[mi+1][i]. dh depends on stepm.
        */
   
       Tcode=ivector(1,100);    int i, mi, m;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       ncodemax[1]=1;       double sum=0., jmean=0.;*/
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int first;
          int j, k=0,jk, ju, jl;
    codtab=imatrix(1,100,1,10);    double sum=0.;
    h=0;    first=0;
    m=pow(2,cptcoveff);    jmin=100000;
      jmax=-1;
    for(k=1;k<=cptcoveff; k++){    jmean=0.;
      for(i=1; i <=(m/pow(2,k));i++){    for(i=1; i<=imx; i++){
        for(j=1; j <= ncodemax[k]; j++){      mi=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      m=firstpass;
            h++;      while(s[m][i] <= nlstate){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          mw[++mi][i]=m;
          }        if(m >=lastpass)
        }          break;
      }        else
    }          m++;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      }/* end while */
       codtab[1][2]=1;codtab[2][2]=2; */      if (s[m][i] > nlstate){
    /* for(i=1; i <=m ;i++){        mi++;     /* Death is another wave */
       for(k=1; k <=cptcovn; k++){        /* if(mi==0)  never been interviewed correctly before death */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);           /* Only death is a correct wave */
       }        mw[mi][i]=m;
       printf("\n");      }
       }  
       scanf("%d",i);*/      wav[i]=mi;
          if(mi==0){
    /* Calculates basic frequencies. Computes observed prevalence at single age        nbwarn++;
        and prints on file fileres'p'. */        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              first=1;
            }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(first==1){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end mi==0 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    } /* End individuals */
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    for(i=1; i<=imx; i++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for(mi=1; mi<wav[i];mi++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if (stepm <=0)
           dh[mi][i]=1;
     if(mle==1){        else{
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     /*--------- results files --------------*/              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              else if(j<0){
                  nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    jk=1;                j=1; /* Temporary Dangerous patch */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(i=1,jk=1; i <=nlstate; i++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      for(k=1; k <=(nlstate+ndeath); k++){              }
        if (k != i)              k=k+1;
          {              if (j >= jmax){
            printf("%d%d ",i,k);                jmax=j;
            fprintf(ficres,"%1d%1d ",i,k);                ijmax=i;
            for(j=1; j <=ncovmodel; j++){              }
              printf("%f ",p[jk]);              if (j <= jmin){
              fprintf(ficres,"%f ",p[jk]);                jmin=j;
              jk++;                ijmin=i;
            }              }
            printf("\n");              sum=sum+j;
            fprintf(ficres,"\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
          }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      }            }
    }          }
  if(mle==1){          else{
     /* Computing hessian and covariance matrix */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     ftolhess=ftol; /* Usually correct */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }            k=k+1;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            if (j >= jmax) {
     printf("# Scales (for hessian or gradient estimation)\n");              jmax=j;
      for(i=1,jk=1; i <=nlstate; i++){              ijmax=i;
       for(j=1; j <=nlstate+ndeath; j++){            }
         if (j!=i) {            else if (j <= jmin){
           fprintf(ficres,"%1d%1d",i,j);              jmin=j;
           printf("%1d%1d",i,j);              ijmin=i;
           for(k=1; k<=ncovmodel;k++){            }
             printf(" %.5e",delti[jk]);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             fprintf(ficres," %.5e",delti[jk]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             jk++;            if(j<0){
           }              nberr++;
           printf("\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficres,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }            sum=sum+j;
      }          }
              jk= j/stepm;
     k=1;          jl= j -jk*stepm;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          ju= j -(jk+1)*stepm;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     for(i=1;i<=npar;i++){            if(jl==0){
       /*  if (k>nlstate) k=1;              dh[mi][i]=jk;
       i1=(i-1)/(ncovmodel*nlstate)+1;              bh[mi][i]=0;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }else{ /* We want a negative bias in order to only have interpolation ie
       printf("%s%d%d",alph[k],i1,tab[i]);*/                    * to avoid the price of an extra matrix product in likelihood */
       fprintf(ficres,"%3d",i);              dh[mi][i]=jk+1;
       printf("%3d",i);              bh[mi][i]=ju;
       for(j=1; j<=i;j++){            }
         fprintf(ficres," %.5e",matcov[i][j]);          }else{
         printf(" %.5e",matcov[i][j]);            if(jl <= -ju){
       }              dh[mi][i]=jk;
       fprintf(ficres,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
       printf("\n");                                   * is higher than the multiple of stepm and negative otherwise.
       k++;                                   */
     }            }
                else{
     while((c=getc(ficpar))=='#' && c!= EOF){              dh[mi][i]=jk+1;
       ungetc(c,ficpar);              bh[mi][i]=ju;
       fgets(line, MAXLINE, ficpar);            }
       puts(line);            if(dh[mi][i]==0){
       fputs(line,ficparo);              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
     ungetc(c,ficpar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     estepm=0;            }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          } /* end if mle */
     if (estepm==0 || estepm < stepm) estepm=stepm;        }
     if (fage <= 2) {      } /* end wave */
       bage = ageminpar;    }
       fage = agemaxpar;    jmean=sum/k;
     }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     fgets(line, MAXLINE, ficpar);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     puts(line);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     fputs(line,ficparo);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   }     * nbcode[Tvar[j]][1]= 
   ungetc(c,ficpar);    */
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int modmaxcovj=0; /* Modality max of covariates j */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int cptcode=0; /* Modality max of covariates j */
          int modmincovj=0; /* Modality min of covariates j */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    cptcoveff=0; 
     puts(line);   
     fputs(line,ficparo);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   ungetc(c,ficpar);  
      /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   fscanf(ficpar,"pop_based=%d\n",&popbased);                                      * If product of Vn*Vm, still boolean *:
   fprintf(ficparo,"pop_based=%d\n",popbased);                                        * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   fprintf(ficres,"pop_based=%d\n",popbased);                                        * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   while((c=getc(ficpar))=='#' && c!= EOF){                                        modality of the nth covariate of individual i. */
     ungetc(c,ficpar);        if (ij > modmaxcovj)
     fgets(line, MAXLINE, ficpar);          modmaxcovj=ij; 
     puts(line);        else if (ij < modmincovj) 
     fputs(line,ficparo);          modmincovj=ij; 
   }        if ((ij < -1) && (ij > NCOVMAX)){
   ungetc(c,ficpar);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }else
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
 while((c=getc(ficpar))=='#' && c!= EOF){           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     ungetc(c,ficpar);           female is 1, then modmaxcovj=1.*/
     fgets(line, MAXLINE, ficpar);      } /* end for loop on individuals */
     puts(line);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     fputs(line,ficparo);      cptcode=modmaxcovj;
   }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   ungetc(c,ficpar);     /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], i, Ndum[i]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 /*------------ gnuplot -------------*/      } /* Ndum[-1] number of undefined modalities */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
        /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 /*------------ free_vector  -------------*/      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
  chdir(path);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
           modmincovj=3; modmaxcovj = 7;
  free_ivector(wav,1,imx);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           defining two dummy variables: variables V1_1 and V1_2.
  free_ivector(num,1,n);         nbcode[Tvar[j]][ij]=k;
  free_vector(agedc,1,n);         nbcode[Tvar[j]][1]=0;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         nbcode[Tvar[j]][2]=1;
  fclose(ficparo);         nbcode[Tvar[j]][3]=2;
  fclose(ficres);      */
       ij=1; /* ij is similar to i but can jumps over null modalities */
 /*--------- index.htm --------*/      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
              nbcode[Tvar[j]][ij]=k;  /* stores the modality k in an array nbcode. 
   /*--------------- Prevalence limit --------------*/                                       k is a modality. If we have model=V1+V1*sex 
                                         then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   strcpy(filerespl,"pl");            ij++;
   strcat(filerespl,fileres);          }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          if (ij > ncodemax[j]) break; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }  /* end of loop on */
   }      } /* end of loop on modality */ 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    
   fprintf(ficrespl,"\n");    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   prlim=matrix(1,nlstate,1,nlstate);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   } 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   ij=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   k=0;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   agebase=ageminpar;     if((Ndum[i]!=0) && (i<=ncovcol)){
   agelim=agemaxpar;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   ftolpl=1.e-10;       Tvaraff[ij]=i; /*For printing (unclear) */
   i1=cptcoveff;       ij++;
   if (cptcovn < 1){i1=1;}     }else
          Tvaraff[ij]=0;
   for(cptcov=1;cptcov<=i1;cptcov++){   }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   ij--;
         k=k+1;   cptcoveff=ij; /*Number of total covariates*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");  }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  /*********** Health Expectancies ****************/
          
         for (age=agebase; age<=agelim; age++){  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );  {
           for(i=1; i<=nlstate;i++)    /* Health expectancies, no variances */
           fprintf(ficrespl," %.5f", prlim[i][i]);    int i, j, nhstepm, hstepm, h, nstepm;
           fprintf(ficrespl,"\n");    int nhstepma, nstepma; /* Decreasing with age */
         }    double age, agelim, hf;
       }    double ***p3mat;
     }    double eip;
   fclose(ficrespl);  
     pstamp(ficreseij);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    for(i=1; i<=nlstate;i++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(j=1; j<=nlstate;j++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficreseij," e%1d. ",i);
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficreseij,"\n");
   /*if (stepm<=24) stepsize=2;*/  
     
   agelim=AGESUP;    if(estepm < stepm){
   hstepm=stepsize*YEARM; /* Every year of age */      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      else  hstepm=estepm;   
   k=0;    /* We compute the life expectancy from trapezoids spaced every estepm months
   for(cptcov=1;cptcov<=i1;cptcov++){     * This is mainly to measure the difference between two models: for example
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * if stepm=24 months pijx are given only every 2 years and by summing them
       k=k+1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficrespij,"\n#****** ");     * progression in between and thus overestimating or underestimating according
         for(j=1;j<=cptcoveff;j++)     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficrespij,"******\n");     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     * curvature will be obtained if estepm is as small as stepm. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
           fprintf(ficrespij,"# Age");       Look at hpijx to understand the reason of that which relies in memory size
           for(i=1; i<=nlstate;i++)       and note for a fixed period like estepm months */
             for(j=1; j<=nlstate+ndeath;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficrespij," %1d-%1d",i,j);       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficrespij,"\n");       means that if the survival funtion is printed only each two years of age and if
            for (h=0; h<=nhstepm; h++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       results. So we changed our mind and took the option of the best precision.
             for(i=1; i<=nlstate;i++)    */
               for(j=1; j<=nlstate+ndeath;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    agelim=AGESUP;
              }    /* If stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           fprintf(ficrespij,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         }      
     }  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficrespij);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
   /*---------- Forecasting ------------------*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if((stepm == 1) && (strcmp(model,".")==0)){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      /* if (stepm >= YEARM) hstepm=1;*/
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
   else{      /* If stepm=6 months */
     erreur=108;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   /*---------- Health expectancies and variances ------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   strcpy(filerest,"t");      printf("%d|",(int)age);fflush(stdout);
   strcat(filerest,fileres);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if((ficrest=fopen(filerest,"w"))==NULL) {      
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   strcpy(filerese,"e");            
   strcat(filerese,fileres);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
  strcpy(fileresv,"v");        eip=0;
   strcat(fileresv,fileres);        for(j=1; j<=nlstate;j++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          eip +=eij[i][j][(int)age];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficreseij,"%9.4f", eip );
   calagedate=-1;      }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficreseij,"\n");
       
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("\n");
       k=k+1;    fprintf(ficlog,"\n");
       fprintf(ficrest,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
       fprintf(ficreseij,"\n#****** ");  {
       for(j=1;j<=cptcoveff;j++)    /* Covariances of health expectancies eij and of total life expectancies according
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     to initial status i, ei. .
       fprintf(ficreseij,"******\n");    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       fprintf(ficresvij,"\n#****** ");    int nhstepma, nstepma; /* Decreasing with age */
       for(j=1;j<=cptcoveff;j++)    double age, agelim, hf;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3matp, ***p3matm, ***varhe;
       fprintf(ficresvij,"******\n");    double **dnewm,**doldm;
     double *xp, *xm;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double **gp, **gm;
       oldm=oldms;savm=savms;    double ***gradg, ***trgradg;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int theta;
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double eip, vip;
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        xp=vector(1,npar);
     xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       epj=vector(1,nlstate+1);    fprintf(ficresstdeij,"# Age");
       for(age=bage; age <=fage ;age++){    for(i=1; i<=nlstate;i++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for(j=1; j<=nlstate;j++)
         if (popbased==1) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           for(i=1; i<=nlstate;i++)      fprintf(ficresstdeij," e%1d. ",i);
             prlim[i][i]=probs[(int)age][i][k];    }
         }    fprintf(ficresstdeij,"\n");
          
         fprintf(ficrest," %4.0f",age);    pstamp(ficrescveij);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficrescveij,"# Age");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    for(i=1; i<=nlstate;i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      for(j=1; j<=nlstate;j++){
           }        cptj= (j-1)*nlstate+i;
           epj[nlstate+1] +=epj[j];        for(i2=1; i2<=nlstate;i2++)
         }          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
         for(i=1, vepp=0.;i <=nlstate;i++)            if(cptj2 <= cptj)
           for(j=1;j <=nlstate;j++)              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
         for(j=1;j <=nlstate;j++){    fprintf(ficrescveij,"\n");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    if(estepm < stepm){
         fprintf(ficrest,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
 free_matrix(mint,1,maxwav,1,n);     * This is mainly to measure the difference between two models: for example
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     * if stepm=24 months pijx are given only every 2 years and by summing them
     free_vector(weight,1,n);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   fclose(ficreseij);     * progression in between and thus overestimating or underestimating according
   fclose(ficresvij);     * to the curvature of the survival function. If, for the same date, we 
   fclose(ficrest);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fclose(ficpar);     * to compare the new estimate of Life expectancy with the same linear 
   free_vector(epj,1,nlstate+1);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /*------- Variance limit prevalence------*/    
     /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(fileresvpl,"vpl");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(fileresvpl,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       Look at hpijx to understand the reason of that which relies in memory size
     exit(0);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   k=0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   for(cptcov=1;cptcov<=i1;cptcov++){       results. So we changed our mind and took the option of the best precision.
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    */
       k=k+1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    /* If stepm=6 months */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* nhstepm age range expressed in number of stepm */
       fprintf(ficresvpl,"******\n");    agelim=AGESUP;
          nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       oldm=oldms;savm=savms;    /* if (stepm >= YEARM) hstepm=1;*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }    
  }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresvpl);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   /*---------- End : free ----------------*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (age=bage; age<=fage; age ++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* If stepm=6 months */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   free_matrix(matcov,1,npar,1,npar);      
   free_vector(delti,1,npar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   if(erreur >0)         decrease memory allocation */
     printf("End of Imach with error or warning %d\n",erreur);      for(theta=1; theta <=npar; theta++){
   else   printf("End of Imach\n");        for(i=1; i<=npar; i++){ 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }
   /*printf("Total time was %d uSec.\n", total_usecs);*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   /*------ End -----------*/        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
  end:          for(i=1; i<=nlstate; i++){
   /* chdir(pathcd);*/            for(h=0; h<=nhstepm-1; h++){
  /*system("wgnuplot graph.plt");*/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
  /*system("../gp37mgw/wgnuplot graph.plt");*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
  /*system("cd ../gp37mgw");*/            }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          }
  strcpy(plotcmd,GNUPLOTPROGRAM);        }
  strcat(plotcmd," ");       
  strcat(plotcmd,optionfilegnuplot);        for(ij=1; ij<= nlstate*nlstate; ij++)
  system(plotcmd);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
  /*#ifdef windows*/          }
   while (z[0] != 'q') {      }/* End theta */
     /* chdir(path); */      
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      
     scanf("%s",z);      for(h=0; h<=nhstepm-1; h++)
     if (z[0] == 'c') system("./imach");        for(j=1; j<=nlstate*nlstate;j++)
     else if (z[0] == 'e') system(optionfilehtm);          for(theta=1; theta <=npar; theta++)
     else if (z[0] == 'g') system(plotcmd);            trgradg[h][j][theta]=gradg[h][theta][j];
     else if (z[0] == 'q') exit(0);      
   }  
   /*#endif */       for(ij=1;ij<=nlstate*nlstate;ij++)
 }        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1' or 'model=1+age+age*age+V1+V1*age', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     if(model[0]=='#'|| model[0]== '\0'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.2  
changed lines
  Added in v.1.187


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>